
Keyword-based Fragment Detection for Dynamic Web
Content Delivery

Daniel Brodie, Amrish Gupta, and Weisong Shi
Wayne State University

ABSTRACT
Fragment-based caching has been proposed as a promising tech-
nique for dynamic Web content delivery and caching [2, 3, 4].
Most of these approaches either assume the fragment-based con-
tent is served by Web server automatically, or look at server-side
caching only. There is no method of extracting fragments from an
existing dynamic Web content, which is of great importance to the
success of fragment-based caching. Also, current technologies for
supporting dynamic fragments do not allow to take into account
changes in fragment spatiality, which is a popular technique in dy-
namic and personalized Web site design. This paper describes our
effort to address these shortcomings. The first, DyCA, a Dynamic
Content Adapter, is a tool for creating fragment-based content from
original dynamic content. Our second proposal is an augmentation
to the ESI standard that will allow it to support looking up fragment
locations in a mapping table that comes attached with the template.
This allows the fragments to move across the document without
needing to reserve the template.

Categories and Subject Descriptors
H.3.0 [Information Systems]: Information Storage and Retrieval

General Terms
Algorithms,Performance

Keywords
Dynamic Web Content Delivery, Fragment Detection

1. DYCA: DYNAMIC CONTENT ADAPTER
Existing Problem With the ESI The ESI [5] standard currently
only allows for fragments to be linked directly with a url in the tem-
plate. This means that fragment-based caching would not be able to
take advantage of spatial changes, when a fragment of a document
only moves in position on the template, but contains the same data.
Currently, with the ESI, this can only be achieved by updating the
fragments as if their content changed, but this is inefficient.
DesignAs mentioned earlier, DyCA has been designed to augment
the existing servers to serve dynamic content efficiently. This is
achieved by the DyCA design that generates dynamic content that
adheres to an augmented ESI specification and also separates be-
tween the content generation and content delivery. DyCA is split
up into 2 separate but very important parts, the Dynamic Content
Generator module, and the Dynamic Content Delivery module.

The content generation module generates the fragments and tem-
plate from the original dynamic Web content. It uses a keyword

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

based approach to split up the static content into the different dy-
namic fragments. The keyword based approach works by building
an XML of the website and searching this XML tree for specific
tags that can signify a different fragment. These tags are set sep-
arately for different website based on the structure of the HTML
and the content. Differences, such as a different font, a table, or
a frame, can all be used to separate the fragments from the doc-
ument. By looking at popular websites, it is fairly simple to see
the implicit fragments contained in the document. Objects, such as
sidebars on the website, can be easily distinguished, and a keyword
based extraction method can then be easily created. Once the tags
in the XML tree are identified, the children XML tags and the rest
of the XML content contained in the identified tags is extracted to
create the fragments. A special include tag, that has a special frag-
ment id for each fragment, will be placed in the position where the
fragment was extracted from the main document. At this point we
have the fragment files, and a template with the fragment ids. The
mapping table is just a list of the internal list of fragment ids and
their corresponding URLs in a parseable file.

Additional information for each fragment, such as the TTL of the
fragment, is calculated by looking at a long term overview of the
website. Numerous instances of the web page are collected over
a regular period of time. Each instance is parsed and separated
into the different fragments, template, and mapping table by the
content generation module. By comparing the fragments and their
position over the period of time, an accurate dynamic behavior can
be seen that allows the correct generation of the mapping table to be
most efficient with regards to fragment movement. It also allows
the generation of the TTL of the fragments to be supplied to the
content delivery module.

The content delivery module is responsible for serving the tem-
plate, fragments, and mapping table to downstream caches. The
content delivery module needs to implement the extensions to the
protocols in order to send the data created by the content generation
module in an appropriate way. It needs to add information regard-
ing the mapping table, and so notify the cache, when a request is
dynamic and has a template, or when it is static. By sending the
mapping table to the cache, it can then get the static URLs of the
fragments to be able to access them. The content delivery module
also needs to support the cache updating only its mapping table, so
that bandwidth wouldn’t need to be wasted about already cached
fragments, or templates.
Implementation The dynamic content generator is implemented
as a Java Servlet in an Apache Web server that parses existing
websites and outputs a dynamic, ESI-based webpage. When a re-
quest from a cache for a document is made, if the document has
fragments then the mapping table is looked up and added as an
X-CONCA-MAPPINGHTTP header to the response. The expira-
tion of the fragment is set based on the TTL contained with the
mapping table. The body of the response is just the ESI augmented

No fragment Static Static Mapping
cache Template Objects Table

New York Times 4 MB 490 KB 246 KB 200 KB
India Times 4 MB 560 KB 220 KB 247 KB

Slashdot 2.4 MB 246 KB 202 KB 202 KB

Table 1: Total transfer bytes between server and cache.

template. Once the cache has the template, it will go on and request
the fragment as needed from the server. The cache can then build
up the proper final document and send that off to the client. The
servlet’s support of the If-Modified-Since part of the HTTP proto-
col on the template is crucial to the efficiency of the mapping ta-
ble. When the template expires on the cache, the cache will request
the template over again using the If-Modified-Since header of the
HTTP protocol. Since the template rarely changes, this will mean
that the cache will usually get a ’Not Modified’ response. This re-
sponse will contain the new mapping table, allowing the cache to
update it’s mapping table without having to retransfer the template.
If a static document, or a static object is requested from the content
delivery module, then the content delivery module will behave just
like a regular web server.

ESI Augmentation In trying to remain as standard compliant as
possible, the ESI format was picked to represent the structure of the
template in DyCA. Yet the ESI standard only supports document
fragments identified by static URLs, which will not suffice in our
case. Thus we needed to augment the ESI standard by adding the
esi:xconca-include tag. This tag allows the specification
of an ID number that can be looked up by the cache in the mapping
table and retrieve the fragment’s static URL.

2. PERFORMANCE EVALUATION
The home pages from three websites, India Times, NewYork

Times, and Slashdot, were chosen for performance evaluation of
our proposed approach due to their dynamic nature, and since none
of them supported any form of cacheable dynamic data. Ten-hour
traces are used in the simulation for our performance evaluation.

Four approaches are compared in terms of both total transfer
bytes and user perceived latency. The first method, usingno frag-
ment caching, was implemented by disabling caching in the proxy,
and having the server send the original webpage. This is consistent
with the behavior of real dynamic content in today’s Internet. In
the second method,static template, the template of the document
remain static, while the fragments of the fragments are updated for
content change. The template was cacheable for the whole testing
session, while the fragments were cacheable for as long as their
TTL was valid. In the third caching behavior,static objects, the
template is updated when content moves across the document, and
the fragments only change according to data changes only, and not
spatial changes. The last model represents our proposedmapping
tableapproach. When the template is returned a mapping table is
returned with it, the proxy can then cache the mapping table, and
update the mapping table when a spatial change happens. The tem-
plate remained static for the testing session, while the fragments
only changed for data changes.

2.1 Results and Analysis
Table 1 shows the total bytes used in transferring data in all four

methods. As can be seen from the table, using a static template and
changing to objects to support object movements requires consid-
erable more data transfer between the server and the proxy. This
is the method that is most commonly used today in dynamic web-
sites. Using static objects and a dynamic template to achieve a
dynamic webpage might seem efficient enough when looking at
the bytes transferred, but, as we will see later, this efficiency is

lost when looking at the user perceived latency. There is no com-
parison, though, between any of the dynamic methods and using
traditional caching approach.The amount of data transfer when not
using a fragment based architecture can be more then 10 times the
amount of data transfer when using a good fragment based caching.
When using a mapping table to transfer the data transfer can be
seen to be considerably smaller. In fact, the total bytes transferred
with a mapping table is little over the total size of the data, mean-
ing a minimal amount of wasted data is being transferred. This
should considerably reduce the server load when using such an ar-
chitecture. Figure 1 shows the user perceived latency for NewYork

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
C

um
ul

at
iv

e
D

is
tri

bu
tio

n

User Precieved Latency

New York Times

No fragment cache
Static Template

Static Objects
Mapping Table

Figure 1: User perceived latency for NewYork Times.

Times. Due to space constraint we could not include the similar re-
sults for the other two sites that we have tested on, and they can be
looked up in our technical report [1]. From this figure we see that
the user has to wait the least time for the website when the mapping
table architecture is used. With regard to user perceived latency, the
static fragment method’s performance is almost as bad as the per-
formance of using regular static webpages. The only method that
comes close to the method of using a mapping table is the static
template method, which as we saw before performed badly when
testing the amount of data transferred. This type of optimization is
very important for the client so it may receive its data in a timely
manner. Otherwise, from the users prospective, the actual retrieval
of the page is slower. From these figures we can conclude that the
mapping table method has performed better then all of the other
proposed methods in all of our tested fields.

3. SUMMARY AND FUTURE WORK
Our preliminary results show that the proposed keyword-based

approach and mapping tables are very useful and promising. Our
future work consists of continuing testing of these implementations
to further refine the design of our CONCA prototype [4], which
incorporates a novel design for efficient caching of dynamic and
personalized content.

4. REFERENCES
[1] D. Brodie, A. Gupta, and W. Shi. Acelerating dynamic web content delivery

using keyword-based fragement detection. Tech. Rep. CS-MIST-TR-2004-004,
Department of Computer Science, Wayne State University, Feb. 2004.

[2] J. Challenger, A. Iyengar, and P. Dantzig. A scalable system for consistently
caching dynamic web data.Proceedings of INFOCOM’99, Mar. 1999.

[3] F. Douglis, A. Haro, and M. Rabinovich. HPP:HTML macro-pre-processing to
support dynamic document caching.Proceedings of USITS’97, Dec. 1997.

[4] W. Shi and V. Karamcheti. CONCA: An architecture for consistent nomadic
content access.Workshop on Cache, Coherence, and Consistency, June 2001.

[5] M. Tsimelzon, B. Weihl, and L. Jacobs. ESI language sepcification 1.0, 2000,
http://www.esi.org .

