
Anole: A Case for Energy-Aware Mobile Application Design

Hui Chen, Bing Luo and Weisong Shi
Computer Science Department

Wayne State University
Detroit, United States

huichen, luobing, weisong@wayne.com

ABSTRACT

Battery lifetime, which is one of the most significant
user experiences for mobile devices, strongly restricts the
functional design of hardware architecture and applications.
Among all the aspects of energy saving for mobile devices,
energy-aware application design is one of the main areas that
has not yet been explored comprehensively. In this paper,
we argue for the case for energy-aware mobile application
design since there is pretty large space for energy saving
on applications and we believe this is a promising area for
future energy saving on mobile devices. To support energy-
aware mobile application design, we propose a framework
called Anole, aiming to add an energy adaptation layer
by providing a set of APIs and adaptation policies. Our
experiments with two applications on Android show that
Anoleis able to save a large amount of energy by triggering
applications to change states accordingly.Keywords-Anole;
energy-aware; adaptation;

I. I NTRODUCTION

Accompanied with the prevalence of personal mobile
devices, more and more applications are developed for those
mobile devices, such as smart phones and tablets. At the
same time, we notice that the battery lifetime for current
mobile devices is a big challenge, limiting the usage of
smart phone considerably. Researchers have proposed new
ideas to extend the battery capacity; however, we do not
expect the new battery technique will hit the market in the
near future. How can we extend the battery lifetime from
software perspective becomes a crucial issue to the systems
research community.

Even though a lot of improvements have been made in
the past [3], [4], [9], [10], [13], [14], [17], the low battery
lifetime problem is still a main concern of our society. To
further optimize the energy consumption for mobile devices,
we propose theAnole framework for energy-aware mobile
application design, since previous results [7], [8], [12] show
that applications have large space for energy optimizations.
The rationale is that application developers know much
better about how to control the behavior of applications.

This paper has three contributions. First, we propose
the notion of energy-aware mobile application design by
introducing an energy-adaptation layer. Second, we design
and implementAnole on Android platform with a set of
APIs and two energy-aware policies:service adaptationand

hardware adaptation. Last, we evaluateAnoleusing two case
studies: web browser and video player, on Google Nexus
One running Android 2.3.

The rest of this paper is organized as follows. In Sec-
tion II, we describe several previous efforts that are most
related with our work. We will give the design of the
Anole framework in Section III. Section IV shows how
we implement this framework on Android. In Section V,
we evaluate the effectiveness ofAnole with two typical
applications. Finally, we draw our conclusion and discuss
the future work in Section VII.

II. RELATED WORK

In the last decade, energy management of mobile devices
is a hot research topic in the system and architecture
community. There are a large amount of related efforts [7],
[13], [14], [1] having been done.

Flinn et al. found that the energy consumption of applica-
tions could be significantly influenced by the way how they
worked [7], [8]. They argued that software behavior/energy
consumption tradeoffs were as important as hardware behav-
ior/energy consumption tradeoffs. In addition, Royet al.also
proposed there was large room to save energy by changing
application behaviors [13].

Currently, energy-aware application design has not been
globally studied; most researchers are trying to build a global
energy management strategy. Several publications [5], [7],
[15] tried to build evaluation platforms to analyze the energy
requirement of applications. Flinnet al. built a platform
called PowerScopeto evaluate the energy consumption of
program blocks [7]. Changet al. used an energy-driven
method to detect software hotspots [5]. These previous pub-
lications were used to provide energy-related suggestionsto
application designers. Different from their work, ourAnole
framework tries to tell application designers when should
they change the energy consumption states of applications.

III. A NOLE DESIGN

To support energy adaptation, we propose theAnole
framework for mobile application designers and operating
system designers.Anole supplies a set of APIs to trigger
applications and system to change to different power states
when certain energy events happen.

Applications

Energy-aware APIs

E
n
e
rg

y
 P

ro
file

r

Energy models

Energy estimation

System states collector

Energy-aware plocies

System service

adaptation

Hardware adaptation

Hardware

management

System services

T
u
rn
o
n
/o
ff

Invoke

Invoke/Setup

N
o
ti
fy

N
o
ti
fy

Figure 1. The Anole framework.

A. Energy Adaptation

Nowadays a common experience is that we can not use
our mobile devices, such as tablets and smart phones, for
more than 24 hours without charging. We attribute this
limitation to the fact that energy consumption is rarely
considered during the application design stage.

To this end, we propose energy adaptation in which
application and system states should be dynamically changed
based on the energy status and the user expectation. Energy
adaptation is inspired by the idea of application adap-
tion [11] , but with the focus on the bad user experience
caused by the short battery life as more and more functions
are added.

In addition, the idea of energy adaptation is in accordance
with most users’ habit. Usually, we want to keep our smart
phones always on because telephone service and message
service are still the two dominant functions.

B. The Anole Framework

As shown in Figure 1, theAnoleframework includes three
modules: energy profiler, energy-aware APIs and energy-
aware policies. Energy profiler is a module that collects
system states and estimates application energy consumption.
Energy-aware APIs includes a set of interfaces for notifying
applications and energy-aware policies by using the energy
information. The concrete approaches to respond to the
system energy adaptation should be designed by application
developers in order to save energy consumption of their
applications.

The energy-aware policy module executes the energy
adaptation of operating system, which is also triggered by
the energy-aware APIs. In this module we design two poli-
cies for the energy adaptation of operating system:service
adaptationandhardware adaptation.

Finally, in our design we also highly consider user require-
ments. Therefore, we add several interfaces in the energy-
aware APIs for the end users to setup the parameters of
the Anole framework, such as adaptation point, which tells
when the system should change to the adaptation mode, and
adaptation step, which decides when the adaptation level will
increase.

C. Energy Profiler

To support the energy-aware APIs, we implement an
energy profiler module. The energy profiler module includes
three parts: state collector, energy models and energy esti-
mator. The state collector collects the states of the system
and applications. Some of the collected information will be
used to trigger energy adaptation directly. Other information
will be used by energy estimator to estimate the energy
consumption of applications, which tells the energy con-
sumption information of each application. The application
energy information is mainly used by fine-grained energy-
aware APIs.

The method we use to estimate the energy consumption
of applications is based on resource utilization. For more in-
formation on this, please see our previous work on pTop [6].

D. Energy-aware APIs

To support energy-aware mobile application design, we
provide a set of APIs for application designers. Application
designer should define several energy states and set the
application to different energy states when one of a specific
energy event is triggered. In this section we describe the
functionality of these functions.

First, we define several functions for coarse-grained en-
ergy adaptation. These functions are triggered by system
level events, such as battery level and battery temperature.
Second, we define two fine-grained energy adaption func-
tions, which are triggered by application energy consump-
tion information. Finally, several functions are designedfor
end-users to setup theAnole framework. We implement
several system-level setup functions, and leave application-
level setup functions to be implemented by application
developers. Several main functions are shown in Table I.

E. Energy-aware Policies

When the battery level is low,Anole will also notify
operating system to adapt the energy status. We implement
this function by adding the energy-aware policy module and
some specific energy-aware policies to control the states
of operating system. In this paper, we propose two basic
energy-aware policies:service adaptationand hardware
adaptation. Most importantly, we design this module with
extensibility in mind. In this way, other researchers can
easily add their customized energy-aware policies to the
framework.

We observed that operating system services themselves
generate a lot of activities even when the battery level is

Anole APIs Description
onBatteryLow(Level) Notify applications and policies to change energy consumption states.
onPlugged(Plug/Unplug) Notify applications and policies to disable energy adaptation when the device is plugged

or enable adaptation stage when the device is unplugged.
onTemperatureHigh(Level) Notify applications when battery temperature is higher than a point.
onBatteryHealth(Status) Notify applications when the battery is unhealthy.
onEnergyConsumption(Level) Notify an application when the power consumption which is higher than a default value.
requrestEnergy(Application) Request energy allocation for an application.
onEnergyAllocationExhaust Notify applications when their allocated energy is exhausted.

Table I
THE ANOLE APIS FOR ENERGY-AWARE APPLICATION DESIGN.

low. This is one of the main reasons that causes the high idle
energy consumption on the whole system, usually accountis
more than50% of the whole system energy consumption [2].
However, most of the services in the operating system is
not necessary or critical. Thus, it is reasonable to stop them
when the remaining battery energy is low. To implement
this policy, we first classify the system services into three
categories:highly required, required and optional. Then
we define the policy: which services should be stopped
when the system enters into an energy adaptation level.
Dependencies between services are not considered, and a
service should be stopped will be kept on only when the
foreground application relies on it.

The idea ofhardware adaptationis similar to service
adaptation. When the remaining battery energy is lower than
a threshold, we will directly control the state of devices. To
design this policy, we need to know the usage pattern of each
hardware and the power profile. Usage pattern is important
for deciding which application should be closed on an energy
adaptation level. Finally, a group of schemas are defined to
set up this policy when the system enters into an energy
adaptation level. End users can change the threshold value
and the schemas of each level.

IV. I MPLEMENTATION

We implement theAnole framework on Android 2.3,
which is open source to the society. The implementation
mainly includes four parts: pTop service,Anole service,
energy-aware policy service and application energy-aware
support.

A. pTop Service

Energy profiler is implemented as a system service called
pTop service, which has three functions: collecting sys-
tem information, estimating application energy consumption,
managing energy consumption information. TheAnoleser-
vice will be notified when the system states change or new
energy information is available. The communication of pTop
service andAnole service usesIntent messaging, which
is a facility for late run-time binding between components,
supplied by Android system.

The pTop service needs to maintain system states and
application energy consumption information. We save these

data into a hash table data structure. For application energy
consumption, we only save the total energy consumption
and the estimated energy consumption history in a time
interval because the memory space is limited. Also, when
an application is closing, the corresponding history energy
consumption information in hash table will be deleted to
save memory.

B. Anole Service

The Anole service, which is the core of this framework,
triggers applications and operating system to change states.
For each energy-aware option, we define a specificIntent
message. Components that had registered this message will
be notified when theAnole service generates one of this
kind of message. These components includes application
manager, service manager of Android system. Whenever it
receives an system states change information from the pTop
service, it will check whichIntent message should be
generated. TheseIntent messages are in accordance with
the interfaces we define in in Section III.

Seven energy adaptation levels from level 1 to level 7
are used in the implementation. A higher level number
means more actions should be taken to decrease the energy
consumption. This service could dynamically map these
seven levels onto user defined energy adaptation point and
energy adaptation step. Energy adaptation point is a value
that refer to the percent of remaining battery energy to
trigger the whole system enters into energy adaptation mode.
Energy adaptation step is a value that decides how many
percent of energy drop will increase the energy adaptation
level.

Finally, we define all the functions into a uniform energy
adaptation interface object with some predefined constants,
such as energy levels. This interface object is implemented
by the super class of theActivity object, which manages
the life cycle of applications on Android. Energy-aware
policies are also required to implement this interface object.

C. Energy-aware Policy Service

We modify the service manager class, which registers all
the energy-awareIntent messages, to support the design
of energy-aware policies. Each policy is defined as a service
of Android. Different with other normal services, these

services must implement the energy adaptation interface.
Then, service manager could invoke a specific method of
an energy-aware policy when anIntent message was
received by the service manager.

The service adaptation policy will stop some system
services when energy adaptation enters into a level. In our
design, we simply classify system services into three cate-
gories:highly required, required and optional. The default
energy adaptation level to stop optional and required services
are 5 and 2. Currently, we classify system services and define
the default energy levels based our personal experience.

Similar to service adaptation policy, hardware adaptation
policy is also implemented as a service that implements the
energy adaptation interface. Also, we predefine the energy
adaptation levels, at which a hardware device should be
closed. For example, the bluetooth service will be closed
when the energy adaptation level is 1 and network service
will be closed when energy adaptation level is 6.

D. Application Energy-aware Support

To support application energy adaptation, we modify
the Activity class of Android system, which must be
extended by all the applications, by implementing the energy
adaptation interface. Also, we modify this class to listen the
Intent messages generated by theAnole service. When
it receives an energy-aware message, the related function
of each application will be invoked to change the energy
consumption state of this application. By default, if the
method is not overridden by the application designer, we
will take some default energy-saving strategies at different
energy adaptation level.

V. EVALUATION

To evaluate the effectiveness of our work, we generate an
Android image with our implementation for Google Nexus
One and do a group of experiments on this platform.

A. Method

We use a Nexus One smart phone, the processor of which
supports 12 power steps, and a RadioShack digital multi-
meter to measure the energy consumption of the system.
First, we connect a resistor, about 0.35 Ohm, between battery
and the mobile phone. Then, we measure the voltage of the
resistor. Finally, we can compute the power consumption of
the whole system with the voltage measured.

To evaluate the effective of application energy adaptation,
we use two applications, video player and web browser, to
do the experiment. First, we define a simple energy adap-
tation strategy for each of them. Then, we implement these
strategies by overriding onBatteryLow method in all these
two applications. When we evaluate on the applications, we
close all the other applications.

In addition, when we evaluate the effectiveness of energy-
aware policies, we change the system into energy adaptation

mode by hand in order to avoid the long time waiting. Since,
we only want to see whether the energy requirement drop
or not, it make sense for us to do in this way. We use the
measured system power to do analysis. To do this, we need
to assume the power is stable in the sampling interval, which
is 1 second. And then, we compute the energy consumption
by accumulate the energy consumption of each sampling
interval.

B. Case Studies

To demonstrate the feasibility of our approach, we did a
group of experiments with the two applications that we mod-
ified. Energy-aware application design requires application
designers to make decision to change application behavior
based on system energy status. Our results show that there
is an average of 30% potential to save energy wasted by
applications and operating systems.

1) Video Player:We modify the MediaPlayer framework
of the Android platform. For video player, we change the
resolution of the video when energy adaptation is triggered
by changing the number of frames played per-second. This
will decrease the computation required for video data pro-
cessing. We use three short videos to test. From Figure 2 we
can see that this method is effective to decrease the energy
consumption. On average, about27.2% of energy could be
saved.

0

20

40

60

80

100

120

0 50 100 150 200 250 300

E
n

e
rg

y

C
o

n
s

u
m

p
ti

o
n

(J

o
u

le
)

Video Length (seconds)

With energy-adaptation Without energy-adaptation

Figure 2. The energy consumption of video player when use energy
adaptation and without energy adaptation.

Figure 3 shows the active power of the system when
the system is entering into energy adaptation mode. In this
figure, we see clearly that the power dissipation of the
system drops when the application starts to execute energy
adaptation. On average, there is a drop of about 40 mw on
power.

2) Web Browser:We change the web browser application,
which is supplied with the Android source code, and the
WebCore library. In this application, an image is downloaded
only when a direct user request is received. This is close to
human behavior because we are usually only interested in
several pictures of a web page. In the experiment, the web
browser automatically open a group of web pages one by
one (after the past one is fully loaded). Then we compare
the energy consumption both with energy adaptation and

0

100

200

300

400

500

600

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3S
y

st
e

m
 P

o
w

e
r

(m
w

)

Time (seconds)

System Power Change State

Figure 3. The active power of the system when video player changes to
energy adaptation mode.

without energy adaptation. The result is shown in Figure 4,
from which we can see that the case of using energy
adaptation consumes much less energy than the other case.
This is because image downloading requires a large amount
of wireless communication. In this example, about53.4%

percent of energy could be saved.

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

(J
o

u
le

)

Number of webpages

With Energy-adaptation Without Energy-adaptation

Figure 4. The energy consumption of web browser when use energy
adaptation and without energy adaptation.

Even though we cannot see a a clearly drop of system
power when we did experiment for web browser. The time
used for loading web content is decreased significantly
because the downloading of images account for a large
amount of network traffic.

C. Energy-aware Policy

In addition to using applications, we also use two energy-
aware policies to evaluate the framework. When we did
experiment on these two applications, we enable one policy.

1) System Service Adaptation:System service adaptation
policy stops several background services of the system when
energy adaptation mode is entered. In this experiment, we
measure the change of system power when the system
change from normal status to energy adaptation status. In
this stage, several optional services, such as alarm manager
service, bluetooth service, clipboard service, mount service,
backup manager service and wallpaper manager service will
be closed. The experiment is shown as Figure 5, in which
we can clearly see the drop of power.

0

100

200

300

400

1 5 9 1317212529333741454953576165697377

S
y

st
e

m
 P

o
w

e
r

(m
w

)

Time (seconds)

System Power Change State

Figure 5. The active power of the system when service energy adaptation
is triggered.

2) Hardware Adaptation:As we have mentioned before,
the hardware adaptation policy turns off hardware device
directly when system change to different energy adaptation
levels. In our experiment, we measure the power of the
system during 2 energy adaptation changes. In the first
change, the system enters into energy adaptation mode, and
we turn off GPS, Bluetooth, and accelerometer. Also, we
decrease the brightness of the screen. In the second change,
we mainly turn off the wireless network. As we could see
from Figure 6, the active power of system clearly shows
three stages.

0

100

200

300

400

1 5 9 131721252933374145495357616569737781

S
y

st
e

m
 P

o
w

e
r

(m
w

)

Time (seconds)

System Power Change State

Figure 6. The active power of the system when hardware adaptation is
triggered.

Experiment results not only show that these two policies
can effectively decrease the energy consumption, but also
verify thatAnoleis capable of correctly changing the system
into different working modes.

VI. FUTURE WORK

In this paper, we investigated enabling technologies for
energy-aware mobile application design. Our long term
objective is to extend the battery life of mobile devices
significantly via integrated cross-layer approaches. There are
a lot of future works need to do enable to complete the
function of energy adaptation. In this section, we talk about
the future works in this area.

1) User behaviors.Research on user behaviors is highly
required for us to design the default energy-aware poli-
cies. In the future, how users setup energy adaptation
parameters and how will they apply energy adaptation

level to each services and hardwares should be studied.
Also, user experience is highly required for application
designers to make up energy adaptation strategies.

2) Energy-aware policies.More energy-aware policies
should be designed to support energy adaptation. First
of all, we need to design an energy-aware scheduling
algorithm, which has two objectives: controlling the
energy consumption of applications that did not im-
plemented the energy-aware APIs and saving energy
while at the same time maintain a good user expe-
rience. Also, is is helpful to design a synchronized
packet scheduling algorithm to optimize the energy
consumption of wireless communication. The polices
should not only be good at decreasing energy con-
sumption but also considering the difference of each
application.

3) Analyze application usage patterns. Application usage
pattern is helpful for design user-oriented energy-
aware policies. The difficult part are pattern repre-
sentation and pattern recognition. We could leverage
SPAN [16] and data mining techniques to recognize
the patterns of applications in terms of their en-
ergy consumption. The difference between application
usage pattern-based energy-aware policies and other
existing energy-aware policies is that user experience
and energy saving are considered at the same time.

VII. C ONCLUSION

In this paper, we propose energy adaptation and imple-
ment it as theAnole framework on Android platform. We
evaluate our framework with two applications, the result
shows an average energy-saving space about30%. Also,
the experiment shows that theAnole framework effectively
supplies energy adaptation support to the operating system.
The experiments on applications and energy-aware policies
clearly show that Anole could trigger energy adaptation and
save energy.

Of course, our method will influence user experience
of applications, especially those energy-heavy applications.
But, we noticed that a lot of functions are infect not always
used for most of time. However, we still run background
services and turn on related hardware to support these
functions. The is the main reason that cause the energy
consumption because a large amount of activities will be
generated by them.

ACKNOWLEDGEMENTS

Weisong Shi is in part supported by the Introduction of
Innovative R&D team program of Guangdong Province (NO.
201001D0104726115) and NSF grants CCF-0643521 and
NSF CNS-1205338.

REFERENCES

[1] Manish Anand, Edmund B. Nightingale, and Jason Flinn.
Ghosts in the machine: interfaces for better power manage-
ment. In Proceedings of the 2nd international conference
on Mobile systems, applications, and services, MobiSys ’04,
pages 23–35, New York, NY, USA, 2004. ACM.

[2] Luiz André Barroso and Urs Hölzle. The case for energy-
proportional computing. Computer, 40:33–37, December
2007.

[3] Pat Bohrer, Elmootazbellah N. Elnozahy, Tom Keller, Michael
Kistler, Charles Lefurgy, Chandler McDowell, and Ram Raja-
mony. The case for power management in web servers, pages
261–289. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[4] Thomas D. Burd, Trevor A. Pering, Anthony J. Stratakos,
and Robert W. Brodersen. A dynamic voltage scaled mi-
croprocessor system.IEEE Journal of Solid-State Circuits,
35:1571–1580, 2000.

[5] Fay Chang, Keith Farkas, and Parthasarathy Ranganathan.
Energy-driven statistical sampling: Detecting software
hotspots. In Babak Falsafi and T. Vijaykumar, editors,
Power-Aware Computer Systems, volume 2325 ofLecture
Notes in Computer Science, pages 105–108. Springer
Berlin/Heidelberg, 2003.

[6] Thanh Do, Suhib Rawshdeh, and Weisong Shi. ptop: A
process-level power profiling tool. InProceedings of the
2nd Workshop on Power Aware Computing and Systems
(HotPower’09), oct 2009.

[7] Jason Flinn and M. Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. InWMCSA
’99: Proceedings of the Second IEEE Workshop on Mobile
Computer Systems and Applications, page 2, Washington, DC,
USA, 1999. IEEE Computer Society.

[8] Jason Flinn and M. Satyanarayanan. Managing battery
lifetime with energy-aware adaptation.ACM Trans. Comput.
Syst., 22:137–179, May 2004.

[9] Jerry Frenkil. Tools and methodologies for low power
design. InProceedings of the 34th annual Design Automation
Conference, DAC ’97, pages 76–81, New York, NY, USA,
1997. ACM.

[10] Andreas Merkel and Frank Bellosa. Balancing power con-
sumption in multiprocessor systems.SIGOPS Oper. Syst. Rev.,
40:403–414, April 2006.

[11] Brian Noble, M. Satyanarayanan, and Morgan Price. A
programming interface for application-aware adaptation in
mobile computing. InProceedings of the 2nd Symposium on
Mobile and Location-Independent Computing, pages 57–66,
Berkeley, CA, USA, 1995. USENIX Association.

[12] Michael D. Powell, Arijit Biswas, Joel S. Emer, Shubhendu S.
Mukherjee, Basit R. Sheikh, and Shrirang Yardi. Camp: A
technique to estimate per-structure power at run-time using
a few simple parameters. InIEEE 15th International Sym-
posium on High Performance Computer Architecture, 2009.
HPCA, pages 289–300, 2009.

[13] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis,
David Mazières, and Nickolai Zeldovich. Energy manage-
ment in mobile devices with the cinder operating system. In
Proceedings of the sixth conference on Computer systems,
EuroSys ’11, pages 139–152, New York, NY, USA, 2011.
ACM.

[14] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters,
and Gernot Heiser. Koala: a platform for os-level power
management. InProceedings of the 4th ACM European
conference on Computer systems, EuroSys ’09, pages 289–
302, New York, NY, USA, 2009. ACM.

[15] Shinan Wang, Hui Chen, and Weisong Shi. Span: A software
power analyzer for multicore computer systems.Elsevier
Sustainable Computing: Informatics and Systems, page In
press, 2011.

[16] Shinan Wang, Hui Chen, and Weisong Shi. SPAN: A software
power analyzer for multicore computer systems.Sustainable
Computing: Informatics and Systems, 1(1):23 – 34, 2011.

[17] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin
Vahdat. Ecosystem: managing energy as a first class operating
system resource.SIGPLAN Not., 37(10):123–132, 2002.

