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Abstract—We address the challenge of designing predictable
real-time systems in an unpredictable thermal environment where
environmental temperature may dynamically change (e.g., im-
plantable medical devices). Towards this challenge, we propose a
control-theoretic design methodology which permits a system de-
signer to specify a set of hard-real-time performance modes under
which the system may operate. The system automatically adjusts
the real-time performance mode based on the external thermal
stress. We show (via analysis, simulations, and a hardware testbed
implementation) that our control-design framework is stable and
control performance is equivalent to previous real-time thermal
approaches, even under dynamic temperature changes. A crucial
and novel advantage of our framework over previous real-time
control is the ability to guarantee hard deadlines even under
transitions between modes. Furthermore, our system design
permits the calculation of a new metric called thermal resiliency
which characterizes the maximum external thermal stress that
any hard-real-time performance mode can withstand. Thus, our
design framework and analysis may be classified as a thermal
stress analysis for real-time systems.

Index Terms—thermal resiliency; multi-mode system; thermal-
aware system; thermal-aware periodic resource;

I. INTRODUCTION

Modern computer-controlled systems are often deployed in

dynamic and unpredictable thermal operating environments.

From the hardware-design perspective, material scientists and

computer engineers use rigorous thermal-stress analysis tech-

niques (e.g., see [1]) to determine how the underlying physical

hardware will withstand applied internal and external thermo-

dynamic forces. Unfortunately, equivalent analysis does not

exist for determining the effects of (unpredictable) thermal

stress on the performance of the systems software. While hard-

ware capabilities such as dynamic power management (DPM)

permit a computing system to reduce its power dissipation at

run-time, many embedded systems have real-time constraints

which may be adversely affected by unexpected changes in

processor speed.

As an example of an embedded system where thermal-

stress analysis is essential, consider microprocessors found in

implantable medical devices (IMDs). IMDs are increasingly

being used to treat various diseases and medical conditions

(e.g., pacemakers for heart disease or neural implants to restore

hearing/vision). However, recent studies [2], [3] have shown

that the heat dissipated from IMDs due to the microprocessor

activity is non-negligible. Thus, designing IMDs with mini-

mum thermal dissipation is critical as medical research has

shown that a temperature increase of even 1◦C can have

long-term effect on tissue [4] and, in the extreme, death may

even result from excessive tissue heating [5]. Complicating

the safe thermal design of IMDs, body temperature naturally

fluctuates over time and varies depending on location [6]. An

IMD designer must balance (under temperature fluctuations)

the real-time computational requirements of the device with

the non-harmful thermal operating limits. In the presence of

an increased surrounding temperature, an IMD will have to

reduce its computational load to prevent tissue damage due

to heat1. However, as the correct and safe functioning of the

IMD is an absolute requirement, the system designer requires

techniques to formally verify the effect of different body

temperatures on the correct operation of the IMD. Similarly,

as a less safety-critical example, consider how the quality

of audio/video decoding may degrade in a hand-held device

as the system reacts to increases in temperature by reducing

computational processing (e.g., via instruction fetch toggling).

Ideally, a system designer would like to determine how much

the performance will degrade under different thermal operating

conditions.

Unfortunately, no current formal real-time design and anal-

ysis framework fully addresses the above setting. Recently-

proposed control-theoretic frameworks exist for regulating

processor temperature for soft-real-time systems (i.e., systems

where jobs are permitted to “occasionally” miss computational

deadlines) in an unpredictable thermal environment [8], [9].

While their results successfully show that it is possible to ob-

tain stable and responsive thermal behavior and system utiliza-

tion control, a system designer cannot use their approaches to

a priori determine the amount of system-performance degra-

dation due to changes in the thermal environment. Instead,

the level of degradation can only be indirectly inferred via

simulations of the system for different operating conditions.

Furthermore, hard timing guarantees cannot be made in these

frameworks. Techniques also already exist for permitting a

1As IMD microprocessors typically do not have DVS capabilities, an IMD
may have to reduce non-essential tasks such as communication with other
nodes in a body-area network [7].



trade-off between real-time QoS and processing resources

(e.g., the QoS-based resource allocation model (QRAM) [10]);

however, while such techniques may guarantee real-time dead-

lines under a fixed level of resources, they cannot guarantee

deadlines when a system must dynamically switch between

real-time modes (due to the uncompleted execution remaining

at mode transitions). Furthermore, none of these previously-

proposed techniques can be used to obtain a precise, formal

quantification of the thermal stress that the system can with-

stand.

In this paper, we address the challenge of determining the

real-time guarantees in the presence of unpredictable dynamic

environmental conditions. Towards this goal, we propose a

framework and mechanisms for thermal-stress analysis in real-

time systems. Our objective is to develop techniques that

permit a system designer to specify, a priori, a precise quan-

tification of the hard-real-time performance degradation due to

external thermal events, via a new system design metric called

real-time thermal resiliency. Informally, real-time thermal

resiliency is a prediction of the maximum external operating

temperature at which a specified real-time performance mode

(e.g., quality-of-service) may be guaranteed in the system

steady-state (i.e., a time at which system properties have

converged and do not change). To illustrate, consider a system

with q different (system designer-defined) hard-real-time per-

formance modes M0,M1, . . . ,Mq where modes are ordered in

increasing levels of real-time performance with Mq guarantee-

ing the highest level and M0 the lowest. The real-time thermal

resiliency of any mode Mi, denoted as Λ(Mi, Tref), is the

predicted maximum external operating temperature for which

the system will continue to operate (in the steady state) at

performance mode Mi or higher and maintain a CPU reference

temperature of Tref. Furthermore, if the external temperature

exceeds Λ(Mi, Tref), then the system should automatically

degrade to the next lowest performance mode Mi−1. The

capability to define (at system-design time) thermal-resilient,

real-time performance modes allows the system designer to

specify how a system will gracefully and predictably de-

grade under external thermal stress; furthermore, the ability

to accurately determine the real-time thermal resiliency of a

performance mode provides a real-time system designer with a

thermal-stress analysis framework analogous to stress analysis

techniques in physical sciences and engineering. In the IMD

example above, the thermal-resiliency function Λ may be used

to determine (at design time) the body-temperature that a given

set of tasks may safely operate at without doing damage to

surrounding tissue.

§Organization. This paper presents a methodology for de-

signing and analyzing thermal-resilient hard-real-time systems.

Section II presents a high-level overview of our methodology

and gives more detail on the contributions of this paper. Sec-

tion III presents a brief review of previous work on thermal-

aware (real-time and non-real-time) computer systems. Section

IV presents the hardware, real-time, and thermal models

used throughout the paper. Section V details the design of

our thermal-resilient controller. Section VI derives thermal-

resiliency function Λ for control system. Section VII describes

the results of our comparison with previous control systems

via simulation and implementation upon testbed hardware. Our

methodology provides formal system guarantees which require

formal derivations and proofs. In the interest of space, we have

deferred all formal proofs and derivations to the appendix of

an extended version of this paper [11].

II. METHODOLOGY OVERVIEW

We now describe at a high level the major steps of our

thermal-resilient design and analysis methodology.

1) System Hardware Specification: In the first step, the

system designer must specify the processing and DPM

capabilities of the system. Throughout this paper, we

will be illustrating and validating our methodology upon

an Intel Pentium IV 3.0 GHz single-core processor

testbed. To match the rudimentary DPM capabilities

often present in embedded processors, our testbed pos-

sesses the ability to only modulate the power modes of

the system between active and inactive states. Section

IV-A gives more detail on the hardware model and our

testbed implementation details.

2) System Software Specification: The system de-

signer must specify the set of valid software modes

M0,M1, . . . ,Mq for the system. In Section IV-B, we

discuss using the sporadic task model [12] as a model

for real-time workload of each software mode.

3) Real-Time Mode Resource Allocation: After the

HW/SW specification steps, the designer must determine

the minimum resource allocation under which the multi-

mode system is schedulable. We discuss in Section

IV-B how recent techniques for schedulability analysis

of hard-real-time systems where both the hardware and

software change modes may be used in allocating suffi-

cient processing time to each mode.

4) Power/Thermal Model Evaluation: Given the process-

ing platform, we need an accurate power model in order

to derive formal guarantees on the thermal resiliency of

the system. Due to the duality between electrical and

thermal circuits, we model the thermodynamics of our

processing system using the resistance/capacitance (RC)

circuits. We use system identification (SI) to identify

the system parameters and evaluate the efficacy of our

power-model choice. Due to space constraints, the de-

tails on the derived parameters for our hardware testbed

are in the appendix of the extended version of our paper

[11].

5) Control System Design: We design a control structure

based on optimal control theory. In this process, we use

the SI parameters (determined in the previous step) to

design the feedback gain parameters. We present details

on our controller design in Section V.

6) System Simulation: We build a system simulator which

implements the real-time scheduling algorithm and con-

trol algorithm and simulates the real-time and thermal



behavior of the system based on the resource allocations

and power model derived in Steps 3 and 4. The details

of our simulator are provided in Section VII.

7) Thermal-Resiliency Function Calculation: Given the

real-time mode resource allocation, power model, con-

troller, and simulator observations obtained from Steps

3, 4, 5, and 6 we can obtain a quantification of the

thermal-resiliency function Λ. We give details on the

derivation of this function in Section VI.

8) System Validation: We finally validate our system

simulator and thermal-resiliency calculations in Section

VII by comparing directly with observations from our

hardware testbed. Our comparison shows that the system

simulator closely models the actual testbed behavior.

Furthermore, we validate that our predicted thermal-

resiliency Λ function is accurate by observing that it

closely tracks the actual hardware testbed behavior.

While most of the steps above are standard practice in

control system design, we would like to emphasize that our

ability to ensure the hard-real-time schedulability of each

mode in Step 3 and obtain a priori guarantees on thermal

resiliency in Step 7 distinguishes our approach from previous

thermal control for real-time systems.

III. RELATED WORK

In this section, we give a brief, high-level overview of

previous research in both general (non-real-time), thermal-

aware system design and real-time-specific thermal-aware de-

sign. For non-real-time systems, Brooks and Martonosi [13]

investigated major components of any dynamic thermal man-

agement scheme and suggested policies and mechanisms for

implementing dynamic thermal management for current and

future high-end CPUs. They evaluated the benefits of using

dynamic thermal management to reduce the cooling system

costs of CPUs and developed an architectural-level power

modeling tool called Wattch. For the micro-architecture level

of thermal modeling, Skadron et al. [14] proposed a compact,

dynamic, and portable thermal model and a tool called HotSpot

for use at the architecture level for micro-architectures.

For real-time systems in the online setting, Bansal and

Pruhs [15] explored algorithms for minimizing both peak-

temperature and energy efficiency for online jobs with deadline

constraints. In the off-line setting, previous work on scheduling

under thermal constraints has followed two main approaches:

reactive and proactive schedulers. In a reactive scheduler, the

processor speed is reduced in response to a thermal trigger.

Wang et al. [16] studied schedulability analysis under the

reactive setting. In the proactive setting, the speed schedule for

the processor is determined at design time. Chen et al. [17]

addressed proactive scheduling for the periodic task model.

Quan and Zhang [18] consider feasibility analysis of leakage-

aware periodic tasks under temperature constraints. However,

previous work on both settings assumed either simple task

models or the existence of “ideal” processor speeds. Our

proposed control framework may be considered a proactive

scheduler; however, we attempt to remove some ideal as-

sumptions by working with only two power modes and the

more general sporadic task model. Also, we consider the

ambient temperature changes and analyze the effects on the

task system due to its variation. Recent dynamic temperature

management strategies also exist for multiprocessor real-time

systems [19]–[21]; however, most of these focus upon static

speed-assignment approaches and not a proactive schedule.

Thermal analysis has also been studied in the context of

web servers [22], but hard deadlines are not guaranteed. As

mentioned in the introduction, work by Y. Fu et al. [8] and X.

Fu et al. [9] address handling unpredictable thermal events;

however, the results do not provide any a priori guarantees

that may be used to equate real-time performance and thermal

resiliency.

IV. MODELS

A. System Hardware Model and Testbed

For this paper, we consider a single processor system with

rudimentary DPM capabilities of only active and inactive

power modes. At any time t > 0, we denote the instantaneous

CPU power as Pcpu(t). The processor dissipates thermal power

at a constant rate Pcpu(t) = Pact in the active mode and

Pcpu(t) = Pinc in the inactive mode. Also, we assume that

processor consumes eact amount of energy to activate from

inactive mode and einc amount of energy to deactivate from

the active mode. Even though the processor may be minimally

active while in the low-power state, we will assume (as

a pessimistic assumption for the purpose of schedulability

analysis) that the processor is unavailable for task execution

during this interval. If the aforementioned assumption does

not hold, the system will behave “better” than the analysis

and our results will continue to be valid. We believe this

model of active/inactive modes is a very general model,

applicable to a large number of available embedded processors

with rudimentary DPM capabilities. For ideal processors with

continuous power modes, Pcpu(t) may be selected from the

range [0,Pact].

Our control system for the active/inactive processor will

enforce strict periodic mode changes. For this purpose, we

employ a recently proposed thermal-aware periodic resource

[23] model, which is an extension of the well-known pe-

riodic resource model proposed by Shin and Lee [24] for

compositional real-time systems. In the thermal-aware periodic

resource model, the processing resource is characterized with

a two-tuple (Π,Θ). The parameter Π is called the resource

period and Θ is called the resource capacity. We will as-

sume that Π is a non-negative integer (likely subject to the

system tick granularity). The interpretation is that processor

will be active for Θ amount of time at the beginning of

each successive Π-length intervals. The ratio Θ/Π is called

the resource bandwidth. Within each processor allocation, an

arbitrary uniprocessor scheduling algorithm (e.g., EDF or RM)

may be employed to schedule the underlying task system

(see next subsection). See Figure 1 for an illustration of the



thermal-aware periodic resource.

As a case study of our methodology, we have built a

hardware testbed using an Intel Pentium IV 3.0 GHz single

core processor running a modified Linux kernel (2.6.33.7.2-

rt30 PREEMPT RT). We have developed device drivers to

activate the CPU modulation from the user-space using Model

Specific Registers (MSR) of the processor to create a high

and low frequency modulation for active/inactive power states.

For obtaining the system temperature, we follow the official

procedure given by Intel [25] to install a thermal sensor to

measure the die temperature with best possible accuracy. A

Phidgets four-port thermal sensor with ambient temperature

sensor was used to measure the air and environment temper-

ature. A detailed description on the testbed is given in the

extended version of this paper [11].

B. System Software Model

In the introduction, we proposed a system model of

real-time performance modes M1, . . . ,Mq. For the purpose

of this paper, we will assume each performance mode

Mi is characterized by a sporadic task system2 [12] with

ni tasks and the resource capacity Θ(i). That is, Mi =
({

τ
(i)
1 , τ

(i)
2 , . . . , τ

(i)
ni

}

,Θ(i)
)

where each τ
(i)
j ∈ Mi is a

sporadic task characterized by a three-tuple (e
(i)
j , d

(i)
j , p

(i)
j ) and

Θ(i) is the minimum capacity required to meet the deadlines

of the tasks of Mi. (Note that we are abusing notation by

allowing Mi to represent the set of tasks and the two-tuple

of the mode’s task system and required resource capacity.) In

this three-tuple representation for a task, e
(i)
j is the worst-case

execution requirement, d
(i)
j is the relative deadline, and p

(i)
j is

the minimum inter-arrival separation parameter (historically

called the “period”). A sporadic task τ
(i)
j may produce a

(potentially infinite) sequence of jobs, where each job has an

execution requirement of e
(i)
j time units and must complete

d
(i)
j time units after its arrival. The first job of τ

(i)
j may arrive

at any time after system-start time; however, successive jobs

of τ
(i)
j must arrive at least p

(i)
j time units apart. For this

paper, we assume that the resource period Π is identical in all

modes. For mode Mi, a resource capacity of Θ(i) is provided

every resource period. Figure 1 illustrates the processing-time

allocation in two different modes.

We will assume that there is an ordering of real-time per-

formance modes based on their “computational requirements”

to meet all of a mode’s deadlines. The relation Mi � Mj

indicates that Mi is more computationally intensive than Mj .

For notational convenience, we will assume that mode M0

represents the mode where with no tasks and Θ(0) equal to

zero. Furthermore, for this paper, we assume that the modes

are well-ordered and have been indexed in increasing order

of computational requirements; i.e., M0 � M1 � M2 �
. . . � Mq. While there are many possible ways to define the

2Note, we will be assuming the sporadic task model throughout our
objectives, but the results could be extended to other task models without
much change.

Θ(i)

Π

Mode Change

Θ(i) Θ(i) Θ(j)

Mode Change

Θ(j) Θ(j)

Fig. 1: The sampling and mode change in our thermal control system.
The blocks indicate time periods during with the processor is active
under the thermal-aware periodic resource model. Sporadic tasks are
scheduled within the activation blocks.

� relation, the only ordering required from the perspective

of our thermal control is that Mi � Mj , if and only if,

Θ(i) ≤ Θ(j); i.e., to reduce the temperature of the system,

we need to decrease the processing-time allocation.

Our model does not require any particular mode-change

semantics to be adopted. Some potential options for dealing

with incompletely-executed jobs upon a mode change are: (i)

aborting any incomplete jobs; (ii) delaying the release of jobs

in the new mode until all jobs of the old mode have completed;

and (iii) allowing jobs of the new mode to be released, as soon

as legally allowable, while jobs of the old mode are still active.

For the purposes of our hardware testbed and simulations

(Section VII), we assume option (iii).

The scheduling of real-time performance mode Mi upon the

thermal-aware periodic resource may be done by any unipro-

cessor real-time scheduling algorithm (e.g., earliest-deadline-

first or rate-monotonic [26]). However, Θ(i) must be suffi-

ciently large for the scheduling algorithm to correctly schedule

all jobs of the task set of Mi (i.e., {τ
(i)
1 , τ

(i)
2 , . . . , τ

(i)
ni

}) and

(potentially) any jobs from the previous mode that have not

completed by the mode change. To obtain a proper resource

allocation, Θ(i), for each mode, we use our recently-developed

hard-real-time schedulability test (for EDF scheduling under

hardware/software mode changes in the periodic resource

model) to search for a safe value of Θ(i) for each mode [27]

to ensure that deadlines are always met.

C. Power/Thermal Model

We use the duality principle in electrical and thermal circuits

to describe the dynamics of the power dissipating source using

electrical resistance/capacitance (RC) circuits. Figure 2 shows

the basic equivalent circuit for the CPU and its surrounding en-

vironment. We assume that total dissipated power of the CPU

Pcpu is equal to the sum of the power due to dynamic current

Pd
cpu and power due to leakage current P l

cpu. Furthermore, we

assume that the temperature-dependant leakage power may be

closely approximated by a linear function of CPU temperature

[28].

Let Vcpu(t), Venv(t), and Vair(t) represent the equivalent

voltages for equivalent temperatures of the CPU, environment,

and air (room) respectively. Let Tcpu be the instantaneous

relative temperature of the CPU with respect to the immediate

environment (e.g., CPU casing), Tenv be the relative tempera-

ture of the immediate environment with respect to the room air

temperature, and Tair be the (absolute) room air temperature.



Vcpu(t) = Tcpu(t)

Venv(t) = Tenv(t)

Vair(t) = Tair(t)

Pd
cpu

P l
cpu

Penv

Fig. 2: The basic equivalent circuit for a working CPU and its working
environment

For example, if Tair is 20◦C, Tenv is 10◦C, and Tcpu is 15◦C,

then the absolute temperature of the CPU is 45◦C.

Let Pd
cpu(t), P l

cpu(t), and Penv(t) represent, respectively,

the dynamic CPU, leakage CPU, and environment power

dissipation. Let Rd
cpu, Rl

cpu, Renv, Cd
cpu, C l

cpu, and Cenv represent

the dynamic and leakage thermal resistance, environment

resistance, CPU dynamic and leakage capacitance, and envi-

ronment capacitance. Finally, let σ1
def

= 1

Cd
cpu+Cl

cpu
and kT and

kC represent processor-dependent constants used in approxi-

mating the temperature-dependant leakage current. Applying

Kirchhoff’s circuit laws, we get the following equations for

Tcpu(t),

Tcpu(t)

Rd
cpu

+ Cd
cpu

d

dt
Tcpu(t) = Pd

cpu(t) (1)

Tcpu(t)

Rl
cpu

+ C l
cpu

d

dt
Tcpu(t) = P l

cpu(t) (2)

= kT
(

Tcpu(t) + Tenv(t)
)

+ kC .

Solving (2) for d
dt
Tcpu(t),

d

dt
Tcpu(t) = σ1

(

kT −
1

Rl
cpu

−
1

Rd
cpu

)

Tcpu(t)

+ kTσ1Tenv(t) + σ1P
d
cpu(t) + σ1kC . (3)

We obtain the following equation for Tenv(t),

Tenv(t)

Renv

+ Cenv

d

dt
Tenv(t) = Pcpu(t) + Penv(t), (4)

= Pd
cpu(t) + P l

cpu(t) + Penv(t).

Solving (4) for d
dt
Tenv(t),

d

dt
Tenv(t) =

kT
Cenv

Tcpu(t) +
1

Cenv

Pd
cpu(t) +

1

Cenv

Penv(t)

+
( kT
Cenv

−
1

RenvCenv

)

Tenv(t) +
kC
Cenv

. (5)

If we know the temperature of the environment and CPU

at some initial time t0 ≤ t, then we can derive following

Equations from (3) and (5):

z−1
+

+
C

G

K

H+

-

∫

+

-
γI

ve(k) x(k)
y(k)

Tref(k)− Tair(k)

u(k)

f

Fig. 3: The thermal control design with state feedback and integral
actuator

Tcpu(t) =

∫ t

t0

σ1Pcpu(s)e
−(t−s)β1ds+ Tcpu(t0)e

−(t−t0)β1 , (6)

Tenv(t) =

∫ t

t0

σ2

(

Penv(s) + Pcpu(s)
)

e
−(t−s)β2ds

+ Tenv(t0)e
−(t−t0)β2 . (7)

where β1
def

= ( 1

Rd
cpu

+ 1

Rl
cpu

−kT )·
1

(Cd
cpu+Cl

cpu)
, β2

def

= 1
RenvCenv

−

kT

Cenv
, and σ2

def
= 1

Cenv
. According to the Figure 2 shown above,

the absolute CPU temperature can be calculated as Tcpu(t) +
Tenv(t) + Tair(t).

V. CONTROLLER DESIGN

We first present the standard state-space model used in

control theory in Section V-A. In Section V-B, we design

a thermal controller assuming that an ideal system with

continuous power modes. In Section V-C, we will extend the

controller design to a processor with only active/inactive power

modes.

A. State-Space Model Basics

We use the standard state-space model to represent

continuous-time (ideal) system

ẋ(t) = Ax(t) +Bu(t) + f,

y(t) = Cx(t), (8)

where x(t), u(t), and y(t) represent the state vector, the

input vector, and the output vector, respectively. A,B, and

C represent the system matrices and f represents a constant

vector. Both the state matrices and constant vector are time-

invariant quantities.

Since we have a computer-controlled discrete-time system,

we will use following state-space mode for the discrete-time

controller for active/inactive modes. For a sampling interval

Ts, u(t) is a constant and the sampled system of Equation (8)

is

x((k + 1)Ts) = Gx(kTs) +Hu(kTs) + f̃ ,

y(kTs) = C̃x(kTs), (9)

where G = eATs , H =
∫ Ts

0
eAtBdt, C̃ = C, and f̃ =

∫ Ts

0
eAtfdt. The term eAt can be computed by L−1{(sI −



A)−1}, where L−1 is the inverse Laplace transform. In the

remainder of the document, we abuse the notation by repre-

senting x(kTs) as x(k), x((k + 1)Ts) as x(k + 1), u(kTs)
as u(k), and y(kTs) as y(k). The above definitions may be

found in any textbook on discrete-time control theory [29].

B. Continuous Power Modes

As a first step towards our goal of designing a control-

theoretic framework for thermal stress analysis, we employ

linear quadratic (LQ) optimal control for real-time thermal

management. Our design consists of an optimal state feedback

and a servo that regulates the dynamics of the system. An

LQ controller enables us to design an efficient and low-

overhead controller, derive the feedback parameters before

runtime (used in thermal-resiliency analysis), and smoothly

track our reference input. In the future, we plan on applying

more complex and robust controllers (e.g., H∞ controllers)

to decrease the controller’s sensitivity to modeling inaccuracy

and noise. However, as observed in the simulations and exper-

iments of Section VII, our current LQ design is appropriately

responsive to changes in environmental temperature.

In our system model, we specify the thermal power of

the CPU as the control to the system. The controller is

required to work as a servo and should follow the temperature

reference, Tref. In our design, we consider Tcpu(t) as one of the

variable to be controlled and Pd
cpu(t) as a manipulated variable

(equivalent to y(t) and u(t), respectively, in continuous state-

space model). The basic control structure is given in Figure 3.

From Equations (3) and (5), the continuous-time state space

model can be written as

[

Ṫcpu(t)

Ṫenv(t)

]

=

[

−β1 kTσ1

kTσ2 −β2

] [

Tcpu(t)
Tenv(t)

]

+

[

σ1

σ2

]

Pd
cpu(t) +

[

0
σ2

]

Penv(t). (10)

While our analysis below is in the continuous-time domain,

a discrete-time control system approach would be applied in an

actual computer implementation. Therefore, we now note that

we may easily convert the continuous-state space model to the

discrete-time sampled system, x(k+1) = Gx(k)+Hu(k)+f

from the continuous-time state matrices A =

[

−β1 kTσ1

kTσ2 −β2

]

and B =

[

σ1

σ2

]

where k is the sampling index, Ts is sampling

interval, and G and H can be calculated as described in

Section V-A. For our given system, x(k) ≡

[

Tcpu(k)
Tenv(k)

]

and

u(k) ≡
[

Pcpu(k)
]

where we are again abusing notation for

the T and P functions.

To eliminate steady state tracking error, we design our

system as a servo with an integrator. Define an additional error

vector ve(t) in continuous time as,

ve(t)
def
=

∫ t

0

(Tref − T (t)− Tair(t))dt

v̇e(t)
def
= Tref − Tair(t)− T (t) (11)

= −C

[

Tcpu(t)
Tenv(t)

]

+ Tref − Tair(t)

where C = [1, 1]. Then, the system input is calculated with a

gain Ko = [γ1, γ2] and integral constant γI in the following

equation.

Pd
cpu(t) = −Ko

[

Tcpu(t)
Tenv(t)

]

+ γIve(t) (12)

= −
(

(γ1)Tcpu(t) + (γ2)Tenv(t)
)

+γI

∫ t

0

(Tref − Tair(t)− Tcpu(t)− Tenv(t))dt.

We employ standard techniques from optimal control theory

to derive Ko and γI and prove stability. Details are presented

in an appendix of an extended version of this paper [11].

C. Active/Inactive Power Modes

Since the CPU power cannot be varied continuously, the

controller designed in the previous section cannot be directly

applied to the setting of discrete active/inactive power modes.

In this section, we extend the design of the continuous power

modes controller described in the previous section to the

active/inactive power mode setting by applying pulse-width

modulation (PWM) techniques. Recall in Section IV that we

stated the active/inactive power modes will be modeled via the

thermal-aware periodic resource model with parameters Π and

Θ. Thus, to control the system via this model, we must choose

the appropriate values of Π and Θ. The Π value is a design

parameter which may be chosen at controller design-time

and will be assumed fixed throughout controller execution.

Typically, a smaller value of Π will increase the system

schedulability; however, a larger value of Π will decrease

the overhead potentially incurred by switching between the

active and inactive power modes. (See Ahmed et al. [23] for

algorithms for determining Π in the thermal setting). The only

constraint that our framework places on the chosen value of

Π is that it must evenly divide the sampling interval length Ts

(i.e., Ts = κΠ for some κ ∈ N
+).

Since we have only two power modes, we cannot arbitrarily

set the power level. However, we may change the assigned

resource capacity between sampling periods to approximate

arbitrary power levels. Therefore, the assigned resource ca-

pacity will be the manipulated variable in our PWM system.

Let Θ(k) denote the value of the resource capacity over the

k’th sampling period. For determining the Θ(k) value, we use

a method based on the principle of equivalent areas (PEA)

for converting any arbitrary input signal into an equivalent

PWM signal [30]. First, note that in a discrete-time system

using zero-order hold (ZOH), the input signal is held constant

over the sampling period. Specifically, for the k’th sampling



Θ(k)

Π

Θ(k) Θ(k) Θ(k + 1) Θ(k + 1) Θ(k + 1)

kth Sample (k + 1)th Sample (k + 2)th Sample

kth Sample
(k + 1)th Sample (k + 2)th Sample

time

time

P (k) P (k + 1)
P (k + 2)

Π
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interval, the input Pd
cpu(k) is held over the Ts-length interval,

resulting in a total energy dissipation of Ts · P
d
cpu(k) over the

interval. To get the equivalent area (i.e., energy) as the (ideal)

system with continuous power modes, we must set Θ(k) such

that the periodic modulations between the power modes of

Pact and Pinc dissipate the equivalent amount of energy over

the Ts-length interval. Figure 4 illustrates the area equivalence

between the continuous and PWM controllers. The appendix

of the extended version of this paper [11] describes how to

choose Ts to minimize error due to the PWM approximation.
More formally, we may derive the following relationship

between Pd
cpu(k) and Θ(k),

κΠP
d
cpu(k) = κ

(

eact +

∫ Θ(k)

0

Pactdt+ einc +

∫ Π

Θ(k)

Pincdt
)

⇒ P
d
cpu(k) =

(

Pact − Pinc

Π

)

Θ(k) + Pinc +
1

Π
(eact + einc).

(13)

Algorithm 1 Control Algorithm

Require: Reference Temperature Tref; Feedback Gain K ≡
[γ1, γ2]; Integral Constant γI ; PWM Period Π; Number

of PWM periods in a sampling period κ.

1: while At beginning of sampling period [tℓ, tℓ+1) : tℓ ≡
κℓΠ do

2: Sample Tcpu(tℓ) + Tenv(tℓ) + Tair(tℓ).
3: v̇e(tℓ) = Tref − (Tcpu(tℓ) + Tenv(tℓ) + Tair(tℓ))

4: Tot v̇e(tℓ) = Tot v̇e(tℓ−1) + γIκΠ

(

v̇e(tℓ)+v̇e(tℓ−1)
)

2

5: Pcpu(tℓ) =
(

Tot v̇e(tℓ)−
(

γ1Tcpu(tℓ) + γ2Tenv(tℓ)
)

)

6: Θ(tℓ) = min
(

Π×
(Pcpu(tℓ)−Pinc)

Pact−Pinc
,Π

)

7: i = max{j ∈ Zq+1 | Θ(j) ≤ Θ(tℓ)}
8: Update real-time performance mode to Mi.

9: Set PWM to operate at period of Π and width of Θ(tℓ).
10: end while

The PWM controller pseudocode is presented in Algo-

rithm 1. The controller proposed here consists of two inte-

grated operations: the thermal controller and the PWM mod-

ulator. The first step is to obtain the sample CPU temperature

(Line 2 of Algorithm 1). The error is then calculated by taking

the difference between the reference temperature and the CPU

temperature (Line 3). The error is integrated into the error

vector and added to vector sum of the integrated error in the

next line (Line 4). After which, the power input is calculated

(Line 5) and the equivalent Θ is calculated from the property

of Equation (13) (Line 6). Finally, the appropriate mode is

selected (Line 7), the mode change is performed (Line 8),

and the pulse-width modulator is invoked for the next κ Π-

length intervals (Line 9). It is important to note that Θ(tℓ)
calculated in Line 6 does not have to be equal the Θ(j) for

the selected mode; we must only select the highest mode

with Θ(j) ≤ Θ(tℓ). (If Θ(tℓ) is larger, we are only giving

the mode more processing than it requires.) It should also be

observed that all operations, except for finding the appropriate

mode, may be done in O(1) time. Finding the highest real-time

performance mode that may execute can be done in O(lg q)
time (via binary search) where q is the number of real-time

performance modes.

VI. THERMAL-RESILIENCY CALCULATION

In this section, we explain how to derive the real-time

thermal resiliency Λ(Mi, Tref) for a given real-time perfor-

mance mode Mi and reference temperature Tref. Assuming

a steady-state error of zero, we will now briefly outline how

to obtain a solution for Λ(Mi, Tref).
3 Assume that we have

reached the steady-state by the (k − 1)’th sampling period.

Therefore, Tcpu(k) = Tcpu(k − 1), Tenv(k) = Tenv(k − 1),
Tair(k) = Tair(k − 1), and Θ(k) = Θ(k − 1). Substituting

the temperature equalities into Equations (6) and (7) allows

us to solve for Tcpu(k) and Tenv(k) to obtain a function of

Tair(k), Tref, and Θ(k). Since we are interested in obtaining

Λ(Mi, Tref), we may fix Tref and Θ(k) = Θ(i) Since the steady-

state error is zero, we also have

Tref = Tcpu(k) + Tenv(k) + Tair(k). (14)

Combining Equation 14 with the function of Tair(k) obtained

from Tcpu(k) and Tenv(k) allows us to solve for Tair(k). Thus,

solving the entire system results in a value for Tenv(k)+Tair(k)
(i.e., value of Λ(Mi, Tref)). The resulting expression is quite

complicated as it requires solutions to second-order inhomo-

geneous equations. Full details and the closed-form expression

for Λ(Mi, Tref) are provided in the extended paper [11].

VII. VALIDATION

In this section, we evaluate our control framework both in

simulations and upon an experimental hardware testbed.

A. Simulations

In the simulations, we simulate the execution of a single-

core processor which consists of a thermal controller, PWM

frequency controller loop, and scheduling algorithm. The

following task parameters are used in our simulations:

• Each sporadic task τj = (ej , dj , pj) has a period pj
uniformly drawn from the interval [5, 15]. (A small period

range is used to keep LCM of periods from becoming too

3The approach may be generalized when there is bounded steady-state error.
However, the approach will be similar, and we omit the details due to space.



TABLE I: Testbed Parameters

Parameter Variable Value

CPU Active Power Pact 73 W

CPU Idle Power Pinc 20 W

Server Period Π 20 ms
Sampling Time Ts 100 ms

Optimal Feedback Ko

[

.5725 0
]

Q matrix in Performance Index Q

[

1 0

0 1

]

R matrix in Performance Index R
[

1
]

Integral Gain γI 0.00042

large). The execution time requirement ej set to the task

utilization times pj , where task utilization is calculated

using the UUnifast algorithm [31]. For each task, dj
equals pj . The tasks are scheduled by EDF.

• The total number of tasks is eight; each task τj has three

different real-time performance modes where τ
(2)
j =

(ej , dj , pj); τ
(1)
j = (.2ej, dj , pj); and τ

(0)
j means that

task is not selected. From set of all possible combinations

of tasks, we have selected fifteen modes with utilizations

ranging from zero to one.

We refer to the controller described in Algorithm 1 as

Temperature Regulated Capacity Bound (TRCB). In our simu-

lations, we closely compare the performance of our proposed

method with [8] referred to as Thermal Control Utilization

Bound (TCUB). TCUB has been chosen due to its low con-

troller time complexity of O(1). TCUB works by attempting to

track a reference temperature and adjusting system utilization

as needed by changing task modes via a mode assignment

heuristic. The major difference between TCUB and TRCB is

that TCUB does not have predefined modes. Therefore, TCUB

may differ in the assigned modes from run to run for the same

system temperature. Furthermore, TCUB does not use multiple

power levels. TRCB on the other hand has predefined modes

which permit the derivation of thermal resiliency for each

mode. TCRB also utilizes a low-power mode (if available).

In our simulation, we use the same system parameters as our

testbed (Intel Pentium IV 3.0 GHz). The pertinent power and

control parameters are given in Table I. Extensive testbed runs

were carried out to generate the remaining system parameters

using SI. We use the SI tools provided by Matlab to derive

the system state-space parameters. Also we use the system

parameters, generated from our testbed as the simulation

parameters. We observe a matching of our testbed readings

and the simulation. More details on this process are contained

in the extended version of the paper [11].

In Figure 5, the system response and the utilization has been

shown for both TRCB (right graphs) and TCUB (left graphs)

given a stable air temperature Tair temperature equal to 5◦C.

The behavior of both controllers in this stable environment

is nearly identical for thermal and utilization behavior. (The

difference is due to the fact that TRCB uses EDF and TCUB

uses RM scheduling). For TRCB, we also display the achieved

modes at any given time in the simulation in the lower right
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Fig. 5: Fixed Tair for Simulation. Left plots represent TCUB and right
plots represent TCRB.
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Fig. 6: Dynamically Varying Tair for Simulation. Left plots represent
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graph.

Figure 6 shows the behavior of both TRCB and TCUB when

Tair is dynamically changed over time. In the top two graphs of

the figure, the absolute CPU temperatures over time obtained

by TCUB and TRCB, respectively, are plotted along with the

Tair. The two bottom graphs of Figure 6 present the achieved

utilization for each controller; additionally, the bottom right

graph displays the active mode at any point in time for TRCB.

Observe that both controllers are able to track the reference

temperature Tref despite the sharp changes in Tair. For both

controllers, the utilization appropriately tracks the changes

in air temperature. When the air temperature increases, both

controllers decrease the system utilization and increase the

utilization again when the air temperature drops. Similarly,

the mode plot in the lower right graph tracks the temperature

changes.

Regarding the real-time performance, figures displaying

deadline miss ratios have been omitted as no deadline miss

was experienced for either controller in all the simulations.

TCUB uses a safe utilization bound of approximately 67% to

make deadline misses improbably for rate-monotonic schedul-

ing [26]. However, TCRB guarantees that no deadlines are ever

missed due to verification using a multi-modal schedulability

test [27] as described in Section IV-B.

Thus far, the empirical performance of TRCB and TCUB

may appear similar. However, we believe the distinguishing

feature of TRCB is the ability to guarantee hard deadlines and

to calculate thermal resiliency levels during design time. Ther-
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Fig. 8: The testbed running at different Tref values showing the Θ
and Mode change over the time

mal resiliency calculation provides a non-destructive thermal

stress analysis for real-time performance modes in an unpre-

dictable operating environment. Our approach has achieved

the ability to calculate the thermal resiliency by forcing the

system to execute in a very predictable manner (i.e., periodic

executions from PWM). To evaluate and illustrate our thermal

resiliency calculation, we have used the technique in Section

VI to calculate the thermal resiliency levels for our randomly-

generated multi-mode system. Figure 7 displays the thermal

resilience Λ(Mi, Tref) for a range of modes and reference

temperatures. Observe that the thermal resiliency increases

with decreasing modes or increasing Tref.

B. Experiments upon Hardware Testbed

To further confirm the validity of the theoretical results, we

have run a task system with eight tasks, each with three modes

(identical to the simulation setting), on our hardware testbed.

Each task performs numerical calculations while executing

on the system. Our hardware testbed behaves similar to the

simulations of the previous subsection. Figure 8 presents

testbed runs for a fixed air and environment temperature.

Figure 9 shows how the testbed behaves when an outside

heat source is dynamically introduced into the environment.

Observe that there is a momentary drop in performance mode;

however, the system soon stabilizes.

Finally, we validate our thermal resiliency calculation. Un-

fortunately, we do not have test equipment to accurately vary

the air or environment temperature. Thus, we consider the air

temperature to be fixed at the room temperature (in this case

Tair = 24.8◦C). Instead, we indirectly analyze the thermal
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resiliency function via the inverse of the thermal resiliency

function Λ−1(Mi, Tair) = min{Tref | Tair ≤ Λ(Mi, Tref)}.

Intuitively, a lower value of Λ−1(Mi, Tair) means the system

can operate at a lower temperature and thus is more resilient

than a higher value of the function. We have calculated this

function for four different runs of the hardware testbed (to

ensure that minor fluctuations of the air temperature do not

affect the system). Figure 10 shows a plot of the thermal

resiliency of the testbed runs when the Tref is changed. The

figure shows that the calculated inverse resiliency of the system

increases with increasing operating mode. Most importantly,

the calculated thermal resiliency tracks the actual behavior of

the testbed and provides a safe upper bound on Tref in a large

majority of the cases which validates the effectiveness of the

resiliency function.

VIII. CONCLUSIONS

In this paper, we have addressed the problem of obtaining

performance guarantees in an unpredictable thermal environ-

ment. Towards this challenge we have presented a control-

theoretic framework for thermal stress analysis in real-time

systems. Our proposed method employs a nested feedback

control system, which is based on optimum control theory.

For our system, we derive strong thermal-resiliency and hard-

real-time guarantees for any real-time performance mode. Our

method has the distinct advantage of being able to verify

the real-time thermal resiliency of a system before it is put

into operation. In addition, we show via simulations that our

framework performs as well as previous approaches which

have no formal guarantee on the thermal resiliency. Our im-



plementation upon a hardware testbed validates our proposed

model and control framework.

In future work, we plan to extend our framework to control

designs that are more robust to model inaccuracies (e.g., H∞

or model-predictive controllers). As a initial step in designing

a framework for thermal stress analysis, our current design

uses two RC circuits (for dynamic and leakage currents) to

model the CPU temperature. We plan on extending our model

to permit multiple RC circuits for heterogeneous thermal

distributions and generalizing our thermal equations for more

complex RC circuit layouts. We hope to derive a general-

theoretic design framework that captures “resiliency” metrics

for other system properties (e.g., energy, noise, etc.) and extend

our analysis to other hardware settings (e.g., multicore, DVS).
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