
1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 1

LARS: A Latency-aware and Real-time
Scheduling Framework for Edge-enabled

Internet of Vehicles
Shihong Hu, Guanghui Li, and Weisong Shi, Fellow, IEEE

Abstract—With the development of Internet of Things and mobile computing, the explosive proliferation of latency-sensitive
applications raises high computation demands for mobile devices. To this end, offloading computation of applications to edge-enabled
Internet of Vehicles (IoV) has emerged as an effective solution. However, most of the existing studies on this issue assume that IoV can
be easily formed in the practical environment, and neglect the dependency relationship between tasks of the offloading application. In
this paper, we first give several observations based on the analysis results of the real traffic dataset to verify the feasibility of
aggregating vehicular resources in the real world. Then, we design a Latency-aware Real-time Scheduling Framework for the
edge-enabled IoV, named LARS, in which mobile users can offload applications to LARS, and the offloading tasks can be scheduled to
the appropriate vehicular resources in real-time. First, we propose a clustering-based algorithm to generate Herds, which treats
connected vehicles as edge computation resources to provide cooperative computing services. Second, considering the dependency
relationship between tasks in the job, we present a greedy-based task scheduling algorithm for offloading jobs, the objective of which is
to minimize the total latency of the job as well as maximize the resource utilization of Herds. The simulation experiment based on the
real traffic dataset shows that Herds generated by the proposed clustering-based algorithm can maintain a stable period to provide
computing service, and the experiments on testbed include two case studies demonstrate that the superiority of the proposed scheme
compared to baselines, in terms of latency and resource utilization.

Index Terms—Computation Offloading, Task Scheduling, Internet of Vehicles (IoV), Edge Computing.

F

1 INTRODUCTION

W ITH the development of mobile communication tech-
nology, the rapid proliferation of high-performance

intelligent terminals makes smart applications increase at
a surprising rate. 4G promotes information integration and
industry convergence, and intelligent applications are more
widely used in industries such as finance, education, trans-
portation, medical care, and entertainment. However, the
ever-increasing demand for computing and communication
of applications makes it difficult for intelligent terminals
with limited resources to meet the quality of experience. In
the beginning, traditional cloud computing has been widely
regarded as a feasible paradigm [1]; however, the crowded
transmission and long latency make it hard to meet the
needs of modern applications. Fortunately, edge computing
[2], [3] has emerged as a promising paradigm. In recent
years, academia and industry have done a lot of research
and practical applications on edge computing [4], [5], [6],
[7], [8]. Undoubtedly, edge computing has efficiently solved
the limitations of latency, bandwidth, energy consumption,
security in traditional cloud computing [2]. However, to
establish an edge computing platform for mobile users,

• S. Hu and G. Li are with the School of Artificial Intelligence and
Computer, Jiangnan University, Wuxi, Jiangsu, 214122, China, and S. Hu
is also with the Department of Computer Science, Wayne State University,
Detroit, MI 48202, and G. Li is also with the Research Center for
IoT Technology Application Engineering (MOE), Wuxi, Jiangsu, 214122
China. (e-mail: jnuhsh@ 163.com, ghli@jiangnan.edu.cn)
(Corresponding author: Guanghui Li.)

• W. Shi is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202. (e-mail: weisong@wayne.edu)

what needs attention is that we have to deploy and main-
tain a tremendous number of high-cost edge servers in
a large-scale area, which inevitably leads to large capital
expenditures and business expenditures. Also, the intensive
deployment of edge servers will lead to idle and waste
of resources during off-peak hours, considering the user’s
dynamic time-varying demand for resources.

The emerging concept of Internet of Vehicles (IoV) [9]
is employed to collect real-time traffic conditions for trans-
portation control systems. Remarkably, the powerful on-
board computer, high-capacity storage, and more advanced
communication module configuration make future vehicles
more intelligent. Hence, the idea of edge-enabled IoV is
to treat connected vehicles as edge computation resources
to form a cooperative computing cluster and make full
use of the tremendous resources that are under-utilized.
Furthermore, without deploying additional servers, the con-
cept of edge-enabled IoV can also efficiently alleviate the
congestion of the network during peak time. For example,
Zhang et al. [10] exploited the fog capability of parked
vehicles to help the latency-sensitive computing services.
Therefore, the edge-enabled IoV as a new paradigm is an
excellent complement to traditional edge computing.

Although there have been a large number of studies on
IoV [11], [12], [13], [14], most of them are based on the
assumption that IoV can be easily formed in the practical en-
vironment, ignoring the feasibility of IoV in the real world.
Given such an observation, we evaluate the feasibility of IoV
formation in a realistic environment by analyzing the real-
world vehicle dataset. In this paper, we consider an edge-

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 2

enabled IoV in a fixed geographical region, composed of
several dynamic Herds. Besides, the mobility of vehicles and
the dynamic variability of resources make when and where
to form Herds in an edge-enabled IoV become a challenging
issue. Therefore, we design an edge computing framework
for the edge-enabled IoV, which can form Herds periodically
and provide computing service for latency-aware applica-
tions dynamically. In the previous research on computation
offloading of applications, most of the applications were
simulated as a single task or multiple unrelated tasks [15],
[16], [17]. However, in practical applications, the data re-
lationship between tasks can not be ignored. For example,
in an object recognition application, object detection can be
performed after the feature extraction task is completed.
Therefore, we considered the task dependencies between
tasks while designing the task scheduling algorithm. More-
over, most works focus on optimizing the offload strategy it-
self based on the assumption that computing is offloaded di-
rectly to the edge. It is worth pondering whether offloading
computing from users to the edge will achieve performance
gains, such as reducing latency. In addition, applications
from users are continuously generated and dynamically
submitted to the edge-enabled IoV for real-time or near-
real-time processing. Naturally, fast scheduling response is
needed to keep up with the dynamic environment, which
further exacerbates the difficulty of task scheduling in real-
time systems.

Accordingly, the aforementioned observations and chal-
lenges motivate us to design an edge computing framework
for IoV, named LARS, aiming to form Herds periodically to
collaborate to provide computing service for applications.
First, we use the realistic traffic dataset of Shenzhen city
to analyze the feasibility of forming Herds in a practical
environment. Then, based on the mobility and resource
state of vehicles, we employ a classic clustering algorithm
K-means to generate Herds, named GetHerds. In LARS, an
application from the mobile user need to be partitioned
into several tasks to generate a task dependency graph.
Considering the characteristics of different tasks and the
real environment, we design an accelerated evaluation to
form an offloading job. To reduce the latency of jobs and
maximize the resource utilization of Herds, we propose a
Greedy-based Task Scheduling Algorithm, namely GBTSA,
to schedule tasks to the appropriate workers and sort the
tasks on each worker. The main contribution of this study
can be summarized as follows:

• The feasibility of forming Herds in an edge-enabled
IoV is verified by analyzing the real-world traffic
dataset. The analysis results summarize the peak
time of the day and the hot spots where vehicles
gathered, which provides strong realistic conditions
and a basis for the design of the LARS platform.

• In one edge-enabled IoV, according to the mobility
state of vehicles such as speed, location, and trajec-
tory, as well as the resource state such as resource
amount and available time of resource, we propose
a clustering algorithm GetHerds to generate Herds to
coordinate to provide computing service.

• LARS, as an edge computing platform, is designed to
manage the Herds in the covered region of an edge-

enabled IoV and decide whether the task should be
offloaded to Herds. Besides, we also propose a task
scheduling algorithm called GBTSA for offloading
jobs, the objective of which is to minimize the to-
tal latency of job as well as maximize the resource
utilization of Herds.

• We conduct a simulation experiment based on the
real traffic dataset, and the results show that Herds
generated by GetHerds can maintain a stable period
to provide computing service. To evaluate the perfor-
mance of GBTSA, we build the testbed and conduct
two case studies in a real system. The experimental
results demonstrate that the proposed GBTSA is su-
perior to baselines in terms of reducing the latency
of and maximizing resource utilization.

The remainder of this paper is organized as follows.
Section 2 gives a comprehensive review of related work. In
Section 3, we present the observation of data analysis based
on a real-world dataset and introduce the system model.
Section 4 elaborates on the design of the LARS framework.
The specific dynamic scheduling includes GetHerds and
GBTSA are illustrated in Section 5. Section 6 provides the
results of the simulation experiment, as well as the exper-
iments on the testbed, including two case studies. Finally,
Section 7 concludes our work.

2 RELATED WORK

Cyber foraging [18] coined by Satyanarayanan is a pervasive
computing technique where resource-poor mobile devices
offload some of their heavy work to stronger surrogate
machines in the vicinity, which is the origin of computa-
tion offloading. Since then, computation offloading in cloud
computing [19], [20] and mobile computing [21], [22] has
started to affect the industry. In recent years, to cope with
the proliferation of real-time applications, such as video
analytics [23] and autonomous driving [24], computation
offloading in edge computing has attracted widespread
attention. As a new computing paradigm, edge computing
pushes the computing from the centralized cloud to the
decentralized edges, close to users, and thus effectively
reduces communication latency [3] and network traffic of
the core network. By deploying a large number of edge
infrastructures, such as base stations (BSs), roadside units
(RSUs), cloudlets [25], micro data centers (DCs), etc., to
form a hierarchical computing architecture: the cloud cen-
ter, the edge, and users. Therefore, offloading computation
requests of latency-sensitive applications to edge-centric
computing has become a hot research topic. Some stud-
ies developed the computation offloading problem as a
non-linear optimization program (NLP) or a mixed-integer
(MLP) program [26], [27], [28], [29]. The authors in [28]
considered the energy constraints of mobile devices and dy-
namic network conditions to form a NLP and transformed
the NLP into an equivalent integer linear program (ILP).
Differently, Alameddine et al. [29] jointly combined the task
offloading and scheduling problem into a MLP, based on
the technique of the logic-based benders decomposition,
they also designed a thoughtful decomposition to solve the
problem. Particularly, many computing offloading strategies
based on deep learning have emerged in the past two years

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 3

[30], [31], [32], [33]. The authors in [31] jointly considered
server selection and data transmission mode. They em-
ployed a deep Q-learning approach to design an optimal
offloading scheme, aiming to optimizing system utilities
and improving offloading reliability. Besides, Huang et al.
[32] proposed a distributed deep learning-based offloading
(DDLO) algorithm to conserve energy and maintain quality
of service, and they used multiple parallel DNNs to gener-
ate offloading decisions. In [33], the authors exploited the
optimization problem of the content placement and content
delivery in vehicular edge computing and networks. They
designed a deep reinforcement learning (DRL)-based coop-
erative caching scheme to provide low-complexity decision
making and adaptive resource management.

To compensate for the deficit resources of edge servers,
edge-enabled IoV uses the existing underutilized vehicular
resources in urban areas to provide computing services. It
is noted that many studies use parked vehicles to enable
IoVs [34], [35], [36], [37]. Li et al. [36] investigated a parked
vehicular cloud paradigm, based on the contract; they de-
signed an incentive mechanism to make parked vehicles
contribute idle resources. Similarly, the basic idea in [34],
[35], [37] is to aggregate potential vehicular resources in the
parking lot to form a stationary cloud to provide users with
computing resources. Moreover, many works have been
done on investigating task offloading in mobile vehicular
edge computing in recent years. To deal with the big data
on IoVs in the smart city, the authors in [38] proposed a
regional cooperative fog-computing-based intelligent vehic-
ular network architecture, aiming to provide low-latency
coordination services. Qiao et al. [14] presented a collabora-
tive task offloading and output transmission mechanism for
vehicular edge networks to guarantee low latency as well as
application-level performance. Besides, by leveraging deep
reinforcement learning, Ning et al. [17] built an intelligent
offloading system for edge-enabled IoV, and they formu-
lated the task scheduling and resource allocation problems
to be a joint optimization problem. Differently, the work
in [39] proposed an optimization model taking account of
the communication and computing budgets as well as the
failure probability. This is the first work to consider the of-
floading failure probability in heterogeneous vehicular edge
computing. In summary, the studies on task offloading in
IoV always can be formulated as an optimization problem,
and there exist many approaches to address this problem,
such as matching theory [40], [41], Lyapunov optimization
[42], game theory [43], [44], [45], and deep learning-based
[17], [46]. However, most of the existing works about task
offloading focus on single task offloading or ignore the
dependencies between tasks. Furthermore, the researchers
put their attention on designing task offloading strategies
based on the assumption that the realistic conditions of IoV
are satisfied.

Particularly, to verify the feasibility of forming vehic-
ular micro clouds (VMC) under practical road conditions,
Higuchi et al. [47] firstly analyzed a realistic vehicle probe
dataset of Luxembourg city, and the results showed that
the connected VMCs could be formed at many locations
throughout the road networks. Inspired by this work, we
use the traffic dataset in Shenzhen city to analyze the feasi-
bility of forming Herds and hot pot areas in the urban area.

The difference is that we also design the K-means-based
algorithm to generate Herds, which makes the foundation
for the design of the LARS framework. More importantly, to
minimize the total latency of the job as well as maximize the
resource utilization of Herds, the proposed task scheduling
algorithm considers the task dependency of an offloading
job, as well as the dynamic real-world system conditions.

3 OBSERVATION AND SYSTEM MODEL

This section presents the observation of data analysis based
on a real-world dataset and introduces the system model.

3.1 Observation

Before introducing the system model, we analyze a realistic
traffic dataset of Shenzhen, China [48]. The dataset covers
the traffic data of more than 10000 taxis for 24h on October
22, 2013, and collects data about every 30s. First, we count
the number of vehicles at each hour to analyze the peak time
of the day. As shown in Fig. 1, from 24:00-4:00, the number

0 5 1 0 1 5 2 0 2 59 4 0 0

9 5 0 0

9 6 0 0

9 7 0 0

9 8 0 0

9 9 0 0

Nu
mb

er
of

ve
hic

les

T i m e (2 4 h)

Fig. 1: The mobile vehicle distribution at different time of a
day

Fig. 2: Hot pots in the city during 18:00-18:05.

of active vehicles gradually decreases; this is because people
are in the sleep period. From 5:00, as people start a busy day,
the number of vehicles increases apparently. Furthermore,
we can observe that the peak time of a day is from 18:00
to 20:00 with the largest number of active vehicles in this
period, as this period is the rush time for off-work and
nightlife. In this case, a large number of application requests
from mobile users will be generated, and the gathered
resources of mobile vehicles on the road can be used to
process application requests. Then, we select one period
from 18:00-18:05 to count the hot pots where the vehicles
gather.

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 4

TABLE 1: Summary of Key Notation

Notation Description Notation Description
M Set of Herds V Set of vehicles equipped with edge servers
J Set of offloading jobs from users Tarrive

j Arrive time of job j
Gj Task dependency graph Tj Task set of job j
Lj The dependency between the tasks of job j pr(ti), su(ti) Set of precursors, successors of task ti
Mv(τ) Mobility state of vehicle v at time slot τ Lv Location of vehicle v
Sv Speed of vehicle v ρv Trajectory of vehicle v
Rv(τ) Resource state of vehicle v at time slot τ Cv Amount of computing resource of vehicle v
θv Available time of resource in vehicle v Cacc

i Computing acceleration of a single task
I′, I Set of tasks that can/cannot be processed in parallel Cacc

I′ Computing acceleration of parallel processed tasks
T local
i Local computation latency of task j T offloading

i Offloading computation latency of task j
wi Workload of task i rj Transmission rate of user j to the controller
pj Local processor speed of user j p0 Processor speed of vehicles
l Round trip time overhead Nworker

local Number of workers locally
Nworker

m Number of workers in Herd m Cacc
I′,Max

Maximum computing acceleration speedup

T j
tole tolerant latency of job j Pm Unit price of computation of Herd m
Nworker

j′,m Number of workers in Herd m occupied by job j Rm Resource utilization of Herd m
T star
i Ideal start time of task ti T end

i End time of task ti
T send(lk,i) Time of sending the results from task tk to task ti Twork

p Actual working time of worker p
T pro
i Processing time of task ti T̂ end

i Effective end time of task ti

TABLE 2: Number of vehicles in different hot points.

Hot point Location(latitude, longitude) Number of vehicles

A (114.143951, 22.554733) 212
B (114.062286, 22.531733) 195
C (114.017915, 22.544110) 169
D (114.064072, 22.531475) 162
E (114.059547, 22.526449) 178
F (114.278999, 22.724501) 181

0 3 0 0 6 0 0 9 0 0 1 2 0 0 1 5 0 0 1 8 0 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

CD
F

T h e d i s t a n c e b e t w e e n v e h i c l e s

Fig. 3: The distance between vehicles.

Fig. 2 shows the aggregation of vehicles during this
period, and we can see that there are lots of hot points in the
entire city. In this study, a vehicle that belongs to one edge-
enabled IoV at one period can contribute its idle virtualized
resources to it. As we all know, the LTE [49] is more likely
to be used as the communication protocol of V2I, and the
effective communication range of LTE is 2km. We randomly
select different locations from the hot points in Fig. 2 and
count the number of vehicles within the range of 2km. From
Table 2, we know that there are lots of vehicles within the
communication range of the selected point. For example, the
number of vehicles is more than 200 of point A. Moreover,
the average number of vehicles within the selected hot
points is about 183, which strongly verifies the feasibility
of forming edge-enabled IoVs in the urban area. However,
how to manage so many vehicles in one edge-enabled IoV
is an intractable problem. Based on the results of Table 2,

we introduce the concept of Herd, which consists of several
vehicles with similar locations and similar resources, thus
can provide computing services in cooperation with each
other in one edge-enabled IoV. Considering the high-speed
mobility of vehicles, the communication of V2V usually
adopts the DSRC channel [50]. Generally, the communica-
tion range of DSRC is 300m. Here, we count the distance
between vehicles in the covered region of point A to verify
the feasibility of forming Herds in an edge-enabled IoV. Fig. 3
shows the probability distributions at different distances
between vehicles, and we can observe that the probability
of distance within 300m between vehicles is about 0.45. It
means that there are about 95 vehicles within 300m distance
according to Table 2, which guarantees a sufficient number
of vehicles satisfying the V2V communication to form Herds.
As a result, how to coordinate so many vehicles in the
edge-enabled IoV to form Herds is challenging, and we will
introduce the proposed method of forming Herds in Section
5.

3.2 System model

We consider an edge-enabled IoV in this paper, as shown in
Fig. 4. All vehicles equipped with powerful edge servers in
the communication range of controller (BS or RSU) form a
vehicular network, and several different vehicles aggregate
into different Herds in one edge-enabled IoV. The controller
is responsible for vehicle information collection, resource
coordination, and task assignment in its edge-enabled IoV.
During the peak period, once the computing request from
the mobile user approaches the processing peak of the con-
troller, the controller will periodically trigger the vehicles
in the edge-enabled IoV to form several Herds to provide
computing resources for mobile users. The details for how
to form Herds will be illustrated in Section 5. In an edge-
enabled IoV, let V denote the set of vehicles equipped with
edge servers, M denote the set of Herds, and Vm denote
the set of vehicles in Herd m. Mobile users in the covered
region of the edge-enabled IoV can offload some comput-
ing tasks to the controller by paying for leased resources

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 5

BS/RSU

IoV

Herd

Fig. 4: System model.

to get high QoS. We use J denote the set of offloading
jobs from users, and a certain job can be formulated as
Jj =

{
tarrivej , Gj

}
, where tarrivej and Gj represent the

arrival time and task dependency graph, respectively. More-
over, Gj = {Tj , Lj} is modeled as a directed acyclic graph
[51], [52], [53], Tj = {t1, t2, ...} is the task set of job j,
and Lj is the dependency between the tasks. For example,
lk,i ∈ Lj means that the input data of task ti is based
on the results of task tk; that is, ti is the precursor of tk
. We use pr (ti) denote the set of precursors of task ti,
and su (ti) represents the set of successors of ti. Fig. 5(a)
shows a directed acyclic graph example for a job j. Job j
contains six tasks, Tj = {t1, t2, ..., t6}. From Fig. 5(a), we
know that the precursor of t6 is pr (t6) = {t3, t4, t5} and the
successor of t1 is su (t1) = {t3, t4}. More specifically, the
task graph of Fig. 5(a) represents a traffic monitoring job.
The video frames collected by roadside surveillance cameras
are input into t1 for motion detection. At the same time, the
images are input into t1 for preprocessing. Then, the results
of t2 will be sent to t3 for pedestrian detection and t4 for
vehicle recognition. And, the results of t2 will be sent to
t5 for plate detection. Finally, the results of t3, t4 and t5
will be aggregated into t6 for result generation. Besides, we
also consider more complicated task graphs, the alternative
structure. For example, as shown in Fig. 5(b), t3 and t5 are
mutually parallel optional tasks, which represent “or” nodes
and are marked in blue. Only one “or” node of the same
color can be selected. Thus, in this task graph, the input of
last task t6 has two choice, one is t3 and t4, the other is t4
and t5.

t1

t2

t3

t4

t5

t6

l1,3

l1,4

l2,5

l3,6

l4,6

l5,6

(a) An instance of sequential
structure of task graph.

t1

t2

t3

t4

t5

t6

l1,3

l1,4

l2,4

l2,5

l3,6

l4,6

l5,6

(b) An instance of alternative
structure of task graph: the blue
circle represents a “or” node.

Fig. 5: Different structures of task graph.

4 LARS FRAMEWORK DESIGN

LARS is designed as an edge computing framework for
edge-enabled IoVs. LARS periodically forms Herds, which

provide computing service for latency-aware applications
dynamically. The main components are applications gen-
erated by mobile users and Herds composed of mobile
vehicles. At the peak time, when the computing demands
from users are close to the controller’s load, the controller
will periodically schedule the vehicles within the range
of the edge-enabled IoV to form several Herds, thereby
cooperating to provide computing services for mobile users.
The proposed architecture of the LARS framework is shown
in Fig. 6.

4.1 Controller
As shown in Fig. 7, the controller will collect the mobility
state and resource state information of all vehicles peri-
odically. Mobility state information includes the location,
the current speed, and the trajectory based on the GPS
navigation system. Resource state information informs the
available resource amount and the available time of the
vehicle. Especially, the resource amount is represented as
the number of workers in this study. Each vehicle that enters
or gets out the covered region of the edge-enabled IoV will
send a register or released message to the controller. Based
on the collected information, the controller decides how
to generate Herds and estimates the available virtualized
resource pool.

4.2 Application
In LARS, as shown in Fig. 6, an application from the mobile
user need to be partitioned as several tasks to generate
a task dependency graph. The techniques of application
partition are beyond the scope of this study. An accelerated
evaluation needs to be performed before task offloading
due to the characteristics of different tasks and the real
environment. Then, the offloading controller will submit the
job composed of a set of tasks to the framework by user
API. According to the information of the offloading job, the
job assigner first selects the most appropriate Herd. Then,
the task scheduler calls the resource service through the
internal APIs to give the optimal task provisioning message,
as shown in Fig. 6 and Fig. 8. In particular, if the Herd
resource becomes unavailable before the task is completed,
the task will be migrated. In this regard, the controller of
LARS must call another Herd to take over the task. The
problem of task migration is beyond the scope of this paper.

5 DYNAMIC SCHEDULING

In this section, we give the detailed algorithm of generat-
ing Herds, problem formulation, and the task scheduling
scheme.

5.1 Herds generator
The available resources and available time of each vehicle
are very different. To coordinate vehicle resources to pro-
vide services to users, forming a Herd as a cluster with a
similar amount of resources and similar available time can
maximize resource utilization and reduce task failure and
migration rates. In this study, we use the classic clustering
algorithm K-means to generate Herds. Algorithm 1 describes
the procedure of the specific process.

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 6

LARS platform API

Aplication

Task 1

LARS platform User API

Task 2 Task 3

...Task 5

Task 4

Aplication Partition

Offloading Controller

Acceleration Evaluator

OS

worker 1

worker 2

worker n

worker 3

Task executor

Task5

Task2

Task3

Task4

Task1

...

τ1 τ2 τ3

Time

Platform Internal API

Virtualized Resource Pool Virtualized Resource Pool

Herd Manager

Herd Generator

Resource Virtulization

Job assigner

OS

Job

Task scheduler

Fig. 6: The architecture of LARS framework.

Release message

Reported message

Information Collection

Release message

Reported message

Mobility state

Resource state

Speed

Trajectory

Location

Availability time

Resource amount

Periodic

reported

message

Herd information

e.g 2, 3, 5

Herd Generator

Mobility prediction

Resource analysis Virtualized resource

1 12
2

3
3

4
4

5
5

Fig. 7: Herd generator.

...
...

...

...

Job request

Job allocation

User

.

.

.

BS/RSU

Herds

Herd1

Herdn

Task scheduler

Job assigner

Task provisioning
Task provisioning

Fig. 8: Request process.

The proposed GetHerds aims to generate Herd clus-
ters in the edge-enabled IoV every interval time τ . Note
that the input information includes the mobility state
Mv(τ) =< Lv, Sv, ρv > and available resource state
Rv(τ) =< Cv, θv > of all vehicles in the edge-enabled IoV.
For Procedure HerdGenerator, firstly, each vehicle forms
an information array Fv consisting of the location Lv , the
amount of computing resource Cv , and the available time
of resource θv (Lines 2-4). Then, the vehicle data matrix
DR composed of the information array of all vehicles
has been obtained (Line 5). Based on vehicle data ma-
trix DR, Procedure HerdGenerator calls for Procedure K-
meansBasedCluster to get the final Herd at time τ (Line 6).
Specially, the location Lv of vehicle v needs to call for Proce-

Algorithm 1 GetHerds

Input: Mobility state Mv(τ) =< Lv, Sv, ρv > and
Rv(τ) =< Cv, θv > of all vehicles

Output: Herds
1: Procedure HerdGenerator
2: for each vehicle v ∈ V do
3: Fv = [Lv = UpdateV ehicleState(Mv, Rv), Cv, θv]
4: end for
5: Get the vehicle data set DR = [F1, F2, ..., Fv]
6: Herds(τ) = K-meansBasedCluster()
7: EndProcedure
8: Procedure UpdateVehicleState
9: for each vehicle v ∈ V do

10: Lv = Lv(τ − 1) + Sv × θv|ρv
11: end for
12:
13: for i from 2 to k do
14: for each vehicle v′ ∈ Vm, v′ 6= v do
15: Calculate dvv′

16: end for
17: ui = argmax(dvv

′), v′ = 1, 2, ...,m, v′ 6= v
18: end for
19: Get the k initialized Herd center u = u1, u2, ..., uk
20: Herds=K-means(u)

dure UpdateVehicleState to get the real-time location infor-
mation (Lines 8-11). Procedure K-meansBasedCluster first
randomly selects one cluster center and then select other
k − 1 centers based on the maximum distance among vehi-
cles (Lines 13-21). Finally, Procedure K-meansBasedCluster
uses the classic cluster algorithm k-means to generate Herds
(Lines 22-23).

5.2 Offloading controller

Before task offloading, we designed an acceleration evalua-
tor to evaluate whether it is necessary to offload each task
in the task set T after the application partition. Computing
acceleration refers to the speedup in latency of processing a
task. Fig. 5 shows two instances of task graph, and we know

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 7

that some tasks have no dependencies between each other
can be processed in parallel, while some tasks need to wait
for all its dependent tasks to complete before they can be
processed. For example, tasks 3, 4 and 5 can be processed in
parallel, and task 6 can be processed after all tasks have been
processed. Therefore, based on these two cases, we give two
ways to evaluate the task’s computing acceleration, which
are expressed as (1) and (2).

Cacc
i =

T local
i

T offload
i

=
wi/pj

di/rj + wi/p0 + l
, (1)

Cacc
I′ =

T local
I′

T offload
I′

=

∑
i∈I′

wi/N
worker
local pj

dI′/rj + max
i∈I′,m∈M

wi/Nworker
m p0 + l

,

(2)
where Cacc

i is defined as the computing acceleration of a
single task and Cacc

I′ represents the computing acceleration
of parallel processed tasks. For Eq. (1), wi denotes the
workload of task i, di is the input data size of task i, pj
represents the local processor speed of user j, p0 stands for
the processor speed of vehicles, rj is the transmission rate
from user j to the controller, and l represents the round
trip time overhead. For Eq. (2), I ′ is the set of tasks that
can be processed in parallel, Nworker

local is the number of
workers locally, Nworker

m denotes the number of workers in
Herd m and M is defined as the set of Herds. Apparently,
Cacc

i > 1 and Cacc
I′ > 1 mean that the latency of local

computation is greater than the total latency of the compu-
tation offloaded to the control center; that is, the computing
acceleration speedup can be obtained by offloading. The
offloading latency includes the transmission delay, the task
processing delay, and the round trip time overhead. The
acceleration evaluator will evaluate each task in the task
graph of the application according to Eq. (1) and Eq. (2).
Then the offloading controller will make a decision and form
an offloading job T off = {t1, t2, ..., tn} based on the result
of the acceleration evaluator.

5.3 Job assigner
In an edge-enabled IoV, the controller manages several
Herds. The differences in computing resources and available
time of different Herds make the controller need to be
weighed in assigning a job to the appropriate Herd. In this
study, we assume that each job seeks to find the Herd with
the most computing acceleration and the lowest cost. The
maximum computing acceleration speedup is defined as
Cacc

I′,Max and the total cost of leased computing resources is
denoted as T j

tolePm, where T j
tole represents the tolerant la-

tency of job j and Pm denotes the unit price of computation
of Herdm. The trade-off of the two objectives is investigated,
and the joint objective is defined as follows:

P1 : maxαCacc
I′,Max +

β

T j
tolePm

,∀m ∈M, (3)

s.t.Nworker
j,m =

T j
tole −max{T local

j ,
∑
i∈I′

wi

p0
}

max
i∈I

wi/p0
, (3a)

Nworker
j,m ≤ Nworker

m ,∀m ∈M, (3b)

T j
tole ≤ θm,∀m ∈M, (3c)

where α, β ∈ [0, 1] are two scalar weights. The constraint
(3a) defines the number of workers of Herd m Nworker

j,m

occupied by job j, and the constraint (3b) indicates that
Nworker

j,m cannot exceed the total number of workers in Herd
m. The constraint (3c) implies the available time θm of Herd
m should be bigger than the tolerant latency T j

tole of job j
. Problem P1 has a deterministic solution and is easy to be
solved.

5.4 Task scheduling
5.4.1 Problem formulation
For a job Jj =

{
T arrive
j , Gj

}
, T arrive

j is the arrival time of
and Gj is the task dependency graph of job j. Each task ti ∈
Gj needs to wait until all tasks in its precursors have been
completed and sent the results to it before starting running.

Definition 1. The ideal start time of task ti is defined as:

T star
i = max

tk∈pr(ti)
(T end

k (tk) + T send(lk,i)), (4)

where T end(ti) denotes the end time of task ti, T send(lk,i)
indicates the time of sending the results from task tk to task
ti. The end time of job j is determined by the maximal finish
time of its all tasks, which can be defined as:

T end(Jj) = max
ti∈Tj

(T end(ti)), (5)

where T end(Jj) represents the end time of job j. For mobile
users, the objective is to minimize the total completion time
of an offloading job j, thus obtaining near-real-time results.
The total completion time of job j is the difference between
the end time and the arrival time, which is expressed as:

Minimize T end(Jj)− T arrive
j . (6)

For the computing service providers, they seek to maximize
resource utilization to reduce energy-related consumption.
For a Herd, its resource utilization refers to the actual aver-
age number of served workers.

5.4.2 Theoretical analysis
It is impossible to obtain optimal solutions because the
problem of task scheduling in dynamic environments is NP-
hard [54], [55]. Two key steps for task scheduling on the
LARS framework, one is to map tasks to the appropriate
worker, and the other is to perform a reasonable execution
order of tasks on the same worker, thereby minimizing the
delay of jobs and maximizing the resource utilization of
Herds. In this study, refer to [56], we apply the minimum
earliest start time first rule (MESTF) to sort the tasks on the
same worker.

Theorem 1. Assume all the tasks in task set T =
{t1, t2, ..., tk} are parallel and their ideal start time satisfy
that T star

1 ≤ T star
2 ≤ ... ≤ T star

k , the total completion time
of task set T = {t1, t2, ..., tk} on the same worker can be
minimized by the MESTF rule.

Proof: See the Appendix.
Fig. 9 gives an example of Theorem 1, the ideal start time

of tasks in task set T = {t1, t2, t3} is T star
1 = 0, T star

2 = 20
and T star

3 = 35, respectively. Besides, assume the processing
time of tasks is T pro

1 = 15, T pro
1 = 10 and T pro

3 = 10. If
we apply the MESTF rule to sort these tasks in worker 1,

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 8

as shown in Fig. 9(a), the processing order is t1 → t2 →
t3, and the total completion time is 45s. However, if we
change the order of t2 and t3, the total completion time is
55s, as shown in Fig. 9(b). As a result, we can know that the
processing order by the MESTF rule can effectively reduce
the completion time of tasks on the same worker.

t1 t2 t3

0 10 20 30 40 50 60

Worker 1

Time (sec)

(a)

t1 t2t3

0 10 20 30 40 50 60

Worker 1

Time (sec)

(b)

Fig. 9: An example of Theorem 1.

Theorem 2. Let pr(ti) = {t1, t2, ..., tm} and T end
1 +

T send(l1,i) ≥ T end
2 + T send(l2,i) ≥ ... ≥ T end

m + T send(lm,i),
task ti start time can be minimized as T star

min (ti) =

min
1≤l≤k

max
{
MT (

⋃l
i=1 ti), T

end
l+1 + T send(l1+1,i)

}
, where

MT (
⋃l

j=1 ti) = minmaxti∈T ′
{
T end
i

}
refers to the maximal

completion time of the task set {t1, t2, ..., tl} base on MESTF
rule.

Proof: See the Appendix.
Corollary. According to Theorem 2, we can obtain the

following corollary: some tasks in the precursors pr(ti) of ti
may not be in the same worker. If there is a task tm satisfies
T send(lm,i) > T pro

m , duplicating the task to the worker
where ti is located can be minimized the total completion
time of ti.

As illustrated in Fig. 10(a), the sample task graph con-
sists of five tasks {t1, t2, t3, t4, t5}. For task t4, its precursors
pr(t4) = {t1, t2, t3}. The time of sending results from
precursors to the task is written on the arrow between them,
and the processing time is also marked around the tasks.
For example, the processing time of task t3 is T pro

3 = 5
and the time sending the result from task t3 to task t4 is
T send(l3,4) = 15. From Fig. 10(b), we know that task t4 has
to wait for all its precursors have been processed and all the
results have been sent to it. Since it takes time for the result
of task t3 to be sent from worker 1 to task t4 on worker
2, the start time of task t4 is delayed to 40s. As shown in
Fig. 10(c), we duplicate the task t3 to worker 2 and the start
time of task t4 can be advanced from 40s to 30s.

Definition 2. The effective end time of task ti is defined
as:

T̂ end(ti) =


min

tq∈su(ti)
(max
tk∈pr(tq)

T end(tk)

− T send(lq,i)), su(ti) 6= ∅,
0, su(ti) = ∅.

(7)

Theorem 3. If task ti satisfies T end
i ≤ T̂ end

i , then the end
time T end

i of ti has no effect on its successors’ start.
Proof: See the Appendix.
To explain Theorem 3 effectively, we give an instance,

as shown in Fig. 11. From Fig. 11, we know task t1
and t2 have been processed, and the end time is 60s
and 80s, respectively. The task t3 is unscheduled and

t4 t5

t1 t2 t3

10 15 5

20
10 15

15

20 25

(a)

t1 t2 t4

0 10 20 30 40 50 60

Worker 2

Time (sec)

t5t3

0 10 20 30 40 50 60

Worker 1

Time (sec)tf(l3,4)=15

(b)

t1 t2 t4

0 10 20 30 40 50 60

Worker 2

Time (sec)

t5t3

0 10 20 30 40 50 60

Worker 1

Time (sec)

t3

(c)

Fig. 10: An example of Corollary.

its successors are t4 and t5, the time of sending results
from t3 to t4 and t5 is 15s and 40s. Based on Eq. 7,
the effective end time of t3 can be calculated as T̂ end

1 =

min
tq∈t4,t5

{
max

tk∈pr(t4)
−T send(l4,3), max

tk∈pr(t5)
−T send(l5,3)

}
=

min {60− 15, 80− 40} = 40. If the task t3 is processed and
the actual end time T end

3 ≤ 40, which means the task t3 has
no effect on its successor task t4’s start time.

t4 t5

t1 t2 t3

15
40

60 80Endtime

Fig. 11: An example of Theorem 3.

According to Theorem 1, Theorem 2 and Theorem 3, we
design a greedy-based task scheduling algorithm, namely
GBTSA, to schedule tasks to the appropriate workers and
sort the tasks on each worker. The detailed process of
GBTSA is described in Algorithm 2.

In the proposed GBTSA, WorkerS denotes the set of
available workers in Herdm and is responsible for recording
the information of available workers; WaitQ represents the
waiting queue and is initialized to be empty before task
scheduling; ExcuS denotes the set of executing tasks and
is also initialized to be empty. Procedure Preparation is
designed to update and sort the tasks in the WaitQ (Lines
3-15). When a new job arrives, all the tasks of the job
will be added to WaitQ and wait to be scheduled for the
optimal workers. Then, the tasks with no precursors or their
precursors have been scheduled will be select in ProT (Line
5). For each task in ProT , if it has a parallel optional task
topti and the optional task is already in the execution queue
ExcuS, the task ti will be deleted from WaitQ; if not, then
the algorithm GBTSA calls for Procedure Schedule to find

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 9

Algorithm 2 GBTSA

1: WorkerS ← Get all the available workers in Herd m
2: WaitQ← ∅;ExcuS ← ∅
3: Procedure Preparation
4: while a new job arrives do
5: Add all the tasks of the new job into WaitQ
6: while WaitQ! = ∅ do
7: ProT = {ti|pr(ti) = ∅ ∪ pr(ti) ⊆ ExcuS}
8: for each task ti ∈ ProT do
9: if topti = ∅ or topti ⊆ ExcuS then

10: [selWorker, reTaskS] = Schedule(ti)
11: ExcuS(selWorker) ← ExcuS ∪ reTaskS ∪

{ti}
12: else
13: delete ti from WaitQ
14: end if
15: end for
16: end while
17: end while
18: EndProcedure
19: Procedure Schedule(ti)
20: selWorker ← NULL; reTaskS ← ∅; MinT ←∞
21: Compute T̂ end(ti) of task ti
22: for each worker wk ∈WorkerS do
23: tempRT ← ∅
24: Use MESTF rule and get T end(ti) of task ti on worker

wk

25: while ture do
26: if T end(ti) < MinT then
27: selWorker = wk;
28: MinT = max(T end(ti), T̂

endti));
29: reTaskS ← tempRT ;
30: if T end(ti) < T̂ endti) then
31: break;
32: end if
33: end if
34: St← argmaxtk∈pr(ti)(T

end(tk) + T send(lk,i))
35: if St! = NULL & St 6∈ tempRT & St 6∈

ExcuS(wk) then
36: tempRT ← tempRT ∪ {St}
37: Assuming that all the tasks in tempRT are re-

executed on wk

38: Update T end(ti) of task ti
39: else
40: break;
41: end if
42: end while
43: end for
44: EndProcedure

the optimal worker selWorker and the set of tasks reTaskS
associated with it that need to be duplicated. Finally, the task
and its reTaskS will be added into ExcuS(selWorker)
of selected worker (Lines 8-10). Procedure Schedule gives
a detailed process of task scheduling based on Theorem 1,
Theorem 2 and Theorem 3. Note that selWorker denotes
the selected worker for task ti, reTaskS is used to record
the tasks needed to be re-executed, and MinT stands for
the minimal end time of task ti. Firstly, Procedure Schedule

computes the effective end time of task ti (Line 18). Then,
Procedure Schedule tries to schedule task ti to a worker
satisfying T end(ti) < T̂ end(ti) (Lines 25-26), which greatly
reduces the probability of task migration. If it is infeasible,
the worker with the minimal end time of task ti will be
recorded (Lines 21-24). Using the advantage of Theorem
2, Procedure Schedule strives to advance the start time of
task ti by re-executed some tasks in its precursors (Lines 16-
35). Besides, the selected tasks are added into tempRT and
the iteration until the start time of task ti can no longer be
advanced.

6 EXPERIMENTS AND EVALUATION

In this section, we aim to evaluate the performance of
two proposed algorithms, including GetHerds and GBTSA.
First, we carry on a simulation experiment for the proposed
GetHerds. Second, we introduce the experimental hardware
and environment setup and present evaluation results under
two study cases for GBTSA.

Fig. 12: The snapshot of vehicles at time 18:00.

TABLE 3: The results of 10 generated Herds. Acronyms used
in this Table: Average Distance (AD), Differences of Speed
(DoS), Differences of Resource Amount (DoRA), Differences
of Available Time (DoAT).

Herd AD DoS DoRA DoAT

1 297 3.8678 1.1662 7.9095
2 286 3.2619 0.8944 6.2097
3 231 3.7202 1.1662 5.831
4 255 2.0591 0.8 10.4881
5 272 4.4091 0.4899 6.7646
6 210 3.9699 1.0198 6.5605
7 283 2.7568 0.4899 8.7316
8 266 2.4166 0.9798 6.5238
9 247 2.5612 0.4899 8.6348
10 295 4.4452 0.7483 8.0895

6.1 Simulation Results

In this simulation, we use the real traffic dataset of Shenzhen
city introduced in Section 3. We select one point (114.143951,
22.554733) as the controller location, and the communication
between controller and vehicle is assumed to be LTE. Within
a 2km covered region of the controller, all the snapshot
locations of vehicles, as well as speed data at time 18:00
on October 22, 2013, are used for simulation, as shown in

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 10

TABLE 4: The average results of different number of Herds.
Acronyms used in this Table: Average Distance (AD), Av-
erage Differences of Speed (ADoS), Average Differences of
Resource Amount (ADoRA), Average Differences of Avail-
able Time (ADoAT)

Number of Herds AD ADoS ADoRA ADoAT

10 264 3.3467 0.8244 7.5743
15 252 2.8122 0.6421 6.9856
20 250 2.7723 0.6678 5.7342
30 244 2.4124 0.7012 6.3251
40 239 2.4781 0.5908 6.6624
50 232 2.2912 0.6186 5.5929

Fig. 12. In this paper, the resource state of vehicles is ran-
domly generated, the range of computing resource amount
Cv is [4, 6], and the range of available time of resource APv

is [3, 5]min. To evaluate the stability and cohesiveness of
generating Herds by GetHerds, we use Euclidean distance
to evaluate the state similarity of all vehicles in each Herd in
terms of speed, resource amount, and available time. Table 3
shows the results of the selected 10 generated GetHerds.
From Table 3 and Table 4, we can see the average distance
between vehicles of each Herd is all below 300m, which
satisfies the V2V communication condition. The speed of
the real vehicle at peak time is distributed between 20km/h
and 40km/h. The third column of Table 3 shows that the
speed difference of one Herd is small and Table 4 indicates
that the same observation, and most of the Herds are around
3. Besides, the differences between resource amount and the
available time of most Herds are below 1 and 10, respectively,
which are shown in the fourth and fifth columns of Table 3
and Table 4. In summary, the mobility and resource state of
each generated Herds are similar and can maintain a stable
period to provide computing service.

Laptop

Controller
Herd

User
Desktop RespberryPi 4B

Fig. 13: LARS system implementation .

6.2 Experiment on Testbed
6.2.1 Evaluation Setup
The main purpose of the experiment in this subsection is to
verify the performance of the scheduling algorithm GBTSA.
Thus, we used four edge nodes, one desktop, and one laptop
to build the experimental testbed for LARS. In our experi-
ment, edge nodes are assumed to be the Herd with a stable
and available state, and each edge node is considered as one
computing worker of the Herd, the desktop is responsible
for resource scheduling and management as a controller,
and the laptop is used to generate applications to decide
whether or not offload to the LARS framework. The four

edge nodes are donated from Intel with the same hardware
specifications. All devices and edge nodes are connected
by socket communication. We use the Python SimPy tool
to simulate the Poisson arrival process of jobs. And, the
arrival rate λ is randomly generated from [0.2, 0.5], e.g.,
if λ = 0.2, the expected number of jobs that reach the
system per second is 1/λ = 5. Table 5 gives the specific
information of all hardware used in this evaluation. In
this paper, we employed two real-world applications to
verify the performance of GBTSA. In order to prevent the
occurrence of task migration, we assume that Herd’s stable
working time is greater than the time for all tasks to be
processed.

TABLE 5: Hardware Setup

Platform DESKTOP LAPTOP RaspberryPi 4B

CPU Inter i7-4770 Inter i7-5600U ARM Cortex-A72
Socket 1 1 1
Architecture x86,64 x86,64 ARM
Memory 16 8 4
Disk 1TB SSD 256G SSD 64G SD

6.2.2 Baselines
We compare the performance of GBTSA against the follow-
ing three baselines,

• Local: it means all the tasks of jobs are processed
locally.

• Random: the controller will select a worker of Herd
randomly to process the offloaded task.

• Shortest Transmission Time First (STTF) [57]: it
means that the controller tends to schedule tasks on
the worker that has the shortest estimated latency to
transfer the tasks. The controller maintains a table
to record the latency of transmitting data to each
available worker.

• Shortest queue Length First (SQLF) [57]: it means
that the controller tends to schedule tasks to the
worker which has the least number of tasks queued
upon the time of query.

t1

t2

t3

t4

(a) SS: 4 tasks

t1

t2

t3

t4 t5

(b) SS: 5 tasks

t1

t2

t3

t4
t6

t5

(c) AS: 4 tasks

t1

t2 t5

t3 t6

t4

t7

(d) AS: 5 tasks

Fig. 14: Different task dependency graph: Sequential struc-
ture (SS) or Alternative structure (AS).

6.2.3 Case study 1: Scene Understanding
The scene understanding application can help users grasp
the information of the target environment to make a rea-
sonable judgment. We use ADE20K dataset [58] provided
by MIT for scene understanding experiments. We assume
that four or five scene understanding tasks form a job, and
the dependency of these tasks is predefined in advance. We

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 11

design two types of task graphs for jobs: sequential structure
and alternative structure to impose the task dependency for
jobs. Fig. 14 shows the designed task dependency graphs.
A job with an alternative task structure means that the task
chain to complete the job is optional. As shown in Fig. 14(c)
and (d), the blue and green circle nodes are “or” nodes,
which means that only one “or” node of the same color
can be selected. For example, in Fig. 14(c), we can select t1
and t4 or t3 and t5 for a job. Particularly, jobs are generated
according to Poisson distribution with the arrival rate λ, and
the task dependency graph of each job is randomly selected
from Fig. 14.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0 . 5

1 . 0

1 . 5
2 . 0

2 . 5

3 . 0

3 . 5

Re
spo

nse
 tim

e

J o b I D

 G B T S A
 L o c a l
 R a n d o m
 S T T F
 S Q L F

Fig. 15: Case 1: Response time vs. 20 different jobs.

Application side: From the application side, the objec-
tive of the proposed GBTSA is to minimize the total latency
of an offloading job. In this experiment, the jobs generated
by users follow the Poisson distribution, and the arrival
rate λ is randomly generated from [2, 5]. To show the su-
periority of the proposed GBTSA, we conduct comparative
experiments with baselines. First, we compare the response
time of jobs under different schemes. Fig. 15 shows the
results of 20 jobs under five schemes: the proposed GBTSA,
local computing, random scheduling, STTF and SQLF. From
Fig. 15, in general, we can observe that the response time
of jobs under GBTSA is the lowest, followed by SQLF and
STTF, then random scheduling, and the response time of
jobs is the highest when computed locally. Apparently, the
limited computing resources extend the local latency of jobs.
Besides, STTF and SQLF perform similarly; overall, SQLF
works better than STTF. The STTF scheme tends to schedule
a task to the worker with the least transmitting time. Some-
times a lower total latency will be achieved, but it may cause
a worker to saturate and increase the response time. Also,
the SQLF scheme has a similar problem. Scheduling a task
to the worker with the shortest queue without considering
the transmission latency may lead to an excessive delay in
transmission and increase the response time. We can see that
the response time of job 6 and job 20 is abnormally high, and
this is because the randomness of scheduling may schedule
some tasks to busy workers and thus extending the waiting
time in queue. In contrast, the total latency of each job under
GBTSA remains stable.

Generally, the response time of a job consists of trans-
mitting time, scheduling time in the controller, waiting time
in queue, and processing time on a worker. To investigate
which latency affects the total latency the most, we counted
the different latency of each job. As shown in Fig. 16(a), for
GBTSA, the transmitting time and processing time account

1 2 3 4 5 6 7 8 9 1 00 . 0
0 . 1
0 . 20 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 80 . 9
1 . 0
1 . 1
1 . 2
1 . 31 . 4
1 . 5
1 . 6

Av
era

ge
late

ncy

J o b I D

 P r o c e s s i n g t i m e
 S c h e d u l i n g t i m e
 T r a n s m i t t i n g t i m e
 W a i t i n g t i m e

(a) GBTSA

1 2 3 4 5 6 7 8 9 1 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

Av
era

ge
late

ncy

J o b I D

 P r o c e s s i n g t i m e
 S c h e d u l i n g t i m e
 T r a n s m i t t i n g t i m e
 W a i t i n g t i m e

(b) Random

1 2 3 4 5 6 7 8 9 1 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

Av
era

ge
late

ncy

J o b I D

 P r o c e s s i n g t i m e
 S c h e d u l i n g t i m e
 T r a n s m i t t i n g t i m e
 W a i t i n g t i m e

(c) STTF

1 2 3 4 5 6 7 8 9 1 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5

Av
era

ge
late

ncy

J o b I D

 P r o c e s s i n g t i m e
 S c h e d u l i n g t i m e
 T r a n s m i t t i n g t i m e
 W a i t i n g t i m e

(d) SQLF

Fig. 16: Case 1: Different latency vs. 10 different jobs.

for the largest latency and waiting time also occupies a
small part. The scheduling time in the control center is
very short. It is worth noting that the transmitting time is
a bottleneck factor that causes the total delay, and it will be
the focus of our future research work. Fig. 16(b) shows the
different latency results of 10 jobs under random scheduling;
apparently, the processing time of jobs is the largest part
of the total latency. This is because improper scheduling
makes task processing time longer, as well as waiting time.
Fig. 16(c) and Fig. 16(d) show the different latency results
of 10 jobs under STTF and SQLF, respectively. Like the
previous analysis, STTF has an advantage in transmitting
time compared to SQLF, but SQLF is superior in waiting
and processing time. In general, observing the range of the
y-axis of Fig. 16, we can find that the average latency of
GBTSA is smaller than the other three scheduling schemes.

1 0 2 0 3 0 4 0 5 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0

Av
era

ge
num

ber
 of

 se
rve

d w
ork

ers

N u m b e r o f j o b s

 G B T S A
 R a n d o m
 S T T F
 S Q L F

Fig. 17: Case 1: Average workers vs. different number of
jobs.

Herd side: From the Herd side, the objective is to
maximize resource utilization. We use the average served
workers to evaluate the resource utilization of different
scheduling schemes. From Fig. 17, we can observe that
under GBTSA, no matter how many jobs, the number of
served workers is almost 4. This means that almost all
workers participate in the processing of the job. Followed

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 12

by SQLF, the average number of served workers is almost 3,
which indicates that the SQLF scheme has a relatively good
performance in resource utilization. However, the average
number of served workers of STTF and random schemes
is less than 3, which means only no more than 3 workers
process the job, resulting in low resource utilization. The
randomness of the random scheme and the single tendency
of the STTF scheme for the shortest transmitting time make
them less realizable in terms of resource utilization.

6.2.4 Case study 2: Driving Behavior Detection
The second case study is driving behavior detection, where
security monitors in a traffic sensing application use cap-
tured vehicular images to detect dangerous behavior. For
example, a surveillance camera at the intersection captures
the driver on the phone while driving, and then alerts the
dangers signal to traffic police. We use Berkeley DeepDrive
dataset [59] for driving behavior detection experiments.
Similar to case study 1, four or five tasks are assumed to
be one job, and the task dependency graph of each job
is randomly selected from Fig. 14. Besides, the job arrival
process also obeys the Poisson distribution with the arrival
rate λ.

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

Re
spo

nse
 tim

e

J o b I D

 G B T S A
 L o c a l
 R a n d o m
 S T T F
 S Q L F

Fig. 18: Case 2: Response time vs. 20 different jobs.

1 2 3 4 5 6 7 8 9 1 00 . 00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91 . 01 . 11 . 21 . 31 . 41 . 51 . 61 . 71 . 8

Av
era

ge
late

ncy

J o b I D

 P r o c e s s i n g t i m e
 S c h e d u l i n g t i m e
 T r a n s m i t t i n g t i m e
 W a i t i n g t i m e

(a) GBTSA

1 2 3 4 5 6 7 8 9 1 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5

Av
era

ge
late

ncy

J o b I D

 P r o c e s s i n g t i m e
 S c h e d u l i n g t i m e
 T r a n s m i t t i n g t i m e
 W a i t i n g t i m e

(b) Random

1 2 3 4 5 6 7 8 9 1 00 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0
2 . 4
2 . 8
3 . 2
3 . 6

Av
era

ge
late

ncy

J o b I D

 P r o c e s s i n g t i m e
 S c h e d u l i n g t i m e
 T r a n s m i t t i n g t i m e
 W a i t i n g t i m e

(c) STTF

1 2 3 4 5 6 7 8 9 1 00 . 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

Av
era

ge
late

ncy

J o b I D

 P r o c e s s i n g t i m e
 S c h e d u l i n g t i m e
 T r a n s m i t t i n g t i m e
 W a i t i n g t i m e

(d) SQLF

Fig. 19: Case 2: Different latency vs. 10 different jobs.

Application side: In this experiment, we use the Python
SimPy tool to simulate the job arrival process, and the

arrival rate λ is randomly generated from [2, 5] . Fig. 18
shows the response time results of 20 jobs under five
schemes. Generally, GBTSA still maintains an advantage in
reducing the response time among five schemes. However,
we also observe that the response time of a few jobs under
baselines will be lower than the offloading, which may
be due to unstable communication. In summary, GBTSA
can keep good performance in reducing the response time
compared to baselines in both applications, where exit many
uncertainties in the real system. Further, Fig. 19 shows the
different latency results of 10 jobs under four scheduling
schemes. In this case study, the transmitting time occupies
the largest proportion of the total latency for GBTSA, fol-
lowed by the processing time, as shown in Fig. 19(a). In
contrast, for random scheduling in Fig. 19(b), the processing
time accounts for the largest part of latency. Also, as shown
in Fig. 19(c), the STTF scheme has a similar problem. The
SQLF scheme also shows good performance in reducing
processing time, but the transmitting time accounts for
more. Based on these observations, we should realize that
communication between users and Herds has a great im-
pact on job completion. The stable and fast communication
method is an important technology in edge computing.

1 0 2 0 3 0 4 0 5 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0
5 . 5

Av
era

ge
num

ber
 of

 se
rve

d w
ork

ers

N u m b e r o f j o b s

 G B T S A
 R a n d o m
 S T T F
 S Q L F

Fig. 20: Case 2: Average workers vs. different number of
jobs.

Herd side: Similarly, we employ resource utilization to
compare the performance of these four scheduling schemes.
As shown in Fig. 20, we can see that the average served
workers of GBTSA are almost 4 under the different number
of jobs. Followed by SQLF, the average number of served
workers is bigger than 3. In this case study, the gap between
STTF and SQLF is not very large, and the average number
of served workers under STTF remains at 3. However, for
random scheduling, the number of served workers is less
than 3. As a result, fewer served workers result in lower
resource utilization. In conclusion, the proposed GBTSA
scheme can keep high resource utilization of Herd.

7 CONCLUSION

In this paper, according to observations based on the analy-
sis results of the real traffic dataset in Shenzhen, we verify
the feasibility of forming Herds in an edge-enabled IoV. To
better manage the computing resources in the vehicular
network and provide computing services effectively, we
design a dynamic scheduling framework LARS. In LARS,
a K-means-based clustering algorithm GetHerds is proposed
to generate Herds. Particularly, the task of an application

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 13

should be evaluated to determine whether it can benefit
from offloading to Herds. For offloading jobs, the job as-
signer in the controller first selects the appropriate Herd,
and then a greedy-based task scheduling algorithm GBTSA
is used to schedule tasks to the appropriate workers and
sort the tasks on each worker. The simulation experiment
based on the real traffic data shows that Herds generated by
GetHerds can maintain a stable period to provide computing
service. The experiments on the testbed include two case
studies that show that GBTSA has a good performance in
reducing the total latency of jobs, as well as maximizing the
resource utilization of the edge-enabled IoV. The experimen-
tal results from a testbed reveal that the communication time
is a bottleneck factor resulting in the total latency of jobs.
Based on this observation, we will build an experimental
environment based on 5G communications to make compu-
tation offloading of applications to the IoV more realistic.

ACKNOWLEDGMENTS

This work was supported in part by the scholarship
from China Scholarship Council, in part by the Na-
tional Natural Science Foundation of China (No. 62072216),
Jiangsu Agriculture Science and Technology Innovation
Fund (No. CX(19)3087), Wuxi International Science and
Technology Research and Development Cooperative Project
(No. CZE02H1706), the 111 Project (B12018).

REFERENCES

[1] R. Hussain, F. Abbas, J. Son, and H. Oh, “TIaaS: Secure cloud-
assisted traffic information dissemination in vehicular ad hoc
networks,” in 2013 13th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing. IEEE, 2013, pp. 178–179.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637–646, 2016.

[3] W. Shi, G. Pallis, and Z. Xu, “Edge computing [scanning the
issue],” Proceedings of the IEEE, vol. 107, no. 8, pp. 1474–1481, 2019.

[4] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5g
network edge cloud architecture and orchestration,” IEEE Com-
munications Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[5] B. I. Ismail, E. M. Goortani, M. B. Ab Karim, W. M. Tat, S. Setapa,
J. Y. Luke, and O. H. Hoe, “Evaluation of docker as edge com-
puting platform,” in 2015 IEEE Conference on Open Systems (ICOS).
IEEE, 2015, pp. 130–135.

[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[7] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated
blockchain and edge computing systems: A survey, some research
issues and challenges,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1508–1532, 2019.

[8] O. Krestinskaya, A. P. James, and L. O. Chua, “Neuromemristive
circuits for edge computing: A review,” IEEE Transactions on Neural
Networks and Learning Systems, 2019.

[9] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds,” in 2014
IEEE world forum on internet of things (WF-IoT). IEEE, 2014, pp.
241–246.

[10] Y. Zhang, C.-Y. Wang, and H.-Y. Wei, “Parking reservation auction
for parked vehicle assistance in vehicular fog computing,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3126–3139,
2019.

[11] W. Xu, H. Zhou, N. Cheng, F. Lyu, W. Shi, J. Chen, and X. Shen,
“Internet of vehicles in big data era,” IEEE/CAA Journal of Auto-
matica Sinica, vol. 5, no. 1, pp. 19–35, 2017.

[12] M. Chen, Y. Tian, G. Fortino, J. Zhang, and I. Humar, “Cognitive
internet of vehicles,” Computer Communications, vol. 120, pp. 58–70,
2018.

[13] Z. Ning, X. Hu, Z. Chen, M. Zhou, B. Hu, J. Cheng, and M. S.
Obaidat, “A cooperative quality-aware service access system for
social internet of vehicles,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2506–2517, 2017.

[14] G. Qiao, S. Leng, K. Zhang, and Y. He, “Collaborative task of-
floading in vehicular edge multi-access networks,” IEEE Commu-
nications Magazine, vol. 56, no. 8, pp. 48–54, 2018.

[15] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency
scaling,” IEEE Transactions on Communications, vol. 65, no. 8, pp.
3571–3584, 2017.

[16] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for iot applications:
A learning-based approach,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 5, pp. 1117–1129, 2019.

[17] Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, and F. Xia, “Deep rein-
forcement learning for vehicular edge computing: An intelligent
offloading system,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 6, pp. 1–24, 2019.

[18] M. Satyanarayanan, “Pervasive computing: Vision and chal-
lenges,” IEEE Personal communications, vol. 8, no. 4, pp. 10–17, 2001.

[19] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 26, no. 4, pp. 974–983, 2014.

[20] S. Deng, L. Huang, J. Taheri, and A. Y. Zomaya, “Computation
offloading for service workflow in mobile cloud computing,” IEEE
transactions on parallel and distributed systems, vol. 26, no. 12, pp.
3317–3329, 2014.

[21] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mobile Networks and
Applications, vol. 18, no. 1, pp. 129–140, 2013.

[22] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a
computation offloading framework for smartphones,” in Interna-
tional Conference on Mobile Computing, Applications, and Services.
Springer, 2010, pp. 59–79.

[23] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approx-
imation and delay-tolerance,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017,
pp. 377–392.

[24] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–
3361.

[25] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
case for vm-based cloudlets in mobile computing,” IEEE pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[26] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s
hard to share: joint service placement and request scheduling in
edge clouds with sharable and non-sharable resources,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018, pp. 365–375.

[27] T. T. Nguyen, L. Le, and Q. Le-Trung, “Computation offloading in
mimo based mobile edge computing systems under perfect and
imperfect csi estimation,” IEEE Transactions on Services Computing,
2019.

[28] S. Misra and N. Saha, “Detour: dynamic task offloading in
software-defined fog for iot applications,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 5, pp. 1159–1166, 2019.

[29] H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi, and
C. Assi, “Dynamic task offloading and scheduling for low-latency
iot services in multi-access edge computing,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 3, pp. 668–682, 2019.

[30] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning
for the internet of things with edge computing,” IEEE network,
vol. 32, no. 1, pp. 96–101, 2018.

[31] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Deep
learning empowered task offloading for mobile edge computing in
urban informatics,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
7635–7647, 2019.

[32] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing net-
works,” Mobile Networks and Applications, pp. 1–8, 2018.

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2021.3106260, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2021 14

[33] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, and N. Ansari, “Deep
reinforcement learning for cooperative content caching in vehicu-
lar edge computing and networks,” IEEE Internet of Things Journal,
vol. 7, no. 1, pp. 247–257, 2019.

[34] W. He, G. Yan, and L. Da Xu, “Developing vehicular data cloud
services in the iot environment,” IEEE transactions on industrial
informatics, vol. 10, no. 2, pp. 1587–1595, 2014.

[35] E. Al-Rashed, M. Al-Rousan, and N. Al-Ibrahim, “Performance
evaluation of wide-spread assignment schemes in a vehicular
cloud,” Vehicular Communications, vol. 9, pp. 144–153, 2017.

[36] C. Li, S. Wang, X. Huang, X. Li, R. Yu, and F. Zhao, “Parked
vehicular computing for energy-efficient internet of vehicles: A
contract theoretic approach,” IEEE Internet of Things Journal, vol. 6,
no. 4, pp. 6079–6088, 2018.

[37] T. Kim, H. Min, and J. Jung, “Vehicular datacenter modeling for
cloud computing: Considering capacity and leave rate of vehi-
cles,” Future Generation Computer Systems, vol. 88, pp. 363–372,
2018.

[38] W. Zhang, Z. Zhang, and H.-C. Chao, “Cooperative fog computing
for dealing with big data in the internet of vehicles: Architec-
ture and hierarchical resource management,” IEEE Communications
Magazine, vol. 55, no. 12, pp. 60–67, 2017.

[39] K. Xiong, S. Leng, C. Huang, C. Yuen, and Y. L. Guan, “Intelligent
task offloading for heterogeneous v2x communications,” IEEE
Transactions on Intelligent Transportation Systems, 2020.

[40] F. Chiti, R. Fantacci, and B. Picano, “A matching theory framework
for tasks offloading in fog computing for iot systems,” IEEE
Internet of Things Journal, vol. 5, no. 6, pp. 5089–5096, 2018.

[41] H. Liao, Z. Zhou, X. Zhao, B. Ai, and S. Mumtaz, “Task offloading
for vehicular fog computing under information uncertainty: A
matching-learning approach,” in 2019 15th International Wireless
Communications & Mobile Computing Conference (IWCMC). IEEE,
2019, pp. 2001–2006.

[42] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: An energy-efficient
and incentive-aware task offloading framework via network-
assisted d2d collaboration,” IEEE Journal on Selected Areas in Com-
munications, vol. 34, no. 12, pp. 3887–3901, 2016.

[43] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
edge computing with computation capacity constraints,” IEEE
Wireless Communications Letters, vol. 7, no. 3, pp. 420–423, 2017.

[44] Z. Xiong, J. Kang, D. Niyato, P. Wang, and V. Poor, “Cloud/edge
computing service management in blockchain networks: Multi-
leader multi-follower game-based admm for pricing,” IEEE Trans-
actions on Services Computing, 2019.

[45] D. Zhang, Y. Ma, C. Zheng, Y. Zhang, X. S. Hu, and D. Wang,
“Cooperative-competitive task allocation in edge computing for
delay-sensitive social sensing,” in 2018 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 2018, pp. 243–259.

[46] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and
computing for connected vehicles: A deep reinforcement learning
approach,” IEEE Transactions on Vehicular Technology, vol. 67, no. 1,
pp. 44–55, 2017.

[47] T. Higuchi, J. Joy, F. Dressler, M. Gerla, and O. Altintas, “On
the feasibility of vehicular micro clouds,” in 2017 IEEE Vehicular
Networking Conference (VNC). IEEE, 2017, pp. 179–182.

[48] Y. Yang, X. Xie, Z. Fang, F. Zhang, Y. Wang, and D. Zhang, “Vemo:
Enabling transparent vehicular mobility modeling at individual
levels with full penetration,” in The 25th Annual International
Conference on Mobile Computing and Networking, 2019, pp. 1–16.

[49] S. Chen, J. Hu, Y. Shi, and L. Zhao, “Lte-v: A td-lte-based v2x
solution for future vehicular network,” IEEE Internet of Things
journal, vol. 3, no. 6, pp. 997–1005, 2016.

[50] C. Zhu, J. Tao, G. Pastor, Y. Xiao, Y. Ji, Q. Zhou, Y. Li, and A. Ylä-
Jääski, “Folo: Latency and quality optimized task allocation in
vehicular fog computing,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4150–4161, 2018.

[51] J. Wang, D. Crawl, I. Altintas, and W. Li, “Big data applications us-
ing workflows for data parallel computing,” Computing in Science
& Engineering, vol. 16, no. 4, pp. 11–21, 2014.

[52] L. Wang, Y. Ma, J. Yan, V. Chang, and A. Y. Zomaya, “pipscloud:
High performance cloud computing for remote sensing big data
management and processing,” Future Generation Computer Systems,
vol. 78, pp. 353–368, 2018.

[53] W. Chen, I. Paik, and P. C. Hung, “Transformation-based stream-
ing workflow allocation on geo-distributed datacenters for stream-
ing big data processing,” IEEE Transactions on Services Computing,
2016.

[54] Z. Zhu, G. Zhang, M. Li, and X. Liu, “Evolutionary multi-objective
workflow scheduling in cloud,” IEEE Transactions on parallel and
distributed Systems, vol. 27, no. 5, pp. 1344–1357, 2015.

[55] L. F. Bittencourt, E. R. Madeira, and N. L. Da Fonseca, “Scheduling
in hybrid clouds,” IEEE Communications Magazine, vol. 50, no. 9,
pp. 42–47, 2012.

[56] H. Chen, J. Wen, W. Pedrycz, and G. Wu, “Big data processing
workflows oriented real-time scheduling algorithm using task-
duplication in geo-distributed clouds,” IEEE Transactions on Big
Data, 2018.

[57] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea:
Latency-aware video analytics on edge computing platform,” in
Proceedings of the Second ACM/IEEE Symposium on Edge Computing,
2017, pp. 1–13.

[58] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,
“Scene parsing through ade20k dataset,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 633–
641.

[59] Y. Xia, D. Zhang, J. Kim, K. Nakayama, K. Zipser, and D. Whitney,
“Predicting driver attention in critical situations,” in Asian confer-
ence on computer vision. Springer, 2018, pp. 658–674.

Shihong Hu received the bachelor’s degree in
communication engineering from Jiangnan Uni-
versity in 2016. She is a PhD. candidate of the
School of Artificial Intelligence and Computer,
Jiangnan University. She had been a Visiting
Scholar in Prof. Weisong Shi’s MIST Lab for re-
search on resource scheduling in edge comput-
ing project, Wayne State University, USA, from
2019 to 2020. Her research interests include
wireless sensor networks and edge computing.

Guanghui Li received the Ph.D. degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China, in 2005.
He is currently a Professor with the School of Ar-
tificial Intelligence and Computer, Jiangnan Uni-
versity, Wuxi, China. He has published over 70
papers in journal or conferences. His research
interests include wireless sensor networks, fault
tolerant computing, and nondestructive testing
and evaluation. His research was supported
by the National Foundation of China, Zhejiang,

Jiangsu Provincial Science and Technology Foundation, and other gov-
ernmental and industrial agencies..

Weisong Shi received the B.S. degree fromX-
idian University, Xi’an, China, in 1995, and
thePh.D. degree from the Chinese Academy of
Sci-ences, in 2000, both in computer engineer-
ing.Weisong Shi is a Charles H. Gershenson
Distin-guished Faculty Fellow and a Professor
of ComputerScience with Wayne State Univer-
sity, USA, wherehe directs the Mobile and Inter-
net SysTems Labora-tory (MIST) and Connected
and Autonomous dRiv-ing Laboratory (CAR),
investigating performance,reliability, power- and

energy-efficiency, trust andprivacy issues of networked computer sys-
tems, and applications. He is one ofthe world leaders in the edge
computing research community and publishedthe first book on edge
computing. His paper entitled “Edge Computing: Visionand Challenges”
has been cited more than 1700 times. In 2018, Dr. Shiled the develop-
ment of IEEE Course on Edge Computing. In 2019, Dr. Shiserved as the
lead guest editor for the edge computing special issue on theprestigious
Proceedings of the IEEE journal. He is the Founding SteeringCommittee
Chair of the ACM/IEEE Symposium on Edge Computing (SEC)and
the IEEE/ACM Connected Health: Applications, Systems and Engineer-
ing(CHASE). He is an IEEE Fellow and an ACM Distinguished Scientist.

Authorized licensed use limited to: Jiangnan University. Downloaded on August 22,2021 at 04:57:04 UTC from IEEE Xplore. Restrictions apply.

