
39

A Design and Analysis Framework for Thermal-Resilient
Hard-Real-Time Systems

Pradeep M. Hettiarachchi, Wayne State University

Nathan Fisher, Wayne State University

Masud Ahmed, Wayne State University

Le Yi Wang, Wayne State University

Shinan Wang, Wayne State University

Weisong Shi, Wayne State University

We address the challenge of designing predictable real-time systems in an unpredictable thermal envi-
ronment where environmental temperature may dynamically change (e.g., implantable medical devices).
Towards this challenge, we propose a control-theoretic design methodology which permits a system designer
to specify a set of hard-real-time performance modes under which the system may operate. The system
automatically adjusts the real-time performance mode based on the external thermal stress. We show (via
analysis, simulations, and a hardware testbed implementation) that our control-design framework is stable
and control performance is equivalent to previous real-time thermal approaches, even under dynamic tem-
perature changes. A crucial and novel advantage of our framework over previous real-time control is the
ability to guarantee hard deadlines even under transitions between modes. Furthermore, our system design
permits the calculation of a new metric called thermal resiliency which characterizes the maximum external
thermal stress that any hard-real-time performance mode can withstand. Thus, our design framework and
analysis may be classified as a thermal stress analysis for real-time systems.

Categories and Subject Descriptors: C.2.2 [Real-Time Systems]: Control-Theoretic Thermal-Aware Sys-
tems Design

General Terms: Real-Time Systems, Thermal-Aware Systems, Multi-Mode Systems

Additional Key Words and Phrases: Control-theoretic systems, schedulability, EDF, Reactive sys-
tems,thermal resiliency, multi-mode system, thermal-aware system, thermal-aware periodic resource

ACM Reference Format:

Hettiarachchi, P., Fisher, N., Ahmed, M., Wang, L. Y., Wang, S., and Shi, W. 2013. A Design and Analysis
Framework for Thermal-Resilient Hard-Real-Time Systems. ACM Trans. Embedd. Comput. Syst. 9, 4, Arti-
cle 39 (March 2010), 25 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Modern computer-controlled systems are often deployed in dynamic and unpredictable
thermal operating environments. From the hardware-design perspective, material sci-

This research has been supported in part by the NSF (Grant Nos. CNS-0953585, CNS-1116787, CNS-
1136007, and CNS-1205338), the Air Force Office of Scientific Research (Grant No. FA9550-10-1-0210), and
two grants from Wayne State University’s Office of Vice President of Research.
Author’s addresses: P. Hettiarachchi and N. Fisher, M. Ahmed, S. Wang, and W. Shi, Department of Com-
puter Science, Wayne State University; L. Wang, Department of Electrical and Computer Engineering,
Wayne State University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 P. Hettiarachchi et al.

entists and computer engineers use rigorous thermal-stress analysis techniques (e.g.,
see [Sergent and Krum 1998]) to determine how the underlying physical hardware will
withstand applied internal and external thermodynamic forces. Unfortunately, equiv-
alent analysis does not exist for determining the effects of (unpredictable) thermal
stress on the performance of the systems software. While hardware capabilities such
as dynamic power management (DPM) permit a computing system to reduce its power
dissipation at run-time, many embedded systems have real-time constraints which
may be adversely affected by unexpected changes in processor speed.

As an example of an embedded system where thermal-stress analysis is essential,
consider microprocessors found in implantable medical devices (IMDs). IMDs are in-
creasingly being used to treat various diseases and medical conditions (e.g., pacemak-
ers for heart disease or neural implants to restore hearing/vision). However, recent
studies [Kim et al. 2007; Lazzi 2005] have shown that the heat dissipated from IMDs
due to the microprocessor activity is non-negligible. Thus, designing IMDs with mini-
mum thermal dissipation is critical as medical research has shown that a temperature
increase of even 1◦C can have long-term effect on tissue [LaManna et al. 1989] and, in
the extreme, death may even result from excessive tissue heating [Ruggera et al. 2003].
Complicating the safe thermal design of IMDs, body temperature naturally fluctuates
over time and varies depending on location [Kelly 2006]. An IMD designer must bal-
ance (under temperature fluctuations) the real-time computational requirements of
the device with the non-harmful thermal operating limits. In the presence of an in-
creased surrounding temperature, an IMD will have to reduce its computational load
to prevent tissue damage due to heat1. However, as the correct and safe functioning
of the IMD is an absolute requirement, the system designer requires techniques to
formally verify the effect of different body temperatures on the correct operation of
the IMD. Similarly, as a less safety-critical example, consider how the quality of au-
dio/video decoding may degrade in a hand-held device as the system reacts to increases
in temperature by reducing computational processing (e.g., via instruction fetch tog-
gling). Ideally, a system designer would like to determine how much the performance
will degrade under different thermal operating conditions.

Unfortunately, no current formal real-time design and analysis framework fully ad-
dresses the above setting. Recently-proposed control-theoretic frameworks exist for
regulating processor temperature for soft-real-time systems (i.e., systems where jobs
are permitted to “occasionally” miss computational deadlines) in an unpredictable
thermal environment [Fu et al. 2010b,a]. While their results successfully show that
it is possible to obtain stable and responsive thermal behavior and system utiliza-
tion control, a system designer cannot use their approaches to a priori determine the
amount of system-performance degradation due to changes in the thermal environ-
ment. Instead, the level of degradation can only be indirectly inferred via simulations
of the system for different operating conditions. Furthermore, hard timing guarantees
cannot be made in these frameworks. Techniques also already exist for permitting a
trade-off between real-time QoS and processing resources (e.g., the QoS-based resource
allocation model (QRAM) [Rajkumar et al. 1997]); however, while such techniques may
guarantee real-time deadlines under a fixed level of resources, they cannot guarantee
deadlines when a system must dynamically switch between real-time modes (due to
the uncompleted execution remaining at mode transitions). Furthermore, none of these
previously-proposed techniques can be used to obtain a precise, formal quantification
of the thermal stress that the system can withstand.

1As IMD microprocessors typically do not have DVS capabilities, an IMD may have to reduce non-essential
tasks such as communication with other nodes in a body-area network [Timmons and Scanlon 2009].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:3

In this paper, we address the challenge of determining the real-time guarantees in
the presence of unpredictable dynamic environmental conditions. Towards this goal,
we propose a framework and mechanisms for thermal-stress analysis in real-time sys-
tems. Our objective is to develop techniques that permit a system designer to specify,
a priori, a precise quantification of the hard-real-time performance degradation due

to external thermal events, via a new system design metric called real-time ther-
mal resiliency. Informally, real-time thermal resiliency is a prediction of the maxi-
mum external operating temperature at which a specified real-time performance mode
(e.g., quality-of-service) may be guaranteed in the system steady-state (i.e., a time at
which system properties have converged and do not change). To illustrate, consider a
system with q different (system designer-defined) hard-real-time performance modes
M0,M1, . . . ,Mq where modes are ordered in increasing levels of real-time performance
with Mq guaranteeing the highest level and M0 the lowest. The real-time thermal re-
siliency of any mode Mi, denoted as Λ(Mi, Tref), is the predicted maximum external op-
erating temperature for which the system will continue to operate (in the steady state)
at performance mode Mi or higher and maintain a CPU reference temperature of Tref.
Furthermore, if the external temperature exceeds Λ(Mi, Tref), then the system should
automatically degrade to the next lowest performance mode Mi−1. The capability to de-
fine (at system-design time) thermal-resilient, real-time performance modes allows the
system designer to specify how a system will gracefully and predictably degrade under
external thermal stress; furthermore, the ability to accurately determine the real-time
thermal resiliency of a performance mode provides a real-time system designer with a
thermal-stress analysis framework analogous to stress analysis techniques in physical
sciences and engineering. In the IMD example above, the thermal-resiliency function
Λ may be used to determine (at design time) the body-temperature that a given set of
tasks may safely operate at without doing damage to surrounding tissue.
§Organization. This paper presents a methodology for designing and analyzing
thermal-resilient hard-real-time systems. Section 2 presents a high-level overview of
our methodology and gives more detail on the contributions of this paper. Section 3
presents a brief review of previous work on thermal-aware (real-time and non-real-
time) computer systems. Section 4 presents the hardware, real-time, and thermal mod-
els used throughout the paper. Section 5 details the design of our thermal-resilient
controller. Section 6 derives thermal-resiliency function Λ for control system. Section
7 describes the results of our comparison with previous control systems via simulation
and implementation upon testbed hardware. Our methodology provides formal system
guarantees which require formal derivations and proofs. In the interest of space, we
have deferred some of the formal proofs and derivations to a technical report available
online [Hettiarachchi et al. 2011].

2. METHODOLOGY OVERVIEW

We now describe at a high level the major steps of our thermal-resilient design and
analysis methodology.

(1) System Hardware Specification: In the first step, the system designer must
specify the processing and DPM capabilities of the system. Throughout this paper,
we will be illustrating and validating our methodology upon an Intel Pentium IV
3.0 GHz single-core processor testbed. To match the rudimentary DPM capabili-
ties often present in embedded processors, our testbed possesses the ability to only
modulate the power modes of the system between active and inactive states. Sec-
tion 4.1 gives more detail on the hardware model and our testbed implementation
details.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 P. Hettiarachchi et al.

(2) System Software Specification: The system designer must specify the set of
valid software modes M0,M1, . . . ,Mq for the system. In Section 4.2, we discuss
using the sporadic task model [Mok 1983] as a model for real-time workload of
each software mode.

(3) Real-Time Mode Resource Allocation: After the HW/SW specification steps,
the designer must determine the minimum resource allocation under which the
multi-mode system is schedulable. We discuss in Section 4.2 how recent techniques
for schedulability analysis of hard-real-time systems where both the hardware and
software change modes may be used in allocating sufficient processing time to each
mode.

(4) Power/Thermal Model Evaluation: Given the processing platform, we need
an accurate power model in order to derive formal guarantees on the thermal
resiliency of the system. Due to the duality between electrical and thermal cir-
cuits, we model the thermodynamics of our processing system using the resis-
tance/capacitance (RC) circuits. We use system identification (SI) to identify the
system parameters and evaluate the efficacy of our power-model choice. The de-
tails on the derived parameters for our hardware testbed are explained in the Sec-
tion A.2 of the appendix.

(5) Control System Design: We design a control structure based on optimal control
theory. In this process, we use the SI parameters (determined in the previous step)
to design the feedback gain parameters. We present details on our controller design
in Section 5.

(6) System Simulation: We build a system simulator which implements the real-
time scheduling algorithm and control algorithm and simulates the real-time and
thermal behavior of the system based on the resource allocations and power model
derived in Steps 3 and 4. The details of our simulator are provided in Section 7.

(7) Thermal-Resiliency Function Calculation: Given the real-time mode resource
allocation, power model, controller, and simulator observations obtained from
Steps 3, 4, 5, and 6 we can obtain a quantification of the thermal-resiliency function
Λ. We give details on the derivation of this function in Section 6.

(8) System Validation: We finally validate our system simulator and thermal-
resiliency calculations in Section 7 by comparing directly with observations from
our hardware testbed. Our comparison shows that the system simulator closely
models the actual testbed behavior. Furthermore, we validate that our predicted
thermal-resiliency Λ function is accurate by observing that it closely tracks the
actual hardware testbed behavior.

While most of the steps above are standard practice in control system design, we
would like to emphasize that our ability to ensure the hard-real-time schedulability
of each mode in Step 3 and obtain a priori guarantees on thermal resiliency in Step 7
distinguishes our approach from previous thermal control for real-time systems.

3. RELATED WORK

In this section, we give a brief, high-level overview of previous research in both general
(non-real-time), thermal-aware system design and real-time-specific thermal-aware
design. For non-real-time systems, Brooks and Martonosi [2001] investigated major
components of any dynamic thermal management scheme and suggested policies and
mechanisms for implementing dynamic thermal management for current and future
high-end CPUs. They evaluated the benefits of using dynamic thermal management
to reduce the cooling system costs of CPUs and developed an architectural-level power
modeling tool called Wattch. For the micro-architecture level of thermal modeling,

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:5

Skadron et al. [2003] proposed a compact, dynamic, and portable thermal model and a
tool called HotSpot for use at the architecture level for micro-architectures.

For real-time systems in the online setting, Bansal and Pruhs [2005] explored al-
gorithms for minimizing both peak-temperature and energy efficiency for online jobs
with deadline constraints. In the off-line setting, previous work on scheduling under
thermal constraints has followed two main approaches: reactive and proactive sched-
ulers. In a reactive scheduler, the processor speed is reduced in response to a thermal
trigger. Wang and Bettati [2008] studied schedulability analysis under the reactive
setting. In the proactive setting, the speed schedule for the processor is determined at
design time. Chen et al. [2009] addressed proactive scheduling for the periodic task
model. Quan and Zhang [2009] consider feasibility analysis of leakage-aware peri-
odic tasks under temperature constraints. However, previous work on both settings
assumed either simple task models or the existence of “ideal” processor speeds. Our
proposed control framework may be considered a proactive scheduler; however, we
attempt to remove some ideal assumptions by working with only two power modes
and the more general sporadic task model. Also, we consider the ambient tempera-
ture changes and analyze the effects on the task system due to its variation. Recent
dynamic temperature management strategies also exist for multiprocessor real-time
systems [Chen et al. 2007; Chantem et al. 2008; Fisher et al. 2009]; however, most
of these focus upon static speed-assignment approaches and not a proactive schedule.
Thermal analysis has also been studied in the context of web servers [Ferreira et al.
2007], but hard deadlines are not guaranteed. As mentioned in the introduction, work
by Fu et al. [2010b] and Fu et al. [2010a] address handling unpredictable thermal
events; however, the results do not provide any a priori guarantees that may be used
to equate real-time performance and thermal resiliency.

4. MODELS

4.1. System Hardware Model and Testbed

For this paper, we consider a single processor system with rudimentary DPM capabil-
ities of only active and inactive power modes. At any time t > 0, we denote the instan-
taneous CPU power as Pcpu(t). The processor dissipates thermal power at a constant
rate Pcpu(t) = Pact in the active mode and Pcpu(t) = Pinc in the inactive mode. Also,
we assume that processor consumes eact amount of energy to activate from inactive
mode and einc amount of energy to deactivate from the active mode. Even though the
processor may be minimally active while in the low-power state, we will assume (as a
pessimistic assumption for the purpose of schedulability analysis) that the processor is
unavailable for task execution during this interval. If the aforementioned assumption
does not hold, the system will behave “better” than the analysis and our results will
continue to be valid. We believe this model of active/inactive modes is a very general
model, applicable to a large number of available embedded processors with rudimen-
tary DPM capabilities. For ideal processors with continuous power modes, Pcpu(t) may
be selected from the range [0,Pact].

Our control system for the active/inactive processor will enforce strict periodic mode
changes. For this purpose, we employ a recently proposed thermal-aware periodic re-
source [Ahmed et al. 2011] model, which is an extension of the well-known periodic
resource model proposed by Shin and Lee [2008] for compositional real-time systems.
In the thermal-aware periodic resource model, the processing resource is characterized
with a two-tuple (Π,Θ). The parameter Π is called the resource period and Θ is called
the resource capacity. We will assume that Π is a non-negative integer (likely subject
to the system tick granularity). The interpretation is that processor will be active for
Θ amount of time at the beginning of each successive Π-length intervals. The ratio

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 P. Hettiarachchi et al.

Controller

Tair

PWM Driver
Tcpu

CPU

Sensor

Modulation

Scheduler

Θ
Tenv

Π

Mode Selector

Frequency

MSR

Temp.

Mi

Fig. 1. The implementation details of the testbed. Note that the scheduler is responsible for EDF selection
of jobs, activation of task threads to fill Θ and activation of idle thread during Π−Θ, and thereby emulating
the PWM cycle.

Θ/Π is called the resource bandwidth. Within each processor allocation, an arbitrary
uniprocessor scheduling algorithm (e.g., EDF or RM) may be employed to schedule the
underlying task system (see next subsection). See Figure 2 for an illustration of the
thermal-aware periodic resource.

As a case study of our methodology, we have built a hardware testbed using an Intel
Pentium IV 3.0 GHz single core processor running a modified Linux kernel (2.6.33.7.2-
rt30 PREEMPT RT). The low power CPU on our testbench does not have a System
Developer Interface to measure the on-die temperature directly. We follow the proce-
dure given in the Intel Documentation [Int 2000] and install a T-type thermocouple
on the CPU die. We use Phidgets 4-port temperature sensor board to measure the en-
vironment, air, and the on-die temperature through the USB driver and allows us to
directly interface the sensors with the testbed software.

We develop a loadable kernel module to activate and vary the frequency modula-
tion level at run-time. We use Model Specific Registers (MSR) to control the frequency
modulation ratio in the clock and select the higher and the lowest frequency modula-
tion indices to emulate the low and the higher power levels. We use 12.5% and 87.5%
modulation ratios in the IA32 CLOCK MODULATION MSR for active and inactive
power mode emulation.

We develop a multi-threaded application using Linux native posix thread libraries
(NTPL). Our application consists of a scheduler simulator and a thread activator where
the schedule simulator selects the EDF based jobs from the local ready-queue and
dispatches them into a thread activator. The thread activator consists of a very high
priority thread (priority is set to higher than the threaded IRQ handlers), emulates
the schedule tick in the Linux kernel in higher level abstraction. Similar to the Linux
kernel scheduler tick, the thread activator sleeps until it wakes up accurately in the
scheduling boundaries. Our thread activator wakes up in unequal tick intervals to
schedule jobs, raises the appropriate thread which should have the priority, and goes
back to the sleeps. The jobs are selected by the schedule simulator according to EDF.
This process repeats and the amount of time allocates to each job depends on EDF and
the total time depends on the Θ given by the optimal controller.

Figure 1 provides a high-level overview of the workflow for the different components
of our framework. The controller after sampling the temperatures determines the ca-
pacity. The capacity is given to the PWM controller and the real-time performance
mode selector. The PWM modulates the frequency of the CPU via the MSR and an OS
Scheduler (EDF) determines how to schedule the selected performance mode within
the PWM duty cycle. Our temperature sensors sample the temperatures and the pro-
cess iterates ad infinitum.

4.2. System Software Model

In the introduction, we proposed a system model of real-time performance modes
M1, . . . ,Mq. For the purpose of this paper, we will assume each performance mode

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:7

Θ(i)

Π

Mode Change

Θ(i) Θ(i) Θ(j)

Mode Change

Θ(j) Θ(j)

Fig. 2. The sampling and mode change in our thermal control system. The blocks indicate time periods
during with the processor is active under the thermal-aware periodic resource model. Sporadic tasks are
scheduled within the activation blocks.

Mi is characterized by a sporadic task system2 [Mok 1983] with ni tasks and the re-

source capacity Θ(i). That is, Mi =
({

τ
(i)
1 , τ

(i)
2 , . . . , τ

(i)
ni

}

,Θ(i)
)

where each τ
(i)
j ∈ Mi is

a sporadic task characterized by a three-tuple (e
(i)
j , d

(i)
j , p

(i)
j) and Θ(i) is the minimum

capacity required to meet the deadlines of the tasks of Mi. (Note that we are abusing
notation by allowing Mi to represent the set of tasks and the two-tuple of the mode’s
task system and required resource capacity.) In this three-tuple representation for a

task, e
(i)
j is the worst-case execution requirement, d

(i)
j is the relative deadline, and p

(i)
j

is the minimum inter-arrival separation parameter (historically called the “period”).

A sporadic task τ
(i)
j may produce a (potentially infinite) sequence of jobs, where each

job has an execution requirement of e
(i)
j time units and must complete d

(i)
j time units

after its arrival. The first job of τ
(i)
j may arrive at any time after system-start time;

however, successive jobs of τ
(i)
j must arrive at least p

(i)
j time units apart. For this pa-

per, we assume that the resource period Π is identical in all modes. For mode Mi, a
resource capacity of Θ(i) is provided every resource period. Figure 2 illustrates the
processing-time allocation in two different modes.

We will assume that there is an ordering of real-time performance modes based on
their “computational requirements” to meet all of a mode’s deadlines. The relation
Mi � Mj indicates that Mi is more computationally intensive than Mj . For notational
convenience, we will assume that mode M0 represents the mode with no tasks and
Θ(0) equal to zero. Furthermore, for this paper, we assume that the modes are well-
ordered and have been indexed in increasing order of computational requirements;
i.e., M0 � M1 � M2 � . . . � Mq. While there are many possible ways to define the �
relation, the only ordering required from the perspective of our thermal control is that
Mi � Mj , if and only if, Θ(i) ≤ Θ(j); i.e., to reduce the temperature of the system, we
need to decrease the processing-time allocation.

Our model does not require any particular mode-change semantics to be adopted.
Some potential options for dealing with incompletely-executed jobs upon a mode
change are: (i) aborting any incomplete jobs; (ii) delaying the release of jobs in the
new mode until all jobs of the old mode have completed; and (iii) allowing jobs of the
new mode to be released, as soon as legally allowable, while jobs of the old mode are
still active. For the purposes of our hardware testbed and simulations (Section 7), we
assume option (iii).

The scheduling of real-time performance mode Mi upon the thermal-aware peri-
odic resource may be done by any uniprocessor real-time scheduling algorithm (e.g.,
earliest-deadline-first or rate-monotonic [Liu and Layland 1973]). However, Θ(i) must
be sufficiently large for the scheduling algorithm to correctly schedule all jobs of the

task set of Mi (i.e., {τ (i)1 , τ
(i)
2 , . . . , τ

(i)
ni }) and (potentially) any jobs from the previous

mode that have not completed by the mode change. To obtain a proper resource alloca-

2Note, we will be assuming the sporadic task model throughout our objectives, but the results could be
extended to other task models without much change.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 P. Hettiarachchi et al.

Vcpu(t) = Tcpu(t)

Venv(t) = Tenv(t)

Vair(t) = Tair(t)

Pd
cpu

P l
cpu

Penv

Fig. 3. The basic equivalent circuit for a working CPU and its working environment

tion, Θ(i), for each mode, we use our recently-developed hard-real-time schedulability
test (for EDF scheduling under hardware/software mode changes in the periodic re-
source model) to search for a safe value of Θ(i) for each mode [Fisher and Ahmed 2011]
to ensure that deadlines are always met. The multi-modal schedulability analysis en-
sures that for any valid sequence of mode changes and valid set of job arrivals under
the sporadic task model that the EDF scheduler will always meet all deadlines. The
analysis works by determining the maximum workload carried from one mode to an-
other and testing whether this “carry-in” will cause a deadline miss.

4.3. Power/Thermal Model

We use the duality principle in electrical and thermal circuits to describe the dynam-
ics of the power dissipating source using electrical resistance/capacitance (RC) circuits.
Figure 3 shows the basic equivalent circuit for the CPU and its surrounding environ-
ment. We assume that total dissipated power of the CPU Pcpu is equal to the sum of

the power due to dynamic current Pd
cpu and power due to leakage current P l

cpu. Fur-
thermore, we assume that the temperature-dependant leakage power may be closely
approximated by a linear function of CPU temperature [Liu et al. 2007].

Let Vcpu(t), Venv(t), and Vair(t) represent the equivalent voltages for temperatures of
the CPU, environment, and air (room) respectively. Let Tcpu be the instantaneous rel-
ative temperature of the CPU with respect to the immediate environment (e.g., CPU
casing), Tenv be the relative temperature of the immediate environment with respect
to the room air temperature, and Tair be the (absolute) room air temperature. For ex-
ample, if Tair is 20◦C, Tenv is 10◦C, and Tcpu is 15◦C, then the absolute temperature of
the CPU is 45◦C.

Let Pd
cpu(t), P l

cpu(t), and Penv(t) represent, respectively, the dynamic CPU, leak-

age CPU, and environment power dissipation. Let Rd
cpu, Rl

cpu, Renv, Cd
cpu, C l

cpu, and
Cenv represent the dynamic and leakage thermal resistance, environment resistance,
CPU dynamic and leakage capacitance, and environment capacitance. Finally, let

σ1
def
= 1

Cd
cpu+Cl

cpu
and kT and kC represent processor-dependent constants used in ap-

proximating the temperature-dependant leakage current. Applying Kirchhoff ’s circuit

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:9

z−1
+

+
C

G

K

H+

-

∫

+

-
γI

ve(k) x(k)
y(k)

Tref(k)− Tair(k)

u(k)

f

Fig. 4. The thermal control design with state feedback and integral actuator

laws, we get the following equations for Tcpu(t),

Tcpu(t)

Rd
cpu

+ C
d
cpu

d

dt
Tcpu(t) = P

d
cpu(t) (1)

Tcpu(t)

Rl
cpu

+ C
l
cpu

d

dt
Tcpu(t) = P

l
cpu(t) (2)

= kT
(

Tcpu(t) + Tenv(t)
)

+ kC .

Adding (1) and (2), and solving for d
dtTcpu(t),

d

dt
Tcpu(t) = σ1

(

kT −
1

Rl
cpu

−
1

Rd
cpu

)

Tcpu(t) + kTσ1Tenv(t) + σ1P
d
cpu(t) + σ1kC . (3)

We obtain the following equation for Tenv(t),

Tenv(t)

Renv
+Cenv

d

dt
Tenv(t) = Pcpu(t) + Penv(t) = P

d
cpu(t) + P

l
cpu(t) + Penv(t). (4)

Solving (4) for d
dtTenv(t),

d

dt
Tenv(t) =

kT

Cenv
Tcpu(t) +

1

Cenv
P

d
cpu(t) +

1

Cenv
Penv(t) +

(kT

Cenv
−

1

RenvCenv

)

Tenv(t) +
kC

Cenv
.(5)

If we know the temperature of the environment and CPU at some initial time t0 ≤ t,
then we can derive following Equations3 from (3) and (5):

Tcpu(t) =

∫ t

t0

σ1Pcpu(s)e
−(t−s)β1ds+ Tcpu(t0)e

−(t−t0)β1 , (6)

Tenv(t) =

∫ t

t0

σ2

(

Penv(s) + Pcpu(s)
)

e
−(t−s)β2ds+ Tenv(t0)e

−(t−t0)β2 . (7)

where β1
def
= (1

Rd
cpu

+ 1

Rl
cpu

− kT) · 1

(Cd
cpu+Cl

cpu)
, β2

def
= 1

RenvCenv
− kT

Cenv
, and σ2

def
= 1

Cenv
. Ac-

cording to the Figure 3 shown above, the absolute CPU temperature can be calculated
as Tcpu(t) + Tenv(t) + Tair(t).

5. CONTROLLER DESIGN

We first present the standard state-space model used in control theory in Section 5.1.
In Section 5.2, we design a thermal controller assuming that an ideal system with con-
tinuous power modes. In Section 5.3, we will extend the controller design to a processor
with only active/inactive power modes.

3Assume that the leakage current mostly depends on the Tcpu and Tenv effect on the leakage current is
negligible.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 P. Hettiarachchi et al.

5.1. State-Space Model Basics

We use the standard state-space model to represent continuous-time (ideal) system

ẋ(t) = Ax(t) +Bu(t) + f,

y(t) = Cx(t), (8)

where x(t), u(t), and y(t) represent the state vector, the input vector, and the output
vector, respectively. A,B, and C represent the system matrices and f represents a con-
stant vector. Both the state matrices and constant vector are time-invariant quantities.

Since we have a computer-controlled discrete-time system, we will use following
state-space mode for the discrete-time controller for active/inactive modes. For a sam-
pling interval Ts, u(t) is a constant and the sampled system of Equation (8) is

x((k + 1)Ts) = Gx(kTs) +Hu(kTs) + f̃ ,

y(kTs) = C̃x(kTs), (9)

where G = eATs , H =
∫ Ts

0 eAtBdt, C̃ = C, and f̃ =
∫ Ts

0 eAtfdt. The term eAt can

be computed by L−1{(sI − A)−1}, where L−1 is the inverse Laplace transform. In the
remainder of the document, we abuse the notation by representing x(kTs) as x(k),
x((k + 1)Ts) as x(k + 1), u(kTs) as u(k), and y(kTs) as y(k). The above definitions may
be found in any textbook on discrete-time control theory [Ogata 1995].

5.2. Continuous Power Modes

As a first step towards our goal of designing a control-theoretic framework for thermal
stress analysis, we employ linear quadratic (LQ) optimal control for real-time thermal
management. Our design consists of an optimal state feedback and an integrator that
regulates the dynamics of the system. An LQ controller enables us to design an efficient
and low-overhead controller, derive the feedback parameters before runtime (used in
thermal-resiliency analysis), and smoothly track our reference input. In the future, we
plan on applying more complex and robust controllers (e.g., H∞ controllers) to decrease
the controller’s sensitivity to modeling inaccuracy and noise. However, as observed in
the simulations and experiments of Section 7, our current LQ design is appropriately
responsive to changes in environmental temperature.

In our system model, we specify the thermal power of the CPU as the control to
the system. The controller is designed to follow the temperature reference, Tref. In
our design, we consider Tcpu(t) as one of the variable to be controlled and Pd

cpu(t) as
a manipulated variable (equivalent to y(t) and u(t), respectively, in continuous state-
space model). The basic control structure is given in Figure 4.

From Equations (3) and (5), the continuous-time state space model can be written as

[

Ṫcpu(t)

Ṫenv(t)

]

=

[

−β1 kTσ1

kTσ2 −β2

] [

Tcpu(t)
Tenv(t)

]

+

[

σ1

σ2

]

Pd
cpu(t) +

[

0
σ2

]

Penv(t). (10)

While our analysis below is in the continuous-time domain, a discrete-time control
system approach would be applied in an actual computer implementation. Therefore,
we now note that we may easily convert the continuous-state space model to the
discrete-time sampled system, x(k + 1) = Gx(k) + Hu(k) + f from the continuous-

time state matrices A =

[

−β1 kTσ1

kTσ2 −β2

]

and B =

[

σ1

σ2

]

where k is the sampling index, Ts

is sampling interval, and G and H can be calculated as described in Section 5.1. For

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:11

our given system, x(k) ≡
[

Tcpu(k)
Tenv(k)

]

and u(k) ≡ [Pcpu(k)] where we are again abusing

notation for the T and P functions.
To eliminate steady state tracking error, we design our control system with an inte-

grator. Define an additional error vector ve(t) in continuous time as,

ve(t)
def
=

∫ t

0

(Tref − T (t)− Tair(t))dt

v̇e(t)
def
= Tref − Tair(t)− T (t) (11)

= −C

[

Tcpu(t)
Tenv(t)

]

+ Tref − Tair(t)

where C = [1, 1]. Then, the system input is calculated with a gain Ko = [γ1, γ2] and
integral constant γI in the following equation.

Pd
cpu(t) = −Ko

[

Tcpu(t)
Tenv(t)

]

+ γIve(t) (12)

= −
(

(γ1)Tcpu(t) + (γ2)Tenv(t)
)

+ γI

∫ t

0

(Tref − Tair(t)− Tcpu(t)− Tenv(t))dt.

We employ standard techniques from optimal control theory to derive Ko and γI and
prove stability. In our derivation of system stability, we use the following two results
which can be found in any standard text on control theory [Dorf and Bishop 2000; Nise
2000; Ogata 1995].

LEMMA 1 (FROM [DORF AND BISHOP 2000]). The system of Equation (8) is com-
pletely controllable if there exists an unconstrained u(t) such that it can control any
initial state x(t0) to any desired final state xf in a finite time, t0 ≤ t ≤ T . The property
of completely controllable can be determined by examining the algebraic condition

rank[B AB A
2
B ... A

m−1
B] = m, (13)

where, A is m×m and B is m× r matrix.

LEMMA 2 (FROM [OGATA 1995]). A discrete-time linear time invariant (LTI) sys-
tem is asymptotically stable if and only if its all eigenvalues of G lie inside the unit
circle.

We derive the augmented model that is used to obtain the optimality of the system.
Consider an instance where system is completely stable and has reached steady state.
We denote the input, states, and the integrator error (described in Equation (11)) of
this special instance of the system by Pcpu(t∞)), Tcpu(t∞), Tenv(t∞) and ve(t) respec-
tively. Therefore, from the Equation (10) we get,

[

Ṫcpu(t)− Ṫcpu(t∞)

Ṫenv(t)− Ṫenv(t∞)

]

=

[

−β1 kTσ1

kTσ2 −β2

] [

Tcpu(t)− Tcpu(t∞)
Tenv(t)− Tenv(t∞)

]

+

[

σ1

σ2

]

(Pd
cpu(t)− P

d
cpu(t∞)). (14)

Also, from the Equation (11), we get,

v̇e(t)− v̇e(t∞) = −C

[

Tcpu(t)− Tcpu(t∞)
Tenv(t)− Tenv(t∞)

]

. (15)

Now, combining the Equation (14) and (15), we define our higher order system as,

ė(t) = Âe(t) + B̂ue(t), (16)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 P. Hettiarachchi et al.

where, e(t) =

[

Tcpu(t)− Tcpu(t∞)
Tenv(t)− Tenv(t∞)
ve(t)− ve(t∞)

]

, ue(t) = Pd
cpu(t) − Pd

cpu(t∞), Â =

[

A 0
−C 0

]

, and

B̂ = [B 0]
T

.
We select the feedback gain γ̂ such that,

ue(t) = −K̂e(t), (17)

where, K̂ = [Ko −γI]. The above state-space and the control gain parameters are
valid for a continuous-time controller. So, we may obtain the discrete-time state-space
matrices for the augmented model (i.e, G and H) from Â and B̂ via the transforma-
tion described after Equation (9). In LQ optimal control, the objective is to design the
controller to minimize some performance index. A standard LQ performance index is
given by

J
def
=

1

2

∞
∑

k=0

(

e(k)TQe(k) + u
T
e (k)Rue(k)

)

, (18)

where Q and R are arbitrary symmetric matrices of size m×m and r×r such that Q ≥ 0
(positive semi definite), R > 0 (positive definite). (In our system given in Equation (10),
m is two and r is one). It is easy to show that for a Linear Time Invariant (LTI) system,
(Refer to Ogata [1995]), the optimal state feedback can be obtained as,

ue(k) = −K̂e(k), (19)

where K̂ is the feedback gain defined as

K̂ = (R +H
T
PH)−1

H
T
PG, (20)

and where P is the positive definite solution of the algebraic Riccati equation below,

P = Q+G
T
PG−G

T
PH(R+H

T
PH)−1

H
T
PG.

From the above, it may be shown [Ogata 1995] that the optimal performance index
can be calculated as Jmin = 1

2e
T (0)Pe(0).

It is well known [Ogata 1995] that the feedback control (i.e., K̂) results in an asymp-
totically stable closed-loop system according to Lemma 2. Obviously, stable choices of
Ko and γI for the original (non-augmented) system can be immediately obtained from
the derived K̂.

5.3. Active/Inactive Power Modes

Since the CPU power cannot be varied continuously, the controller designed in the
previous section cannot be directly applied to the setting of discrete active/inactive
power modes. In this section, we extend the design of the continuous power modes
controller described in the previous section to the active/inactive power mode setting
by applying pulse-width modulation (PWM) techniques. Recall in Section 4 that we
stated the active/inactive power modes will be modeled via the thermal-aware periodic
resource model with parameters Π and Θ. Thus, to control the system via this model,
we must choose the appropriate values of Π and Θ. The Π value is a design parameter
which may be chosen at controller design-time and will be assumed fixed throughout
controller execution. Typically, a smaller value of Π will increase the system schedu-
lability; however, a larger value of Π will decrease the overhead potentially incurred
by switching between the active and inactive power modes. (See Ahmed et al. [2011]
for algorithms for determining Π in the thermal setting). The only constraint that our
framework places on the chosen value of Π is that it must evenly divide the sampling
interval length Ts (i.e., Ts = κΠ for some κ ∈ N

+).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:13

Θ(k)

Π

Θ(k) Θ(k) Θ(k + 1) Θ(k + 1) Θ(k + 1)

kth Sample (k + 1)th Sample (k + 2)th Sample

kth Sample
(k + 1)th Sample (k + 2)th Sample

time

time

P (k) P (k + 1)
P (k + 2)

Π

Fig. 5. The simplified power and modulation relationship

Since we have only two power modes, we cannot arbitrarily set the power level.
However, we may change the assigned resource capacity between sampling periods to
approximate arbitrary power levels. Therefore, the assigned resource capacity will be
the manipulated variable in our PWM system. The periodic resource capacity (Θ(k))
and resource period (Π) can be respectively viewed as the pulse duration and duty cycle
of the PWM. Let Θ(k) denote the value of the resource capacity over the k’th sampling
period. For determining the Θ(k) value, we use a method based on the principle of
equivalent areas (PEA) for converting any arbitrary input signal into an equivalent
PWM signal [Gelig and Churilov 1998]. First, note that in a discrete-time system us-
ing zero-order hold (ZOH), the input signal is held constant over the sampling period.
Specifically, for the k’th sampling interval, the input Pd

cpu(k) is held over the Ts-length

interval, resulting in a total energy dissipation of Ts · Pd
cpu(k) over the interval. To get

the equivalent area (i.e., energy) as the (ideal) system with continuous power modes,
we must set Θ(k) such that the periodic modulations between the power modes of Pact

and Pinc dissipate the equivalent amount of energy over the Ts-length interval. Fig-
ure 5 illustrates the area equivalence between the continuous and PWM controllers. It
is easy to see that a smaller Ts gives a better PWM approximation. However, our con-
troller needs to follow a system with relatively slower (thermal) dynamics. Thus, for
efficiency, we select relatively larger Ts and higher κ value. Also, even under varying
air and environmental conditions, the the resource capacity, Θ does not change rapidly
due to slower system dynamic. Therefore, the same mode will continue to hold over sev-
eral sampling periods before change occurs. Furthermore, in the steady state (when the
environment or air temperature does not change much), the system will change modes
very infrequently. The technical report version of this paper [Hettiarachchi et al. 2011]
describes how to choose Ts to minimize error due to the PWM approximation.

More formally, we may derive the following relationship between Pd
cpu(k) and Θ(k),

κΠP
d
cpu(k) = κ

(

eact +

∫ Θ(k)

0

Pactdt+ einc +

∫ Π

Θ(k)

Pincdt
)

⇒ P
d
cpu(k) =

(

Pact − Pinc

Π

)

Θ(k) + Pinc +
1

Π
(eact + einc). (21)

The PWM controller pseudocode is presented in Algorithm 1. The controller pro-
posed here consists of two integrated operations: the thermal controller and the PWM
modulator. The first step is to obtain the CPU temperature at tℓ (Line 2 of Algorithm
1). The error is then calculated by taking the difference between the reference temper-
ature and the CPU temperature (Line 3). The error is integrated into the error vector
and added to vector sum of the integrated error in the next line (Line 4). After which,
the power input is calculated (Line 5) and the equivalent Θ is calculated from the prop-
erty of Equation (21) (Line 6). Finally, the appropriate mode is selected (Line 7), the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 P. Hettiarachchi et al.

Algorithm 1 Control Algorithm

Require: Reference Temperature Tref; Feedback Gain K ≡ [γ1, γ2]; Integral Constant
γI ; PWM Period Π; Number of PWM periods in a sampling period κ.

1: while At beginning of sampling period [tℓ, tℓ+1) : tℓ ≡ κℓΠ do
2: Sample Tcpu(tℓ) + Tenv(tℓ) + Tair(tℓ).
3: v̇e(tℓ) = Tref − (Tcpu(tℓ) + Tenv(tℓ) + Tair(tℓ))

4: Tot v̇e(tℓ) = Tot v̇e(tℓ−1) + γIκΠ

(

v̇e(tℓ)+v̇e(tℓ−1)
)

2

5: Pcpu(tℓ) =
(

Tot v̇e(tℓ)−
(

γ1Tcpu(tℓ) + γ2Tenv(tℓ)
)

)

6: Θ(tℓ) = min
(

Π× (Pcpu(tℓ)−Pinc)

Pact−Pinc
,Π

)

7: i = max{j ∈ Zq+1 | Θ(j) ≤ Θ(tℓ)}
8: Update real-time performance mode to Mi.
9: Set PWM to operate at period of Π and width of Θ(tℓ).

10: end while

mode change is performed (Line 8), and the pulse-width modulator is invoked for the
next κ Π-length intervals (Line 9). It is important to note that Θ(tℓ) calculated in Line
6 does not have to be equal the Θ(j) for the selected mode; we must only select the
highest mode with Θ(j) ≤ Θ(tℓ). (If Θ(tℓ) is larger, we are only giving the mode more
processing than it requires.) It should also be observed that all operations, except for
finding the appropriate mode, may be done in O(1) time. Finding the highest real-time
performance mode that may execute can be done in O(lg q) time (via binary search)
where q is the number of real-time performance modes.

6. THERMAL-RESILIENCY CALCULATION

In this section, we explain how to derive the real-time thermal resiliency Λ(Mi, Tref)
for a given real-time performance mode Mi and reference temperature Tref. Assuming
a steady-state error of zero, we will now briefly outline how to obtain a solution for
Λ(Mi, Tref).

4 Assume that we have reached the steady-state by the (k − 1)’th sampling
period. Therefore, Tcpu(k) = Tcpu(k − 1), Tenv(k) = Tenv(k − 1), Tair(k) = Tair(k − 1), and
Θ(k) = Θ(k − 1). Substituting the temperature equalities into Equations (6) and (7)
allows us to solve for Tcpu(k) and Tenv(k) to obtain a function of Tair(k), Tref, and Θ(k).

Since we are interested in obtaining Λ(Mi, Tref), we may fix Tref and Θ(k) = Θ(i) Since
the steady-state error is zero, we also have

Tref = Tcpu(k) + Tenv(k) + Tair(k). (22)

Combining Equation 22 with the function of Tair(k) obtained from Tcpu(k) and Tenv(k)
allows us to solve for Tair(k). Thus, solving the entire system results in a value for
Tenv(k)+Tair(k) (i.e., value of Λ(Mi, Tref)). The resulting expression is quite complicated
as it requires solutions to second-order inhomogeneous equations.

We first calculate the Tcpu as follows,

Tcpu((ζκ+ κ)Π) = Tcpu(ζκΠ) +

κ−1
∑

i=0

2
∑

j=1

(

C(j)inc
((ζκ+ i)Π + Θ)(er(j)(Π−Θ)

− 1)

+ C(j)act((ζκ+ i)Π)(er(j)Θ − 1)
)

. (23)

4The approach may be generalized when there is bounded steady-state error. However, the approach will be
similar, and we omit the details due to space.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:15

At the stability, Tcpu(ζκΠ) stays at a steady value and therefore, Tcpu((ζκ + κ)Π) and
Tcpu(ζκΠ) are the same. Further, if the CPU does not vary the temperature within
a single sampling period, the CPU should maintain the same temperature in each
resource period Π intervals (For same Θ, same Tcpu and Tenv temperature at successive
stages). Therefore, we consider the CPU temperature for two adjacent resource periods
and conclude,

2
∑

j=1

(

C(j)inc
(ζκΠ+Θ)(er(j)(Π−Θ)

− 1) + C(j)act(ζκΠ)(er(j)Θ − 1)
)

= 0, (24)

because, T inc
cpu ((ζκ + 1)Π) = T act

cpu (ζκΠ) as per to the above argument. Then we further
simplify the Equation (24) as follows (details in the tech report),

⇒ Tenv(ζκΠ+Θ)
(

P4(Θ)
)

+ Tcpu(ζκΠ+Θ)
(

P3(Θ)
)

+ Tcpu(ζκΠ)
(

P1(Θ)
)

+ Tenv(ζκΠ)
(

P2(Θ)
)

+ PA(Θ) = 0 (25)

where, P4(Θ) =
(

G4(e
r1(Π−Θ) − 1) + G8(e

r2(Π−Θ) − 1)
)

, P3(Θ) = Tcpu(ζκΠ + Θ)
(

−
G3(e

r1(Π−Θ)− 1)−G7(e
r2(Π−Θ)− 1)

)

, P1(Θ) = Tcpu(ζκΠ)
(

−G1(e
r1(Θ)− 1)−G5(e

r2(Θ)− 1)
)

,

P2(Θ) = Tenv(ζκΠ)
(

G2(e
r1(Π−Θ) − 1) + G6(e

r2(Θ) − 1)
)

, and PA(Θ) = GA(e
r1Θ − 1) +

GB(e
r1(Π−Θ) − 1) + GC(e

r2Θ − 1) + GD(er2(Π−Θ) − 1).
In Equation (25), we use the definitions of C for ζκΠ and (ζκΠ + Θ) time instances

as shown below for i = 1, 2. Let ī equal two if i equals one and one if i equals two.

Ciact(ζκΠ) =
(−1)(i)

r2 − r1

rīC3inc(ζκΠ)
+σ1 (Pact + kC + kTTenv(ζκΠ))

− (β1 + rī)Tcpu(ζκΠ)

=
(−1)(i)

r2 − r1

(

GAi + GBTenv(ζκΠ)− GCiTcpu(ζκΠ)
)

,

Ciinc(ζκΠ+Θ) =
(−1)i

r2 − r1

rīC3inc(ζκΠ+Θ)
+σ1 (Pinc + kC + kTTenv(ζκΠ+Θ))

− (β1 + rī)Tcpu(ζκΠ+Θ)

=
(−1)i

r2 − r1

(

GAi + GBTenv(ζκΠ+Θ)− GCiTcpu(ζκΠ+Θ)
)

, (26)

where,GAi = rīC3inc(ζκΠ) + σ1 (Pact + kC), GB = σ1kT , and GCi = β1 + rī.
Similarly, from the Equation (40) in Appendix A.1, we can show that (details in the

tech report),

⇒ Tenv(ζκΠ+Θ)
(

J4(Θ)
)

+ Tcpu(ζκΠ+Θ)
(

J3(Θ)
)

+ Tcpu(ζκΠ)
(

J1(Θ)
)

+ Tenv(ζκΠ)
(

J2(Θ)
)

+ JA(Θ) = 0 (27)

where, J4(Θ) = GB

(

(er1(Π−Θ) − 1)(r1+β1

kTσ1
) + (er2(Π−Θ) − 1)(r2+β1

kT σ1
)
)

, J3(Θ) =
(

−
GC1(e

r1(Π−Θ)−1)(r1+β1

kTσ1
)−GC2(e

r2(Π−Θ)−1)(r2+β1

kTσ1
)
)

, J1(Θ) =
(

−GC1(e
r1(Θ)−1)(r1+β1

kT σ1
)−

GC2(e
r2(Θ) − 1)(r2+β1

kTσ1
)
)

, J2(Θ) = GB

(

(er1(Π−Θ) − 1)(r1+β1

kTσ1
) + (er2(Θ) − 1)(r2+β1

kTσ1
)
)

, and

JA(Θ) = GA1(
r1+β1

kTσ1
)(er1Θ + er1(Π−Θ) − 2) + GA2(

r2+β1

kTσ1
)(er2Θ + er2(Π−Θ) − 2).

Further, we consider a CPU temperature for (ζκΠ, ζκΠ + Θ] within the stability
region and find the following relationship from the Equation (37) in Appendix A.1,

T
act

cpu (ζκΠ+Θ) = T
act

cpu (ζκΠ) + C1act(ζκΠ)(er1Θ − 1) + C2act(ζκΠ)(er2Θ − 1) (28)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 P. Hettiarachchi et al.

Substituting values for the constants from Equation (26), we get,

⇒ Tcpu(ζκΠ+Θ) = T
act

cpu (ζκΠ)
(

P7(Θ)
)

+ Tenv(ζκΠ)
(

P8(Θ)
)

+ P9(Θ),

where, P7(Θ) = 1− (er1Θ − 1)GC1 − (er2Θ − 1)GC2 , P8(Θ) = (er2Θ − 1)GB + (er1Θ − 1)GB,
and P9(Θ) = (er1Θ − 1)GA1 + (er2Θ − 1)GA2 .

Also, considering the environment thermal behavior and substituting values for the
constants from Equation (26), we get (details in the tech report),

⇒ T
act

env(ζκΠ+Θ) = Tcpu(ζκΠ)
(

P10(Θ)
)

+ Tenv(ζκΠ)
(

P11(Θ)
)

+
(

P12(Θ)
)

, (29)

where,P10(Θ) = − r1+β1

kTσ1
GC1(e

r1Θ−1)− r2+β1

kTσ1
GC2(e

r2Θ−1), P11(Θ) = 1+ r1+β1

kTσ1
GB(e

r1Θ−
1) + r2+β1

kTσ1
GB(e

r2Θ − 1), and P12(Θ) = r1+β1

kTσ1
(GA1(e

r1Θ − 1) + r2+β1

kT σ1
GA2(e

r2Θ − 1).

Therefore, applying the Equations (25), (27), (29), and (29), in Equation (22), we may
finally express our thermal-resiliency function in terms of the fixed thermal constants
and input Tref and Θ(i) (which comes from the input mode Mi) as follows,

Λ(Mi, Tref) = Tref −
E1(Θ

(i))

EN(Θ(i))
−

E2(Θ
(i))

EN(Θ(i))
, (30)

where,

E1(Θ) = JA(Θ)P2(Θ) + J4(Θ)P12(Θ)P2(Θ) + JA(Θ)P11(Θ)P4(Θ)− J2(Θ)P12(Θ)P4(Θ)

+ JA(Θ)P3(Θ)P8(Θ) + J4(Θ)P12(Θ)P3(Θ)P8(Θ) −J3(Θ)P12(Θ)P4(Θ)P8(Θ)

− J2(Θ)P3(Θ)P9(Θ)− J4(Θ)P11(Θ)P3(Θ)P9(Θ) + J3(Θ)P11(Θ)P4(Θ)P9(Θ)

− J4(Θ)P11(Θ)PA(Θ)− J3(Θ)P8(Θ)PA(Θ) + J3(Θ)P2(Θ)P9(Θ) −J2(Θ)PA(Θ),

E2(Θ) = −JA(Θ)P1(Θ) −J4(Θ)P1(Θ)P12(Θ)− JA(Θ)P10(Θ)P4(Θ) + J1(Θ)P12(Θ)P4(Θ)

− JA(Θ)P3(Θ)P7(Θ) −J4(Θ)P12(Θ)P3(Θ)P7(Θ) + J3(Θ)P12(Θ)P4(Θ)P7(Θ)

+ J1(Θ)P3(Θ)P9(Θ) + J4(Θ)P10(Θ)P3(Θ)P9(Θ)− J3(Θ)P10(Θ)P4(Θ)P9(Θ)

+ J4(Θ)P10(Θ)PA(Θ) + J3(Θ)P7(Θ)PA(Θ) −J3(Θ)P1(Θ)P9(Θ) + J1(Θ)PA(Θ),

EN (Θ) = J2(Θ)P1(Θ) + J4(Θ)P1(Θ)P11(Θ) −J1(Θ)P2(Θ)− J4(Θ)P10(Θ)P2(Θ)

+ J2(Θ)P10(Θ)P4(Θ) −J1(Θ)P11(Θ)P4(Θ)− J3(Θ)P2(Θ)P7(Θ) + J2(Θ)P3(Θ)P7(Θ)

+ J4(Θ)P11(Θ)P3(Θ)P7(Θ)− J3(Θ)P11(Θ)P4(Θ)P7(Θ)

+ J3(Θ)P1(Θ)P8(Θ)− J1(Θ)P3(Θ)P8(Θ)− J4(Θ)P10(Θ)P3(Θ)P8(Θ)

+ J3(Θ)P10(Θ)P4(Θ)P8(Θ).

7. VALIDATION

In this section, we evaluate our control framework both in simulations and upon an
experimental hardware testbed.

7.1. Simulations

In the simulations, we simulate the execution of a single-core processor which consists
of a thermal controller, PWM frequency controller loop, and scheduling algorithm. The
following task parameters are used in our simulations:

— Each sporadic task τj = (ej , dj , pj) has a period pj uniformly drawn from the interval
[5, 15]. (A small period range is used to keep LCM of periods from becoming too
large). The execution time requirement ej set to the task utilization times pj, where
task utilization is calculated using the UUnifast algorithm[Bini and Buttazzo 2004].
For each task, dj equals pj . The tasks are scheduled by EDF.

— The total number of tasks is eight; each task τj has three different real-time perfor-

mance modes where τ
(2)
j = (ej , dj , pj); τ

(1)
j = (.2ej, dj , pj); and τ

(0)
j means that task is

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:17

Parameter Variable Value
CPU Active Power Pact 73 W
CPU Idle Power Pinc 20 W
Server Period Π 20 ms
Sampling Time Ts 100 ms
Optimal Feedback Ko [.5725 0]

Q matrix in Performance Index Q

[

1 0
0 1

]

R matrix in Performance Index R [1]
Integral Gain γI 0.00042

0 2000 4000 6000 8000 10000
0

20

40

60

80
TRCB

Time

T
e

m
p

e
ra

tu
re

CPU Temperature

Reference Temperature

Air Temperature

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

U
ti

li
z
a
ti

o
n

Time

Instantaneous Modes

0 2000 4000 6000 8000 10000
0
2
4
6
8
10
12
14
16

M
o

d
e

0 2000 4000 6000 8000
0

20

40

60

80

Time

T
e

m
p

e
ra

tu
re

TCUB

0 2000 4000 6000 8000
0

0.5

1

Time

U
ti

li
z
a
ti

o
n

CPU Temperature

Utilization
Utilization

Mode

Fig. 6. Fixed Tair for Simulation. Left plots represent TCUB and right plots represent TCRB.

not selected. From set of all possible combinations of tasks, we have selected fifteen
modes with utilizations ranging from zero to one.

We refer to the controller described in Algorithm 1 as Temperature Regulated Ca-
pacity Bound (TRCB). In our simulations, we closely compare the performance of our
proposed method with [Fu et al. 2010b] referred to as Thermal Control Utilization
Bound (TCUB). TCUB has been chosen due to its low controller time complexity of
O(1). TCUB works by attempting to track a reference temperature and adjusting sys-
tem utilization as needed by changing task modes via a mode assignment heuristic.
The major difference between TCUB and TRCB is that TCUB does not have prede-
fined modes. Therefore, TCUB may differ in the assigned modes from run to run for
the same system temperature. Furthermore, TCUB does not use multiple power levels.
TRCB on the other hand has predefined modes which permit the derivation of thermal
resiliency for each mode. TCRB also utilizes a low-power mode (if available).

In our simulation, we use the same system parameters as our testbed (Intel Pen-
tium IV 3.0 GHz). The pertinent power and control parameters are given in Table 7.1.
Extensive testbed runs were carried out to generate the remaining system parame-
ters using SI. We use the SI tools provided by Matlab to derive the system state-space
parameters. Also we use the system parameters, generated from our testbed as the
simulation parameters. We observe a matching of our testbed readings and the simu-
lation. More details on this process are contained in the technical report [Hettiarachchi
et al. 2011].

In Figure 6, the system response and the utilization has been shown for both TRCB
(right graphs) and TCUB (left graphs) given a stable air temperature Tair temperature
equal to 5◦C. The behavior of both controllers in this stable environment is nearly iden-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 P. Hettiarachchi et al.

0 2000 4000 6000 8000 10000
0

20

40

60

80
TRCB

Time

T
e

m
p

e
ra

tu
re

CPU Temperature

Reference Temperature

Air Temperature

0 2000 4000 6000 8000 10000
0

0.5

1

U
ti

li
z
a

ti
o

n

Time

Instantaneous Modes

0 2000 4000 6000 8000 10000
0

10

20

M
o

d
e

Utilization

Mode

0 2000 4000 6000 8000 10000
0

20

40

60

80
TCUB

Time

T
e

m
p

e
ra

tu
re

0 2000 4000 6000 8000 10000
0

0.5

1

Time

U
ti

li
z
a

ti
o

n

Utilization

Air Temperature

CPU Temperature

Fig. 7. Dynamically Varying Tair for Simulation. Left plots represent TCUB and right plots represent
TCRB.

tical for thermal and utilization behavior. (The difference is due to the fact that TRCB
uses EDF and TCUB uses RM scheduling). For TRCB, we also display the achieved
modes at any given time in the simulation in the lower right graph.

Figure 7 shows the behavior of both TRCB and TCUB when Tair is dynamically
changed over time. In the top two graphs of the figure, the absolute CPU temperatures
over time obtained by TCUB and TRCB, respectively, are plotted along with the Tair.
The two bottom graphs of Figure 7 present the achieved utilization for each controller;
additionally, the bottom right graph displays the active mode at any point in time for
TRCB. Observe that both controllers are able to track the reference temperature Tref

despite the sharp changes in Tair. For both controllers, the utilization appropriately
tracks the changes in air temperature. When the air temperature increases, both con-
trollers decrease the system utilization and increase the utilization again when the
air temperature drops. Similarly, the mode plot in the lower right graph tracks the
temperature changes.

Regarding the real-time performance, figures displaying deadline miss ratios have
been omitted as no deadline miss was experienced for either controller in all the sim-
ulations. TCUB uses a safe utilization bound of approximately 67% to make deadline
misses improbably for rate-monotonic scheduling [Liu and Layland 1973]. However,
TCRB guarantees that no deadlines are ever missed due to verification using a multi-
modal schedulability test [Fisher and Ahmed 2011] as described in Section 4.2.

Thus far, the empirical performance of TRCB and TCUB may appear similar. How-
ever, we believe the distinguishing feature of TRCB is the ability to guarantee hard
deadlines and to calculate thermal resiliency levels during design time. Thermal re-
siliency calculation provides a non-destructive thermal stress analysis for real-time
performance modes in an unpredictable operating environment. Our approach has
achieved the ability to calculate the thermal resiliency by forcing the system to ex-
ecute in a very predictable manner (i.e., periodic executions from PWM). To evaluate
and illustrate our thermal resiliency calculation, we have used the technique in Sec-
tion 6 to calculate the thermal resiliency levels for our randomly-generated multi-mode
system. Figure 8 displays the thermal resilience Λ(Mi, Tref) for a range of modes and
reference temperatures. Observe that the thermal resiliency increases with decreasing
modes or increasing Tref.

7.2. Experiments upon Hardware Testbed

To further confirm the validity of the theoretical results, we have run a task system
with eight tasks, each with three modes (identical to the simulation setting), on our

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:19

31
32

33
34

35
36

37
38

39

50

60

70

80

90
0

5

10

15

T
env

 + T
air

°
 C

Thermal Resiliency Function

T
ref

°
 C

M
o

d
e

Fig. 8. Thermal resiliency over modes and Tref.

0 50 100 150
0

20

40

60

80

Time

Θ
,
M

o
d

e
,
T

e
m

p
e
ra

tu
re

 °
 C

Testbed Run for T
ref

=70
°
 C

0 50 100 150
0

20

40

60

80

Time

Θ
,
M

o
d

e
,
T

e
m

p
e
ra

tu
re

 °
 C

Testbed Run for T
ref

=78
°
 C

Θ

Mode

T
air

+T
env

T
air

+T
env

+T
cpu

T
air

Fig. 9. The testbed running at different Tref values showing the Θ and Mode change over the time

0 50 100 150
0

20

40

60

80

Time

Θ
,
M

o
d

e
,
T

e
m

p
e
ra

tu
re

 °
 C

T
ref

=78
°
 C

0 50 100 150
0

20

40

60

80

Time

Θ
,
M

o
d

e
,
T

e
m

p
e
ra

tu
re

 °
 C

0 50 100 150
0

20

40

60

80

Time

Θ
,
M

o
d

e
,
T

e
m

p
e
ra

tu
re

 °
 C

T
ref

=61
°
 C

0 50 100 150
0

20

40

60

80

Time

Θ
,
M

o
d

e
,
T

e
m

p
e
ra

tu
re

 °
 C

Θ

Mode

T
air

+T
env

T
air

+T
env

+T
cpu

T
air

Fig. 10. The testbed running at varying environmental conditions showing the Θ and Mode change over
the time

hardware testbed. Each task performs numerical calculations while executing on the
system. Our hardware testbed behaves similar to the simulations of the previous sub-
section. Figure 9 presents testbed runs for a fixed air and environment temperature.
Figure 10 shows how the testbed behaves when an outside heat source is dynamically
introduced into the environment. Observe that there is a momentary drop in perfor-
mance mode; however, the system soon stabilizes.

Finally, we validate our thermal resiliency calculation. Unfortunately, we do not
have test equipment to accurately vary the air or environment temperature. Thus,
we consider the air temperature to be fixed at the room temperature (in this case
Tair = 24.8◦C). Instead, we indirectly analyze the thermal resiliency function via the
inverse of the thermal resiliency function Λ−1(Mi, Tair) = min{Tref | Tair ≤ Λ(Mi, Tref)}.
Intuitively, a lower value of Λ−1(Mi, Tair) means the system can operate at a lower
temperature and thus is more resilient than a higher value of the function. We have
calculated this function for four different runs of the hardware testbed (to ensure that

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 P. Hettiarachchi et al.

2 4 6 8 10 12 14
55

60

65

70

75

80

Mode

T
re

f=
Λ

−
1
(M

i,T
a
ir
)

Inverse Thermal Resiliency Function for Fixed T
air

=24.8
°
 C

Thermal Resiliency Function

Testbed Run #1

Testbed Run #2

Testbed Run #3

Testbed Run #4

Fig. 11. Thermal Resiliency for the Simulation.

minor fluctuations of the air temperature do not affect the system). Figure 11 shows a
plot of the thermal resiliency of the testbed runs when the Tref is changed. The figure
shows that the calculated inverse resiliency of the system increases with increasing
operating mode. Most importantly, the calculated thermal resiliency tracks the actual
behavior of the testbed and provides a safe upper bound on Tref in a large majority of
the cases which validates the effectiveness of the resiliency function.

8. CONCLUSIONS

In this paper, we have addressed the problem of obtaining performance guarantees in
an unpredictable thermal environment. Towards this challenge we have presented a
control-theoretic framework for thermal stress analysis in real-time systems. Our pro-
posed method employs a nested feedback control system, which is based on optimum
control theory. For our system, we derive strong thermal-resiliency and hard-real-time
guarantees for any real-time performance mode. Our method has the distinct advan-
tage of being able to verify the real-time thermal resiliency of a system before it is
put into operation. In addition, we show via simulations that our framework performs
as well as previous approaches which have no formal guarantee on the thermal re-
siliency. Our implementation upon a hardware testbed validates our proposed model
and control framework.

In future work, we plan to extend our framework to control designs that are more
robust to model inaccuracies (e.g., H∞ or model-predictive controllers). As a initial
step in designing a framework for thermal stress analysis, our current design uses two
RC circuits (for dynamic and leakage currents) to model the CPU temperature. We
plan on extending our model to permit multiple RC circuits for heterogeneous ther-
mal distributions and generalizing our thermal equations for more complex RC circuit
layouts. We hope to derive a general-theoretic design framework that captures “re-
siliency” metrics for other system properties (e.g., energy, noise, etc.) and extend our
analysis to other hardware settings (e.g., multicore, DVS).

REFERENCES

2000. Intel Pentium 4 processor in the 423-pin package thermal design guidelines,. Intel Corp.
AHMED, M., FISHER, N., WANG, S., AND HETTIARACHCHI, P. 2011. Minimizing peak tem-

perature in embedded real-time systems via thermal-aware periodic resources. Sustainable
Computing: Informatics and Systems 1, 3, 226 – 240.

BANSAL, N. AND PRUHS, K. 2005. Speed scaling to manage temperature. In Symposium on
Theoretical Aspects of Computer Science.

BINI, E. AND BUTTAZZO, G. 2004. Biasing effects in schedulability measures. In Proceedings of
the 16th Euromicro Conference on Real-Time Systems. IEEE Computer Society, 196–203.

BROOKS, D. AND MARTONOSI, M. 2001. Dynamic thermal management for high-performance
microprocessors. In International Symposium on High-Performance Computer Architecture.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:21

CHANTEM, T., DICK, R. P., AND HU, X. S. 2008. Temperature-aware scheduling and assignment
for hard real-time applications on MPSoCs. In Design, Automation and Test in Europe.

CHEN, J.-J., HUNG, C.-M., AND KUO, T.-W. 2007. On the minimization of the instantaneous
temperature for periodic real-time tasks. In IEEE Real-Time and Embedded Technology and
Applications Symposium.

CHEN, J.-J., WANG, S., AND THIELE, L. 2009. Proactive speed scheduling for frame-based real-
time tasks under thermal constraints. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS).

DORF, R. C. AND BISHOP, R. H. 2000. Modern Control Systems. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

FERREIRA, A., MOSSE, D., AND OH, J. 2007. Thermal faults modeling using a rc model with an
application to web farms. In Proceedings of the Euromicro Conference on Real-Time Systems.
IEEE Computer Society.

FISHER, N. AND AHMED, M. 2011. Tractable real-time schedulability analysis for mode changes
under temporal isolation. In Proceedings of the 9th IEEE Symposium on Embedded Systems
for Real-Time Multimedia (ESTImedia). IEEE Computer Society.

FISHER, N., CHEN, J.-J., WANG, S., AND THIELE, L. 2009. Thermal-aware global real-time
scheduling on multicore systems. In Proceedings of the 15th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE Computer Society Press.

FU, X., WANG, X., AND PUSTER, E. 2010a. Simultaneous thermal and timeliness guarantees
in distributed real-time embedded systems. Journal of Systems Architecture. To Appear.

FU, Y., KOTTENSTETTE, N., CHEN, Y., LU, C., KOUTSOUKOS, X. D., AND WANG, H. 2010b.
Feedback thermal control for real-time system. In Proceedings of the Real-Time and Embed-
ded Technology and Applications Systems Symposium. IEEE Computer Society Press, Stock-
holm, Sweden.

GELIG, A. K. AND CHURILOV, ALEXANDER N., . 1998. Stability and oscillations of nonlinear
pulse-modulated systems / Arkadii Kh. Gelig, Alexander N. Churilov. Boston : Birkhauser.
Includes bibliographical references (p. [343]-359) and index.

HETTIARACHCHI, P. M., FISHER, N., AHMED, M., WANG, L. Y., WANG, S., AND SHI, W.
2011. The design and analysis of thermally-resilient hard-real-time systems (extended ver-
sion). Tech. rep., Wayne State University. Available at http://www.cs.wayne.edu/~fishern/
papers/thermal-control-rtas2012.pdf.

KELLY, G. 2006. Body temperature variability (part 1): a review of the history of body tempera-
ture and its variability due to site selection, biological rhythms, fitness, and aging. Alternative
Medicine Review 11, 4, 278–293.

KIM, S., TATHIREDDY, P., NORMANN, R., AND SOLZBACHER, F. 2007. Thermal impact of an
active 3-d microelectrode array implanted in the brain. IEEE Transactions on Neural Systems
and Rehabilitation Engineering 15, 4, 493–501.

LAMANNA, J. C., MCCRACKEN, K. A., PATIL, M., AND PROHASKA, O. J. 1989. Stimulus-
activated changes in brain tissue temperature in the anesthetized rat. Metabolic Brain Dis-
ease 4, 4, 225–237.

LAZZI, G. 2005. Thermal effects of bioimplants. IEEE Engineering in Medicine and Biology
Magazine 24, 5, 75–81.

LIU, C. AND LAYLAND, J. 1973. Scheduling algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM 20, 1, 46–61.

LIU, Y., DICK, R. P., SHANG, L., AND YANG, H. 2007. Accurate temperature-dependent inte-
grated circuit leakage power estimation is easy. In Proceedings of the conference on Design,
automation and test in Europe. Nice, France, 1526–1531.

MOK, A. K. 1983. Fundamental design problems of distributed systems for the hard-real-time
environment. Ph.D. thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology. Available as Technical Report No. MIT/LCS/TR-297.

NISE, N. S. 2000. Control Systems Engineering. John Wiley & Sons, Inc., New York, NY, USA.
OGATA, K. 1995. Discrete-time control systems (2nd ed.). Prentice-Hall, Inc., Upper Saddle

River, NJ, USA.
QUAN, G. AND ZHANG, Y. 2009. Leakage Aware Feasibility Analysis for Temperature-

Constrained Hard Real-Time Periodic Tasks. In Proceedings of the 2009 21st Euromicro Con-
ference on Real-Time Systems-Volume 00. IEEE Computer Society, 207–216.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 P. Hettiarachchi et al.

RAJKUMAR, R., LEE, C., LEHOCZKY, J., AND SIEWIOREK, D. 1997. A resource allocation model
for qos management. In Proceedings of the 18th IEEE Real-Time Systems Symposium. RTSS
’97. IEEE Computer Society, Washington, DC, USA, 298–.

RUGGERA, P., WITTERS, D., VON MALTZAHN, G., AND BASSEN, H. 2003. In vitro assess-
ment of tissue heating near metallic medical implants by exposure to pulsed radio frequency
diathermy. Physics in Medicine and Biology 48, 17, 2919–2928.

SERGENT, J. AND KRUM, A. 1998. Thermal Management Handbook for Electronic Assemblies.
McGraw-Hill Professional.

SHIN, I. AND LEE, I. 2008. Compositional real-time scheduling framework with periodic model.
ACM Transactions on Embedded Computing Systems 7, 3.

SKADRON, K., STAN, M. R., HUANG, W., VELUSAMY, S., SANKARANARAYANAN, K., AND TAR-
JAN, D. 2003. Temperature-aware microarchitecture. In International Symposium on Com-
puter Architecture.

TIMMONS, N. AND SCANLON, W. 2009. An adaptive energy efficient mac protocol for the medical
body area network. In 1st International Conference on Wireless Communication, Vehicular
Technology, Information Theory and Aerospace Electronic Systems Technology, 2009. 587 –
593.

WANG, S. AND BETTATI, R. 2008. Reactive speed control in temperature-constrained real-time
systems. Real-Time Systems Journal 39, 1-3, 658–671.

A. APPENDIX

A.1. The Temperature Calculations

When we consider our thermal model with the leakage current effect, the CPU temper-
ature is calculated based on the solution of second order differential equation. From
Equation (3), we get the first derivative of Tenv(t) as follows,

d

dt
Tenv(t) =

1

kTσ1

(

d2

dt2
Tcpu(t) + β1

d

dt
Tcpu(t)− σ1

d

dt
P

d
cpu(t)

)

=
1

kTσ1

(

d2

dt2
Tcpu(t) + β1

d

dt
Tcpu(t)

)

. (31)

In this analysis, we consider a system that can be described according to the model
shown in the Section 4. Therefore, in the above Equation (31), we consider the system
behavior for discrete time intervals and the input is considered to be constant in each
sampling interval (the input value at the sampling time continue to hold for the rest of
the period, until the next sampling time). This assumption is realistic because we im-
plement our system as a discrete-time control system, in which the ZOH functionality
means for holding the input value for inter-sampling times periods. Let us consider any
such general time period where the input is held constant; therefore, for time instant t
in this range, d

dtPd
cpu(t) can be considered as zero. Thus, we can substitute Equation (2)

and (31) to the Equation (5) to get the following,

d2

dt2
Tcpu(t) + V

d

dt
Tcpu(t) + BTcpu(t) = Fact/inc/cont, (32)

where,

V
def
= (β1 + β2),

B
def
= (β1β2 − k

2
Tσ1σ2),

Fact/inc/cont
def
=

(

β2σ1 + σ1σ2kT

)

(Pact/inc/cont + kC) + σ1σ2kTPenv(t),

Pact/inc/cont =

Pact, active;
Pinc, inactive;
(Pact −Pinc)

Θ
Π
+ Pinc, continuous.

(33)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:23

The Equation (32) is a second-order inhomogeneous equation and F is a constant
(Pd

cpu(t) and Penv(t) are unchanged over two sampling periods). As we already discuss,
the CPU can operate in two power modes. Depending on the operating mode of the
system (active or inactive CPU operation), we can derive two different F values. Also,
we assume, when the CPU power is represented in terms of the resource capacity, Θ,
the corresponding F is denoted by Fcont.

5. Therefore, the complete solution for Tcpu and
Tenv over any continuous interval is given by,

T
act/inc

cpu (t) = C1act/inc
e
r1t + C2act/inc

e
r2t + C3act/inc

, (34)

where, r1/2 = − 1
2

(

V ∓
√
V2 − 4B

)

and C3act/inc/cont
=

Fact/inc/cont

B
.

In the Equation (34), the r1 and r2 terms are negative because
√
V2 − 4B is positive

and less than V .
From Equation (5) and (34), we can find the Tenv(t) for active and inactive CPU

operations as follows,

T
act/inc

env (t) =
1

kTσ1

(

C1act/inc
r1e

r1t + C2act/inc
r2e

r2t − σ1(Pact/inc + kc)
)

+
β1

kTσ1

(

C1act/inc
e
r1t + C2act/inc

e
r2t + C3act/inc

)

. (35)

We consider the system operates in interleaved active and inactive power modes over
given interval size; the initial temperature of given period is the final temperature
of the previous period. Given Tcpu(tb) and Tenv(tb), fixed Pd

cpu and Penv, we may obtain
C1, C2 by solving Equations (34) and (35), where tb is the initial time of the interval.
Further, we derive the C as follows,

C1act/inc/cont
(tb) =

1

r1 − r2

(

r2C3act/inc
+ σ1 (Pact/inc/cont + kC + kTTenv(tb))− (β1 + r2)Tcpu(tb)

)

,

C2act/inc/cont
(tb) =

1

r2 − r1

(

r1C3act/inc
+ σ1 (Pact/inc/cont + kC + kTTenv(tb))− (β1 + r1)Tcpu(tb)

)

,

C3act/inc/cont
(tb) =

(β2σ1 + σ1σ2kT) (Pact/inc/cont + kC) + σ1σ2kTPenv(tb)

β1β2 − k2
Tσ1σ2

. (36)

Note that, here we replace the initial power settings Pd
cpu(t) with Pact. We use the

Equation (34) and (35) to derive the temperature of the system at the end of each
period. Therefore, consider the CPU temperature at any active period, (nΠ, nΠ + Θ]
and adjacent inactive (nΠ+ Θ, (n+ 1)Π] period (details given in the tech report).

T
act

cpu (nΠ+Θ) = T
act

cpu (nΠ) + C1act(nΠ)(er1Θ − 1) + C2act(nΠ)(er2Θ − 1) (37)

T
inc

cpu((n+ 1)Π) = T
act

cpu (nΠ) + C1inc(nΠ+Θ)(er1(Π−Θ)
− 1) + C2inc(nΠ+Θ)(er2(Π−Θ)

− 1)

+ C1act(nΠ)(er1Θ − 1) + C2act(nΠ)(er2Θ − 1) (38)

5We justify the need for Fcont in the Tech report) under PWM Error Calculation

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 P. Hettiarachchi et al.

Therefore, we can derive the equation for the period (nΠ, (n+ ς)Π] is as follows.

T inc
cpu((n+ ς)Π) =

ς−1
∑

i=0

C1inc ((n + i)Π + Θ)(er1(Π−Θ) − 1) +

ς−1
∑

i=0

C2inc ((n+ i)Π + Θ)(er2(Π−Θ) − 1)

+ T act
cpu(nΠ) +

ς−1
∑

i=0

C1act ((n+ i)Π)(er1Θ − 1) +

ς−1
∑

i=0

C2act ((n+ i)Π)(er2Θ − 1),

= T act
cpu(nΠ)

+

ς−1
∑

i=0

2
∑

j=1

(

C(j)inc
((n + i)Π + Θ)(er(j)(Π−Θ)

− 1) + C(j)act
((n + i)Π)(er(j)Θ − 1)

)

.(39)

Please note that the above Equation (39) is inductively defined, as the constants for
the boundary conditions can be derived from the Equation (36) which are in terms of
previous values of Tcpu and Tenv.

Now we use the same approach to derive the environment temperature Tenv (the
details given in the tech report) and derive the following for the period (nΠ, nΠ + ς] is
as follows,

T inc
env((n+ ς)Π) = T act

env(nΠ) +

ς−1
∑

i=0

C1inc ((n + i)Π + Θ)(er1(Π−Θ) − 1)
r1 + β1

kT σ1

ς−1
∑

i=0

C2inc((n + i)Π + Θ)(er2(Π−Θ) − 1)
r2 + β1

kT σ1
+

ς−1
∑

i=0

C1act ((n+ i)Π)(er1Θ − 1)
r1 + β1

kTσ1

+

ς−1
∑

i=0

C2act ((n + i)Π)(er2Θ − 1)
r2 + β1

kT σ1

= T act
env(nΠ) +

ς−1
∑

i=0

2
∑

j=1

(

C(j)inc
((n + i)Π + Θ)(er(j)(Π−Θ)

− 1)
r(j) + β1

kTσ1

+ C(j)act
((n+ i)Π)(er(j)Θ − 1)

r(j) + β1

kTσ1

)

. (40)

In the Equation (40), the constants for the boundary conditions can be derived from
the Equation (36).

The CPU and environment temperature calculation equations (Equation (39) and
(40)) gives a possible way to calculate the temperature states of the system, provided
that we know a single boundary condition. Therefore, when we calculate the thermal
resiliency and the PWM error for second-order thermal model, Equation (39) and (40)
are used.

A.2. Calculation of State-Space Parameters Using Testbed Results

The state-space parameter generation process needs input and output data collected
over sufficiently larger period. Unlike the testbench output (Tcpu + Tenv reading–
measured using T-type thermocouple as explained in the Section 4.1), the testbed in-
put, the equivalent CPU thermal input power cannot be measured directly. Instead,
we measure the CPU input power, the closest measurable parameter. We assume the
electrical power consumed by the CPU totally converts to thermal energy and measure
the CPU input power and consider it as the equivalent thermal power6.

6This assumption is realistic because in the CPU (any electrical circuit) the desired objective is to operate its
switches. However each gate (in switches) consume energy and generate heat. There is no any other energy
transformation in an ordinary electrical circuit.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

A Design and Analysis Framework for Thermal-Resilient Hard-Real-Time Systems 39:25

We install two shunt resisters in series with the 4-pin ATX power connector and
measure the voltage (and calculate the current drawn) drop across it using National
Instrument data acquisition interface, NI 9205. Since The NI 9205 does not have a
Linux USB driver, we create an application interface in a Windows computer to connect
with the testbed using the Ethernet. The testbed measures the CPU and environment
temperature and sends a sync signal to Windows computer with NI 9205 interface to
record the ATX current readings. We calculate the the total power fed to the CPU, as
the current drawn by CPU (through the NI measurements) and the voltage of the 4
wire ATX interface are known.

We run a random workload for a longer time period to generate thermal effects on
the CPU and record input (power) and output (CPU temperature) data. We collect two
sets of data from the testbed, one set to generate the model parameters and the other
set validates them. We use standard tools provided by system-identification toolbox in
Matlab to derive the state-space parameters (SSP) with the test data. 7 We use these
SSP in the rest of the simulations and in the controller design.

We observe that when we do the SI process, the thermal output of the CPU is not
sufficient enough to make a accurately measurable temperature difference in the envi-
ronment. Therefore, for the parameter generation purpose, we consider the following:
we use a first order CPU thermal-model, for the parameter generation, considering
that the system environmental temperature stays stable and the the thermal model of
the system is considered as a differential model. In other words, the leakage power of
the testbed is a constant for a given temperature and, therefore when we consider the
differential model (the difference between any steady point to the current point), the
leakage power component need not to be considered for closer operational points.

When we consider the environment temperature is nearly stable over a sufficiently
larger time period, we may get a normalized thermal model of the CPU as follows,

d

dt
Tcpu(t) = σ1

(

kT −
1

Rl
cpu

−
1

Rd
cpu

)

Tcpu(t) + kTσ1Tenv(t) + σ1P
d
cpu(t) + σ1kC . (41)

Consider an another test-point (at tE) during our SI process and assume the same
environmental temperature, then we get, the following differential system model,

d

dt
T̄cpu(t) = AT̄cpu(t) +BP̄

d
cpu(t), (42)

where, T̄cpu(t) = Tcpu(t) − Tcpu(tE), and P̄d
cpu(t) = Pd

cpu(t) − Pd
cpu(tE). Therefore, the

final system that we used in the controller design and the parameter generation may
be considered as the above model.

In our parameter generation process, we use the discrete form of the above state-
space Equation (42). As we shown earlier, the continuous-time state-space model can
converted to discrete-time state-space model and the following discrete model is ob-
tained,

T̄cpu(k + 1) = GT̄cpu(k) +HP̄
d
cpu(k). (43)

This parameter generation can be considered as linearization of our model at the
operating points (at a particular environment temperature point). In our future work,
we will generate linearized system parameters for a smooth operating regions and will
implement a gain scheduled controller.

7We use Predictive Error Method (PEM) algorithm implementation in Matlab.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

