
CANS: Composable, Adaptive Network Services Infrastructure

Xiaodong Fu, Weisong Shi, Anatoly Akkerman, and Vijay Karamcheti

Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

fxiaodong,weisong,akkerman,vijaykg@cs.nyu.edu

Abstract

Ubiquitous access to sophisticated internet services

from diverse end devices across heterogeneous net-

works requires the injection of additional function-

ality into the network to handle protocol conver-

sion, data transcoding, and in general bridge dis-

parate network portions. Several researchers have

proposed infrastructures for injecting such function-

ality; however, many challenges remain before these

can be widely deployed.

CANS is an application-level infrastructure for in-

jecting application-speci�c components into the net-

work that focuses on three such challenges: (a) ef-

�cient and dynamic composition of individual com-

ponents; (b) distributed adaptation of injected com-

ponents in response to system conditions; and (c)

support for legacy applications and services. The

CANS network view comprises applications, state-

ful services, and data paths built from mobile soft-

state objects called drivers. Both services and data

paths can be dynamically created and recon�gured:

a planning and event propagation model assists in

distributed adaptation, and a exible type-based

composition model dictates how new services and

drivers are integrated with existing components.

Legacy components plug into CANS using an inter-

ception layer that virtualizes network bindings and

a delegation model.

This paper describes the CANS architecture, and

a case study involving a shrink-wrapped client ap-

plication in a dynamically changing network envi-

ronment where CANS improves overall user experi-

ence.

1 Introduction

The emergence of new networking technologies such

as broadband to the home, Wireless 3G [18], and

Bluetooth [10], coupled with increasing numbers

of network-capable end devices holds the potential

for future application services that signi�cantly en-

hance user experience by providing seamless, ubiq-

uitous access. To take an example, consider the fol-

lowing scenario. Alice, a telecommuting employee,

starts her day by initiating a teleconference on her

laptop connected to the internet using a wired LAN.

During the conference, a hub failure renders the

wired LAN unavailable. Fortunately, the service

detects this, and seamlessly switches data trans-

mission to a local wireless network while simulta-

neously degrading picture quality upon recognizing

that the wireless LAN has insuÆcient bandwidth

for continuous video at the original resolution and

rate. Shortly after, Alice leaves her oÆce to meet a

client. She shuts down her laptop, and resumes the

teleconference in her car using a PDA connected to

a metro-area wireless network. The service further

downgrades the media stream (say to only include

audio), while recording the full stream at a server

that Alice can check o�ine.

Although the above scenario is compelling, its re-

quirements | rapid creation and deployment of new

services, application-aware computation in the net-

work, and dynamic and distributed adaptation |

are poorly handled by current internet infrastruc-

ture. Moreover, the existing view which hides net-

work characteristics from the application and treats

services as standalone entities is incompatible with

the large variation in network and end-device char-

acteristics. Current-day data paths can include

links with very di�erent bandwidth, delay, and error

characteristics, ranging from serial links to wireless

to broadband to �ber. Hiding these di�erences from

the application will result in unsatisfactory appli-

cation performance, and the alternative of provid-

ing di�erentiated service for di�erent networks/end-

devices cannot adequately cope with dynamically

changing environments.

One solution to these problems is to inject addi-

tional functionality into the network that can dy-

namically adapt to resource characteristics of end-

devices and network links by handling activities

such as protocol conversion, data transcoding, etc.

Several researchers have proposed infrastructures

for achieving this goal, ranging from end-point solu-

tions [12, 15] to more distributed alternatives that

introduce application-aware functionality either at

the network level [17, 3, 20] or at the applica-

tion level [1, 6, 8]. Although these systems have

articulated a common set of high-level architec-

tural requirements, many challenges, particularly

with respect to dynamic services management and

composition, remain before the infrastructures see

widespread deployment.

This paper describes Composable Adaptive

Network Services (CANS), an application-level in-

frastructure for customizing the data path between

client applications and services, which focuses on

three such challenges:

� EÆcient and Dynamic Composition, enabling

separately de�ned components to be dynami-

cally instantiated and interconnected using ef-

�cient mechanisms (e.g., shared memory within

a host).

� Dynamic and Distributed Adaptation, enabling

adaptation to environment changes along the

entire data path while incurring low overhead

and maintaining overall application semantics.

� Support for Legacy Applications and Services,

enabling the latter to be integrated into CANS

with minimal e�ort. Requiring rewrites of each

application and service is neither practical nor

desirable.
CANS addresses these challenges by constructing

networks that include applications, stateful services,

and data paths between them built up from mo-

bile soft-state objects called drivers. Drivers im-

plement a standard interface, permitting eÆcient

composition and semantics-preserving adaptation.

Both services and data paths can be dynamically

created and recon�gured: a planning and event

propagation facility enables distributed adaptation,

and a exible type-based composition model dic-

tates how new services and drivers are integrated

with existing ones. CANS provides three adapta-

tion modes to permit cost-functionality tradeo�s:

intra-component, by recon�guring data paths, and

by creating new services and data paths. Legacy

components plug into CANS using delegation and

an interception layer that transparently virtualizes

network bindings, currently TCP sockets.

CANS has been implemented on Windows 2000

clients and Java/RMI-capable intermediate hosts.

Each node runs the CANS execution environment,

which supports dynamic creation, migration, and

adaptation of drivers and services. Experience with

a case study involving a shrink-wrapped application

(Windows MediaPlayer) in a dynamically changing

network environment indicates the potential of our

approach: CANS permits dynamic deployment and

distributed adaptation of application-aware compo-

nents to improve overall user experience.

The rest of this paper is organized as follows. Sec-

tion 2 presents the CANS architecture, with details

about its components and distributed adaptation

support appearing in Sections 3 and 4. Section 5

presents the CANS implementation and the Medi-

aPlayer case study. Section 6 discusses related ef-

forts, and Section 7 concludes.

2 CANS Architecture

2.1 The Logical View

CANS views networks as consisting of applications,

services, and data paths connecting the two. CANS

extends the notion of a data path, traditionally lim-

ited to data transmission between end points, to in-

clude application-speci�c components dynamically

injected by end services, applications, or other enti-

ties; these components adapt the data path to phys-

ical link characteristics of the underlying network

and properties of end devices (see Figure 1(a)).

Components are self-contained pieces of code that

can perform a particular activity, e.g., protocol con-

version or data transcoding. Components operate

on typed data streams and are connected with each

other based upon compatibility of output and in-

put types (see Section 3 for details). Injected com-

ponents come in two avors: stateful services and

mobile soft-state objects called drivers. Services ex-

tend the original data path to multiple hops, and

drivers generalize the traditional notion of a data

path to include data transformation in addition to

transmission. The primary reason for distinguishing

between drivers and services is to ensure eÆciency.

CANS data paths are created dynamically, using in-

formation about user preferences, properties of ser-

vices and client applications, as well as character-

istics of the underlying platform. The components

which constitute a data path, the interconnections

amongst them, and their internal con�guration pa-

rameters can all be modi�ed at run time. Modi�ca-

tions are triggered based on either system events

(e.g., breaking of a network link) or component-

initiated events. The CANS infrastructure provides

support to eÆciently recon�gure data paths, while

Laptop, Client2
Application

Service1

Service2
Desktop, Client1

Application

 service

 driver

PDA, Client3
Application

 port
 data path Interception Layer

Legacy
Applications

Execution
Environment Internet

Execution
Environment

Node 1

Intermediate Node

Service

Internet

Driver
Manager

Event
Manager

Service
Manager

Class
Manager

Plan
Manager

Resource
Moniter

(a) (b)

Figure 1. (a) Logical organization of CANS, (b) Physical realization of CANS data paths.

preserving application semantics.

2.2 The Physical View

The CANS network is realized by partitioning the

services and data paths onto physical hosts, con-

nected using existing communication mechanisms.

The CANS Execution Environment (EE) serves as

the basic run-time environment on these hosts and

includes the following functional modules (see Fig-

ure 1(b)): class manager, plan manager, driver and

service manager, event manager, and resource mon-

itor.

The class manager handles downloading of compo-

nent code and instantiation of the components. The

plan manager is responsible both for creating the

initial plan comprising drivers, services, and data

paths in response to a request trapped by the inter-

ception layer, as well as replanning in response to

system conditions. The driver and service manager

maintains information about deployed drivers and

manages data path operations, including inserting

new drivers, creating new services, and recon�gur-

ing existing paths as required. The event manager

is responsible for receiving both system-level and

component-level events and propagating these on to

interested components. The resource monitor mon-

itors system conditions such as CPU availability or

network interface state, informing the event man-

ager when registered trigger conditions �re.

3 CANS Components

CANS components include drivers, services, and

auxillary components that interconnect execution

environments, applications, and legacy services.

3.1 Drivers

Drivers serve as the basic building block for

constructing adaptation-capable, customized data

paths. Drivers are standalone mobile code mod-

ules that perform some operation on the data

stream. However, to permit their eÆcient compo-

sition and dynamic low-overhead recon�guration of

data paths, drivers are required to adhere to a re-

stricted interface as shown in Figure 2. Speci�cally,

Driver

Input 1

Input 2

Output

DPort

(a) (b)

class Driver {
 String driverID;

 TList outTypes(TList inTypes);
 DPortList getPorts();
 DPort getPort(String PortId);
 void push(DInPort input);
 void pull(DOutPort out);
 void raiseEvent(CANSEvent e);
 void registerListener();

}

Figure 2. Driver functionality (a) and interface

(b).

1. Drivers consume and produce data using a

standard data port interface, called a DPort.

DPorts are typed (details below) and distin-

guished based on whether they are being used

for input or output.

2. Drivers are passive, moving data from input

ports to output ports in a purely demand-

driven fashion. Driver activity is triggered only

when one of its output ports is checked for data,

or one of its input ports receives data.

3. Drivers consume and produce data at the gran-

ularity of an integral number of application-

speci�c units, called semantic segments. These

segments are naturally de�ned based on the ap-

plication, e.g., an HTML page or an MPEG

frame. Informally, this requirement ensures

that the data in an input semantic segment can

only inuence data in a �xed number of out-

put segments, permitting construction of data

path recon�guration and error recovery strate-

gies that rely upon retransmission at the gran-

ularity of semantic segments (see Section 4.2).

Note that this property only refers to the logi-

cal view of the driver, and admits physical re-

alizations that transmit data at any convenient

granularity as long as segment boundaries are

somehow demarcated (e.g., with marker mes-

sages).

4. Drivers contain only soft state, which can be

reconstructed simply by restarting the driver.

Stated di�erently, given a semantically equiv-

alent sequence of input segments, a soft-state

driver always produces a semantically equiv-

alent sequence of output segments. For ex-

ample, a Zip driver that produces compressed

data will produce semantically equivalent out-

put (i.e., uncompressed to the same string) if

presented with the same input strings.

The �rst two properties enable dynamic composi-

tion and eÆcient transfer of data segments between

multiple drivers that are mapped to the same phys-

ical host (e.g., via shared memory). Moreover, they

permit driver execution to be orchestrated for opti-

mal performance. For example, a single thread can

be employed to execute, in turn, multiple driver op-

erations on a single data segment. This achieves

nearly the same eÆciency, modulo indirect function

call overheads, as if driver operations were statically

combined into a single procedure call.

The semantic segments and soft-state properties

enable low-overhead dynamic adaptation, either

within a single driver or across data path segments

while preserving application semantics. The driver

interface (see Figure 2) permits a driver to create

and listen to events, facilitating its participation in

distributed adaptation activities.

Type-based Composition

The composability of CANS components (both

drivers and services) is decided by compatibility of

the type information associated with the input and

output ports being connected. The types used in

CANS integrate two closely related concepts: data

types and stream types.

CANS data types are the basic unit of type informa-

tion, represented by a type object that in addition to

a unique type name can contain arbitrary attributes

and operations for checking type compatibility. Tra-

ditional mechanisms such as type hierarchies can

still be used to organize data types; however, our

scheme permits exible type compatibility relation-

ships not easily expressibly just by matching type

names. For instance, it is possible to de�ne a CANS

type for MPEG data, which contains attributes for

de�ning the frame size. An MPEG type can be de�ned

compatible with another MPEG type as long as the

former's frame size is smaller than the latter's, natu-

rally capturing the behavior that a lower resolution

MPEG stream can be played on a client platform

capable of displaying a higher resolution stream.

CANS stream types capture the aggregate e�ect of

multiple CANS drivers operating upon a typed data

stream. Stream types are constructed at run time,

and representable as a stack of data types. Oper-

ations allowed on stream types include push, pop,

peek, and clone, which have the standard meanings.

Each CANS component with m input ports and n

output ports de�nes a function, which maps its in-

put stream types into output stream types:

f(Tin1 ; Tin2 ; :::; Tinm)! (Tout1 ; Tout2 ; :::; Toutn)

where Tini is the required stream type set for the

ith input port, and Toutj is the resulting stream

type produced on the jth output port. The type

compatibility between an input and an output port,

which determines whether two components can be

connected, is determined by checking the top of the

output port's stream type against the required data

type of the input port. Stream type information

ows downstream automatically when two ports get

connected at run time.

Figure 3 shows an example of the type compatibil-

ity scheme. The source produces MPEG data at

resolution 500� 200, which needs to be supplied to

the sink that can consume MPEG data at resolu-

tion 512� 256 after going through two components

that respectively encrypt and decrypt the data. The

�gure shows the data types on each of the ports as

well as the stream types on the connections. To

consider an example, the Encryption driver accepts

data type BaseStream and pushes an Encrypted

type object onto the incoming stream type. The

output port of Src is compatible with the input port

of Encryption because the MPEG type object extends

the BaseStream type. Similarly, the output port of

MPEG512x256EncryptedBaseStream

Src Encryption SinkDecryption
MPEG500x200

MPEG500x200

Encrypted

MPEG500x200

Figure 3. A simple example of type compatibility.

Decryption, whose a�ect is to pop the Encrypted

type from its incoming stream type, is compatible

with the input port of Sink because of a type-speci�c

compatibility operator for the MPEG type that looks

at the resolution attributes.

Figure 3 also highlights the composition advantages

of representing stream types as a stack of data types.

If components were just modeled as consuming data

of a particular type and producing data of another

type, it would be diÆcult to express the behavior

of the Encryption and Decryption drivers in a way

that permits their use for a variety of generic stream

types without losing information about the original

stream type at the output of the Decryption driver.

Thus, determining whether the Decryption driver's

output port is compatible with the input port on

Sink would require examining the entire data path.

In contrast, our stream type representation permits

local decision making, a prerequisite for run-time

adaptation via dynamic component composition.

3.2 Services

The second core CANS component are services. Un-

like drivers that represent rigidly constrained, mo-

bile, soft-state adaptation functionality, services can

export data using any standard internet protocol

(e.g., TCP or HTTP), encapsulate more heavy-

weight functions, process concurrent requests, and

maintain persistent state. The di�erent interface

requirements of drivers and services stem from the

observation that most current services distributed

in the internet are legacy in nature: their source

code is general unavailable, and rewriting or mod-

ifying them is impractical. The price paid for not

adhering to a standard interface is that unlike driver

migration, CANS does not explicitly support service

migration; a service individually determines how it

manages its own state transfer. This design choice

reects the view that services are migrated infre-

quently and doing so requires protocols that are dif-

�cult to abstract cleanly.

CANS provides applications with a general platform

to create, compose, and control services across the

network. A service is required to register itself iden-

tifying the data types it supports, optionally pro-

viding a delegate object that can control the service

and act on its behalf in interactions with the rest of

CANS. The delegate object implements a standard

interface consisting of activating and suspending the

service, and receiving CANS events. Service compo-

sition is similar to driver composition, using types

supplied at registration time.

3.3 Communication Adapters

Communication adapters are auxillary CANS com-

ponents, which transmit data physically across

the network to connect drivers that span di�erent

nodes. To achieve this, these components expose

the same DPort interface, appearing to other drivers

just as a regular driver. Communication adapters

also support two additional kinds of logical connec-

tions: (1) between applications and drivers; and (2)

between a driver and a service that exports data

using an interface other than DPort.

To provide the above functionality, adapters es-

tablish physical communication links between ap-

plication wrappers (see below) and execution en-

vironments, between two execution environments,

and between an execution environment and a ser-

vice. Multiple logical connections can be multi-

plexed on this single physical link; the latter can

exploit transport mechanisms best matched to the

characteristics of the underlying network. Com-

munication adapters can additionally encapsulate

behaviors that permit them to adapt to and re-

cover from minor variations in network character-

istics. For instance, these adapters can be written

to use one of several network alternatives, automat-

ically transitioning between them to improve per-

formance. The continuity semantics upon such re-

connection are dictated by the requirements of the

data types associated with the adapter's ports.

3.4 Support for Legacy Applications

The CANS infrastructure supports both CANS-

aware and CANS-oblivious applications. The for-

mer just hook into the driver and service inter-

faces described earlier. The latter require more sup-

port but are easily integrable because of our focus

on stream-based transformations on the data path.

Our solution relies on an interception layer that is

transparently inserted into the application and vir-

tualizes its existing network bindings. The intercep-

tion layer is injected using a technique known as API

interception [11], which relies on a run-time rewrite

of portions of the memory image of the application.

Application

Interception Layer

Logical
Socket
Table ���

Network
Interface

Policy

File
Interface

CANS
Interface

1

2

3
connectsend,recv, ...

Figure 4. Architecture of the interception layer.

The general architecture of the interception layer is

shown in Figure 4. The interception layer provides

the application with an illusion of a TCP socket

which can be bound to various interfaces (CANS or

native network) for actual data transmission. An

application speci�c policy responds to events (such

as connect requests) delivered to it by the inter-

ception layer, which in turn inuences the binding.

Thus, enabling CANS support for a new legacy ap-

plication would require only writing a speci�c policy

for that application. Finally, although our current

implementation virtualizes the TCP layer, the tech-

nique can as easily support other well-known proto-

cols, such as HTTP.

4 Distributed Adaptation in CANS

CANS supports three modes of adaptation in re-

sponse to dynamic changes in system characteris-

tics: (1) intra-component adaptation, where each

service or driver detects and adapts to minor re-

source variations on its own; (2) data path recon�g-

uration and error recovery, where the data path un-

dergoes localized changes involving insertion, dele-

tion, and reordering of drivers; and (3) replanning,

where existing data paths are torn down and new

ones constructed to respond to large-scale system

variations. These three modes represent di�erent

points on the cost-functionality spectrum, enabling

the system to respond to system events with the

least overhead possible. To the best of our knowl-

edge, CANS is unique in providing system support

for data path recon�guration.

4.1 Intra-Component Adaptation using
Distributed Events

Each CANS driver and service can incorporate its

own adaptation behavior that may or may not be

coordinated with adaptation in other components.

For example, a frame-dropping component can alter

its policies upon detecting di�erent levels of back-

pressure on its output bu�ers. Note that adaptation

in a single component is completely isolated as long

as its e�ect is restricted to be within a single seman-

tic segment (see Section 3.1).

To trigger adaptation, CANS provides distributed

event propagation support, permitting components

(including delegate objects for legacy services) to

raise arbitrary events as well as listen for speci�c

ones. Event support is realized by a per execution

environment Event Manager, which is respon-

sible for catching, �ring, and transmitting events

across the network. Event raising and �ring is im-

plemented using simple method calls and callback

functions associated with the relevant component.

There are two major types of CANS events: events

from the local resource monitor, indicating a change

in resource status, and events from components on

the data path. The �rst kind of events are sent

only to local components that register themselves

as interested listeners. The second kind, issued by

components along a data path, are �rst sent to the

plan event delegate (see Section 4.3), which is re-

sponsible for propagating the event along the data

path as well as handling plan-speci�c events, such

as events to trigger replanning.

4.2 Data Path Recon�guration and
Error Recovery using Semantic Seg-
ments

Insertion, deletion, or reordering of drivers along

an active data path provides great exibility in

responding to a range of resource variations and

link/node failure. However, a fundamental prob-

lem is that any such recon�guration must preserve

application semantics. In this paper, we focus on

maintaining semantic continuity and exactly-once

semantics. Speci�cally, any scheme must take into

account the fact that the portion of the data path af-

fected by the recon�guration can have stream data

that has been partially processed: in the internal

state of drivers, in transit between execution envi-

ronments, or data that has been lost due to failures.

Note that although the soft-state requirement dis-

Mpeg
Source

Mpeg
Render

(a) After D0 ouputs 2 segments

Frame
Duplicator

Frame
Composer

D1(1:3) D3D2(4:1)D0

D1(1:3) D3D2(4:1)D0

(b) After D0 ouputs 4 segments

reconfigurable portion
upstream

point
downstream

point

Figure 5. An example of data path recon�gura-

tion using semantics segments.

cussed in Section 3.1 permits us to restart a driver,

it does not provide any guarantees on semantic loss

or in-order reception.

Figure 5 shows an example highlighting this prob-

lem. To introduce some terminology, we refer to

the portion of the data path that needs to be re-

con�gured because of a change in system conditions

on the physical nodes or links (failures are an ex-

treme example) as the recon�gurable portion, and

the components immediately upstream and down-

stream of this portion with respect to the data path

as the upstream point and downstream point respec-

tively.1 In the example, driver d0 is a source of

MPEG data, driver d1 is an MPEG frame duplicator

which produces 3 frames for each incoming frame,

driver d2 is an MPEG frame composer which gener-

ates one MPEG frame upon receiving four incoming

frames from d1, and d3 is a renderer of MPEG data.

The recon�gurable portion consists of drivers d1 and

d2. Consider a situation where system conditions

change after the upstream point d0 has output two

frames, and the downstream point d3 has received

one frame. At this point, the data path portion con-

taining d1 and d2 cannot be recon�gured because

doing so a�ects semantic continuity. The reason is

that because of partially processed data in that por-

tion, it is incorrect to retransmit either the second

segment from d0 whose e�ects have been partially

observed at d3, or the third segment, which would

result in a loss of continuity at d3.

The CANS infrastructure supports semantics pre-

serving data path recon�guration and error recovery

by leveraging two restrictions placed on driver func-

tionality, speci�cally semantic segments and soft

1For simplicity, we restrict our description to recon�g-

urable portions that have exactly one upstream and one

downstream point. However, the solution is easily extend-

able to more general structures.

state (see Section 3.1). Informally, the �rst restric-

tion permits the infrastructure to infer which seg-

ments arriving at the downstream point of the re-

con�gurable portion depend on a speci�c segment

injected at the upstream point and vice-versa, while

the second makes it always possible, even if any in-

ternal driver state is reset, to recreate the same out-

put segment sequence at the downstream point by

just retransmitting selected input segments at the

upstream. Our solution exploits these characteris-

tics to provide the required guarantees by just com-

bining bu�ering and delayed forwarding of semantic

segments at the upstream and downstream points

respectively with selective retransmission of seg-

ments that are incompletely delivered. The corre-

spondence between upstream and downstream seg-

ments is completely determined by driver charac-

teristics in the recon�gurable portion; the imple-

mentation just needs to track marker messages that

demarcate segment boundaries.

This scheme uniformly handles both the situation

where drivers continue error-free operation but the

data path needs to be recon�gured in response to

system conditions, as well as the situation where

link or node errors cause partial driver state to be

lost. For the �rst situation, we defer recon�gura-

tion to the time when the system can guarantee

continuity and exactly once semantics. When some

CANS events trigger recon�guration, the upstream

point starts bu�ering segments while continuing to

transmit them, in e�ect ushing out the contents of

intermediate drivers. The downstream point mon-

itors the output segments arriving there, waiting

until it completely receives an output segment from

upstream satisfying the property that all subsequent

segments correspond only to input segments from

upstream point either bu�ered at the upstream point

or not yet transmitted. At this time, the system

can be stopped and the recon�gurable portion re-

placed by a semantically equivalent set of drivers.

To restart, the upstream point retransmits starting

from the �rst segment whose corresponding output

segment was not delivered.

The same basic scheme also permits error recovery

on portions of the data path that can be tagged

a priori as possible sources of failure. The up-

stream point by default bu�ers all input segments

before passing them on. The downstream point

delays passing to the downstream driver any out-

put segments that cannot be reconstructed in their

entirity from input segments that are bu�ered at

the upstream point, e�ectively isolating the down-

stream drivers from any duplicates that might get

produced due to retransmission. When it is safe

to pass on an output segment, the corresponding

bu�ered input segments can be discarded. Upon an

error, the a�ected components are re-instantiated,

any bu�ered output segments at the downstream

points discarded, and retransmission resumed from

the �rst input segment whose corresponding out-

put segment was never observed by the downstream

driver. This scheme can be trivially extended to

permit error recovery on portions that include ser-

vices with checkpoint/restart facilities: the service

needs to checkpoint whenever it produces a segment

that corresponds to an input segment boundary.

In our example, recon�guration works as follows:

1. The upstream point (d0) starts bu�ering every

segment it sends out after this time.

2. When downstream point (d3) receives a com-

plete segment from the upstream point (in this

case this happens the third segment output by

d2 is received), it raises an event to the plan

manager.

3. The plan manager can now freeze d0, and re-

place d1 and d2 with a compatible driver graph.

4. To restart, d0 retransmits starting from seg-

ment 5. In this case d3 does not need to discard

anything.

Error recovery on this portion requires d0 to bu�er

its output segments and have the downstream point

pass on segments to d3 only in units of 3 segments

at a time.

4.3 Planning and Global Recon�gura-
tion

A plan refers to the deployment of drivers, services,

and data paths in response to a request from a client

application to connect to an end service. The key

component responsible for planning in CANS is the

plan manager, which is triggered when the inter-

ception layer detects a connect attempt on a TCP

socket of interest. The plan manager takes respon-

sibility both for creating the original plan, as well

as changing it as required based on evolving sys-

tem conditions. Such replanning is a last resort; as

stated earlier, most changes are expected to be han-

dled either entirely within a component or through

localized data path recon�guration.

The planning procedure consists of two steps: route

selection where a graph of nodes and links is se-

lected for deploying the plan, and driver selection

where appropriate drivers and services are mapped

to the selected route. Space considerations prevent

us from describing the steps in full detail, so we just

highlight the overall strategy restricting our atten-

tion to plans that involve a single source and a single

sink.

Route selection can be viewed as the shortest path

problem in the node graph, which takes into consid-

eration bandwidth on links between nodes in di�er-

ent domains and the relative loads on nodes within

the same domain.

Driver selection bridges source and sink types while

(1) eÆciently using link and node capabilities along

the selected route, and (2) overcoming problems

caused by link properties such as insecure transmis-

sion and packet loss. The �rst subproblem amounts

to selecting type-compatible components to con-

struct the data path such that node and link ca-

pacities are not exceeded, and some overall path

metric (e.g., throughput) is optimized. The second

subproblem imposes restrictions on the stream type

at various points in the data path; for example, en-

crypted data is required in order to cross an insecure

link if the sink requires a secure stream.

Our scheme uni�es these two subproblems by de�n-

ing the notion of an augmented type: each data type

is extended with a set of link properties (e.g., secu-

rity, reliability, and timeliness) that can take val-

ues from a �xed set. Network links are modeled

in terms of the same properties and have the e�ect

of modifying, in a type-speci�c fashion, values of

the corresponding properties associated with di�er-

ent data types. To consider an example of HTML

data transmitted over an insecure link, the data

type represented by HTML(secure=true) is modi�ed

to HTML(secure=false) upon crossing a link with

property secure=false. As a re�nement to this

base scheme, some data types have the capability

to isolate others below them in the type stack asso-

ciated with a stream from having their properties be

a�ected by a link. For example, the Encrypted type

isolates the secure property of types that it \wraps",

i.e., encrypted data still remains secure after cross-

ing insecure links.

Thus, the inputs to the driver selection process are

the augmented type at the data source, the aug-

mented type required at the sink, and the selected

route (whose links may transform augmented types

as described earlier). We use a dynamic program-

ming algorithm to simultaneously select a compo-

nent and map it to the route in a fashion that op-

timizes overall throughput. The partial solutions

that make up the algorithm essentially look at the

problem of converting the source type to an inter-

mediate type on a subset of the route using only

a �xed number of components. The complexity of

0

1

2

3

4

5

6

7

8

1024 2048 4096 8192 16384

Msg size(byte)

R
T

T
(m

se
c)

C prog

Java prog

In process Driver

One EE

0

10

20

30

40

50

60

70

80

90

100

1024 2048 4096 8192 16384

Msg Size(byte)

B
an

d
w

id
th

(M
b

p
s)

C Prog

Java prog

In Process Driver

One EE

(a) Round Trip Time (b) Bandwidth

Figure 6. Latency and bandwidth impact of the CANS infrastructure.

this algorithm is O(n3�m
3), where n is the number

of the components and m is the number of nodes.

5 Experience with Using CANS

We have been experimenting with a prototype

CANS implementation onWindows 2000 clients and

Java capable intermediate hosts, which currently

emphasizes functionality and correctness over per-

formance. Both the execution environment (EE)

and driver components are written in Java. The

interception layer described in Section 3.4 makes

use of the Detours toolkit [11] to divert required

application functions by rewriting portions of the

memory code image. To set up the plan, the in-

terception layer interacts with the plan manager on

a distinguished EE, which in turn builds the plan,

partitions it, and downloads plan fragments to in-

dividual environments. Interactions between di�er-

ent EEs make use of Java/RMI. Data transmissions

between components, which are more performance

critical, makes use of the communication adapters

described in Section 3.3.

In this section, we �rst describe microbenchmarks

reecting overheads of using the CANS infrastruc-

ture, and then a larger case study that evaluates its

exibility.

5.1 Microbenchmarks

All measurements below were taken on a set of Pen-

tium II 450Mhz, 128 MB nodes, running Windows

2000 and connected using 100 Mbps switched Eth-

ernet.

Figure 6 shows the overheads introduced by CANS,

measured in terms of how they impact communi-

cation between an application and an end service.

Each graph shows the round-trip time and band-

width achievable for di�erent message sizes for four

con�gurations: C prog and Java prog refer to our

baselines, corresponding to application and server

programs that communicate directly using native

sockets in C or Java respectively. In process Driver

and One EE refer to basic CANS con�gurations; the

former shows the case when null drivers and a com-

munication adaptor are embedded into the applica-

tion interception layer and indicates the basic over-

heads of driver composition, and the latter considers

the case where the data path includes null drivers

on an intermediate host between the application and

service.

Figure 6 shows that the In process Driver con�gura-

tion introduces minimal additional overheads when

compared with the Java prog con�guration (less

than 10% arising from extra synchronization and

data copying), attesting to the eÆciency of our

driver design and composition mechanism. On the

other hand, the One EE con�guration does show

marked degradation in performance, primarily be-

cause of context switch costs and the fact that the

transmitted data has to traverse across application-

level and network-level four times instead of two

times. However, given that intermediate EEs are

intended to be used across di�erent network do-

mains where other factors dominate latency and

bandwidth, this overhead is unlikely to have much

overall impact.

5.2 Case Study

To evaluate whether CANS provides enough exibil-

ity to support large-scale applications, we conducted

a case study involving a shrink-wrapped applica-

tion: Microsoft MediaPlayer. Our objective was to

see whether CANS could be used to improve user

experience with the application in a dynamically

changing network environment without requiring ex-

plicit user participation (see Figure 7). The case

bbc.com

Intermediate Node

NetworkNetworkWireless
Network

Wireless
Network

DesktopMediaPlayer

Stage 1

Stage 2

Stage 3

P RD RS P: padder
RD: reconnecter (dest)
RS: reconnecter (src)
E: encryption
D: decryption
S: splitter

P RD RS ED

P RD RS ED S

Figure 7. Case study: MediaPlayer with CANS infrastructure and the components added in each stage.

study highlights CANS capabilities for (1) automat-

ically selecting and deploying components suited to

di�erent network characteristics, driven solely by

high-level type speci�cations at the source and sink,

(2) dynamic and distributed event-driven adapta-

tion upon detecting a change in system conditions,

and (3) integrating with legacy applications and ser-

vices.

The experimental environment (see Figure 7) con-

sists of the client application run on a laptop with

both wireless and wired network interfaces, a desk-

top capable of hosting services, an intermediate

computer capable of hosting an execution environ-

ment, and an internet-based server providing media

content (in our case, this was the bbc.com server).

The case study consists of three stages: the laptop

starts o� being connected to the network using its

wired interface, then is disconnected from the wired

LAN, and �nally physically moved away from the

wireless access point. The transition from wired to

wireless LAN is accompanied by a loss in security

properties as well as a drop in bandwidth, which

becomes worse in the third stage. CANS seam-

lessly insulates the client application from all net-

work changes, continuing to seamlessly provide the

user with the best experience a�orded by underlying

network characteristics.

CANS achieves this behavior by dynamically de-

ploying appropriate components from a prede�ned

set according to the planning algorithm described in

Section 4.3. Note that route selection in this case is

trivial, the one route involving all of the machines

shown in Figure 7. The planning algorithm takes

as input four pieces of information: the type def-

initions, the set of components, links modeled in

terms of their link properties, and rules governing

how types are a�ected by links:

� Figure 8 shows the data type de�nitions.

BaseStream is the basic stream type with three

boolean link properties, reliable, secure and re-

altime. RStream, Media, and Encrypted ex-

tend the BaseStream type, representing reli-

able, media, and encrypted streams respec-

tively. Video and Audio are two subtypes of

the Media type.

 BaseStream {
 bool reliable;
 bool secure;
 bool realtime;
 }

 Media::BaseStream

Video::Media Audio::Media

 RStream::BaseStream Encrypted::BaseStream

Figure 8. Hierarchical type de�nition of case

study.

� Figure 9 lists the input/output types of six

components, whose input/output types are

listed in , along with the types produced by

the source, bbc.com, and that required by the

sink, MediaPlayer. Of the six, the splitter and

the padder are Windows Media SDK based ser-

vices; the �rst splits a video+audio ASF stream

into an audio-only ASF stream available via

HTTP, while the second \�lls in" legal media

frames whenever its input stream stops. The

other four components are drivers, which co-

operate to handle encryption (encryption and

decryption) and reliable transmission (recon-

necter(src) and reconnecter(dest)) respectively.

� Table 1 shows the properties of the wired and

wireless links and Table 2 shows how these ef-

fect di�erent types. In Table 2, \e�ect isola-

components Input & output type

Media
player
(sink)

media:{
 realtime = T;
 reliable = T;
 secure = T;
}

bbc.com
video:{
 realtime = T;
 reliable = T;
 secure = T;
}

splitter videoaudio

padder
media:{
 realtime = *;
 }

media:{
 realtime = T;
 }

encryption
*

Encrypted

*

decryption
Encrypted

*
*

reconnecter
(src) *

RStream

*

RStream

**
reconnecter

(dest)

Figure 9. Input and output of case study com-

ponents.

tion" refers to a type isolating the e�ect of a

link property for data type instances below it

in the type stack.

properties

secure reliable realtime

wired T F F

wireless F T F

Table 1. The properties of links used in case

study.

secure reliable realtime

T F T F T F

Media | F | F | F

RStream | F T* T* | F

Encrypted T* T* | F | F

|: no change *: e�ect isolation

Table 2. The e�ects of link properties on data

types.

Figure 7 also shows the deployed components for

each of the stages. For Stage 1, whose deployment

is triggered when the application issues a connect

call to an external streaming service, the plan con-

sists of the padder and reconnecter(dest) running on

the laptop, and reconnecter(src) running on the in-

termediate EE. These components are selected so

as to guarantee the real-time and reliability require-

ments of the type expected at the sink. Not shown

are communication adapters required for hooking

up the application with the EE, and the EE with

the server, bbc.com. Needless to say, MediaPlayer

receives a continuous data stream via the CANS

components and is able to render it without any

problems.

Stage 2 starts when we disconnect the laptop from

the wired LAN. The padder ensures that Medi-

aPlayer continues to receive legal frames even when

no data is coming from the network. The communi-

cation adapters running on the laptop and the inter-

mediate host detect the disconnection and reconnect

to each other using the wireless interface, with data

continuity at the semantic segment level ensured be-

cause of the reconnecter(src) and reconnecter(dest)

drivers. At this time, because the wireless link has

the secure property set to false, encryption and de-

cryption drivers are installed into the data path

automatically. Note that this adaptation involves

the data path recon�guration algorithm described

in Section 4.2 to ush any in-transit segments.

Stage 3 starts when as the laptop is moved away

from its access point, bandwidth drops below a

threshold. The event detecting this triggers deploy-

ment of a new plan, resulting in the instantiation of

the splitter component, capable of reducing stream

bandwidth requirements. However, splitter supplies

data of type Audio, which while compatible with

the type speci�cations, Media, of the client appli-

cation and other deployed components, requires the

application to be placed in a di�erent mode. Achiev-

ing the latter requires us to go outside the CANS

infrastructure. Currently, we set up an ASX �le

that forces MediaPlayer to reconnect when the �rst

connection is shutdown. This reconnect request is

trapped and used to initiate the new plan. While

this works, it also points out the need for a bet-

ter abstraction of the protocol between applications

and the infrastructure. Recent work by Lara et

al. [4] of application adaptation relying on compo-

nent automation interfaces points to what might be

a promising direction.

Overall, the case study successfully demonstrated

all of the important features supported by the

CANS infrastructure: dynamic type-based compo-

sition and planning, event-driven adaptation that

spans multiple drivers, and integration of legacy ap-

plications and services.

6 Related Work and Discussion

CANS shares its goals with many recent e�orts that

have looked at injecting adaptation functionality

into the network. Instead of describing each sep-

arately, we group related e�orts to put our work in

perspective.

Adaptation functionality can be introduced only at

the end-points or could be distributed on interme-

diate nodes. Odyssey [15], Rover [12] and InfoPyra-

mid [14] are examples of systems that support end

point adaptation. Each system provides only min-

imal support for composing adaptation activities

across multiple nodes, and consequently may not be

exible enough to cope with changes in intermediate

links. E�orts targeting adaptation at intermediate

nodes in the network can themselves be viewed in

terms of two issues: whether adaptation functional-

ity is application-transparent or application-aware,

and whether the functionality is introduced at the

network level or the application level.

Systems such as transformer tunnels [16], pro-

tocol boosters [13] are examples of application-

transparent adaptation e�orts that work at the

network level. Such systems can cope with lo-

calized changes in network conditions but cannot

adapt to behaviors that di�er widely from the

norm. Moreover, their transparency hinders com-

posability of multiple adaptations. More general

are programmable network infrastructures, such as

COMET [3], which supports ow-based adaptation,

and Active Networks [17, 19], which permit special

code to be executed for each packet at each visited

network element. While these approaches provide

an extremely general adaptation mechanism, signif-

icant change to existing infrastructure is required

for their deployment.

Similar functionality can also be supported at the

application level. The cluster-based proxies in

BARWAN/Daedalus [6], TACC [7], and Multi-

Space [9] are examples of systems where application-

transparent adaptation happens in intermediate

nodes (typically a small number) in the network.

Active Services [1] extends these systems to a dis-

tributed setting by permitting a client application

to explicitly start one or more services on its be-

half that can transform the data it receives from

an end service. A di�erent perspective is o�ered

by systems such as Conductor [20], which automat-

ically deploy multiple application-transparent adap-

tors along the data path between applications and

end services. Although such systems retain back-

ward compatibility with existing applications, the

lack of application input limits their exibility. Fur-

thermore, such systems rely upon self-describing

properties of data streams, a condition that may

or may not hold given increasingly proprietary con-

tent. More general are systems such as Ninja [8],

PIMA [2], and Portolano [5], which permit con-

struction of programmable ubiquitous access sys-

tems from networked services and transformational

components. CANS also provides application-level

support for injecting application-aware functionality

into the network, but di�ers from the above systems

in its focus on infrastructural support required for

dynamic adaptation.

CANS has been most heavily inuenced by the Con-

ductor design and shares several features with the

Ninja infrastructure. Conductor [20] provides an

application-transparent adaptation framework that

permits the introduction of arbitrary adaptors in

the data path between applications and end ser-

vices. Applications are integrated into the frame-

work by modifying the kernel to trap calls that cre-

ate and use TCP sockets. CANS borrows the idea

of transparent stream-based adaptation from Con-

ductor but di�ers in applying it to application-aware

adaptation in a larger context that involves multiple

services contributing to the data path; consequently,

we require infrastructural support for downloading

component code, instantiating the components, and

ensuring compatibility. Also di�erent is the degree

of support provided by the infrastructure for re-

con�guring existing paths, speci�cally the notion of

semantics-preserving adaptation that spans multi-

ple drivers, and general support for dynamic run-

time composition of components.

Ninja [8] is a general architecture for building ro-

bust internet-scale systems and services consisting

of three components: services, units, and paths.

We restrict our attention to how paths are con-

structed in Ninja since that is the closest to our ob-

jective. Several CANS concepts �nd close matches

in the Ninja design: our service-driver distinction is

closely related to Ninja's service-operator distinc-

tion and both systems share ideas such as type-

based composition and dynamic service adaptation.

Despite these high-level similarities, the systems dif-

fer signi�cantly in the details. Unlike Ninja, the

CANS infrastructure provides support for (1) ef-

�cient composition of multiple drivers within the

same physical host, (2) planning algorithms that

consider route characteristics in addition to bridging

type incompatibilities, (3) dynamic and distributed

event-driven adaptation on existing paths, and (4)

support for semantics-preserving adaptations that

span multiple drivers; Ninja requires applications to

provide their own mechanisms to ensure semantics

such as guaranteed or in-order data delivery. On the

ip side, it must be noted that unlike Ninja, CANS

currently provides little support for scalability.

7 Conclusions

This paper has presented an application-level infras-

tructure, CANS, for injecting application-speci�c

functionality into the data path connecting applica-

tions and end services. Such functionality can mon-

itor and adapt to resource changes, providing the

basic support needed for building novel application-

level services that can seamlessly integrate diverse

end devices across heterogeneous networks. Main

contributions of CANS include: (a) eÆcient dy-

namic composition of components by requiring they

adhere to a restricted interface, (b) dynamic and

distributed adaptation using distributed events and

novel path recon�guration algorithms, and (c) sup-

port for legacy applications and services. Our ex-

perience indicates that CANS conveniently permits

dynamic deployment and distributed adaptation of

application-aware components to improve user ex-

perience.

CANS is one component of a larger project, Com-

puting Communities, which focuses on distribution

middleware for legacy applications. Our future work

involves integrating CANS with related e�orts em-

phasizing resource management and security issues,

improving its performance, and designing better

planning algorithms.

Acknowledgments

We thank the anonymous USITS reviewers for

helping us improve this paper. This research

was sponsored by DARPA agreements F30602-

99-1-0157 and N66001-00-1-8920; by NSF grants

CAREER:CCR-9876128 and CCR-9988176; and

Microsoft. The U.S. Government is authorized to

reproduce and distribute reprints for Government

purposes notwithstanding any copyright annota-

tion thereon. The views and conclusions contained

herein are those of the authors and should not be

interpreted as representing the oÆcial policies or en-

dorsements, either expressed or implied, of DARPA,

Rome Labs, SPAWAR SYSCEN, or the U.S. Gov-

ernment.

References

[1] E. Amir, S. McCanne, and R. Katz. An active ser-

vice framework and its application to real-time mul-

timedia transcoding. In Proc. of the SIGCOMM'98,

August 1998.

[2] G. Banavar and et al. Challenges:an application

model for pervasive computing. In Proc. of the

Sixth ACM/IEEE Intl. Conf. on Mobile Networking

and Computing, August 2000.

[3] A. T. Campbell and et al. A survey of pro-

grammable networks. ACM SIGCOMM Computer

Communication Review, April 1999.

[4] E. de Lara, D. S. Wallach, and W. Zwaenepoel.

Puppeteer: Component-based adaptation for mo-

bile computing. Technical Report TR-00-360, Com-

puter Science Department, Rice University, Octo-

ber 2000.

[5] M. Esler, J. Hightower, T. Anderson, and G. Bor-

riello. Next century challenges:data-centric net-

working for invisible computing. the portolano

project at the university of washington. In Proc.

of the Fifth ACM/IEEE Intl. Conf. on Mobile Net-

working and Computing, August 1999.

[6] A. Fox, S. Gribble, Y. Chawathe, and E. A.

Brewer. Adapting to network and client varia-

tion using infrastructural proxies:lessons and pre-

spectives. IEEE Personal Communication, August

1998.

[7] A. Fox, S. Gribble, Y. Chawathe, E. A. Brewer,

and P. Gauthier. Cluster-based scalable network

services. In Proc. of the 16th ACM Symp. on Op-

erating Systems Principles, October 1997.

[8] S. D. Gribble and et al. The ninja architecture

for robust internet-scale systems and services. Spe-

cial Issue of IEEE Computer Networks on Perva-

sive Computing, 2000.

[9] S. D. Gribble, M. Welsh, E.A.Brewer, and

D. Culler. The multispace:an evolutionary plat-

form for infrastructual services. In Proc. of the 1999

Usenix Annual Technical Conf., June 1999.

[10] J. Haartsen. Bluetooth{ the universal radio inter-

face for ad hoc, wireless connectivitity. Ericsson

Review, 1998.

[11] G. Hunt. Detours: Binary interception of win32

funcdtions. In Proc. of the 3rd USENIX Windows

NT Symp., Settle, WA, July 1999.

[12] A. D. Joseph, J. A. Tauber, and M. F. Kasshoek.

Mobile computing with the rover toolkit. IEEE

Transaction on Computers:Special Issue on Mobile

Computing, 46(3), March 1997.

[13] A. Mallet, J. Chung, and J. Smith. Operating sys-

tem support for protocol boosters. In Proc. of HIP-

PARCH Workshop, June 1997.

[14] R. Mohan, J. R. Simth, and C.S. Li. Adapting mul-

timedia internet content for universal access. IEEE

Transactions on Multimedia, 1(1):104{114, March

1999.

[15] Brian D. Noble. Mobile Data Access. PhD the-

sis, School of Computer Science, Carnegie Mellon

University, 1998.

[16] P. Sudame and B. Badrinath. Transformer tunnels:

A framework for providing route-speci�c adapta-

tions. In Proc. of the USENIX Technical Conf.,

June 1998.

[17] D. Tennenhouse and D. Wetherall. Towards an ac-

tive network architecture. Computer Communica-

tions Review, April 1996.

[18] U. Varshney and R. Vetter. Emerging mobile and

wireless networks. Communications of the ACM,

pages 73{81, June 2000.

[19] D. J. Wethrall, J. V. Guttag, and D. L. Tennen-

house. ANTS: A toolkit for building and dynami-

cally deploying network protocols. In Proc. of 2nd

IEEE OPENARCH, 1998.

[20] M. Yavis, A. Wang, A. Rudenko, P. Reiher, and

G. J. Popek. Conductor:distributed adaptation for

complex networks. In Proc. of the seventh workshop

on Hot Topics in Operating Systems, March 1999.

