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Abstract
Recent study in wireless sensor networks (WSN) has found
that the irregular link quality is a common phenomenon. The
irregular link quality, especially link asymmetry, has signifi-
cant impacts on the design of WSN protocols, such as MAC
protocols, neighborhood and topology discovery protocols,
and routing protocols. In this paper, we propose asymmetry-
aware link quality services, including the neighborhood link
quality service (NLQS) and the link relay service (LRS), to pro-
vide the timeliness link quality information of neighbors, and
build a relay framework to alleviate effects of the link asymme-
try. To demonstrate proposed link quality services, we design
and implement two example applications, the shortest hops
routing tree (SHRT) and the best path reliability routing tree
(BRRT), in the TinyOS platform. To evaluate proposed link
quality services, we have conducted both static analysis and
simulation through the TOSSIM simulator, in terms of four
performance metrics. We found that the performance of two
example applications was improved substantially. More than
40% of nodes identify more outbound neighbors and the per-
centage of increased outbound neighbors is between 14% and
100%. In SHRT, more than 15% of nodes reduce hops of the
routing tree and the percentage of reduced hops is between
14% and 100%. In BRRT, more than 16% of nodes improve
the path reliability of the routing tree and the percentage of the
improved path reliability is between 2% to 50%.

1 Introduction
The integration of sensing, computing and communication
into one embedded device makes wireless sensor networks
(WSN) widely used in many applications [1, 9, 10, 11, 16, 17].
Recent empirical study [3, 7, 15, 18, 19, 20] on Berkeley motes
platform shows that there are highly irregular links in real de-
ployments. Firstly, the packet delivery performance, in term
of packet reception rate (PRR), varies significantly with spa-
tial and temporal factors. So it is difficult to get the timeliness
link quality information between neighbors. The link quality is
valuable for some routing protocols, which requires the timeli-
ness link quality information to make decision. Secondly, ap-

proximately 5% to 15% of all links are asymmetric links and
asymmetric links vary significantly in different directions and
distances. Asymmetric links, especially unidirectional links,
bring the problem to the design of WSN protocols, such as
MAC protocols, neighborhood and topology discovery proto-
cols, and routing protocols. To our knowledge, few previous
protocols leverage the fact that there are outbound or inbound
neighbors, which is the main problem that this paper intent to
address.

In this paper, we intend to alleviate the problem caused by
the link asymmetry. Our work is motivated by our measure-
ments and observations. From our measurements, we found
that the antenna orientation of sending and receiving motes
contributes a lot to the radio irregularity and it heavily affects
PRR between nodes. Furthermore, we also observed some in-
teresting phenomena. Let’s assume that Mote B can hear Mote
A, but the latter can not hear Mote B. In this case, usually nei-
ther Mote A nor Mote B treats the counterpart as its neighbor.
However, if there is a Mote C, sitting between Mote A and
Mote B, and has good connections with both Mote A and B.
So Mote C can help Mote B to forward packets to Mote A.
By doing so, Mote A can treat Mote B as one of its outbound
neighbors, while Mote B can treat Mote A as one of its in-
bound neighbors. The above observation inspires us to design
and implement asymmetry-aware link quality services, includ-
ing the neighborhood link quality service (NLQS) and the link
relay service (LRS), to provide the link quality information of
neighbors and build a relay framework to alleviate effects of
the link asymmetry in the TinyOS platform [5].

To demonstrate our proposed link quality services, we de-
sign and implement two example applications, the shortest
hops routing tree (SHRT) and the best path reliability rout-
ing tree (BRRT), in the TinyOS platform. To evaluate our
proposed link quality services, we have conducted both static
analysis and simulation through the TOSSIM simulator [6].
We found that the performance of two example applications
was improved substantially. More than 40% of nodes identify
more outbound neighbors and the percentage of increased out-
bound neighbors is between 14% and 100%. In SHRT, more
than 15% of nodes reduce the hops of the routing tree and the
percentage of the reduced hops is between 14% and 100%. In
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BRRT, more than 16% of nodes improve the path reliability
of the routing tree and the percentage of the improved path
reliability is between 2% to 50%.

The contributions of the paper include three-fold:

• Design and implement the neighborhood link quality ser-
vice to provide the timeliness link quality information
of neighbors. We design and implement NLQS in the
TinyOS platform to measure and estimate the link qual-
ity with link quality estimator. In this service, we iden-
tify inbound and outbound neighbors, build the inbound
and outbound neighbors tables separately, and provide the
LinkQuality interface to query the timeliness link quality
information of neighbors.

• Design and implement the link relay service to alleviate
effects of the link asymmetry. In this service, we pro-
pose a link relay protocol, implement a link relay frame-
work, and provide the LinkRelay interface to relay pack-
ets across asymmetric links in the TinyOS platform.

• Design and implement two example applications to
demonstrate and evaluate link quality services. We de-
sign and implement two example applications, SHRT and
BRRT, using link quality services, in the TinyOS plat-
form. In SHRT and BRRT, nodes will use link quality
services to get the link quality information to the parent
node and flood the routing tree information across asym-
metric links.

The rest of the paper is organized as follows. The design
and implementation of link quality services, including NLQS
and LRS, are presented in Section 2 and Section 3 separately.
SHRT and BRRT are described in Section 4. In Section 5,
some performance metrics to evaluate link quality services are
defined and evaluation results are discussed. Related work is
compared in Section 6. In Section 7, we conclude our research
work and list our future work.

2 Asymmetry-Aware Link Quality Ser-
vices

In this section, an overview of our asymmetry-aware link qual-
ity services is presented first, followed by the design of NLQS
and LRS.

2.1 System Overview
Currently, our link quality services provide two interfaces for
applications. Figure 1 is the architecture of link quality ser-
vices. Applications use the LinkQuality interface to query the
timeliness link quality information of neighbors and use the
LinkRelay interface to relay packets across asymmetric links.
The LinkQuality is provided by NLQS. The LinkRelay is pro-
vided by LRS. And NLQS also uses the LinkMeasure interface
provided by LRS to get packet information in order to measure

Packet Queue Management

Link Relay Service

Random Time-Slot MAC

Packet
Dispatcher

Packet
Scheduler

Client
Table

TinyOS

LinkRelay    InterfaceLinkMeasure    Interface

Neighborhood Link Quality
Service

Applications (e.g., SHRT and BRRT)

Link Relay Service

LinkQuality    Interface

LinkMeasure    Interface LinkRelay    Interface

TinyOS

Figure 1: The architecture of link quality services.

and estimate the link quality between neighbors. NLQS uses
the LinkRelay interface to relay the estimated PRR of neigh-
bors across asymmetric links. In the following sections, we
will focus on NLQS and LRS.

2.2 Neighborhood Link Quality Service

To make full use of those outbound neighbors isolated by
asymmetric links, we should identify inbound and outbound
neighbors and build inbound and outbound neighbors tables
separately. Furthermore, NLQS provides the LinkQuality in-
terface to facilitate applications to query the timeliness link
quality information of neighbors.

2.2.1 Building Inbound and Outbound Neighbors Tables

In NLQS, if a node, A, can receive packets from a neighbor,
B, node B will be identified as an inbound neighbor of node
A. If node A can send packets to a neighbor, C, node C should
be identified as an outbound neighbor of node A. However,
to identify node C as its outbound neighbor, node A should
receive acknowledgement from node C. Due to asymmetric
links, if node A can not receive acknowledgement from node
C, then node A can not identify node C as its outbound neigh-
bor. Furthermore, the link quality, in term of PRR, from node
A to node B is different from that from node B to node A.
So in NLQS, every node distinguishes inbound neighbors and
outbound neighbors and build tables for them independently.
The node ID and PRR of the link from the inbound neighbor
is stored in the inbound neighbors table while the node ID and
PRR of the link to the outbound neighbor is stored in the out-
bound neighbors table.

We measure the link quality using the combination of ac-
tive probing and passive overhearing techniques, and leverage
the Window Mean Exponentially Weighted Moving Average
Estimator (WMEWMA) [4, 14, 15] to estimate the link qual-
ity based on current and history measured results. Figure 2 is
the pseudocode of the algorithm about how to build inbound
and outbound neighbor tables using link quality measurement
and estimation techniques. In this algorithm, every node will
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Algorithm 1 Building inbound and outbound neighbors tables
Procedure Send-Packet ()
Begin Procedure

1: loop
2: periodically build an active probing packet with node

ID, packet ID, and estimated link quality between
neighbors

3: randomly select a time and broadcast the active probing
packet

4: end loop
End Procedure

Procedure Receive-Packet ()
Begin Procedure

1: loop
2: passively overhear the active probing packet
3: update the inbound neighbors table according to node

ID, packet ID of the received active probing packet
4: if it is time to do estimation for this inbound neighbor

then
5: do estimation using WMEWMA for this inbound

neighbor
6: end if
7: update the outbound neighbors table with estimated

link quality between neighbors from the received active
probing packet

8: end loop
End Procedure

Algorithm 2 Working mechanism of the link relay service
Procedure Receive-Relay-Packet ()
Begin Procedure

1: get the relay packet from TinyOS
2: parse the type field of the relay packet to find the associ-

ated application
3: if the application have subscribed the link relay service

then
4: Signal Receive(data) event to the application
5: else
6: Drop the relay packet
7: end if

End Procedure

Procedure Forward-Relay-Packet ()
Begin Procedure

1: repeat
2: choose an application which have subscribed relay ser-

vice
3: signal Relay(data) event to the application to collect

relay data
4: until ( get relay data ∨ no application have relay data to

forward )
5: if have relay data to forward then
6: forward the data out
7: if forward the relay data successfully then
8: signal RelayDone(SUCCESS) event to the appli-

cation
9: else

10: signal RelayDone(FAIL) event to the application
11: if the application need relay again then
12: forward the relay data again and repeat this process
13: else
14: drop the relay data
15: end if
16: end if
17: end if
End Procedure

Algorithm 3 Building the shortest hops routing tree
Event Receive (parent)
Begin Event

1: if is-outbound-neighbor(parent) then
2: if is-shorter-hops-based-on-it(parent) then
3: set parent as the current parent and update its hops

to sink as parent.hops + 1
4: end if
5: end if
6: if is-shorter-hops-than-before(parent) then
7: update relay data for parent node
8: end if

End Event
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Figure 2: The pseudocode of the algorithm for building in-
bound and outbound neighbors tables.

periodically broadcast some packets, which contain node ID
and packet ID. And every node only measures and estimates
PRR of the link from its inbound neighbors. After that, it
will store the inbound neighbor in the inbound neighbors table
and broadcast the estimated PRR in following probing pack-
ets. And when node receives the estimated PRR of the link to
its outbound neighbors from broadcast packets, it will identify
this outbound neighbor and store it in the outbound neighbors
table. As we have discussed before, due to the link asymmetry,
node will not receive the acknowledgement from its outbound
neighbor. In this case, LRS (Section 2.3) will be used to relay
the acknowledgement across asymmetric links.

The WMEWMA Link quality estimator is used to estimate
PRR of the link from inbound neighbors into NLQS. For
the completeness of this paper, we describe the basic idea of
WMEWMA here as well. WMEWMA uses a time window to
observe the received packet and it adjusts the estimation result
using latest average value of PRR. Below is equation used by
WMEWMA to estimate PRR.

M̄i =
Mi

Pi
(1)

Ei = αEi−1 + (1− α)M̄i (2)

where Pi is the number of packets sent in time window i; Mi

is the number of packets received in time window i; M̄i is
the average PRR measured in time windows i; Ei−1 is PRR
estimated by previous time window; Ei is PRR estimated by
the end of this time window. The parameter α is called the
estimator gain, and is used to determine the reactivity of the
estimator. If the gain is large, the old estimated value will
dominate the estimate result and the estimator will be slow to
change, making it stable. In contract, if the gain is small , the
estimator will tend to be agile. In this paper, we will send 20
packets in every time window and set the value of α to 0.5.

2.2.2 Link Quality Interface

NLQS provides the LinkQuality interface for applications to
query the timeliness link quality information of inbound and
outbound neighbors. Figure 3 lists the details of the interface,
which consists of one event and eight commands, complying
with the TinyOS and nesC standard [5]. When the service is
ready, it will signal the Ready event to notify the availability
of the service. Even the service is ready for use, NLQS will
continue measure and estimate the timeliness link quality be-
tween neighbors and update inbound and outbound neighbors
tables. Applications can call those commands to query the link
quality information. Commands are divided into two groups,
one is for inbound neighbors and the other is for outbound
neighbors. Applications can get the information about how
many inbound and outbound neighbors are identified by the
service; what is the node ID of inbound and outbound neigh-
bors; what is the link quality from inbound neighbors and to
outbound neighbors; whether a given node ID is one of in-
bound and outbound neighbors.
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Link Quality Interface
interface LinkQuality {
  event        result_t   Ready();
  command uint8_t    get_IN_Neighbor_num();
  command result_t   is_IN_Neighbor(uint16_t  id);
  command float        get_IN_Neighbor_prr(uint16_t  id);
  command uint16_t  get_IN_Neighbor_ID(uint8_t index);
  command uint8_t    get_OUT_Neighbor_num();
  command result_t   is_OUT_Neighbor(uint16_t  id);
  command float        get_OUT_Neighbor_prr(uint16_t  id);

command uint16_t  get_OUT_Neighbor_ID(uint8_t index);
}

Figure 3: The LinkQuality interface.

2.3 Link Relay Service
In LRS, we design a simple link relay protocol and implement
a relay framework to alleviate effects of the link asymmetry
for general applications in the TinyOS platform. We will use
this service, through the LinkRelay interface, to identify more
outbound neighbors isolated by asymmetric links and forward
packets across asymmetric links. In following sections, we
will give some definitions used in LRS. After that, the frame-
work, the protocol, and the LinkRelay interface of LRS will be
described.

2.3.1 Terminology

To facilitate the description of the service, we first give out
the definitions used in LRS. The topology of a wireless sen-
sor network is a weighted directed graph (G). All nodes in
the topology belong to the vertex set of the directed graph,
called V (G). All links in the topology belong to the edge set
of the directed graph, called E(G). We use e(u, v) to rep-
resent the link from node u to node v, and assign PRR of a
link between nodes as weight of the edge. Next, we introduce
several derived concepts using the terminology, including the-
oretical outbound neighbors, No Relay outbound neighbors,
One-Step Relay outbound neighbors, and Two-Step Relay out-
bound neighbors.

Definition 1 Theoretical outbound neighbors of node v
(N(v)):
{u|∀u ∈ V (G) ∧ e(v, u) ∈ E(G)}

Definition 2 No Relay outbound neighbors of node v (N0(v)):
{u|∀u ∈ V (G) ∧ e(v, u) ∈ E(G) ∧ e(u, v) ∈ E(G)}

Definition 3 One-Step Relay outbound neighbors of node v
(N1(v)):
{u|(u ∈ N0(v)) ∨ (∀u ∈ V (G) ∧ e(v, u) ∈ E(G) ∧ ∃m ∈
V (G) ∧ e(u, m), e(m, v) ∈ E(G))}

Definition 4 Two-Step Relay outbound neighbors of node v
(N2(v)):
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Figure 4: An example topology to illustrate the terminology.

{u|(u ∈ N1(v)) ∨ (∀u ∈ V (G) ∧ e(v, u) ∈ E(G) ∧ ∃m,n ∈
V (G) ∧ e(u, m), e(m,n), e(n, v) ∈ E(G))}

Figure 4 is an example weighted directed graph, which il-
lustrates the terminology. In this topology, according to defin-
itions, N(24) includes node 9, node 23 and node 52; N0(24)
only includes node 52; N1(24) includes node 52 and node 23;
N2(24) includes node 52, node 23, and node 9.

From these definitions and the example, we know that we
should find a path from outbound neighbors to the node, which
will identify its outbound neighbors. If there is a path, there
will be opportunity to send packets from outbound neighbors
to the node with the help of other nodes, which are in the mid-
dle of the path. If there is only one node in the middle of the
path, we call this path One-Relay path. If there are two nodes
in the middle of the path, we call this path Two-Relay path.

Next we informally define No Relay algorithm, One-Step
Relay algorithm and Two-Step Relay algorithm used by appli-
cations to apply service from LRS. No Relay algorithm is the
algorithm, in which packet will not be relayed by other nodes.
This algorithm is the algorithm without using LRS. Every node
only sends packets by himself. We will compare this algorithm
with other algorithms and evaluate the improved performance
for applications by using LRS. One-Step Relay algorithm is
the algorithm, in which a packet can be relayed one step. In
this algorithm, node can help other nodes relay packets across
some asymmetric links. We will compare this algorithm with
other algorithms and evaluate whether One-Step relay is good
enough to help applications to alleviate asymmetric links in
normal topology. Two-Step Relay algorithm is the algorithm,
in which a packet can be relayed two steps. We will com-
pare this algorithm with other algorithms and evaluate whether
Two-Step relay is really better than two previous algorithms.

2.3.2 Framework and Protocol

To relay packets across asymmetric links, every node in the
relay path will collaborate with each other to forward relay
packets. We propose a link relay protocol for inter-node com-
munication, and design a relay framework to implement the
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relay app_data[ ]

sender msgid type count relay_data[ ]

Figure 6: The generic packet format of the link relay service.

relay mechanism and provide an interface for applications to
forward packets using relay policies.

Figure 5 is the high level overview of LRS framework, in
which LRS is posed in its working context. There are three
layers in this figure, TinyOS, LRS, and applications. LRS is
an additional layer between TinyOS and applications. Nodes
communicate with each other using TinyOS packets. When
a relay packet is received by TinyOS, LRS will get the relay
packet and forward the relay data to the associated applica-
tion. When applications have relay data to forward, LRS will
collect the relay data from applications, packet the relay data,
and send the relay packet using TinyOS packets. In this frame-
work, LRS provides mechanisms and applications make policy
decisions. Next we will propose a link relay protocol for inter-
node communication. We fist describe the packet format used
in LRS.

Figure 6 is the generic packet format used by LRS. The
sender field contains the node ID of the sender of this relay
packet. The mgsid field contains the unique ID of every packet
from the sender node. The value of the msgid will be increased
for every new packet. The type field indicates the type of the
relay data. In LRS, every type of the relay data is associated
with one application and LRS uses the value of the type field to
dispatch the relay data to the associated application. Usually
one packet can contain more than one relay data. So there is
the count field to store how many related data are contained in
this packet. The relay data field contains the relay data, which
will be forwarded to the application. Usually the first field of
the relay data is the relay field and the value of this field in-
dicates how many relay steps this relay data can be relayed.
The value of the relay field will be decreased by one for every
relay step until it reaches zero. Applications will store its data
in the app data field. The whole packet is stored in the data
field of a TinyOS packet, which only has 29 bytes. Therefore
the length of the app data field is no more than 24 bytes.

Link Relay Interface
interface LinkRelay {
  command  result_t subscribe(uint8_t size);
  command  result_t unsubscribe();
  event   result_t Relay(uint8_t  * data1);
  event   result_t RelayDone(TOS_MsgPtr ptr, result_t status);
  event   result_t Receive(uint8_t  * data1);
}

Figure 7: The LinkRelay interface.

2.3.3 Link Relay Interface

LRS provides the LinkRelay interface for applications to relay
packet across asymmetric links. In this section, we will de-
scribe how to use this interface and the working mechanism of
the link relay service.

Figure 7 lists the LinkRelay interface. This interface is a pa-
rameterized interface, which can support 256 applications con-
currently. Every application will be associated with an unique
ID. This ID will be store in the type field of the relay packet.
Two commands and three events are provided in this interface.
When an application wants to use LRS to relay packet, it first
call the subscribe command. The parameter of this command
is the size of the relay data, which is no more than 24 bytes.
When a relay packet arrives this node, the associated applica-
tion will get the Receive event from LRS. The parameter of
this event is the relay data. At this time, the application can
make decision about how to process this incoming relay data.
When the radio channel is available to send data, LRS will
signal a Relay event to get the relay data from applications. At
this time, the application can make decision about which relay
data will be relayed and how many steps the relay data will be
relayed. When the relay packet is sent, the RelayDone event
will be signaled to the application to notify the status of the
relay packet.

If the application is not interested in the LRS events any
more, it can call the unsubscribe command to unsubscribe
these events. Therefore, when new relay packet is received
by LRS, it will be discarded without notifying the application.
Figure 8 is the pseudocode of the algorithm for the working
mechanism of the link relay service.

3 Implementation

As we have discussed, NLQL provides the timeliness link
quality information of inbound and outbound neighbors to
other applications and LRS implements a relay framework
to store and forward the relay data across asymmetric links.
In the implementation, NLQS uses the LinkMeasure interface
provided by LRS to get the packet reception information from
inbound neighbors to measure PRR and leverages WMEWMA
to estimate PRR. Furthermore, NLQS uses the LinkRelay in-
terface provided by LRS to relay the estimated link quality of
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Algorithm 1 Building inbound and outbound neighbors tables
Procedure Send-Packet ()
Begin Procedure

1: loop
2: periodically build an active probing packet with node

ID, packet ID, and estimated link quality between
neighbors

3: randomly select a time and broadcast the active probing
packet

4: end loop
End Procedure

Procedure Receive-Packet ()
Begin Procedure

1: loop
2: passively overhear the active probing packet
3: update the inbound neighbors table according to node

ID, packet ID of the received active probing packet
4: if it is time to do estimation for this inbound neighbor

then
5: do estimation using WMEWMA for this inbound

neighbor
6: end if
7: update the outbound neighbors table with estimated

link quality between neighbors from the received active
probing packet

8: end loop
End Procedure

Algorithm 2 Working mechanism of the link relay service
Procedure Receive-Relay-Packet ()
Begin Procedure

1: get the relay packet from TinyOS
2: parse the type field of the relay packet to find the associ-

ated application
3: if the application has subscribed the link relay service

then
4: Signal the Receive(data) event to the application
5: else
6: Drop the relay packet
7: end if

End Procedure

Procedure Forward-Relay-Packet ()
Begin Procedure

1: repeat
2: choose an application which has subscribed relay ser-

vice
3: signal the Relay(data) event to the application to col-

lect relay data
4: until ( get relay data ∨ no application has relay data to

forward )
5: if have relay data to forward then
6: forward the data out
7: if forward the relay data successfully then
8: signal the RelayDone(SUCCESS) event to the

application
9: else

10: signal the RelayDone(FAIL) event to the applica-
tion

11: if the application need relay again then
12: forward the relay data again and repeat this process
13: else
14: drop the relay data
15: end if
16: end if
17: end if
End Procedure

Algorithm 3 Building the shortest hops routing tree
Event Receive (parent)
Begin Event

1: if is-outbound-neighbor(parent) then
2: if is-shorter-hops-based-on-it(parent) then
3: set the parent node as the current parent and update

its hops to the sink node as parent.hops + 1
4: end if
5: end if
6: if is-shorter-hops-than-before(parent) then
7: update the relay data for the parent node
8: end if

End Event

1

Figure 8: The pseudocode of the link relay service.
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Figure 9: The architecture of the link relay service.

neighbors across asymmetric links to facilitate the identifica-
tion of outbound neighbors.

3.1 Link Relay Service

LRS overhears the radio channel for relay packets. When LRS
receives the relay packet, it will dispatch it to the associated
application. LRS also schedules applications to forward relay
packets. In the process, LRS needs to store those received
packets and relays packets. We implement a packet queue
to manage packets in LRS. To avoid collisions of simultane-
ous packets transmissions between neighbors, we implement
a random time-slotted MAC protocol in LRS. Next we will
present the architecture of LRS and describe its implementa-
tion details.

Architecture of LRS Figure 9 shows the architecture of
LRS, which consists of three layers. The upper layer is the
packet scheduler and dispatcher. The packet dispatcher dis-
patches the relay data to applications. The packet scheduler is
responsible for scheduling applications to forward relay data.
The middle layer is the packet queue management layer, which
manages packets received from the TinyOS platform (in) and
created by applications (out) of LRS. The random time-slotted
MAC is in the lowest layer. This MAC protocol is designed
to avoid collisions of simultaneous packets transmissions be-
tween neighbors.

Packet Dispatcher and Packet Scheduler As we have dis-
cussed, a relay framework is implemented in LRS and the
LinkRelay interface is provided by LRS. The LinkRelay inter-
face is a parameterized interface, which can support 256 appli-
cations concurrently. Every application is associated with an
unique ID in this interface. The association is implemented in
the compiler stage following the same mechanism as the active
message in TinyOS. Applications can subscribe LRS in order
to apply service from LRS. The subscription and schedule in-
formation of applications is stored in the client table. This as-
sociated ID of applications is also stored in the type field of the
relay packet. When LRS receives a relay packet, it will post
a packet dispatcher task to dispatch the received packet. The
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Packet Queue Interface
interface PacketQueue {
  command TOS_MsgPtr exchange(TOS_MsgPtr ptr, uint8_t newstate);
  command TOS_MsgPtr getUpdateState(uint8_t oldstate, uint8_t newstate);
  command TOS_MsgPtr getByState(uint8_t oldstate);
  command result_t          setState(TOS_MsgPtr ptr, uint8_t newstate);
  command void               printState();
}

Figure 10: The PacketQueue interface.

packet dispatcher parses the type field of the relay packet and
dispatches the relay data to the associated application. When
LRS forwards the relay data, it will post a packet scheduler
task.

Packet Queue Management in LRS When TinyOS re-
ceives a packet, it will forward the packet buffer to applica-
tions. The applications should return this packet buffer or an-
other packet buffer to TinyOS immediately. If the application
holds the packet buffer for a long time, TinyOS will fail to re-
ceive new packet from the radio channel. In this case, more
packets are lost. So it is necessary to design and implement a
packet queue management in LRS, and support different relay
policies.

Figure 10 lists the interface provided by the packet queue
management. We describe the command in the following.
When TinyOS receives a relay packet, LRS will use the ex-
change command to exchange the packet buffer in TinyOS
with a free packet buffer in the packet queue and set the re-
ceived packet in a special state for later use. TinyOS then
uses the switched packet buffer to receive new packet imme-
diately. This approach will reduce the packet loss dramati-
cally. Later, LRS can use the GetUpdateState or the Get-
ByState command to get the packet from the packet queue to
process it. If LRS has processed the packet, it can use the set-
State command to set the packet to new state. If the new state is
S RELAY WAIT TO SEND, the packet will be forwarded later.
If the new state is S FREE, this packet will be freed. All these
commands are processed as an atomic action. This is a general
interface and applications can integrate their new states for the
packet into the interface easily.

Random Time-Slotted MAC Protocol in LRS To avoid
collisions of simultaneous packets transmissions between
neighbors, we implement a random time-slotted MAC proto-
col. The MAC protocols works as follows. Every periodic
time interval is divided into a certain time slots. Every time
slot is long enough to send one packet. The number of time
slots depends on the density of neighbors. In our current im-
plementation, the periodic time interval is 2000 milliseconds,
and the number of time slots in every periodic time is 20.
When it is time to send packet, the MAC will post a packet
scheduler task to schedule applications to relay data. The col-
lected relay packet is stored in the packet queue. Then the
MAC randomly selects a time slot and sends the packet in that
time slot. To implement the MAC protocol, we define a pe-
riodic timer and one-short timer. The periodic timer is fired
for every time interval. The on-short timer is fired for the ran-

Neighborhood Link Quality Service

Estimator
Inbound

neighbors
...

Neighbor Builder

Outbound
neighbors

...

LinkQuality    Interface

LinkMeasure    Interface

Link Relay Service

LinkRelay    Interface

Figure 11: The architecture of the neighborhood link quality
service.
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relay app_data[ ]

sender msgid type count relay_data[ ]

relay sender receiver window prr

relay parent hop reliability

relay parent hop reliability policy

Figure 12: The data structure of the inbound neighbor table.

domly selected time slot. If there is a collision, the packet
will corrupt and lost. The up-level application will handle this.
Currently we implement the random time-slotted MAC proto-
col based on mica radio stack [13]. After many simulations,
we find this simple MAC protocol can reduce most collisions
in the link quality measurement process.

3.2 Neighborhood Link Quality Service
In this section, we will describe the implementation of NLQS
and the interaction between NLQS and LRS.

Architecture of NLQS Figure 11 shows the architecture of
NLQS, which consists of four components: the inbound neigh-
bor table, the outbound neighbor table, the neighbor builder,
and link quality estimator. The inbound neighbor table con-
tains the link quality information of inbound neighbors and
other data used by WMEWMA. The outbound neighbor ta-
ble contains the link quality information of outbound neigh-
bors and the relay data for other nodes. The neighbor builder
builds the inbound neighbor table using PRR estimated by
WMEWMA and builds the outbound neighbor table using
PRR received from LRS.

Data Structure and Packet Format The data structure of
the inbound neighbor table is illustrated in Figure 12. The
sender field contains the node ID of the inbound neighbor.
The total msg field contains the number of total packets re-
ceived from the sender. When the node gets a packet from the
sender, it will get the ID of the packet. Using the packet ID and
the value of the total msg field, the node calculates PRR of the
link from the sender for long term. The window field contains
the number of the time window, which is used in WMEWMA.
The window msg field contains the number of packets received
in this time window. Using the ID of the received packet and
the value of the window msg, the node can calculate PRR in
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Figure 13: The data structure of the outbound neighbors table.
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Figure 14: The packet format of the active probing packet.

this time window. When Link quality estimator does the es-
timation, it will read the previous value of PRR from the prr
field and store the estimated PRR in this field again. The pol-
icy field is used for policy decision. We detain the discuss of
different policies in Section 4.3.

Figure 13 illustrates the data structure of the outbound
neighbors table. The sender field contains the node ID of the
sender and the receiver field contains the node ID of the re-
ceiver. The window field contains the time window number
and the prr field contains PRR of the link from the sender to
the receiver for this time window. If the sender is the node
itself, the receiver is one of the identified outbound neighbor.
Otherwise, this data is a relay data. The relay field contains
remaining relay steps of this packet. The policy field is used
for policy decision. The neighbor builder can use the relay and
the policy field to make a decision about whether to relay this
data.

As we have discussed, we will use the combination of ac-
tive probing and passive overhearing techniques to do the link
quality measurement and estimation and the estimated PRR
will be sent in the active probing packet.

Figure 14 is the packet format of the active probing packet.
This data follows the link relay protocol. The relay field con-
tains the number of relay steps of this packet. Other fields
indicate that estimated PRR from the sender node to the re-
ceiver node is the value of the prr field in the window time
window. The node can use this packet to send the estimated
link quality of its inbound neighbors and also relay the link
quality for others. When the node receives this packet, it will
update outbound neighbors according to PRR in the packet.

Using LinkMeasure and LinkRelay Interface To measure
and estimate the link quality between neighbors, NLQS needs
to know the packet reception information from inbound neigh-
bors. This information is provided by LRS using the LinkMea-
sure nterface, as shown in Figure 15. When LRS receives a
packet, it will get the sender ID and the packet ID and signal
this event to applications. Currently, NLQS uses LinkMeasure
interface to measure the link quality. The neighbor builder
will update the data in inbound neighbors according to this in-
formation. When the neighbor builder finds that it is time to
do the estimation for this inbound neighbor, it will create a
WMEWMA estimator task to do this work.

To relay the estimated PRR across asymmetric links, NLQS
uses the LinkRelay interface provided by LRS. In this case, the
value of the relay filed is 0, 1, or 2, which stands for No Re-

Link Measure Interface
interface LinkMeasure {
  event   result_t Receive(uint16_t moteid, uint16_t msgid);
}

Figure 15: The LinkMeasure interface.

lay, One-Step Relay, and Two-Step Relay algorithms, respec-
tively. The sender field contains the node ID of the inbound
neighbor. The receive field contains its node ID. The neighbor
builder will decide which relay data in the outbound neighbor
table will be sent again. It first checks whether the value of
the relay filed is zero, which means no need to relay this data
again. If the value of the relay field is larger or equal to one,
the packet should be relayed one more time. To assure the esti-
mated PRR can be received by neighbors, the neighbor builder
relays it many times. In current implementation, the neigh-
bor builder will continue send the estimation PRR using the
probing packet until it sends enough packets during the cur-
rent time window. The neighbor builder sends the estimated
PRR in a round-robin way.

4 Example Applicatons
To demonstrate and evaluate link quality services, we design
and implement two example applications, the shortest hops
routing tree (SHRT) and the best path reliability routing tree
(BRRT), in the TinyOS platform. In SHRT, every node selects
a parent node, which has a routing path with shortest hops to
the sink node. In BRRT, every node selects a parent node,
based on which the node can build a best reliability path to
the sink node. We define the path reliability for every node as
follows:

ReliabilityA =
S∏
A

PRR (3)

where the ReliabilityA is the path reliability for node A. The
PRR is the PRR of one of links along the routing path from
node A to the sink node S. For example, in Figure 16, node 0
is the sink node and the routing path of node 5 is 0.84∗0.93 =
0.78.

In both SHRT and BRRT, the sink node floods a packet to
start the process of building a tree. In SHRT, the routing tree
information contained in the packet includes the node ID and
the count of hops to the sink node. In BRRT, the routing tree
information contained in the packet includes the node ID and
its path reliability to the sink node. Every node will choose
its parent to build SHRT or BRRT when it receives the flood-
ing packet. However, due to the link asymmetry, nodes have
more chances to build a broken routing tree when it chooses
the parent by considering the information embedded in the re-
ceived packet only. For example, in Figure 16, if node 6 gets a
flooding packet from node 1, node 6 will choose node 1 as its
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Figure 16: A topology to illustrate SHRT and BRRT.

parent. Unfortunately, as shown in the figure, node 1 can not
receive packet from node 6. So when node 6 chooses node 1
as its parent, it will build a broken routing tree.

The link asymmetry also has negative effects on building a
good routing tree. For example, in Figure 16, node 2 is the
best option for node 6’s parent. But due to asymmetric links,
node 6 can not get flooding packet from node 2. In this topol-
ogy, node 6 can get flooding packet from node 5 and choose
node 5 as its parent. In this case, node 6 needs one more hop
to route packets to the sink node. However, if node 2 is able
to relay its flooding packet across asymmetric links using link
quality services, node 6 will get the flooding packet and will
choose node 2 as its parent. From this example, we know that
if the node is able to relay the flooding packet across asymmet-
ric links, other nodes will have more chances to choose better
parent. Thus, we will evaluate No Relay, One-Step Relay, and
Two-Step Relay algorithms in the context of SHRT and BRRT.
In the next two sections, we describe the details of how to build
the routing tree by using link quality services.

4.1 Building Shortest Hops Routing Tree
In SHRT, every node initializes its hops to the sink node as
the maximum value and set its parent empty. The sink node
floods a packet, which contains its ID and its hop count. In our
simulated topology, the node ID of the sink node is 0 and its
hop count is 0 in the flooding packet. Other node receives the
flooding packet, it will update its parent according to the rout-
ing tree information in the flooding packet. Figure 17 lists the
pseudocode of the algorithm. In this algorithm, node receives
flooding packet from the Receive event signaled by LRS. It
will use NLQS to check whether the node, P, in the flooding
packet is its outbound neighbor. If the hops of node P is shorter
than that of its current parent, the node will choose node P as
its parent and update its hops.

4.2 Building Best Path Reliability Routing Tree

In BRRT, every node initializes its path reliability as zero and
set its parent empty. The sink floods a packet, which contains

Algorithm 1 Building inbound and outbound neighbors tables
Procedure Send-Packet ()
Begin Procedure

1: loop
2: periodically build an active probing packet with node

ID, packet ID, and estimated link quality between
neighbors

3: randomly select a time and broadcast the active probing
packet

4: end loop
End Procedure

Procedure Receive-Packet ()
Begin Procedure

1: loop
2: passively overhear the active probing packet
3: update the inbound neighbors table according to node

ID, packet ID of the received active probing packet
4: if it is time to do estimation for this inbound neighbor

then
5: do estimation using WMEWMA for this inbound

neighbor
6: end if
7: update the outbound neighbors table with estimated

link quality between neighbors from the received active
probing packet

8: end loop
End Procedure

Algorithm 2 Working mechanism of the link relay service
Procedure Receive-Relay-Packet ()
Begin Procedure

1: get the relay packet from TinyOS
2: parse the type field of the relay packet to find the associ-

ated application
3: if the application has subscribed the link relay service

then
4: Signal the Receive(data) event to the application
5: else
6: Drop the relay packet
7: end if

End Procedure

Procedure Forward-Relay-Packet ()
Begin Procedure

1: repeat
2: choose an application which has subscribed relay ser-

vice
3: signal the Relay(data) event to the application to col-

lect relay data
4: until ( get relay data ∨ no application has relay data to

forward )
5: if have relay data to forward then
6: forward the data out
7: if forward the relay data successfully then
8: signal the RelayDone(SUCCESS) event to the

application
9: else

10: signal the RelayDone(FAIL) event to the applica-
tion

11: if the application need relay again then
12: forward the relay data again and repeat this process
13: else
14: drop the relay data
15: end if
16: end if
17: end if
End Procedure

Algorithm 3 Building the shortest hops routing tree
Event Receive (parent)
Begin Event

1: if is-outbound-neighbor(parent) then
2: if is-shorter-hops-based-on-it(parent) then
3: set the parent node as the current parent and update

its hops to the sink node as parent.hops + 1
4: end if
5: end if
6: if is-shorter-hops-than-before(parent) then
7: update the relay data for the parent node
8: end if

End Event

1
Figure 17: The pseudocode of building SHRT.

Algorithm 1 Building inbound and outbound neighbors tables
Procedure Send-Packet ()
Begin Procedure

1: periodically build an active probing packet with node ID,
packet ID, and estimated link quality between neighbors

End Procedure

Procedure Receive-Packet ()
Begin Procedure

1: passively overhear the active probing packet
End Procedure

Algorithm 2 Working mechanism of the link relay service
Procedure Receive-Relay-Packet ()
Begin Procedure

1: get the relay packet from TinyOS
End Procedure

Procedure Forward-Relay-Packet ()
Begin Procedure

1: forward the data out
End Procedure

Algorithm 3 Building the shortest hops routing tree
Event Receive (parent)
Begin Event

1: update the relay data for the parent node
End Event

Algorithm 4 Building the best path reliability routing tree
Event Receive (parent)
Begin Event

1: if is-outbound-neighbor(parent) then
2: if is-better-reliability-based-on-it(parent) then
3: set the parent node as the current parent and up-

date path reliability with calculated value based on
the parent node

4: end if
5: end if
6: if is-better-reliability-than-before(parent) then
7: update the relay data for the parent node
8: end if

End Event

Algorithm 5 Flooding routing tree information
Event Relay (data)
Begin Event

1: have-data← false
2: if need-flooding-parent then
3: put the routing tree information of this node in data
4: have-data← true
5: end if
6: if need-flooding-relay-data then
7: put the updated relay data in data
8: have-data← true
9: end if

10: if have-data then
11: return true
12: else
13: return false
14: end if
End Event

1

Figure 18: The pseudocode of building BRRT.

its ID and its path reliability. In our simulated topology, the
node ID of the sink node is 0 and its path reliability is 1.0 in
the flooding packet. Other node receives the flooding packet,
it will update its parent according to the routing tree informa-
tion in the flooding packet. Figure 18 shows the pseudocode
of the algorithm. The procedure is very similar to the SHRT
algorithm. The following equation is used to calculate the path
reliability based on node P.

ReliabilityA,P = ReliabilityP ∗ PRRA,P (4)

where the ReliabilityA,P is the path reliability of node A
based on node P. The ReliabilityP is the path reliability of
node P, which is obtained from the flooding packet. The
PRRA,P is the PRR of the link from node A to node P, which
can be easily obtained through the LinkQuality interface of
NLQS.

9



4.3 Packet Retransmission Policies

In both SHRT and BRRT, the flooding packets has a high prob-
ability to be lost during the forwarding. To make sure most
nodes can receive the flooding packet, we define three policies
to retransmit the flooding packet.

1. Transmit the routing tree information twice (P2)
When a node updates its parent, it will flood its routing
tree information twice. In No Relay algorithm, the flood-
ing packet contains only the routing tree information of
the flooding node. In One-Step Relay and Two-Step Re-
lay algorithms, the relay data is attached in the flooding
packet. This policy will not flood the relay data individu-
ally.

2. Transmit the routing tree information twice and
transmit the relay data once (P2+R1) The difference
of this policy with the P2 Policy is that this policy will
flood the relay data at least once when it is updated in
One-Step Relay and Two-Step Relay algorithms. Every
flooding packet contains two relay data if there is enough
relay data to be relayed.

3. Transmit the routing tree information twice and
transmit the relay data twice (P2+R2) The difference
of this policy with the P2+R1 Policy is that this policy
will flood the relay data twice when it is updated in One-
Step Relay and Two-Step Relay algorithms.

From these policies, we can find that P2 will send out the least
packets and P2+R2 Policy will send out the most packets. The
more the packet is sent, the higher possibility the packet is
received. We will evaluate three polices in the simulation using
TOSSIM.

5 Performance Evaluation
After describing the link quality services and example applica-
tions, we are now in the position to evaluate the performance
of our link quality services. First, four performance metrics are
proposed. Then, based on proposed performance metrics, we
conduct a static analysis to calculate the optimal results of four
performance metrics in an ideal network without packet loss,
and compare it with the simulation using TOSSIM. In the sim-
ulation, we simulate No Relay, One-Step Relay, and Two-Step
Relay algorithms with P2 Policy, P2+R1 Policy, and P2+R2
Policy using TOSSIM.

5.1 Performance Metrics

To evaluate our asymmetry-aware link quality services, we
propose and define the following performance metrics. One
of them is used to evaluate link quality services directly, the
others are used to evaluate the improved performance of ex-
ample applications.

Number of Increased Outbound Neighbors Due to asym-
metric links, some nodes will not receive acknowledgements
from their outbound neighbors and these outbound neighbors
can not be identified. Using our link quality services,a neigh-
borhood discovery process will identify more outbound neigh-
bors. In Section 2.3.1, we have defined No Relay, One-Step
Relay and Two-Step Relay outbound neighbors. Those out-
bound neighbors are the optimal results for No Relay, One-
Step Relay, and Two-Step Relay algorithms. We will build
those outbound neighbors for every node in the generated
topology using both the static analysis and simulation.

Number of Reduced Hops in SHRT In SHRT, every node
will choose a parent, base on which the node can build a short-
est hops routing path to the sink node. Due to asymmetric
links, some nodes in SHRT can not get flooding packet from
the parent. By building SHRT with No Relay, One-Step Re-
lay, and Two-Step Relay algorithms, we can get the hops of
every node in the routing tree for these algorithms in both sta-
tic analysis and simulation.

Path Reliability Improvement in PRRT In PRRT, every
node will choose a parent, based on which the node can build a
best reliability routing path to the sink node. With the support
of link quality services, we can build a more reliable routing
tree. By building PRRT with No Relay, One-Step Relay, and
Two-Step Relay algorithms, we can compute the path reliabil-
ity of every node in the routing trees in both static analysis and
simulation.

Energy Consumption in SHRT and PRRT In link quality
services, every node will broadcast a certain number of pack-
ets to measure the link quality between neighbors. So we need
not compare the energy consumption in this process. We only
compare the energy consumption resulting from applications,
which build the routing tree with No Relay, One-Step Relay
and Two-Step Relay, algorithms. Link quality services can al-
leviate effects of link asymmetry in the tree building process,
but it also need to send more packets to relay packets across
asymmetric links. The more packets is relayed, the more infor-
mation will be shared, but the more energy will be consumed.
That is a trade off. We will evaluate the energy consumption in
term of total number of receiving and sending packets in each
algorithm.

5.2 Simulation Setup

In this part, we describe how to setup the simulation environ-
ment. TOSSIM [6] is an emulation tools for TinyOS platform,
which is widely used in WSN research area. We simulate link
quality services using TOSSIM in the lossy model to get per-
formance results. To do the simulation, we specify a lossy file
of the simulated topology for TOSSIM. The bit error rate of
links in the topology will be listed in the lossy file. We totally
simulate 156 Motes. The PRR of links are randomly chosen
from the real measurements using Berkeley MICA2 motes in
a controlled environment.
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5.3 Evaluation Results
In this part, we will present evaluation results of link quality
services according to performance metrics.

5.3.1 Increased Outbound Neighbors

# of Increased Outbound Neighbors 0 1 2 3
One-Step Relay Analysis 93 52 8 3

One-Step Relay Simulation 94 51 8 3
Two-Step Relay Analysis 83 61 7 5

Two-Step Relay Simulation 85 61 6 4

Table 1: The distribution of increased outbound neighbors.

Table 1 lists the distribution of increased outbound neigh-
bors in both analysis and simulation, including how many
nodes identify how many more outbound neighbors using
One-Step Relay and Two-Step Relay algorithms than No Re-
lay. For example, in this table the One-Step Relay algorithm
in the simulation help 51 nodes identify one more outbound
neighbor and 8 nodes identify two more outbound neighbors
than No Relay. From this table, we can see that performance
results in the simulation and those in the analysis match very
well. For One-Step Relay algorithm, only one node fails to
identify one of its outbound neighbors in the simulation. For
example, 51 nodes have identify one more outbound neighbor
in the simulation while the number of this kind of node is 52
in the analysis. For Two-Step Relay algorithm, only two nodes
fail to identify more outbound neighbors in the simulation. For
example, 6 nodes identify two more outbound neighbors and 4
nodes identify three more outbound neighbors while the num-
ber of these kinds of nodes are 7 and 5 separately in the analy-
sis. From this table, we also can see that the performance of
Two-Step Relay is better than One-Step Relay. More than 10
nodes identify one more outbound neighbors in Two-Step Re-
lay than those in the One-Step Relay algorithm. For example,
61 nodes identify one more outbound neighbors in Two-Step
Relay algorithm while the number of this kind of node is only
51 in the One-Step Relay algorithm.

Figure 19 shows the cumulative distribution function for the
percentage of increased outbound neighbors. In this figure, the
x-axis stands for the percentage of increased outbound neigh-
bors for every node and the y-axis stands for the percentage
of those nodes. Results of the One-Step Relay and Two-Step
Relay algorithms in the analysis and simulation are shown to-
gether to facilitate comparison. From this figure, we can see
that more than 40% of nodes identify more outbound neigh-
bors in the One-Step Relay algorithm and the percentage of
increased outbound neighbors is from 17% to 100%. Alao we
can find that more than 45% of nodes identify more outbound
neighbors in the Two-Step Relay algorithm and the percentage
of increased outbound neighbors is from 14% to 100%. Note
that the analysis results is a little better than those in the sim-
ulation. The reason for this is some acknowledgement packets
are lost due to loss links in the simulation. Therefore some
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Figure 19: The CDF of the percentage of increased outbound
neighbors.
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Figure 20: The CDF of the percentage of reduced hops.

nodes fail to identify those outbound neighbors. The Two-Step
Relay algorithm is better than One-Step Relay as we expected.

5.3.2 Reduced Hops in SHRT

The performance metrics of reduced hops for every node in
SHRT is used to evaluate link quality services by comparing
the routing tree built using No Relay, One-Step Relay, and
Two-Step Relay algorithms. With the help of link quality ser-
vices, we expect to build a better SHRT, in which every node
has shorter hops to the sink node.

Figure 20 reports the CDF of the percentage of reduced hops
for every node in the simulation. To see the details of the re-
sults in the middle of Figure 20, we zoom in the results be-
tween 0% to 20%, as shown in Figure 21. In these figures, the
x-axis is the percentage of reduced hops for every node and
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Figure 21: Zooming of the CDF of the percentage of reduced
hops.

the y-axis shows the percentage of those nodes.
From these figures, we can see that the results in the sim-

ulation do not match well with those in the analysis. In the
analysis, there are more than 30% of nodes reduce their hops
to the sink node and the percentage of reduced hops is mainly
between 20% to 40%. In the simulation results, there are only
more than 15% of nodes that reduce their hops to the sink node
and the percentage of reduced hops is mainly between 15%
and 25%. The P2+R2 policy of Two-Step Relay is the best al-
gorithm and more than 20% of nodes reduce their hops to the
sink node. While the P2+R1 Policy of One-Step Relay is the
worst one of all algorithms and only more than 13% of nodes
reduce their hops to the sink node.

Again, we also observe that the results in the simulation are
worse than those in the analysis, because of the packet loss in
the simulation. If one node near the sink node fails to choose
the best parent, all nodes, which include this node in their
routing path, fail to reduce their hops. It is a common phe-
nomenon in WSN that the performance of the node near the
sink node has more impacts on the performance of the whole
system. Some nodes increase hops to the sink node in simula-
tions. The reason is some packets are lost due to loss links and
collisions of packet transmissions. But this probability is very
low. Therefore, only less than 2% of nodes choose a worse
parent. From the comparison of results, we argue that a better
policy to flood packets is needed to improve the performance.

5.3.3 Improved Path Reliability in BRRT

Figure 22 reports the CDF of the percentage of the improved
path reliability for every node in the simulated topology. Fig-
ure 23 is the zooming of the middle part of Figure 22. In these
figures, the x-axis stands for the percentage of the improved
path reliability for every node and and the y-axis stands for the
percentage of those nodes. In the simulation, more than 15%
of nodes improve the path reliability and the percentage of the
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Figure 22: The CDF of the improved path reliability.
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Figure 24: The CDF of more packets sent in SHRT.

improved path reliability is mainly between 2% and 40% and
the percentage of some nodes even reach on 50%. The com-
binationo of the P2+R2 policy with the Two-Step Relay algo-
rithm is the best one, where more than 27% of nodes improve
the path reliability to the sink node and the percentage of the
improved path reliability focus on 15% to 22% and 50%. The
P2 policy with the One-Step Relay algorithm is the worst one
of all algorithms. Also we note that there are a lot of nodes im-
prove the path reliability than the number in SHRT. The reason
is that the difference between BRRT and SHRT. Nearly every
neighbor of a node in BRRT has different path reliability while
most neighbors of a node in SHRT have same hops to the sink
nodes. Therefore, nodes in BRRT have more opportunities to
change their parents than they do in SHRT.

5.3.4 Energy Consumption in SHRT and BRRT

In this part, we will evaluate the energy consumption in SHRT
and BRRT.
Energy Consumption in SHRT Figure 24 shows the CDF of
more packets sent by the One-Step Relay and Two-Step Relay
algorithms than No Relay. In this figure, the x-axis stands for
more packets send by every node and the y-axis reports the
CDF. From this figure, we can see that all algorithms have little
difference in terms of the number of extra packets sent. For the
One-Step Relay and Two-Step Relay algorithms, about 90% of
nodes do not send more packets and about 10% of nodes send
less packets.

Figure 25 shows the CDF of more packets received by the
One-Step Relay and Two-Step Relay algorithms than No Re-
lay. In this figure, the x-axis stands for more packets received
by every node. From this figure, we can see the following
results. The P2+R2 policy of Two-Step Relay receives more
packets than others. The P2+R1 of Two-Step Relay is the sec-
ond worst. The P2 policy of One-Step Relay and the P2 policy
of Two-Step Relay follow the similar pattern and they receive
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Figure 25: The CDF of more packets received in SHRT.
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Figure 26: The CDF of more packets sent in BRRT.

less packets than other algorithms. Except the P2+R2 policy
of Two-Step Relay, most algorithms have nearly 20% of nodes
which receive less packets than the No Relay algorithm.
Energy Consumption in BRRT Figure 26 and Figure 27
present the CDF of more packets sent and received by theOne-
Step Relay and Two-Step Relay algorithms than No Relay, re-
specitively. In these figures, the x-axis stands for more packets
sent/received by every node. From Figure 26, we can see that
all algorithms have no big difference with the number of send-
ing packets. From Figure 27, we can see the similar results in
SHRT. The combination of the P2+R1 policy and the Two-Step
Relay algorithm receives the most packets.

The results in this section show that there is a tradeoff be-
tween the energy consumption and the benefits brought by the
link relay service. We argue that it is the application’s decision
to turn on/off the link relay service. For example, if the path re-
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Figure 27: The CDF of more packets received in BRRT.

liability or path length is more important than the energy, e.g.,
event notification, then it should choose the link relay service.
However, for monitoring-based applications it’s better to turn
off this service.

6 Related Work and Discussions
Our research work has been inspired by a variety of previous
research work. Instead of describing them individually, we
classify them into three groups: link layer characterization,
link quality estimation, and existing solutions to link irregular-
ity.
Link layer characterization Ganesan et al. do an experimen-
tal study of low-power WSN in a large scale. They find the
problem in large scale, such as long links, backward links,
stragglers and clustering [3]. And they also find the bidirec-
tional link and asymmetric links is common in large scale.
Zhao et al. measure the spatial and temporal characteristics
of packet delivery [18]. They find the gray area in which there
are significant variability in packet delivery performance and
the no-determining relationship between signal strength and
packet delivery. They also find the asymmetry in packet de-
livery and explain some cause of it. Zhou et al. show that
radio irregularity is a common phenomenon which arises from
multiple factors, such as variance in RF sending power, and
different path losses depending on the direction of propaga-
tion [19]. All of these research work shows us the reality of
the link quality in WSN, which make us have a deeper under-
standing of the wireless communication in WSN. Our research
is inspired by those previous efforts, and is a follow-up which
provides solutions to link asymmetry. Also, we are the first
to provide a set of APIs for link quality services. We plan to
release our implementation to the TinyOS community soon.
Link quality estimation. Kim et al. present a couple of esti-
mators for wireless communication and evaluate them using

different performance metrics [4]. Woo et al. [15] declare
that link connectivity statistics should be captured dynamically
through an efficient yet adaptive link estimator and routing de-
cisions should exploit such connectivity statistics to achieve
reliability. In another research paper [14], Woo et al. show
that WMEWMA is a very effective estimator, in term of sta-
bility and agility. Cerpa et al. present a statistical model of
lossy links in WSN [2]. They intend to model lossy links with
statistical method of the real measurement data. Zhou et al.
establish a radio model for simulation, called the Radio Irreg-
ularity Model (RIM) [19]. Zuniga et al. intend to identify the
causes of the transitional region, and a quantification of their
influence [20]. They also incorporate important channel and
radio parameters such as the path loss exponent, shadowing
variance of the channel, and the modulation and encoding of
the radio. Different from these previous work, we focus on the
asymmetry-aware link quality services that alleviate the effect
of asymmetric links in the link quality measurement and esti-
mation process, which is neglected in previous research.
Existing solutions to link irregularity Woo et al. study
and evaluate the neighborhood table management and reli-
able routing protocol techniques [15]. They also evaluate
the frequency based table management, and cost-based rout-
ing. Seada et al. present energy-efficient forwarding strategies
for geographic routing in lossy WSN [7]. Their work is to
find optimal geographic forwarding in the lossy link. They
results also show that reception based forwarding strategies
are more efficient than purely distance-based strategies; rela-
tively blacklisting schemes reduce disconnections and achieve
higher delivery rates than absolute blacklisting schemes. Ra-
masubramanian et al. provide a bidirectional abstraction of
the unidirectional network to routing protocols in ad hoc net-
works [12]. These efforts face the reality and try to solve the
real problem to provide better services in WSN. We step fur-
ther to distinguish inbound and outbound neighbors to make
good use of outbound neighbors for high level routing service,
and to provide a set of link quality interfaces. We also pro-
vide LRS, which consists of a link relay protocol, a link relay
framework, and an interface for relaying packets across asym-
metric links.

7 Conclusions and Future Work

In this paper, we design, implement and evaluate the pro-
posed asymmetry-aware link quality services, which include
the neighborhood link quality service and the link relay ser-
vice. NLQS distinguishes inbound and outbound neighbors
and provide the LinkQuality interface to query the timeliness
link quality information. In LRS, we propose a link relay pro-
tocol, implement a link relay framework, and provide LinkRe-
lay interface to relay packets across asymmetric links. The
performance of link quality services is evaluated in the con-
text of two example applications. From both the static analy-
sis and simulation using TOSSIM, we find the performance
of two example applications improve substantially using the
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proposed link quality services.
Our future work includes three directions. First, evaluate

link quality services in a large scale real deployment of WSN.
Second, improve algorithms to relay packet in a more adaptive
and energy efficient way. Third, apply the proposed link qual-
ity services to high level routing protocols, such as WEAR [8].
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