
Energy-Efficient Machine Learning on the Edges
Mohit Kumar, Xingzhou Zhang, Liangkai Liu, Yifan Wang, and Weisong Shi
Department of Computer Science, Wayne State University, Detroit, MI 48202, USA

Abstract—Machine learning-based software is vital for future
Internet of Things (IoT) applications and Connected and Au-
tonomous Vehicles (CAVs) as it provides the core value of these
services by leveraging the enormous amount of data collected on
the edge. These services utilize various machine learning models
which make it computationally intensive on the edges. There has
been a lot of work to make the hardware efficient. No matter
how efficient is the hardware, an inefficient machine learning
model can account for high energy consumption and overheating
problem. However, there are very few tools available that can help
software developers or researchers to make the machine learning
models energy efficient.

Our main contributions of this paper are two-fold: First, we
summarize the state-of-the-art techniques about energy-efficient
machine learning on the edges. Second, targeting specific Java
programming language, we present an Eclipse plugin named Java
Energy Profiler & Optimizer (JEPO) which can help in profiling
and optimizing machine learning source code written in Java.
JEPO can automatically measure the energy consumption of
source code at method granularity. It provides energy efficiency
suggestions for data types, operators, control statements, String,
exception, objects, and Arrays in Java. JEPO evaluation has
shown up to 14.46% improvement in energy consumption when
used to optimize the machine learning software WEKA with only
0.48% drop in accuracy.

Index Terms—CAVs, IoT, Software, Java, Energy-Efficiency,
Eclipse Plugin

I. INTRODUCTION

Technologies like Internet of Things (IoT) and Connected
and Autonomous Vehicles (CAVs) have resulted in rapid
growth of data that needs to be processed in real-time for
building machine learning models. IoT devices will hit a
count of 30 billion by 2020 which will produce more than
5 quintillions of data every day [1]. In the future, CAVs will
generate 4TB of data just for one hour driving a day [2]. Due
to latency, bandwidth, availability and privacy constraints, it
is estimated that more than 90% of this data will be processed
locally [3], [4]. Edge computing promises handling these
constraints by processing data locally [5].

In the scenario of IoT applications, lots of edge devices
with unique identifiers are connected to each other for contin-
uously collect, process, and transmit data. Machine learning
models have a plethora of applications in smart homes, retail,
travel, finance, healthcare, industry, social media, and research.
Example of one such application is EdgeBox [6]. EdgeBox
leverages edge computing for automatic video analysis to
detect safety threaten events in real-time. EdgeBox requires
continuous transmission of data to edge node which causes
higher energy consumption. In such applications where hard-
ware is always fully utilized, energy efficient software plays
a significant role in avoiding the overheating of hardware.

Similarly, various machine learning algorithms are deployed
for CAVs scenario for applications like perception, object
recognition and decision making [7]. First, data is collected
using multiple sensors like GPS/IMU, LiDAR, cameras, radar,
and sonar. Then these data will be fed to Deep Neural
Networks for object detection, object tracking, path planning,
and obstacle avoidance. One challenge is how to process huge
amount of data with limited computing resources on the edge.
The real-time processing requirements and battery constraints
make the energy efficiency more challenging. The computing
systems of the CAVs are in badly need of a customized
software and hardware for energy efficiency.

The energy efficiency of machine learning algorithms is
important as IoT or edge devices have limited computation
and energy resources. For the hardware, machine learning
accelerators are proposed which can improve performance and
energy consumption. Intel Nervana Neural Network Processors
and Nvidia DGX-2 are some of the examples of chips released
specifically for machine learning. These chips can run machine
learning models very efficiently. However, the software is one
of the most critical bottlenecks for such chips as it can easily
negate their performance and energy efficiency. No matter how
efficient the hardware is, if it is not managed properly by the
software, it can not help in making IoT or edge devices energy
efficient. Therefore, software is as important as hardware to
optimize IoT and edge devices in terms of performance and
energy. Researches are focused on how to build the energy-
efficient system by optimizing the widely-used techniques,
from hardware to operating system to algorithms. Software
energy consumption can be optimized in several ways like
choosing the energy-efficient option in a programming lan-
guage, using an energy-efficient programming language or
choosing an energy-efficient compiling option.

In this work, we concentrate on command-line level meth-
ods to optimize software energy efficiency. Today’s program-
ming languages provide software developers with several
options to perform the same task. Take Java for example, an
Array can be copied to other Array either manually or using
Java methods. However, not all available options are energy-
efficient and the software developers lack the knowledge to
choose the best energy-efficient option. We perform various
analyses to choose the best option for different components
of the Java programming language [8], [9]. These compo-
nents include data types, operators, control statements, String,
exceptions, objects, and Arrays. We also evaluate different
Java command-line options in [10]. In addition, we found
that there are little software development tools to address
the challenges. So in this work, we present our JEPO tool



to help software developers to write energy-efficient machine
learning code. This tool is an Eclipse IDE plugin which
provides energy-efficient suggestions for Java programming
language. It can provide suggestions dynamically while writ-
ing code or statically to refactor already written code. To
provide suggestions, it analyzes each line of Java file and
matches it to the pool of suggestions that we gather from the
findings in our earlier work [8], [9]. JEPO can also help the
software developers to measure energy consumption at method
granularity to determine the energy-hungry Java methods in
software. To measure the energy, it injects energy and time
measurement code at the start and end of each method in the
project. This injected code leverages Intel Running Average
Power Limit (RAPL) technology to access machine specific
registers (MSR) and measures energy consumption for the
package. We perform the initial evaluation of JEPO using an
open-source machine learning software Waikato Environment
for Knowledge Analysis (WEKA). We are able to achieve up
to 14.46% improvement in package energy consumption, up
to 14.19% improvement in core energy consumption, and up
to 12.93% improvement in execution time. The changes result
in only 0.48% drop in accuracy of the classifiers.

The rest of the paper is organized as follows. Section 2
outlines the background work. From Section 3 to Section 6,
state-of-the-art techniques of energy-efficient machine learning
are discussed, they are hardware & architectures, software &
packages, algorithms, and software development. This paper
finds that the related work in software development energy-
efficiency is not sufficient, so the design and details of JEPO
are provided in Section 7. Section 8 describes WEKA and
uses it to evaluate JEPO. Section 9 concludes the paper and
discusses future work.

II. BACKGROUND

Pushed by the edge computing techniques and pulled by
the AI applications, edge intelligence has been pushed to the
horizon. Edge intelligence was defined as the capability to
enable edges to execute artificial intelligence algorithms in
[11]. The edge device which owns the edge intelligence capa-
bility will be able to process image, video, natural language,
and time-series data generated by cameras, microphones, and
other sensors without uploading data to the cloud and waiting
for the response. However, the edge is usually resource-
constrained compared to the cloud data center, which is not
a good fit for executing DNN represented machine learning
algorithms since DNN requires a large energy consumption
that comes from the computing and storage requirements.
Therefore, the development of edge intelligence calls for the
energy-efficiency techniques.

There are two main reasons to achieve the energy-efficiency
on the edge intelligence scenarios. Firstly, improving energy-
efficiency will reduce the temperature of the edge and therefore
solve the cooling problem. In general, the complexity of
machine learning algorithms is high and the computing re-
quirement of edge devices is relatively large, which generates a
large amount of heat. The excessive heat may affect the normal

operation of the edge and cooling the edge will consume more
energy. Even worse, in the scenarios like the base station and
edge server, it will lead to fire and endanger the safety of
residents if the heat is not dissipated in time.

Secondly, achieving energy efficiency will increase the
usage time of the battery. Most of the edge devices, such as the
mobile phone and electric vehicles, rely on the battery and the
length of battery life will greatly affect the user experience.
For example, an electric car will drive for 500 kilometers
continuously when it is fully charged in general. If energy
efficiency is increased by 20%, the continuous driving distance
will increase to 600 kilometers. Therefore, the improvement in
energy efficiency is an effective way to increase the availability
of edges and expand the radius of life. Therefore, improving
energy efficiency on the edge is indispensable to realize the
edge intelligence.

III. HARDWARE & ARCHITECTURE

To meet the growing demand of the pervasive machine
learning application in edge, a lot of research works have
focused on designing specific accelerator architecture to re-
duce the process time and improve the energy-efficiency of the
machine learning algorithms running on edge. New hardware
architecture forces the community to optimize the system soft-
ware and algorithms to fully exploit hardware performance. So
the research work on hardware and architecture can be divided
into two categories:

• specific hardware accelerator architecture for machine
learning on edge;

• hardware based full-stack optimization method for ma-
chine learning on edge.

A. Accelerator Architecture

GPU provides multiple micro computing units to exploit
the parallelism of the machine learning algorithms, especially
for convolutional neural network (CNN), and it has been
widely used to accelerate the machine learning algorithms both
in cloud and edge[12]–[14]. NVIDIA has released a series
of embedded energy-efficiency GPU products to support the
edge scenarios, such as the NVIDIA® DRIVE™ PX2 (250W )
for connected and autonomous vehicles[15], and NVIDIA®

Jetson™ platforms (5− 30W ) for robots and drones[16].
DianNao family[17]–[19] is a set of energy-efficient hard-

ware accelerators for machine learning algorithms. DianNao
accelerator provided a Neural Functional Unit (NFU) and
three SRAM buffers. DianNao can execute neural networks at
different scales by splitting a large neural networks into small
workloads to reuse the NFU and SRAM buffers. According
to the evaluation results, DianNao reduces the total energy
by 21.08x compared with SIMD processors. ShiDianNao[20]
is one of the accelerators for DianNao family designed for
visual algorithms in edge. It achieved 60x energy efficiency
than the previous state-of-the-art AI hardware in 2015, which
deploy the AI processor next to the camera sensors, reducing
the power consumption of sensor data loading and storing.



Google Tensor Processing Unit (TPU)[21] is the neural
networks accelerator in data center. And Edge TPU[22] is
the embedded version of TPU for edge computing. The basic
novelty of TPU is similar to DianNao, which is splitting neural
networks to fit and reuse the basic computing units. TPU
takes the traditional systolic matrix multipliers as the basic
processing units, systolic execution of matrix multipliers saves
energy by reducing reads and writes of the Unified Buffer. And
TPU achieves 30x−80x TOPS/Watt compared with CPU and
GPU. The systolic array architecture has also been deployed
in FPGA to achieve higher energy-efficiency for processing
CNN[23].

IBM TrueNorth[24] and Intel Loihi[25] both are neu-
romorphic processors whose architecture is well suited to
many complex neural networks algorithms. The neuromorphic
architecture is an efficient and flexible non–von Neumann
architecture, which uses silicon technology to implement the
programmable neurons and synapses to mimic human brain
to execute the computing tasks. The novel architecture only
comsumes milliwatts-scale energy when processing neural
networks applications in real-time.

B. Hardware Based Full-Stack Optimization

Several studies have focused on algorithm-hardware co-
design method to achieve energy-efficiency machine learn-
ing on edge. ESE[26] used FPGAs to accelerate the LSTM
model on mobile devices, which adopted the load-balance-
aware pruning method to ensure high hardware utilization
and scheduled the compressed model to multiple PEs for
parallelism. The hardware architecture they implemented have
achieved 40× and 11.5× higher energy efficiency compared
with the CPU and GPU.

EIE[27] is an energy efficient inference engine for com-
pressed deep neural network. It leverages multiple methods to
improve energy efficiency for deep learning algorithms, such
as saving the model in on-chip SRAM instead of external
DRAM, skipping zero activations from ReLU, exploiting
sparsity and sharing weights. According to the benchmarking
results, EIE have achieved 24, 000×, 3, 400× and 19× more
energy efficient than a CPU, GPU and DaDianNao respec-
tively.

ADMM-NN[28] is an algorithm-hardware co-design frame-
work of deep nerual networks using Alternating Direction
Method of Multipliers (ADMM). It proposed a joint frame-
work of weight pruning and quantization using ADMM. The
regularization target dynamically updated in each ADMM
iteration resulted in higher performance in model compression,
and the the computation reduction leaded the energy efficiency
improvement. And many research works start to use similar
method to deploy deep learning algorithms on edge to achieve
energy efficiency[29]–[31].

IV. SOFTWARE & PACKAGES

Many projects focus on developing and optimizing software
platforms and machine learning packages to meet the low-
power requirement of the edge.

A. Software platform

To run the intelligence applications on the edge with the
limited energy resources, many lightweight operating systems
and energy-efficient oriented computing frameworks are de-
signed.

TinyOS[32] is an embedded, component-based operating
system for low-power edge devices. The application-specific
nature of TinyOS ensures that no unnecessary functions con-
sume energy. What’ more, three aspects are used to decrease
the power consumption: application-transparent CPU power
management, power management interfaces, and efficiency
gains arising from hardware/software transparency. The ex-
perimental result based on an AI application, object tracking,
shows that TinyOS reduces energy consumption by 30% with
minimal degradation of tracking accuracy.

Phi-Stack[33] is a co-designed hardware-software stack to
natively support web and intelligence applications with min-
imized cost, footprint, and energy consumption. Phi-OS and
Phi-DK are designed to meet the low-power requirement of the
smart IoT devices. Each command of Phi-Stack takes no more
than 100 ms latency and consumes no more than 200mW of
power when using the intelligence application (such as turning
on the light by voice) as the benchmark.

OpenEI [34] was proposed in 2019 as a lightweight software
platform to equip the edge with intelligent processing capa-
bility. OpenEI is designed to reduce the latency, energy, and
memory footprint while guaranteeing the latency. To decrease
the energy consumption, OpenEI leverages a lightweight pack-
age manager to run the AI algorithms on the edge. Besides, a
model selector is used to pick up the best marching hardware
and software combination to save energy.

For the connected and autonomous vehicles, OpenVDAP
[4] was proposed as an open vehicular data analysis platform.
EdgeOS v is an operating system inside OpenVDAP, which
is designed to provide a security running environment and
energy-efficient and latency-aware resource management for
upper applications. Besides, E2M [35] is an energy efficient
middleware for autonomous mobile robots which tackles the
inefficiencies during the sensor data accessing, machine learn-
ing model execution, and the management of multipurpose
applications to save energy of the computing system.

B. Machine learning packages

To execute AI algorithms on the edge efficiently, several
deep learning packages, are specifically designed, such as
Caffe2, MXNet, and PyTorch. Compared with cloud versions,
these packages require significantly fewer resources to achieve
a lower power consumption, lower memory footprint while
behaving almost the same in terms of inference.

MXNet [36] is a flexible and efficient library for deep
learning to support CNN and long short-term memory net-
works (LSTM). Caffe2 [37] is a lightweight, modular, and
scalable deep learning framework, which is built based on the
Caffe. PyTorch [38] is a python package that provides tensor
computation with strong GPU acceleration and deep neural
networks built on a tape-based auto-grad system.



In addition to the above packages which handle the training
and inference tasks, many packages are designed to sup-
port the inference only, such as TensorFlow Lite, CoreML,
QNNPACK, and Paddle Lite. TensorFlow Lite [39] is Ten-
sorFlow’s lightweight solution which is designed for mobile
and edge devices by optimized and quantized kernels to
reduce the latency and energy consumption. Apple published
CoreML [40], a deep learning package optimized for on-device
performance to minimizes memory footprint and power con-
sumption. Facebook developed QNNPACK (Quantized Neural
Networks PACKage) [41], which is a mobile-optimized library
and provides an implementation of common neural network
operators on quantized 8-bit tensors to achieve low energy
and high-performance. Paddle Lite [42] is designed to make
it easy to perform inference on edge and IoT devices and it is
compatible with PaddlePaddle and other pre-trained models.
The execution module and analysis module are decoupled to
guarantee the lightweight and low power consumption.

Zhang et al. made a comprehensive performance compari-
son of these packages on the edges and evaluated the energy
consumption[43]. They found that no packages could achieve
the best performance in all dimensions, which indicated that
there was a large space to improve the performance of the
packages on the edge.

V. ALGORITHMS

In order to improve the energy-efficiency of the machine
learning models, various efforts have been made in the co-
design of machine learning algorithms and hardware. Gen-
erally, the co-design approaches can be divided into two
categories [44]:

• reduce the computational requirements;
• reduce the accuracy of operations and operands.

A. Lightweight machine learning models

To achieve energy efficiency, reducing the computational
requirements of machine learning algorithms is a critical
approach.

In 2015, Han et al. [45] proposed that pruning redun-
dant connections and retraining the deep learning models
to fine tune the weights is an effective way to reduce the
computing complexity. It helped in improving the energy
efficiency of neural networks. After their projects, research on
model compression which includes pruning and quantification
became popular. Subsequently, Iandola et al. [46] developed
Squeezenet, a small CNN architecture. It achieves AlexNet-
level [47] accuracy with 50 times fewer parameters on Ima-
geNet.

Google Inc. [48] presented MobileNets, the efficient CNN
for mobile vision applications, in 2017. It not only focuses on
optimizing latency but also builds small networks to reduce
the memory footprint and energy consumption. ESPNetv2 [49]
was designed in 2019 as a light-weight and power efficient
neural network, which used group point-wise and depth-wise
dilated separable convolutions to learn representations with
fewer FLOPs and parameters. Experimental results based on

NVIDIA GTX 1080 Ti and NVIDIA Jetson TX2 show that
ESPNetv2 is much more power efficient than MobileNet.
Eyeriss [50] is a project which seeks for the hardware and
software co-design for energy efficient execution of deep
learning algorithms. Based on the profiling results that data
movement consumes the most energy, a architecture which
exploits data re-usability is proposed and evaluated on a real
test chip.

In 2018, Bonsai [51] refers to a tree-based algorithm used
for efficient prediction on IoT devices. More specifically, it
is designed not for the deep learning models, but for other
machine learning tasks such as regression, ranking, and multi-
class classification, etc.

B. Reduce Accuracy

In addition to achieve energy efficiency by lightweight
models, there are also a lot of works on improving energy-
efficiency during runtime as well as designing energy-efficient
DNN models by reducing the accuracy of operations and
operands. Reducing accuracy is usually achieved by reducing
the number of bits/levels to represent the data, which decreases
the computation requirements as well as the storage cost [44].

Quantization is proposed to reduce accuracy by mapping
the data to quantization levels. There are three types of quan-
tization: uniform quantization, log quantization, or learned
quantization. The difference between them is that whether the
distribution of distances between each quantization level is
uniform, log-based or learned-based.

For uniform quantization, the key is to convert values and
operations from floating points to fixed points. Dynamic fixed
point is one method of conversion which is based on the
limited range of weights and activation [52], [53]. Through
fixed dynamic fixed point, the bitwidth can be decreased from
32 bit to 8 bit for weights and 10 bits for activation. Since the
memory access and data movement make up a large portion of
the energy consumption, the model becomes more energy effi-
cient. Some other works explore using even lower bits for the
value weights and activation while maintaining accuracy loss
less than 1 percent [54], [55]. Besides, BinaryConnect [56]
introduces to use a single bit to represent weight values but
is has an accuracy loss of 19 percent. In order to decrease
this accuracy loss, lots of works like QNNs [57] and HWGQ-
Net [58] focused on slightly increasing the bit size of the
activation.

For nonuniform quantization, the distribution of weights
and activation are based on either log-based or learned-based.
Compared with uniform quantization, log-based quantization
achieves much less accuracy loss [59]. In addition, the log 2
based quantization makes the multiplication operation easier.
Learned-based is proposed to support weight sharing in a filter
or layer. One example of weight sharing is deep compres-
sion [60], in which the number of weights per layer is reduced
to 256 for convolutional layer and 16 for fully connected layer.
Compared with other quantization approaches, the learned-
based approach does not reduce the accuracy and only reduces
the storage requirements.



VI. SOFTWARE DEVELOPMENT

Software energy measurement challenges like lack of energy
measurement tools, lack of instrumentation to estimate energy
consumption for various OS and processors are presented
in [61]. SEEDS and Chameleon frameworks for automating
code-level changes and optimizing Java applications were
introduced in [62] and [63]. These frameworks can select
the most efficient collection for improving the energy ef-
ficiency of an application. SEEDS resulted in 17% energy
consumption improvement. Software change-impact analysis
tool, GreenAdvisor, help software developers to estimate the
change in energy profiles due to change in an application
system calls [64]. Eco, a programming model, is introduced
in [65] to provide support for energy-aware applications. A
similar tool, EnSights, provides energy change information by
analyzing the change in the structure of a code [66]. It can
estimate the change in energy consumption with F-scores of
up to 86%. jStanley - an Eclipse plugin - provides a suggestion
for energy consumption usage of collections in Java [67].
The software developers can use the suggestion to replace a
collection with a better collection. It shows to improve energy
consumption between 2% and 17%. In this chapter, we present
an Eclipse plugin which gives suggestions about data types,
operators, control statements, String, exceptions, objects, and
Arrays. It can also help software developers in measuring
the energy consumption of software applications at method
granularity.

VII. JEPO

Machine learning models can be made energy-efficient
either by implementing a new energy-efficient model from
scratch or by refactoring already implemented models. How-
ever, software developers don’t have the tools which can help
them to write energy-efficient code or to refactor already
existing code. Therefore, in this section, we present JEPO
which can help both in the implementation of new energy-
efficient models and refactoring already existing models.

JEPO1is an Eclipse plugin developed to provide suggestions
for software developers to write energy-efficient machine
learning code in real-time or to use suggestions to refactor
already written code. It is a mix of a static and dynamic tool
as it can not only give real time suggestions while writing
the code but also can be used to get suggestions for already
written code. The suggestions are a result of our earlier work
in which we analyze various components of Java programming
language [8], [9]. These suggestions are hardcoded in the
tool and displayed whenever the tool detect specific Java
components like data types, operators, control statements,
String, exceptions, objects, and Arrays.

JEPO analyzes each line of the code and checks for a
specific pattern of code to generate various suggestions. These
patterns relate to various components of Java programming
language and are shown with suggestions in Table I. For
primitive data types - byte, short, int, long, float,

1https://github.com/mohitkumar14/JEPO

Fig. 1. JEPO toolbar button

double and char - int primitive data type is recommended
for the best energy efficiency. Decimal numbers when typed as
scientific notation consumes lesser energy. Wrapper classes are
object representation of primitive data types. Integer wrapper
class object consumes lesser energy than any other wrap-
per class. Static keyword result in up to 17,700% increase
in energy consumption of variables. Modulus is the most
energy-expensive arithmetic operator. Ternary operator con-
sumes higher energy than if-then-else option. Putting the most
common cases in a short-circuit operator helps in saving en-
ergy. For string concatenation, StringBuilder append
is the best way to concatenate string. String comparison
method compareTo results in higher energy consumption
than equals method. System.arraycopy() is the best
way to copy array. Array column traversal is energy expensive
than row traversal. All these suggestions work better when the
above java components are used repeatedly in a program. More
general suggestions can be found in our earlier work [8], [9].

JEPO can also help software developers to determine the
energy-hungry method in a Java project in Eclipse. This is
achieved by injecting code in bytecode to read the machine
specific registers (MSR) at the start and end of each method
in the Java project using Javassist library [68]. We first search
for all classes that have main method in the project. If there
is only one main class, then we choose it as our main class. If
there is more than one, then we take user input to determine
the correct main class for the project. After we finalize the
main class, we create a new Java file named JEPOInsert in
com.mist.jepo package. The purpose of this class is to inject
the energy measurement code for each method in the project
and then run the earlier selected main class. The injected code
measure and store the MSR, as well as the execution start or
stop time, whenever a method is executed. When the execution
end, the energy consumption and execution time for all the
executed methods are stored in a result.txt file in Java project
directory and also shown in JEPO view. If one method is
executed more than once, then the measurements are stored
for each execution.

JEPO include one toolbar button and two pop-up menu
buttons. The toolbar button (shown in Fig.1) opens JEPO
view if it’s not already open and then shows the suggestions
for the already open Java file. If the Java file is not already
open then JEPO will show an empty view. The toolbar button
view provides dynamic suggestion as shown in Fig. 2. The
pop-up menu button can be accessed by doing right-click
on any Java project. The pop-up menu will then show a
button named JEPO with two sub-menu button - JEPO profiler



TABLE I
JAVA COMPONENTS & SUGGESTIONS

Java Components Suggestions
Primitive data types int is the most energy-efficient primitive data type. Replace if possible.
Scientific notation Scientific notation results in lower energy consumption of decimal numbers.
Wrapper classes Integer Wrapper class object is the most energy-efficient. Replace if possible.
Static keyword static keyword consumes up to 17,700% more energy. Avoid if possible.

Arithmetic operators Modulus arithmetic operator consumes up to 1,620% more energy than other arithmetic operators.
Ternary operator Ternary operator consumes up to 37% more energy than if-then-else statement.

Short circuit operator Put most common case first for lower energy consumption.
String concatenation operator StringBuilder append method consumes much lower energy than String concatenation operator.

String comparison String compareTo method consumes up to 33% more energy than the String equals method.
Arrays copy System.arraycopy() is the most energy-efficient way to copy Arrays.

Array traversal Two-dimensional Array column traversal result in up to 793% more energy.

TABLE II
WEKA CLASSIFIERS METRICS CALCULATED USING ECLIPSE METRICS PLUG-IN [69] AND CLASS DEPENDENCY ANALYZER (CDA) [70]

Classifiers Dependencies Attributes Methods Packages LOC
J48 684 3263 7746 41 101172

Random Tree 668 3235 7611 41 99938
Random Forest 673 3270 7736 42 101812

REP Tree 668 3235 7619 41 100074
Naive Bayes 668 3229 7582 40 99221

Logistic 666 3216 7553 40 98812
SMO 677 3305 7796 43 102250
SGD 669 3222 7585 40 99304
KStar 671 3282 7576 41 99421
IBk 671 3268 7703 41 100339

Fig. 2. JEPO dynamic suggestion

and JEPO optimizer (Fig. 3). The JEPO profiler creates the
JEPOInsert.java file to measure the energy consumption at
method granularity. It shows the energy consumption for each
method executed while running a Java project in JEPO view
as shown in Fig. 4. The first column shows the method
name with package and class name, the second column shows
the execution time, and the third column shows the energy
consumed. The JEPO optimizer provides suggestions for all
the classes in a Java project. The JEPO optimizer view is
shown in Fig. 5. The first column shows the class name with
package, the second column shows the line number of the
class with possible suggestions, and the third column shows
the suggestions.

Fig. 3. JEPO pop-up menu buttons

Fig. 4. JEPO profiler view



Fig. 5. JEPO optimizer view

TABLE III
MOA AIRLINES DATA

Attributes Type
Airline Nominal
Flight Numeric

Airport From Nominal
Airport To Nominal

Day Of Week Nominal
Time Numeric

Length Numeric
Delay Binary

VIII. VALIDATION

For evaluating JEPO, we leverage WEKA an open-source
machine-learning software. We first make changes to WEKA
as per JEPO suggestions and then evaluated the different
classifiers on a laptop with Ubuntu 16.04.4 LTS, Intel(R)
Core(TM) i5-3317U v5, 4 GB of RAM, and JDK version
1.8.0 151.

WEKA software has 3373 classes and different classifiers
specifications are shown in Table II. Dependencies, attributes,
methods, packages, and line of code (LOC) have almost the
same count for all classifiers. J48 implements a modified
version of C4.5 which uses decision tree for classification.
For building trees, RandomTree takes into account a given
number of random features at each node without performing
any pruning. RandomForest uses bagging on ensemble of
random trees. REPTree uses information gain and variance
reduction for constructing decision or regression tree. For
pruning, reduced-error prunning method is used. Naive Bayes
is a probabilistic classifier which is based on Bayes theorem.
Logistic builds a multinomial logistic regression that uses a
ridge estimator to guard against overfitting by penalizing large
coefficients based on [71]. SMO uses polynomial or Gaussian
kernels to implement the sequential minimal optimization
algorithm for training a support vector qualifier [72], [73].
SGD is a stochastic gradient descent learning model with
various loss functions. KStar and IBK are lazy classifiers that
work only during the classification time. KStar implements a
nearest-neighbor classifier with generalized distance function
based on transformations whereas IBk implements a k-nearest-
neighbour classifier.

The data used for classification is Massive Online Analysis
(MOA) data [74], which is used to predict whether a flight

will be delayed or not. The data has 8 attributes and 539,383
instances. We reduce the number of instances to 10,000 due
to limited heap memory. The attributes are shown in Table
III. The attributes refer to the airline name, flight name,
airport from where the flight departs, airport to which flight
arrive, day of the week, time of the flight, distance of the
flight and whether the flight gets delayed or not. There are 4
nominal, 3 numeric and one binary attribute. For airline and
airports nominal values, the distinct values are 18 and 293,
respectively.

Next, we make changes to the dependent classes as per
JEPO suggestions and evaluated various classifiers using strat-
ified 10-fold cross-validation. We first run each classifier 10
times to measure Package energy, CPU energy, and execution
time using perf Linux tool. After that, we detect outliers
using Tukey’s method [75] from each metric, replace the
outliers measurements with new measurements and again
check for outliers. We repeat this process until no outlier is
left. When no outlier is left, we calculated the mean of values.
The final values are shown in Table IV. As expected, the
changes made are almost same due to the same number of
dependencies. However, other metrics do not agree with the
number of changes. For Package energy consumption, CPU
energy consumption and execution time, Random Forest shows
the highest improvement of 14.46%, 14.19%, and 12.93%
respectively. Random Tree shows the most amount of accuracy
drop of 0.48% which is very low and acceptable. We have to
calculate accuracy drop as there was precision loss when we
changed double to float or long to int.

These results show an increase in metrics improvement
when we increase the number of instances of MOA data to
20,000. For autonomous vehicles, data centers, and supercom-
puters, where huge amount of data is analyzed in short time,
JEPO can help to significantly reduce the energy consumption
of software.

IX. CONCLUSION

IoT and CAVs services run various machine learning mod-
els that can have a huge impact on their performance and
energy. Machine learning software optimization can help in
such scenarios to improve performance and reduce energy
consumption. Software energy-efficiency research has been
around for some years. Researchers have performed analy-
sis on various languages. However, there is a lack of tool



TABLE IV
WEKA EVALUATION

Classifiers Changes Package Improvement (%) CPU Improvement (%) Execution Time Improvement (%) Accuracy Drop (%)
J48 877 4.44 4.68 3.96 0.00

Random Tree 709 0.02 0.01 0.01 0.48
Random Forest 719 14.46 14.19 12.93 0.00

REP Tree 723 3.70 3.49 2.01 0.00
Naive Bayes 711 3.58 3.82 0.00 0.00

Logistic 711 0.10 0.10 0.00 0.00
SMO 713 0.05 0.08 0.04 0.17
SGD 713 7.48 5.76 5.56 0.05
KStar 711 6.82 5.31 0.00 0.00
IBk 711 5.50 5.34 6.01 0.00

which can disseminate these software energy savings findings
to software developers. Therefore, in this work, we present
an Eclipse plugin JEPO to help software developers write
energy-efficient code, dynamically and statically. JEPO can
also provide measurements for energy consumption at method
granularity. Using JEPO we were able to achieve up to 14.46%
improvement in package energy consumption, up to 14.19%
improvement in CPU energy consumption, up to 12.93% in
execution time and with only 0.48% drop in accuracy. In
the future, we hope to improve JEPO by including more
suggestions for software developers.

ACKNOWLEDGMENT

This work is supported in part by National Science Foun-
dation (NSF) grant CNS-1561216.

REFERENCES

[1] T. Stack, “Internet of Things (IoT) data continues to explode exponen-
tially. Who is using that data and how?” URl: https://blogs. cisco. com,
2018.

[2] P. Nelson, “Just one autonomous car will use 4,000 GB of
data/day,” Network World. Available online: www. networkworld.
com/article/3147892/internet/one-autonomous-car-will-use-4000gb-of-
dataday. html (accessed on 24 December 2018), 2016.

[3] R. Kelly, “Internet of things data to top 1.6 zettabytes by 2022,” Campus
Technology, vol. 9, pp. 1536–1233, 2016.

[4] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong,
“OpenVDAP: An open vehicular data analytics platform for CAVs,” in
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018, pp. 1310–1320.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[6] B. Luo, S. Tan, Z. Yu, and W. Shi, “EdgeBox: Live edge video analytics
for near real-time event detection,” in 2018 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 2018, pp. 347–348.

[7] S. Liu, L. Li, J. Tang, S. Wu, and J.-L. Gaudiot, “Creating autonomous
vehicle systems,” Synthesis Lectures on Computer Science, vol. 6, no. 1,
pp. i–186, 2017.

[8] M. Kumar, Y. Li, and W. Shi, “Energy consumption in java: An early
experience,” in Green and Sustainable Computing Conference (IGSC),
2017 Eighth International. IEEE, 2017, pp. 1–8.

[9] M. Kumar, Energy Efficiency of Java Programming Language. Wayne
State University, 2018.

[10] M. Kumar and W. Shi, “Energy consumption analysis of java command-
line options,” in Green and Sustainable Computing Conference (IGSC),
2019 Tenth International. IEEE, 2019.

[11] X. Zhang, Y. Wang, S. Lu, L. Liu, L. Xu, and W. Shi, “OpenEI: An
open framework for edge intelligence,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2019,
pp. 1840–1851.

[12] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew,
“Deep learning with COTS HPC systems,” in International conference
on machine learning, 2013, pp. 1337–1345.

[13] S. Lu, Y. Yao, and W. Shi, “Collaborative learning on the edges: A
case study on connected vehicles,” in 2nd {USENIX} Workshop on Hot
Topics in Edge Computing (HotEdge 19), 2019.

[14] Y. Wang, L. Liu, X. Zhang, and W. Shi, “HydraOne: An indoor exper-
imental research and education platform for CAVs,” in 2nd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

[15] NVIDIA Corporation. (2019) NVIDIA DRIVE PX2: Scalable
AI platform for Autonomous Driving. [Online]. Available:
https://www.nvidia.com/en-us/self-driving-cars/drive-platform

[16] ——. (2019) NVIDIA Jetson Platform. [Online]. Avail-
able: https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/

[17] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 2014, pp. 269–284.

[18] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in Pro-
ceedings of the 43rd International Symposium on Computer Architecture
(ISCA). IEEE, 2016, pp. 393–405.

[19] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, “DianNao family:
energy-efficient hardware accelerators for machine learning,” Communi-
cations of the ACM, pp. 105–112, 2016.

[20] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “ShiDianNao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, vol. 43, no. 3.
ACM, 2015, pp. 92–104.

[21] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
Piscataway, NJ: IEEE, 2017, pp. 1–12.

[22] Google LLC. (2019) Google Edge TPU. [Online]. Available:
https://cloud.google.com/edge-tpu/

[23] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,” in Proceedings of the 54th
Annual Design Automation Conference 2017. ACM, 2017, p. 29.

[24] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[25] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[26] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “Ese: Efficient speech recognition engine with sparse
LSTM on FPGA,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2017, pp. 75–
84.



[27] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep neural
network,” in Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on. IEEE, 2016, pp. 243–254.

[28] A. Ren, T. Zhang, S. Ye, J. Li, W. Xu, X. Qian, X. Lin, and Y. Wang,
“ADMM-NN: An algorithm-hardware co-design framework of DNNs
using alternating direction methods of multipliers,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2019, pp.
925–938.

[29] C. Leng, Z. Dou, H. Li, S. Zhu, and R. Jin, “Extremely low bit neural
network: Squeeze the last bit out with admm,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[30] H. Li, N. Liu, X. Ma, S. Lin, S. Ye, T. Zhang, X. Lin, W. Xu, and
Y. Wang, “ADMM-based weight pruning for real-time deep learning
acceleration on mobile devices,” in Proceedings of the 2019 on Great
Lakes Symposium on VLSI. ACM, 2019, pp. 501–506.

[31] S. Ye, X. Feng, T. Zhang, X. Ma, S. Lin, Z. Li, K. Xu, W. Wen, S. Liu,
J. Tang et al., “Progressive DNN compression: A key to achieve ultra-
high weight pruning and quantization rates using admm,” arXiv preprint
arXiv:1903.09769, 2019.

[32] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer et al., “TinyOS: An operating
system for sensor networks,” in Ambient intelligence. Springer, 2005,
pp. 115–148.

[33] Z. Xu, X. Peng, L. Zhang, D. Li, and N. Sun, “The φ-stack for smart
web of things,” in Proceedings of the Workshop on Smart Internet of
Things. ACM, 2017, p. 10.

[34] X. Zhang, Y. Wang, S. Lu, L. Liu, L. xu, and W. Shi, “OpenEI: An
open framework for edge intelligence,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), July 2019, pp.
1840–1851.

[35] L. Liu, J. Chen, M. Brocanelli, and W. Shi, “E2M: an energy-efficient
middleware for computer vision applications on autonomous mobile
robots,” in Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, 2019, pp. 59–73.

[36] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” in LearningSys
at NIPS. ACM, 2015.

[37] (2018) Caffe2: A new lightweight, modular, and scalable deep learning
framework. https://caffe2.ai/. [Online]. Available: https://caffe2.ai/

[38] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS workshop, no.
EPFL-CONF-192376, 2011.

[39] (2018) Introduction to TensorFlow Lite.
https://www.tensorflow.org/mobile/tflite/. [Online]. Available:
https://www.tensorflow.org/mobile/tflite/

[40] (2019) Core ML: Integrate machine learning models into your app.
https://developer.apple.com/documentation/coreml. [Online]. Available:
https://developer.apple.com/documentation/coreml

[41] D. Marat, W. Yiming, and L. Hao. (2018) QNNPACK: Open source
library for optimized mobile deep learning. [Online]. Available:
https://code.fb.com/ml-applications/qnnpack/

[42] (2019) Paddle Lite: Multi-platform high performance
deep learning inference engine. [Online]. Available:
https://paddlepaddle.github.io/Paddle-Lite/

[43] X. Zhang, Y. Wang, and W. Shi, “pCAMP: Performance Comparison
of Machine Learning Packages on the Edges,” in USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 18).
Boston, MA: USENIX Association, 2018. [Online]. Available:
https://www.usenix.org/conference/hotedge18/presentation/zhang

[44] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[45] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, 2015, pp. 1135–1143.

[46] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[48] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[49] S. Mehta, M. Rastegari, L. Shapiro, and H. Hajishirzi, “Espnetv2: A
light-weight, power efficient, and general purpose convolutional neural
network,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 9190–9200.

[50] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ACM
SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press,
2016, pp. 367–379.

[51] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learn-
ing in 2KB RAM for the internet of things,” in International Conference
on Machine Learning, 2017, pp. 1935–1944.

[52] Y. Ma, N. Suda, Y. Cao, J.-s. Seo, and S. Vrudhula, “Scalable and
modularized RTL compilation of convolutional neural networks onto
FPGA,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2016, pp. 1–8.

[53] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[54] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). IEEE, 2016, pp. 1–12.

[55] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W precision-scalable
processor for real-time large-scale convnets,” in 2016 IEEE Symposium
on VLSI Circuits (VLSI-Circuits). IEEE, 2016, pp. 1–2.

[56] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, 2015, pp. 3123–
3131.

[57] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[58] Z. Cai, X. He, J. Sun, and N. Vasconcelos, “Deep learning with low
precision by half-wave gaussian quantization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5918–5926.

[59] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong,
“LogNet: Energy-efficient neural networks using logarithmic computa-
tion,” in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2017, pp. 5900–5904.

[60] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[61] A. Hindle, “Green software engineering: the curse of methodology,” in
Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on, vol. 5. IEEE, 2016, pp. 46–55.

[62] I. Manotas, L. Pollock, and J. Clause, “SEEDS: a software engineer’s
energy-optimization decision support framework,” in Proc. 36th Int.
Conf. on Software Engineering. ACM, 2014, pp. 503–514.

[63] O. Shacham, M. Vechev, and E. Yahav, “Chameleon: adaptive selection
of collections,” in ACM Sigplan Notices, vol. 44, no. 6. ACM, 2009,
pp. 408–418.

[64] K. Aggarwal, A. Hindle, and E. Stroulia, “Greenadvisor: A tool for
analyzing the impact of software evolution on energy consumption,”
in 2015 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, 2015, pp. 311–320.

[65] H. S. Zhu, C. Lin, and Y. D. Liu, “A programming model for sustainable
software,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, vol. 1. IEEE, 2015, pp. 767–777.

[66] H. M. Alvi, H. Sahar, A. A. Bangash, and M. O. Beg, “Ensights: A
tool for energy aware software development,” in Emerging Technologies
(ICET), 2017 13th International Conference on. IEEE, 2017, pp. 1–6.

[67] R. Pereira, P. Simão, J. Cunha, and J. Saraiva, “jstanley: placing a
green thumb on java collections,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM,
2018, pp. 856–859.



[68] S. Chiba, “Javassist—a reflection-based programming wizard for Java,”
in Proceedings of OOPSLA’98 Workshop on Reflective Programming in
C++ and Java, vol. 174, 1998, p. 21.

[69] (2019) Eclipse metrics plug-in 1.3.6. Accessed: 2019-17-09. [Online].
Available: http://metrics.sourceforge.net/

[70] (2019) Class dependency analyzer. Accessed: 2019-17-09. [Online].
Available: http://www.dependency-analyzer.org/

[71] S. Le Cessie and J. C. Van Houwelingen, “Ridge estimators in logistic
regression,” Journal of the Royal Statistical Society: Series C (Applied
Statistics), vol. 41, no. 1, pp. 191–201, 1992.

[72] J. Platt, “Sequential minimal optimization: A fast algorithm for training
support vector machines,” 1998.

[73] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“Improvements to platt’s SMO algorithm for SVM classifier design,”
Neural computation, vol. 13, no. 3, pp. 637–649, 2001.

[74] (2019) MOA. Accessed: 2019-17-09. [On-
line]. Available: https://sourceforge.net/projects/moa-
datastream/files/Datasets/Classification/

[75] J. W. Tukey, Exploratory data analysis. Reading, Mass., 1977, vol. 2.


