
1

Fine-Grained Power Management Using
Process-level Profiling

Hui Chen, Youhuizi Li and Weisong Shi
Department of Computer Science

Wayne State University
{huichen,huizi,weisong}@wayne.edu

Abstract—Low-power hardware design itself is not enough
to solve the power problem of computer systems. Operating
system level power saving strategies have been proved as effective
complement to hardware methods. However, most of these
strategies work on system level, and some of them may severely
influence performance. In order to balance between performance
and energy consumption, fine-grained methods, such as process-
level power management, were proposed. These methods usually
require realtime power information to make critical power-
saving decisions, but most power profiling tools only supply
component level power information. In this paper, we first
propose a process-level power profiling tool called pTopW, which
runs on Windows platform. pTopW supplies a group of APIs for
power-aware system modules to acquire realtime power profiles
and make power-aware decisions based on these information.
In addition, we introduce a power-aware system module called
EnergyGuard, which can eliminate energy wasted by abnormal-
behavior applications. Through experiments, we found that the
energy model we proposed have very good responsiveness. In
addition, EnergyGuard is helpful to distinguish applications’
abnormal power behaviors.

Keywords-Power Profiling; EnergyGuard; pTopW;

I. INTRODUCTION

In the past several years, power dissipation and subsequent
problems have acquired comprehensive concerns. In order to
solve these problems, we have totally changed the way of
designing computer systems. One of the rules is that power
became one of the first-class architectural design constraints,
and performance was not the only consideration during the
architecture design cycle [1]. Limiting power dissipation is not
only important for desktop and mobile devices, such as laptop
and smart phone, but also critical for high-end systems. For
mobile devices, power dissipation is closely related to battery
lifetime, which is one of the significant aspects of the user
experience, because the energy density of current battery is
limited. In addition, accompanied with the rapid expansion of
Internet services, a lot of data centers were built to supply
powerful and stable services for users. However, it is well
known that a data center is power hungry and has very low
energy efficiency because it’s designed for peak workloads.
To evaluate energy efficiency, the Green Grid group proposed
the definition of power usage effectiveness (PUE) [2]. Power
and the concomitant thermal issues significantly restrain the
improvement of performance. For example, if the clock fre-
quency of processor continues to increase, it may be inevitable
to economically cool down the chips.

To solve the power problem and improve the energy effi-
ciency, a lot of research have been done from different angles,
such as low-power circuits design, power-aware hardware
architecture and power-aware operating system design. The
efforts in the early age [3] are mainly done on low-power
circuits design. To do the power/performance evaluation, tools,
such as Wattch [4] and SimplePower [5], were introduced to
estimate the circuit level power. Even though these specialized
low-power hardware design techniques have been proved as
effective for power reduction, these techniques alone are
not enough, and higher levels of power saving mechanisms
becoming more and more important [4]. Vahdat et al. also
claimed that both low-level mechanisms and higher-level poli-
cies are required for maximizing energy efficiency, and that all
aspects of traditional maimizing performance aimed operating
system design should be revisited [6]. Zeng et al. implemented
ECOSystem [7], which, to our knowledge, is the first operating
system which have seen power as the first-class resource. They
tried to extend the battery lifetime by managing the system-
level power dissipation.

Although current power management strategies that have
been done on operating system are effective during a long
period, the space for power saving decreased sharply with the
development of computer hardware. A group of experiments
done by Le Sueur and Heiser demonstrated that using DVFS
may cause more energy consumption compared to the case of
not using it [8]. The main reason which cause this situation
is due to these power saving strategies which decrease the
performance and thus require longer time to finished the task.
On the other hand, static power have already dominated the
system power dissipation.

To solve this situation, higher level power management
techniques, which try to eliminate the energy waste done
by tasks, applications, processes and threads, are proposed.
However, these fine-grained power management strategies
require realtime power information. Different with circuit level
power estimation, which is used during the hardware design
cycle, realtime power information is used on current platforms.
Usually, there are two methods to acquire the realtime power
information: direct measurement and software-based power
profiling. The power measured directly with different kinds
of meters cannot serve as realtime services because these
meters are costly, and thus they are not suitable for normal
users. Thus, this method can only be used during research
even though it is accurate. High-end systems usually integrate

2

power sensors into the hardware to supply realtime power
information. Integrating sensors into hardware, however, is
also expensive, and the current usage is only limited to servers.
Software-based power profiling is much more flexible and
low-cost. Also, it can be used to estimate more fine-grained
power information, which is not only useful for system to
make power-efficient decisions, but also can be used to make
software power/performance evaluations.

Most previous publications of this category [9], [10], [11]
use a group of metrics that can reflect the power dissipation of
the hardware to build the power model. These previous works
can estimate the power accurately. However, these articles
targeted component-level power estimation. Energy efficient
strategies usually require process or thread level power profiles
in able to manage energy as a kind of resource. For example,
Cinder [12] operating system requires these information to
allocate a ”Reserve” for each application. In addition, some
methods are too complicated to be used in realtime, otherwise,
the overhead is too high. To limit the overhead, simplicity is
also a critical constraint for power model. In our previous
work [13], we had designed a power profiling tool for Linux
platform. Our new work not only improves the energy model,
but also evaluates the models in more details. In addition, we
made several modifications to the architecture of pTop; this
makes it easier to use on windows platform.

With the power profiles supplied by pTopW, we designed a
fine-grained power-aware strategy called EnergyGuard. Unlike
other methods, which try to decrease energy consumption
by losing parts of the performance, EnergyGuard try to
distinguish applications that have abnormal power behaviors
and then take actions to eliminate the energy wasted by
these processes. More specifically, we monitor the power
dissipation of all processes, build the power history and detect
abnormal process, whose power is always increased sharply
and influence other processes. Then, we can inform users and
avoid energy waste. Besides monitoring the safe processes,
EnergyGuard can detect energy greedy malware in a relatively
short time. Current EnergyGuard module mainly considers
how to distinguish these abnormal processes and can only
supply a simple power-saving strategy. How to design different
strategies to control the power dissipation of these processes
is part of our future work.

In this paper we have three contributions:
• We propose four energy models to estimate the energy

consumption and the power of four main components.
The experiment results show that these power model
show good responsiveness most of the time. Based on
these power model, we further construct the process-level
energy model.

• In addition, we implement the pTopW on Windows plat-
form. This tool supplies two convenient user interfaces,
which are APIs and performance counter, for power-
aware applications.

• Finally, we propose EnergyGuard, a module for process-
level power management.

The rest of the paper is organized as follows: Section II
describes several works that are most related to our work.
In section III, we introduce the energy model we proposed,

describe the architecture of pTopW and the implementation
of the energy models. Also, we evaluate the energy model
in section. Then, in Section IV we introduce the design
and implementation of EnergyGuard. We test the usability of
EnergyGuard with several usage scenarios. Finally, we draw
the conclusion and talk about the future work in section V.

II. RELATED WORK

In this section, we only describe two areas, software-
based power profiling and operating system-level power-aware
strategies, which are most related to our work.

A. Power Profiling

As the foundation of power-aware system design, a lot
of methods, which include hardware-based methods and
software-based methods, have been proposed. Software-based
methods are much more flexible than hardware-based methods
because they do not need any devices to do power measure-
ments. Furthermore, software-based methods can be used to
estimate more fine-grained power information. We do not only
estimate the power of the system level and the component
level, but also could estimate the power of process, thread [13],
[14] and virtual machine [15], [16]. In this section, we describe
several previous publications which are related to our work,
and make comparisons with them.

1) HPC-based Power Model: Hardware performance
counter (HPC) is a group of registers that are used to count
hardware, software and operating system events. Thus, a large
group of works use HPC to build power model. Frank Bellosa
[9] is probably the first person who proposed use HPC in
able to estimate power information. After analysis, they found
that four HPCs, which are integer operation, floating-point
operation, second-level address strobe and memory transac-
tion, are tightly related to the power dissipation of processor.
In [17], Contreras et al. construct a processor power model
by using four HPCs, which are, the instructions executed, the
data dependencies, the instruction cache miss and the TLB
(translation look aside buffer) misses. They also built a power
model for memory. Similarly with [17], Bircher et al. also
found that IPC (instructions retired per cycle) related HPCs
are highly correlated with processor power. The research of
Bircher et al. proved that processor related performance events
are also highly related with the power of memory, chipset,
I/O subsystem and disk [11]. They found the relationship by
analyzing the propagation of hardware performance events
among the whole system.

To implement a temperature-aware load balancing algorithm
on Linux platform, Merkel et al. introduced a method to
compute the energy consumption of tasks [14]. They also built
a energy model with performance events, and they modified
the kernel of Linux to do the sampling before and after each
time slice. Using the sampled performance events value, they
compute the energy consumption of the related task during the
time slice. Different with them, pTopW can also estimate the
energy consumption of each process. Even though sampling
performance events during scheduling is a good choice, this
method is not suitable for us because windows platform is not

3

open-source. In addition, the overhead will be very high if
we use their method because pTopW needs to sample a large
amount of performance events.

2) System Profile-based Power Model: Except using hard-
ware performance counters, system profile is also globally
used by researchers. As we know, the number of HPCs
is limited; thus, it is not suitable to use HPCs to build
fine-grained energy model. In addition, the power profiling
thread may interfer with other applications which using HPCs.
Therefore, we chose system profile to built the power model.

Li et al. estimated the power dissipation of operating system
based on IPC [18]. They found that some operating system
routines generate constant power, and other operating system
routines, such as process scheduling and I/O operating, have
higher relationship with IPC. Kansal et al. introduced a virtual
machine level power model. They first built the power model
and estimate the power for CPU, memory and disk, and then
they distributed the power to each virtual machine based
on the utilization. Our work also use similar method to
compute the power of a process. The difference is that we
are targeting laptop computers, so we also consider wireless
network card. In [15], Dhiman et al. also described an online
power prediction system for virtual machine.

In our previous work [13], we implemented the first version
of pTop on Linux platform. Our second version is implemented
on Windows platform. In addition, we added an energy model
for memory and made some modifications to other energy
models. Finally, this version do not rely on the system infor-
mation supplied by other applications or kernel patches.

B. Power-aware Strategy

There are several work done about energy saving approaches
in different aspects. As [19] refers, a lot of work related to
energy are focusing on how to avoid waste. Scientists do
many experiments and get the statistics then deduce which
part consumes much energy, and how to improve it. At first,
Scientists study specific hardware components of computer, in
[20], the author found the power dissipation in micro-process.
Then it goes to the energy model, in [21], [22][23], they built
energy model to help research and they made the prove more
reasonable. Nowadays, people are more interested in energy-
aware software and system [24] design. As suggested, if we
want to build energy-aware applications, we should know
the energy situation first and adjust the applications’ work
correspondingly. Besides, in [25], the operation system needs
to schedule the process by the energy which is a resource.
Similarly, EnergyGuard also save energy by avoiding waste,
but our work is mainly about the process level not the specific
components, and we treat the software from the point view
of operation system. EcoSystem [7] manages power as a kind
of resource, and the available energy of process is limited to
a budget. This way, they extend the battery life time through
the control of power dissipation.

III. APPLICATION-LEVEL POWER PROFILING

In order to support fine-grained power-aware strategies,
we must first design power models to calculate process-level

energy consumption. In this section, we describe pTopW, a
process power profiling tool, in detail. Even though it targets
desktops and laptops, the idea can be easily transplant to high-
end systems.

A. Energy Model

The most important part is energy model because it converts
performance event values into energy and power. In this paper,
we only consider the energy models of four main components,
which are processor, memory, disk and wireless network card.
The power models estimate the energy consumption of these
devices during two sample interval. With the energy models,
we can easily compute the average power of these components
during the sample interval. Finally, we compute the energy
consumption or power of each process based on the utilization
of these hardware resources. Power is the dissipation rate of
energy; thus the energy consumption in a time interval does
not have much difference with power. In this paper, when we
say a process’s power, we mean that the execution of a process
causes this amount of energy consumption in a unit time. The
sum of all the active processes’ power equals to the active
power of these four devices.

1) The Requirements of Energy Model: Several previous
articles [10] make accuracy as the foremost requirement.
However, accuracy usually means complex and high-overhead;
thus, it may not suitable to supply online power information.
In [26], the authors proposed that responsiveness is also impor-
tant because detecting power phase is critical for power-aware
strategies. In addition to accuracy and responsiveness, we think
flexibility and simplicity are also important for a power model
which supplies online power information. Because pTopW
estimates process level energy consumption, our power model
cannot too complex. Otherwise, the overhead will be too high
to be really used.

2) Component Energy Model: We only consider four main
components of a computer system, even though other devices,
such as motherboard, also account for a large ratio of power
dissipation. During our research, we found that the current
state of most devices is closely related with its power. For
example, CPU frequency to a large extent decides the current
power of processor. In addition, the usage of a device is also
closely relevant with the energy consumption. The energy
model we proposed estimates the energy consumption of a
component in a time interval, which is the time span of two
samples, and the power model estimate the average power
during this interval.

Our processor energy model relies on the observation that
the active power of CPU almost has linear relationship with
clock speed, when the core voltage is stable, which is the case
in most of the time. In addition, we assume that the clock
frequency is stable during the procedure of a sample. As seen
in equation 1, the first part of CPU energy consumption is
static energy consumption, and the second part is dynamic
energy consumption. P c

s and P c
max are the static power of

of CPU and the maximum power of CPU; Ts and T cpu
a are

sample interval and CPU active time, which is the sum of
system space time and user space time. We use the current

4

clock speed (Fc) and the maximum clock speed (Fm) to
compute the dynamic power of processor. Here, α is a constant
that denote the relationship of dynamic power and clock speed.

Ecpu = P c
sTs + α(P c

max − P cpu
s)(Fc/Fm)T cpu

a (1)

The memory energy model uses the amount of data written
into (Dw

m) and read from memory (Dr
m) during a sample

interval to compute the memory active time. Our experiment
show that the memory read (Sr

m) and write speed (Sw
m) are

slightly different, but the power of them are almost the same.
First we compute the memory active time with equation 2.
The we use equation 3 to calculate the energy consumption
of memory. In this equation, Pmem

s and Pmem
a are the static

power and active power of memory.

Tmem
a = (Dw

m ÷ Sw
m) + (Dr

m ÷ Sr
m) (2)

Ememory = Tmem
a × Pmem

a + (Ts − Ta)× Pmem
s (3)

Similarly to memory, the disk energy is also greatly relevant
to read and write states of the device. Unlike our first version,
windows platform has three counters that supply the ratio of
time spent on idle (Rdisk

i), read (Rdisk
r) and write (Rdisk

w)
operations. In this way, we do not need to compute the time
spent on each operation through using the amount of data
read or write to divide the average speed of read and write
operation. The disk energy model is shown as equation 4, in
which P disk

r , P disk
w and P disk

i are the power disk when it is
reading, writing or idle.

Edisk = (Rdisk
r ×P disk

r +Rdisk
w ×P disk

w +Rdisk
i ×P disk

i)×Ts
(4)

Finally, the power of wireless network card is only related
with its state. Our experiments show that the idle power Pnic

i is
much smaller than the power when sending Pnic

s or receiving
Pnic
r data. We use the amount of data sent and received in

a time interval to decide the state of wireless network card.
When it is active, the energy consumption is calculated with
equation 5. In this equation, Dnic

s and Dnic
r are the amount of

data send and received. We assume that the state of wireless
network card do not change during a sample interval. When
wireless network card is inactive, the energy consumption is
only the product of idle power (Pnic

i)) and the sample interval,
as seen in equation 6.

Enic = ((Dnic
s ×Pnic

s +Dnic
r ×Pnic

r)÷(Dnic
s +Dnic

r)×Ts (5)

Enic = Pnic
i)× Ts (6)

3) Process Energy Model: Unlike hardware devices, pro-
cess is an abstract object; thus, a process does not have energy
consumption. However, the execution of a process causes
devices to consume more energy. Based on the utilization,
we first divide the energy consumption of a component onto
process that had used this component during the sample

Fig. 1. The architecture of pTopW.

interval. For example, the energy consumption of a device
is E and the utilization of a process on this device is u, then
we compute the energy used by the process on this device as
the product of E and u. We define the energy consumption
of a process is the sum of the energy allocated from each
component, shown as equation 7. After that, we can compute
the average power of a process i with equation 8;

Ei = Ecpu
i + Emem

i + Edisk
i + Enic

i (7)

Pi = Ei/Ts (8)

We allocate dynamic CPU power to each process based on
the CPU time of it. In addition, we divide dynamic power of
memory based on the data input and output of the processes.
The methods we used to divide disk power and network card
power are similar to memory. In the next section, we will
talk about the implementation of the energy model and power
model in detail.

B. Design and Implementation

As shown in figure 1, the core of pTopW includes seven
modules, which include data collector, energy model, in
memory data store, log module, display module, performance
counter and APIs. In this section, we first describe the archi-
tecture of pTopW and the function of each module. Then, we
will talk about the implementation of energy module in more
detail.

1) The Architecture of pTopW: Data collector, energy model
and in memory data store are the most critical three modules
of pTopW. Data collector is a single thread that is used to
sample the system performance events. In each cycle, it first
retrieves the component state information, then it reads the
state information for each process. All the system data are
retrieved from system performance counter APIs. Unlike our
previous version, which retrieves system information from the
proc virtual filesystem, windows supplies APIs to directly
get these information. In addition, we also implemented the

5

Fig. 2. The user interface of pTopW.

function of analyzing processes’ network usage, which is done
by analyzing the states of opened UDP and TCP connection.
In our Linux version, we rely on several special kernel patches.

After a sampling, the sampled data will be sent to energy
model module. Then, the energy model module converts the
system state information into energy consumption and power.
When the data collector receives the response, it first saves the
result into the data store, and then it notifies the log module,
display module and performance counter module.

The data store module saves the sampled system information
and estimated energy and power information with a complex
data structure, which manages data nodes in an array. The data
of each sampling is saved in a data node, and in the data node
we use hash table to save process related information. We
design the data store in this way because the main operations
on data nodes are sequential, and process related operations
are key-value pair management.

Log module can save all the information into a log file, and
users can use the results to do power/performance analysis.
The log strategy is configurable, for example, we can configure
whether process level information should be logged or not.
With the data saved by the log module, users can do offline
power analysis. The display module is another thread, and
it refreshes the user interface on its own time interval. Data
collector only pass a reference of the last updated data to
display module. In this way, display module does not influence
the sampling procedure of data collection module. Figure 2 is
the user interface of pTopW. We list top twenty processes and
the user could specify the sorting method. By default, it sorts
the total power of processes.

2) Programming Interface: We supply two methods for
users to get the calculated energy and power information. In
the first version, we only supply APIs which could tell how
much energy a process or the system has consumed in the last
t seconds. In this version, we also add two functions for user
to access the estimated raw data.

1. APIs
Similarly to our previous work [13], which implemented

a group of APIs for users to retrieve energy consumption

information, pTopW supplies similar interface to users. In
addition to implementing the formatted energy consumption
APIs we defined in [13], we add several new functions to
retrieve the raw data. For example, we define two functions
as following:

double[] ComponentInfo(int flag);
double[] ProcessInfo(int flag, int pid);

The ComponentInfo function returns the last estimated en-
ergy and power information of the system. The parameter
flag is used to decide what kind of data should be returned,
which maybe power, energy or both. The ProcessInfo function
returns the last estimated energy or power information of the
specified process. The parameter pid is the process number.
With these two functions, users can get information which are
asynchronous with the core of pTopW.

We use named pipe to implement the API module, which
works like a network server. As soon as it receives a request, it
decodes the request, processes the request and responds with
the result to the client. The users can write programs while
communicate with the pipe, we named it ptopw-pipe, we have
defined directly. Moreover, a DLL, in which we encapsulate
the details of communicating with the named pipe, is also
available to invoke the APIs.

2. Performance Counter
We also define a group of customer performance counters

to supply the realtime energy and power information. We
name the category of the performance as wsu ptopw. In this
category, we define ten counters, which are named as CPU
Power, Memory Power and so forth. Under each counter,
there is a group of instances. Each instance is related to one
process. The Performance counters are updated as soon as a
new estimation result comes out. The users can read these
counters the same with other system counters.

3) The Implementation of Energy Model: Windows plat-
form supplies a group of APIs to access system performance
data. We select the performance events that have higher
relationship with the power dissipation of a device through
experiment. In this section, we describe the performance
events and basement values we used to build the energy model.
Because we use sampling to estimate the energy consumption
in a time interval, we assume the value of a performance
event is stable during this time interval. Thus, the sample
interval determines the accuracy of our energy model. The
more short the sample interval is, the estimated result will be
more accurate.

All the constant parameters of the energy model are saved
in the configuration file. The users can edit these parameters
based on the device of their platform. Currently, pTopW cannot
automatically detect the user’s hardware model because we do
not have base values for these devices. That will be part of
our future work.

1. CPU
The active power of processor has nearly linear relationship

with clock speed when the voltage is stable [27]; thus, we use
clock speed and processor time, which is the amount of time
that processor used for computation, to construct the power
model for CPU. When the program starts to execute, it first

6

collects system information, such as page size and maximum
clock frequency.

In each cycle, the data collector reads the clock speed
from the performance object Win32 Processor. In addition, the
processor time is the summation of all the processes’ processor
time, which we can get from the Process object. The maximum
and minimum processor power we used in the energy model
is predefine in the configuration file. To make the result more
accurate, users should setup these parameters based on their
own platform. After calculating the energy consumption of
CPU, we divide the energy consumption to each process based
on the ratio of processor time.

2. Memory
Accurately estimate memory energy consumption is dif-

ficult, because memory is accessed by both processor and
I/O devices. We use the amount of data which was written
into or read from memory to compute the memory active
time. We use three counters, which are PagesOutputPerSec,
PagesInputPerSec and CopyReadsPerSec, to calculate memory
active time. To do the calculation, we need the operation speed
of these three operations, which are also predefined in the
configuration file.

After we get the memory active time, we assume memory
is in idle state in the rest of time. We find that the memory
read and write power is almost the same, thus we only use the
power of two states to calculate memory’s energy consump-
tion. Finally, the memory energy consumption is allocated to
each process based on the data of I/O.

3. Disk
The power of disk is different when the disk is working at

different states. The basic idea of disk energy model is find
out the amount of time that disk have worked on each state
in the time interval. Our last version stats the amount of bytes
that disk read and write operations made, and then calculate
the time with the average speed of read and write operation.
However, the speed usually varies during an operation.

The disk information are retrieved from the perfor-
mance data Win32 PerfRawData PerfDisk PhysicalDisk. Be-
cause this counter supplies the percent of time that disk work
on each state, we do not need to use the amount of data
bytes read from or write into disk in a time interval. This
way, the new energy model of disk is more accurate than
our first version because the speed of disk varies during
read and write operations. We read three values, which are
PercentDiskReadTime, PercentDiskWriteTime and PercentIdle-
Time, from this counter. Because the time spent on other states,
such as searching, are not available from the system APIs, we
treat these states as idle state. However, we notice that most
of the time the sum of these three values are about 99 percent;
thus, the neglect of this part does not influence the result too
much.

We have mentioned that we use the disk usage of each
process to divide the disk energy consumption into process
level. We read the I/O information of each process through the
function GetProcessIoCounters, which returns a data structure
that tells the I/O information of a process.

3. Wireless Network Card
Through our experiments we found that the power of

wireless network card is also greatly related with its state. The
power of transmitting and receiving state is much higher than
idle state. Similar to other devices, we predefined the power
of wireless network card when it is in three main states into a
configuration file. We read the amount of data transmitted and
received from IF TABLE, which is a data structure that saves
network related information in windows platform. If the sum
of these two values are zero, we assume the wireless network
is in idle state in this interval. Otherwise, we assume it is in
active states. Similarly, we divide the estimated power for each
process, which is based the amount of data have been received
or transmitted by the process.

C. Experiment and Evaluation

In this section, we first describe the experiment setup we
used to verify the energy model. Then, we will describe how
do we do the experiment and the comparison of the measured
power and estimated power.

1) Experiment Setup: We evaluate our energy model on
windows 7 platform. The experiment platform we used is a
normal desktop computer, shown in table I. We connected
several small resistors into the ATX power cables, and we
measure the voltage (Vr) on the resistors. The resistor we used
is only 0.03 Om; thus, it has no influence to the device because
the resistor only account for no more than one percent of
voltage on the line. We can measure processor power and disk
power directly. However, wireless network card and memory’s
power cannot be divided because both of them are powered
by the 3.3v voltage lines. For more information about power
measurement, please read our technical report [28].

Component Model

CPU

HP Compaq
Intel Pentium 4 2.0GHzv
1 core
Core Voltage 1.471V
512KB L2 Cache
8KB L1 Cache

Memory
DDR 512MB × 2
Frequency 132.9MHz
Cycle Time 6 clocks

Disk 80GB Seagate Disk

TABLE I
EXPERIMENT PLATFORM.

2) Evaluation: We use applications, such as Media Player
and IE to make the processor busy. Figure 3 is the comparison
of the estimated power and the measured power. In this figure,
we notice that our power model can estimate the trend of CPU
power, even though it is not very accurate.

The higher error rate at some stages is caused by the maxi-
mum CPU power we chose. We use the average maximum
power when we run several computation-intensive bench-
marks, but in fact the maximum power is different when we
run different benchmarks, even though all of them can make
the processor work on the highest frequency.

Currently, we cannot measure the power of wireless network
card or memory individually. The power we measured also
includes part of motherboard circuits. We execute IE to test

7

0
2
4
6
8

10
12
14
16
18
20

1 16 31 46 61 76 91 106 121

P
o

w
e

r
(W

)

Time (s)

Estimated Measured

Fig. 3. The comparison of CPU power.

0

1

2

3

4

5

6

7

8

1 12 23 34 45 56 67 78 89 100

P
o

w
e

r
(W

)

Time (s)

Estimated Measured

Fig. 4. The comparison of wireless network card power.

memory and wireless network card, and the result is shown
in figure 4. During this experiment, we first download a file,
then we open several web sites. From this figure we find that
during the first stage, the estimated power is stable; however,
the measured result show some fluctuation. In the second
stage, the trend of the estimated power is similar with the
measured power but the estimated power has slight latency
when compared to the measured power.

To test the disk power model, we wrote three disk bench-
marks to stress the disk usage. The first benchmark DiskRead
generate sequential disk read operations, and DiskWrite bench-
mark generates sequential disk write operations. Another
benchmark is DiskReadWrite, which generate disk read and
write operation randomly. In the experiment we execute these
benchmarks to generate the disk usage. The result is shown as
figure 5. In this figure, we could see that both the measured
and estimated power has four clear phases. In addition, the
estimated power could show the same trend as the measured
power most of the time.

During the first phase, we ran DiskRead benchmark to read
two GB of data. In the second phase, we write one GB of
data into disk, and we write three GB of data into disk during
the fourth stage. The figure shows that the estimated power
is very close to the measured power, and the fluctuations are
also the same. In the third stage, we run the DiskReadWrite
benchmarks. In this stage, we find that the estimated power
is nearly the average of the estimated power. Furthermore,
the fluctuations of the measured power do not have related
fluctuations on the estimated power. The reason is because our
disk power model uses three performance values to compute

0

1

2

3

4

5

6

7

8

9

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155

P
o

w
e

r
(W

)

Time (s)

Estimated Measured

Fig. 5. The comparison of disk power.

the average disk power in the time interval.

IV. FINE-GRAINED POWER MANAGEMENT

Power-aware system can be designed using different angles,
such as power-aware hardware design, power-aware system
design and power-aware applications. Currently, a lot of power
saving strategies, such as dynamic voltage and frequency
scaling (DVFS) [29], have been globally used. However, most
previous work use global strategies. The drawback of this kind
of strategy is that performance will be significantly influenced.
In addition, they are trying to decrease energy waste when the
system is not active. Still a large amount of energy is wasted by
redundant or even malicious processes. In addition, controlling
the peak power dissipation is very important for some systems,
such as temperature-aware systems. In this section, we intro-
duce a fine-grained power-aware strategy called EnergyGuard,
which uses process power profiles supplied by pTopW to make
power-aware decisions. It is worth noting that pTopW and its
APIs can be employed by many other process-level power
management strategies as well. EnergyGuard serves both as a
case study and a service here.

A. The Design of EnergyGuard

EnergyGuard has two components: monitor component and
white list analysis. As describes in Figure 6, if the power of a
process surpasses a threshold, which is the maximum power
we acquired during the analysis process, EnergyGuard will
show red background color to inform user. If a process is
always highlighted, it might be in abnormal situation. White
list analysis gives the rank of power consumed by all the
processes. If a process, which is not in the white list, always
consumes much more power than others, EnergyGuard will
alert the user because the process might be harmful.

Monitor component compares the power consumption to
find the suspicious process. It requires two values: threshold
and current value. If the current value is higher than its
threshold, we highlight the process as an alarm for users, and
at the same time, we record the corresponding times. Since
when most processes start to run or change from sleep mode
to active mode, it will consume much power, we cannot assert
a process is abnormal for surpasses threshold once. However,
if the process always surpasses the threshold, there is a great

8

Begin

Record and show

red background

In whitelist

Inform user

Get real time power data

Great than

threshold

High rank in

power dissipation

Y

Y

N

N

Y

N

Fig. 6. The basic flow chart of the system.

change that the process is in error state. In this situation, we
need to send information to user and get their attention.

We prefer to use the maximum value of k number of data
we received before as the threshold. We define a suspicious or
abnormal behavior as follows: for every time point ti, we get
the maximum value between ti−1−k and ti−1 and take it as the
threshold. We then compare it with the current value at time
point ti, which is achieved by using ProcessInfo() interface.
If the current value is larger than the maximum value, we
highlight the process and record the information. Through that
way, we monitor all processes run in the system and make sure
they are in normal state.

Now we can estimate whether a process is in normal state
or not, but it can not be used to detect malware. When
we run a piece of malicious code, it may dissipate a huge
amount of stable power. Hence, if we just focus on power
fluctuation, this kind of applications will be ignored. In order
to solve this problem, we add white list analysis. If a process
consumes much more power and is not in white list, we
send an information to the user to confirm its safety. For the
processes in the white list, we will ignore them when we check
the rank of power dissipation. No matter the process is safe
or not, when we detect it for the first time, we will alarm the
users, which is helpful to decrease false negative.

B. The Implementation of EnergyGuard

In our EnergyGuard prototype, we need to compare pro-
cess’s current value with its threshold to detect whether the
process is in the normal state. We use interface ProcessInfo(
) to return all the processes information which contains four

Fig. 7. The EnergyGuard application.

components power and process ID at every time we call it.
So, we get the real time value for all processes.

For the monitor part, we get the processes’ power every one
second from interface ProcessInfo(), and store them in a hash
table by using process ID as the key. Then we store the data in
an ArrayList and insert the latest one to the head of the list.
After we build such a power history data structure, we can
easily calculate the maximum value of recent corresponding
records. The user interface is shown in Figure 7, the red line
points to the process whose current value is greater than the
threshold. It is common that when a process starts or becomes
busy, its power consumption will increase and causes the
red line appear. However, we record the time stamp and the
number of times that a process in “red line”. If the process
always greater than its threshold, we treat it as an abnormal
process and report it to users.

For the white list part, we also use hash table to store the
data, and the key is the same while the value is the times that
the process was ranked in top five. For every five seconds we
refresh the information listed to the users, and we record the
ranks at the same time. If the recorded times are more than
6, we will inform the users that the power of the process is
relatively higher than the others. So we jump up a dialog box
to ask users if we need put the process in white list. Also,
as Figure 8 shows, we have a setup menu for users to add
or delete processes in the white list. Moreover, after we shut
down the application, EnergyGuard will log the white list to
the disk and store it for our next use.

C. Usage Scenarios

Here we use several scenarios to show how these two com-
ponents work. Specifically, we examine commonly used soft-
wares: Microsoft Office, Kmplayer (a video player), WinRAR,
which are computationally intensive, and PhotoShop. Further-
more, we add some “idle” processes to make these scenarios
much closer to the typical cases. These processes include MSN
(no conversation), Dropbox (no file upload/download), and
Chrome (Google personal homepage refresh).

Office: We opened Microsoft PowerPoint 2010 to view
slides, searched related topics through Internet and recorded

9

Fig. 8. The white list user interface.

0

1

2

3

4

5

6

7

8

9

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701

P
o

w
e

r
(W

)

Time (s)

Msn Dropbox Chrome PowerPoint Word

Fig. 9. The comparison of office power consumption.

0

1

2

3

4

5

6

7

1 25 49 73 97 121 145 169 193 217 241 265 289

P
o

w
e
r

(W
)

Time (s)

Msn Dropbox Chrome Youtube Kmplayer

Fig. 10. The comparison of kmplayer and watching directly on internet.

them in Microsoft Word 2010. These operations are the basic
usage patterns in our daily life. We focused on different
processes during different time spans. From Figure 9, we
can see that when we use Word, the maximum recording
power could be greater than 8 Watt. While change to other
applications, the minimum power of Word could be below 0.5
Watt.

Kmplayer: We downloaded a video which is 3 minutes and
25 seconds long. We watched it first on Youtube, and got the
video from the browser’s temp file, then use Kmpayer to play.
Figure 10 describes the data we got, the “idle” processes are
the same with the last scenario. We can see that the curve of
Kmplayer and Youtube are similar, but the power of Youtube
is less. A notable observation is the moment that we start the
processes, they reach the highest power.

WinRAR: We used WinRAR to decompression an 2.32GB
iso file. Since the decompression process is so fast, we need

0

2

4

6

8

10

12

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163

P
o

w
e

r
(W

)

Time (S)

Msn Dropbox Chrome WinRAR

Fig. 11. The comparison of WinRAR power consumption.

0

1

2

3

4

5

6

7

1
8
:3
4
:3
8

1
8
:3
5
:0
8

1
8
:3
5
:3
1

1
8
:3
5
:5
4

1
8
:3
6
:1
6

1
8
:3
6
:3
9

1
8
:3
7
:0
2

1
8
:3
7
:2
4

1
8
:3
7
:4
7

1
8
:3
8
:0
9

1
8
:3
8
:3
1

1
8
:3
8
:5
4

1
8
:3
9
:1
7

1
8
:3
9
:3
9

1
8
:4
0
:0
2

1
8
:4
0
:2
4

1
8
:4
0
:4
6

1
8
:4
1
:0
9

1
8
:4
1
:3
2

1
8
:4
1
:5
4

1
8
:4
2
:1
6

1
8
:4
2
:3
9

1
8
:4
3
:0
3

1
8
:4
3
:2
5

1
8
:4
3
:4
8

P
o

w
e

r
(W

)

time (h:m:s)

Msn

Dropbox

Chrome

PhotoShop

Fig. 12. The comparison of PhotoShop power consumption.

0

5

10

15

20

25

30

35

5 15 25 35 45

F
P

 (
%

)

k

Adobe Reader Chrome Excel

Fig. 13. An optimal value of k with respect to FP.

such a big file to get enough data as the experiments above.
Through Figure 11, we know that its power range is between
7W and 10W, which is relatively higher than the others, and
it is very stable.

PhotoShop: We used Adobe PhotoShop CS to open a 47.4
kilobytes PNG file and did some basic operations: add a new
picture layer, write words on the picture, adjust the size and
save it. Through Figure 12, we know that its power range is
between 4.5 Watt and 0 Watt. Compared with WinRAR, the
power distribution is kind of burst, and it has the “low” power
time.

D. Performance Evaluation

The optimal value of k: We test different values of k to
compare the false positive value. These experiments are done
in successive time slots for the same process. The following
are the work they did: Adobe Reader was used to read a 212
kilobytes pdf file; Chrome did the basic searching work; Excel
opened a 8000 kilobytes file and executed “sum” and “if”
functions. We could conclude from Figure 13 that 35 is the
optimal number, which cause small false positive values and
less data computation.

Malware detection: We detect malwares mainly through the
white list part. If the process always appears in high rank,

10

0

2

4

6

8

10

12

14

16

18

P
e
rc

e
n

ta
g

e
 (

%
)

Fig. 14. The percentage of different process appears in high rank.

0

1

2

3

4

5

6

7

8

9

1 11 21 31 41 51 61 71 81 91 101111121131141151161171181191

P
o

w
e
r

(W
)

Time (s)

Msn Dropbox Chrome Cache Loop Excel

Cache Detected

Loop Detected

Fig. 15. Energy greedy malware detection.

we send information to the users to let them keep an eye
on the process. In Figure 14, we can see the percentage of
different processes appearing at high rank. Thunder is a tool
used for downloading, and others are the common processes
of the computer. We need to find a balance. On one hand,
we need to detect malware. Thus, we can not set the number
too large that malwares do not get detected. For example if
we set the number is more than 18% of the total number of
samples, we will not even detect Thunder which is our main
process in the experiment. On the other hand, if the number is
too small, the users will always be interruptted because there
are so many processes that need them to confirm. Our goal is
to choose the threshold which make sure most power hungry
processes can be found, and ignore the common “small” ones.

We wrote two simple malwares, Loop and Cache, to do the
experiment. The first one reads and writes processor cache in
a dead loop, and the second one do integer computation in a
dead loop. The threshold number is 10. According to Figure 15
we can see that the power of malwares is relatively stable and
high. We use white list to decide whether it is harmful. An
alert is sent, if the process is not in the white list.

V. CONCLUSION AND FUTURE WORK

Power-aware operating system design requires online power
information to make critical energy efficient decisions. Tradi-
tional methods are mainly focused on constructing component-
level power models. However, lower level power is more
important because researchers can make out additional fine-
grain power saving strategies. In this paper, we first propose
pTopW, which is a tool supplies realtime process level power
information. The energy model we construct is based on
system profiles; thus, it will nearly not be influenced by other
applications and can be used as a service to supply power
information to power-aware strategies. Through experiments,

we found that disk and processor energy show good respon-
siveness. In addition, our result show that memory and wireless
network energy model can show similar fluctuations with the
measured result. In addition, we implemented two mechanisms
for users to retrieve the power information.

Currently, the power model is retrained by the hardware
information we could acquire. In the future, more details
about hardware states and usage should be available in the
system. In the next step, we should continue work on the
energy model, especially memory and wireless network card.
In addition, improving the measurement is also important for
validating the models. Realtime process level power profiling
needs to sample a large amount of system information. Thus,
researcher should design simple energy models that have good
responsiveness.

Also, we propose EnergyGuard, a fine-grained power-aware
strategy. With EnergyGuard, we can find abnormal energy
behaviors and notify the user. Currently, we are concentrating
more on distinguishing those energy-wasting processes, but
not take actions to control these processes. In the future,
we will define some automatic methods to do this after we
realize the user behaviors. Finally, researchers should try to
find more efficient fine-grained energy saving strategies with
process power profile.

REFERENCES

[1] T. Mudge, “Power: A first-class architectural design constraint,”
Computer, vol. 34, pp. 52–58, April 2001. [Online]. Available:
http://portal.acm.org/citation.cfm?id=619062.621693

[2] C. I. Belady, A. Rawson, J. Pfleuger, and T. Cader, “The green grid data
center power efficiency metrics: Power usage effectiveness and dcie,”
The Green Grid, Tech. Rep., 2007.

[3] L. Benini, G. De Micheli, and E. Macii, “Designing low-power circuits:
practical recipes,” Circuits and Systems Magazine, IEEE, vol. 1, no. 1,
pp. 6 –25, 2001.

[4] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA ’00:
Proceedings of the 27th annual international symposium on Computer
architecture. New York, NY, USA: ACM, 2000, pp. 83–94.

[5] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin, “The design and
use of simplepower: a cycle-accurate energy estimation tool,” in DAC
’00: Proceedings of the 37th Annual Design Automation Conference.
New York, NY, USA: ACM, 2000, pp. 340–345.

[6] A. Vahdat, A. Lebeck, and C. S. Ellis, “Every joule is precious:
the case for revisiting operating system design for energy efficiency,”
in Proceedings of the 9th workshop on ACM SIGOPS European
workshop: beyond the PC: new challenges for the operating system,
ser. EW 9. New York, NY, USA: ACM, 2000, pp. 31–36. [Online].
Available: http://doi.acm.org/10.1145/566726.566735

[7] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “Ecosystem:
managing energy as a first class operating system resource,” SIGPLAN
Not., vol. 37, no. 10, pp. 123–132, 2002.

[8] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency scaling: the
laws of diminishing returns,” in Proceedings of the 2010 international
conference on Power aware computing and systems, ser. HotPower’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1924920.1924921

[9] F. Bellosa, “The benefits of event: driven energy accounting in
power-sensitive systems,” in Proceedings of the 9th workshop on ACM
SIGOPS European workshop: beyond the PC: new challenges for the
operating system, ser. EW 9. New York, NY, USA: ACM, 2000, pp.
37–42. [Online]. Available: http://doi.acm.org/10.1145/566726.566736

[10] C. Isci and M. Martonosi, “Runtime power monitoring in high-end
processors: Methodology and empirical data,” in MICRO 36: Pro-
ceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2003, p. 93.

11

[11] W. L. Bircher and L. K. John, “Complete system power estimation:
A trickle-down approach based on performance events,” Performance
Analysis of Systems and Software, IEEE International Symmposium on,
vol. 0, pp. 158–168, 2007.

[12] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and
N. Zeldovich, “Energy management in mobile devices with the cinder
operating system,” in Proceedings of the sixth conference on Computer
systems, ser. EuroSys ’11. New York, NY, USA: ACM, 2011, pp. 139–
152. [Online]. Available: http://doi.acm.org/10.1145/1966445.1966459

[13] T. Do, S. Rawshdeh, and W. Shi, “ptop: A process-level power profiling
tool,” in Proceedings of the 2nd Workshop on Power Aware Computing
and Systems (HotPower’09), oct 2009.

[14] A. Merkel and F. Bellosa, “Balancing power consumption in multipro-
cessor systems,” SIGOPS Oper. Syst. Rev., vol. 40, pp. 403–414, April
2006. [Online]. Available: http://doi.acm.org/10.1145/1218063.1217974

[15] G. Dhiman, K. Mihic, and T. Rosing, “A system for online power
prediction in virtualized environments using gaussian mixture models,”
in Proceedings of the 47th ACM IEEE Design Automation Conference.
ACM Press, 2010, pp. 807–812.

[16] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya,
“Virtual machine power metering and provisioning,” in Proceedings
of the 1st ACM symposium on Cloud computing, ser. SoCC ’10.
New York, NY, USA: ACM, 2010, pp. 39–50. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807136

[17] G. Contreras and M. Martonosi, “Power prediction for intel xscale
processors using performance monitoring unit events,” in Proceedings
of IEEE/ACM International Symposium on Low Power Electronics and
Design, 2005, pp. 221–226.

[18] T. Li and L. K. John, “Run-time modeling and estimation of operating
system power consumption,” SIGMETRICS Perform. Eval. Rev., vol. 31,
no. 1, pp. 160–171, 2003.

[19] P. Ranganathan, “Recipe for efficiency: principles of power-aware
computing,” Commun. ACM, vol. 53, pp. 60–67, April 2010. [Online].
Available: http://doi.acm.org/10.1145/1721654.1721673

[20] N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-
power dissipation in a microprocessor,” in Proceedings of the 2004
international workshop on System level interconnect prediction, ser.
SLIP ’04. New York, NY, USA: ACM, 2004, pp. 7–13. [Online].
Available: http://doi.acm.org/10.1145/966747.966750

[21] Y. Li, B. Bakkaloglu, and C. Chakrabarti, “A system level energy model
and energy-quality evaluation for integrated transceiver front-ends,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 15,
no. 1, pp. 90 –103, jan. 2007.

[22] P. Wolkotte, G. Smit, N. Kavaldjiev, J. Becker, and J. Becker, “Energy
model of networks-on-chip and a bus,” in System-on-Chip, 2005. Pro-
ceedings. 2005 International Symposium on, nov. 2005, pp. 82 –85.

[23] Q. Wang and W. Yang, “Energy consumption model for power man-
agement in wireless sensor networks,” in Sensor, Mesh and Ad Hoc
Communications and Networks, 2007. SECON ’07. 4th Annual IEEE
Communications Society Conference on, june 2007, pp. 142 –151.

[24] D. J. Brown and C. Reams, “Toward energy-efficient computing,”
Commun. ACM, vol. 53, pp. 50–58, March 2010. [Online]. Available:
http://doi.acm.org/10.1145/1666420.1666438

[25] S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zeldovich,
“Apprehending joule thieves with cinder,” SIGCOMM Comput.
Commun. Rev., vol. 40, pp. 106–111, January 2010. [Online]. Available:
http://doi.acm.org/10.1145/1672308.1672327

[26] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and responsive power models for multicore processors
using performance counters,” in Proceedings of the 24th ACM Interna-
tional Conference on Supercomputing. ACM Press, 2010, pp. 147–158.

[27] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems : Cache, DRAM,
Disk. Denise E.M. Penrose, 2007, pp. 61–67.

[28] H. Chen, S. Wang, and W. Shi, “Where does the power go in a
computer system: Experimental analysis and implications,” Department
of Computer Science, Wayne State University, Tech. Rep., 2010.

[29] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, “Energy-efficient processor design
using multiple clock domains with dynamic voltage and frequency
scaling,” in Proceedings of the 8th International Symposium on High-
Performance Computer Architecture, ser. HPCA ’02. Washington,
DC, USA: IEEE Computer Society, 2002, pp. 29–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=874076.876477

