
P

Y
D

a

A
R
R
A

K
A
E
P

1

h
s
m
e
n
a
a

c
o
u
f
b
t
a
w
a
d
s
d
o

w

h
2

Sustainable Computing: Informatics and Systems 4 (2014) 183–195

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al hom ep age: www.elsev ier .com/ locate /suscom

ower behavior analysis of mobile applications using Bugu

ouhuizi Li ∗, Hui Chen, Weisong Shi
epartment of Computer Science, Wayne State University, Detroit, MI, United States

 r t i c l e i n f o

rticle history:
eceived 30 October 2013
eceived in revised form 30 May 2014
ccepted 4 July 2014

eywords:

a b s t r a c t

Mobile devices, such as smartphones and tablets, have become an integral part of our daily life. However,
the battery drain problem always bothers us. To understand this problem, we design and implement the
Bugu service which aims to analyzing power and event information and providing users with detailed
energy behaviors of applications. We analyzed 100 popular applications’ power behavior using Bugu
on different platforms. The results showed several interesting observations, including radio service and
pplication level power
vent analyze
ower efficiency

hardware interrupts, that indicate the potential energy optimization for both applications and systems.
We further revealed the underlying reason of different power consumption for several applications in
case studies. For example, the low efficient usage of system service in iHeartRadio. Finally, lessons learned
from software-based power profiling and the ground truth of application level power consumption is
discussed.

© 2014 Elsevier Inc. All rights reserved.
. Introduction

Nowadays, mobile devices, such as tablets and smartphones,
ave become an important part of our daily life. According to a
tatistical report of Cisco [1], by the end of 2014, the number of
obile-connected devices will exceed the number of people on

arth, and there will be nearly 1.4 mobile devices per person in the
ear future. At the same time, the development of mobile devices
lso stimulates the application market. The number of Android
pplications increased 50% in last year, which is over 1,200,000 [2].

There is no doubt that these applications make our life more
onvenient and colorful, but they are also big energy consumers
n mobile devices and significantly influence battery lifetime and
ser experience [3]. As an end user, we want to know “For the same

unctionality, which application is more energy-friendly?” Except the
attery issue, energy efficient applications are more competitive on
he market. In a green software awareness survey [4], data shows
bout 70% people believe that optimizing software is an effective
ay to save energy and 58% of respondents would select software

pplications which have energy level labels on them. Application
evelopers often ask the question: “Why do my applications con-

ume such amount of power?” especially for mobile devices. System
evelopers focus on the whole system, not just some components
r specific applications. Answering the question “How to save and

∗ Corresponding author. Tel.: +1 3134606759.
E-mail addresses: huizi@wayne.edu (Y. Li), huichen@wayne.edu (H. Chen),

eisong@wayne.edu (W. Shi).

ttp://dx.doi.org/10.1016/j.suscom.2014.07.002
210-5379/© 2014 Elsevier Inc. All rights reserved.
effectively control system power?” is the final goal of system deve-
lopers. However, the first step to answer these questions is to
understand the energy consumption of the system and applica-
tions.

There are several battery power related mobile applications
available at the Google Play store [5–8]. For example, Dr. Power
is a tool that presents battery usage for running applications and
system [8]. It provides the average power information for sensors,
wakelock, data usage and processes in each application. Asides
from supporting these data, more detailed component level power
information, such as CPU and I/O, will be helpful for developers.
Moreover, the average process’s power is not enough, the real
time power information needs to be exported so that developers
can analyze which action/part costs more power. Mittal et al. [9]
proposed an energy emulation tool that allows developers to esti-
mate the energy consumption of their apps in a simulator. They
considered three components: CPU, network and display in the
system, while some useful components are not included (such as
DSP and sensors). Trepn Profiler [10] is another power profiling
tool which monitors CPU, memory, and network states and sup-
ports system battery information. It provides per-rail power usage
for latest Snapdragon MDP devices which contain special circuitry.
That makes it only suitable for certain types of devices. Besides, all
the information is too complicated for normal end users. They pre-
fer to know how much power an application consumes so that they

can be guided to choose their applications more effectively.

We design and implement the Bugu service, which is an appli-
cation level power profiler and analyzer. As Fig. 1 illustrates, the
Bugu server returns related applications’ power information to

dx.doi.org/10.1016/j.suscom.2014.07.002
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2014.07.002&domain=pdf
mailto:huizi@wayne.edu
mailto:huichen@wayne.edu
mailto:weisong@wayne.edu
dx.doi.org/10.1016/j.suscom.2014.07.002

184 Y. Li et al. / Sustainable Computing: Inform

e
a
a
c
a
v
t
s
a
t
s
s
p

•

•

•

B
t
r
m
w
S
c
s

2

m
n
s
S

Fig. 1. The overview of Bugu.

nd users and gives them more suggestions when they choose
pplications. For application developers, aside from the similar
pplications’ power information gathered from the server, the Bugu
lient also shows the event information of their applications, so that
pplication power problems can be easily distinguished. From the
iewpoint of system developers, detailed system power informa-
ion provided by the Bugu client is helpful for them to adopt power
aving mechanisms. Leveraging Bugu, we analyzed 100 popular
pplications and revealed the root causes of high power consump-
ion for some of them in case studies. From the result we observed
everal aspects that can be improved to save both application and
ystem energy, such as sensors and video module energy efficiency,
hone service rild.

In this paper, we mainly have three contributions:

We build the Bugu client which contains profiler, monitor and
analyzer. It provides event information that helps application
developers optimize their applications and the system-wide
power information that assists system developers to analyze
background processes.
With the help of crowdsourcing, the Bugu server provides most
applications’ power metric for end users. More suggestions are
presented to users, and they can make right choice to get the
same functionality with less energy consumption.
We evaluate the Bugu service comprehensively and analyze 100
popular mobile applications on different platforms. Several impli-
cations are derived based on the observations and the root causes
of large power consumption for several typical mobile applica-
tions are analyzed.

In the following sections of this paper, we introduce the
ugu service and the implementation of its components in Sec-
ions 2 and 3 respectively. Then, we demonstrate our experiments
esults and propose four critical implications for energy-efficient
obile-application and system design in Section 4. Following that,
e discuss the challenges of software-based power profiler in

ection 5. The related work of energy saving approaches and appli-
ation level energy analyzing is presented in Section 6. Section 7
ummarizes the conclusions of our research.

. System design

The Bugu service is mainly designed for system designers,

obile application developers and end users. Thus, the Bugu service

ot only presents the application-level power consumption on a
ingle device, but also supplies a group of REST (Representational
tate Transfer) [11] style APIs for users to share and compare power
atics and Systems 4 (2014) 183–195

data. It also supplies event information that may help them to
understand the underlying reasons that cause the power consump-
tion.

As Fig. 1 describes, the Bugu service includes two parts: the
Bugu server and the Bugu client. The Bugu server collects appli-
cations’ power information on each device and supports the Bugu
client with these data. The Bugu client is used to monitor appli-
cation power consumption, monitor events and analyze these
information. The results are presented in tables and figures for easy
understanding and comparison.

2.1. The Bugu server

The Bugu server has two functions: collecting application power
information from the Bugu client and supplying these power infor-
mation to users. Users can contribute their data to the Bugu server
by uploading their profiling records, which will help future cus-
tomers. With the first function, we maintain a large database of
application power consumption information on different types of
mobile devices. After ranking these applications, users can get
better understanding before installing them. The building of this
database requires users’ contribution so that we can cover as much
applications and devices as possible. It is a huge and continuous
work. At present, we provide power information for most popular
applications on several Android devices that we have.

Based on the type of device and the type of application the user
wants to compare, the Bugu server finds the related power infor-
mation and delivers it to the Bugu client. Then, end users know
the comparison results of these applications, they can choose an
energy-friendly one to install. For application developers, they can
compare the power consumption with the application they devel-
oped to evaluate their products.

2.2. The Bugu client

The Bugu client has three main functions: estimating
application-level power consumption, monitoring system and
application events and displaying the information to the user in a
meaningful way. It is composed by power profiler, event monitor,
power and event analyzer and user interface module. The proce-
dure is as follows: the power profiler and event monitor record
the raw data they need; and the analyzer extracts the data and
sends application level power and event information to UI module
which displays the data including other applications’ information
obtained from the Bugu server to users in a meaningful way.

2.2.1. Power profiler
Power profiler is responsible for estimating the system and

application power consumption. It uses a group of energy models,
which are listed in Table 1, to estimate energy consumption based
on how much of each hardware resource was utilized by each appli-
cation. With the time information, we calculate the average power
consumption. The power profiler considers the following compo-
nents: CPU, Wi-Fi, 3G, GPS, sensors, bluetooth, screen, radio, and so
on. We leverage some energy models from our former paper [12],
and tune the parameters for mobile platform. For components like
sensors, we build the energy models according to their different
power states. Aside from application’s power, we also record the
power of hardware components in the system. So far, we do not
consider screen power for each application, while it is available on
system level. The reasons are as follows: from research of Dong
et al. [13], we know that for OLED screen, different color presented

can affect screen power. While the applications’ user interface is
part of their design style, it will affect user experience if the color is
changed. For LCD display, the screen power is determined by bright-
ness level, applications themselves cannot save much on screen

Y. Li et al. / Sustainable Computing: Informatics and Systems 4 (2014) 183–195 185

Table 1
The energy models.

Components Energy models

CPU ECPU =
∑NumberOfSteps

i=1
Timei ∗

(IdlePower + MaxPower ∗ U)
U = (�Tsys + �Tuser)/(�T * CoreNumber)

Wi-Fi Ewifi = WifiOnAvgPower * WifiOnTime +
WifiActiveAvgPower * WifiActiveTime

Screen EScreen =
∑NumOfBrightness

i=1
(Timei ∗

(i/NumOfBrightness ∗ ScreenFullPower))
Bluetooth Ebluetooth = BtOnAvgPower * BtOnTime +

BtAvgPowerAtCMD * BtPingTime

Radio Eradio =
∑NumOfSignalBin

i=1
(SignalTimei ∗

SignalAvgPoweri) + RadioScanAvgPower
*RadioScanTime + PhoneOn-
Time * RadioActiveAvgPower

Table 2
Summary of six types of wakelock.

WAKE LOCK CPU Screen Keyboard

PARTIAL WAKE LOCK On Off Off
FULL WAKE LOCK On Bright On
SCREEN DIM WAKE LOCK On Dim Off
SCREEN BRIGHT WAKE LOCK On Bright Off

p
t
l
i
i

t
a
p
t

2

m
i
a
e
a
w
u
i
o
u

s
l
c

2

r
i
o
a
t
i
c
p
a

ACQUIRE CAUSES WAKEUP On On/Off On/Off
ON AFTER RELEASE On On Off

art. The optimization approaches we want to find are from a func-
ionality aspect, not appearance. Although we can get application
evel screen power according to the time that an application is
n foreground and pixel information, it is not very suitable and it
ncreases overhead of Bugu.

The power profiler saves the power information in a format-
ed log file, which includes the utilization information of all the
ctive applications on each component. The data is recorded once
er second. With this information, system designers could analyze
he underlying reasons that cause the energy consumption.

.2.2. Event monitor
Aside from just monitoring the power consumption, Bugu also

onitors the events of system and applications. Those events
nclude: wakelock, Wi-Fi state change, bluetooth state change,
udio and video state change and different sensors on/off state. For
xample, we could know when an application acquired or released

 wakelock. In the Android operating system, there are six types of
akelock (showed in Table 2 [14]), which represent the privilege to
se several hardware devices. All of them make the processor keep

n active state. Many applications drain battery so quickly because
f misusing the wakelocks. Thus, those events are helpful for us to
nderstand how the applications cause the power consumption.

For each event, we log the time, type and related information,
uch as the level of brightness, sensor states. The system deve-
opers use the information to deeply analyze the system power
onsumption problem.

.2.3. Power and event analyzer
The power and event analyzer is used to process the result

ecorded by the power profiler and the event monitor. The most
mportant function of this module is to calculate the average power
f each application. We write the algorithm to calculate application
verage power. First, we need to filter the effective data by detecting
he longest active period of each application. We define application

nactive state as its energy consumption does not change in N suc-
essive calculation points. The interval between two calculation
oints is one second. According to our experiments log, most of the
pplications are paused or went to background if we cannot detect
Fig. 2. The resource file in Android system.

their energy variation after three times. Sometimes, energy kept the
same because of the sampling delay. Hence, in our experiment, N
equals three. Then based on the time period and the logged energy
information with usage data, we calculate the average power. The
analyzing process is done off-line in order to lower the overhead of
the Bugu client.

One of the challenges we faced is that the power monitor cannot
accurately run periodically, that’s because Android is not a realtime
operating system [15]. Thus, we improve our algorithm that when
we compute the power during two time intervals, the record will be
skipped if the time interval is smaller than the threshold. Otherwise,
we may get abnormal power results because there is a delay before
we obtain the utilization information.

3. Implementation

To implement the Bugu service, we not only developed the
server program and the Android client application, but also mod-
ified and compiled the Android system to monitor the events. In
this section, we describe how we implement the Bugu server, the
power profiler, the event monitor and the Bugu client interfaces.

3.1. The Bugu server

The Bugu server maintains application power information, gath-
ers the information from users and provides comparison results to
end users and application developers. When users send a request,
the Bugu server returns the same category applications list and each
item describes the application name and its power consumption.
There are two ways for users to contribute their data to the Bugu
server. They can choose the upload option on their records, or write
results on the submission page. We use REST [16] to implement
our server, the request URI describes the parameters of the type
of device, the type of application and the limit of returned results.
The server interprets the request and send back the corresponding
results.

3.2. Power profiler

The power profiler is implemented as a service running in the
background periodically. It requires the base power of hardware

components and their utilization for each application to estimate
the power. We get the base power information from the PowerPro-
file class of Android, which reads power values from a resource
file (as Fig. 2 presents). For example, we could get the power of the

1 nform

C
c
f
P
S
c
e
c
n
m
s
s
o
L
p
b
m
t

L

p
h
a
m
d
a

3

t
W
v
a
n
b
b
b

86 Y. Li et al. / Sustainable Computing: I

PU when it is working on each power step, and the value under
pu.active corresponding to power consumption of different CPU
requencies. For the components that are not reachable from the
owerProfile class, we did some experiments that described in
ection 4 to get their base power. In addition, we get most the appli-
ation level resource utilization from the BatteryStats class. For
ach application running in the system, their statistic information
an be achieved from batteryStats.getUidStats(). Then the compo-
ents utilization information is obtained by calling corresponding
ethod: getSensorStats(), getProcessStats(), getWakelockStats() and

o on. The audio and video time are achieved by modifying Android
ource code since the logging part have not implemented and the
riginal results in BatteryStats are all 0. Some data are read from
inux file system, for example, the transmission packets for each
rocess. All the results are already logged for each process, so it can
e used directly in the real scenario. The Listing 1 presents the seg-
ent of code that describes how we use the information to estimate

he energy consumption of each process.

isting 1. The example of CPU power calculation.

for (int step = 0 ; step < speedSteps; step++)
{

cpuSpeedStepTimes[step] = ps .
getTimeAtCpuSpeedStep(step, statsType
);

totalTimeAtSpeeds += cpuSpeedStepTimes[
step];

}

private void processCPUPower(Uid.Proc ps)
{

long userTime = ps.getUserTime(statsType);
long systemTime = ps.getSystemTime(statsType)

;
appPowerInfo.foregroundTime + = ps.

getForegroundTime(statsType) / 1000;
appPowerInfo.cpuTime += (userTime +

systemTime) * 10;
int totalTimeAtSpeeds = 0 ;

if(totalTimeAtSpeeds > 0)
{

for (int step = 0; step < speedSteps;
step++) {
double ratio = (double)

cpuSpeedStepTimes[step] * 1.0 /
totalTimeAtSpeeds;

appPowerInfo.cpuPower += ratio *
appPowerInfo.cpuTime *
speedStepAvgPower[step];

}
}

}

With the base power and utilization information, the power
rofiler computes the accumulated power consumption of each
ardware component. The application power is the sum of
ll components’ power since the components’ usage infor-
ation is recorded for each process in BatteryStats. The

etailed power and utilization data are logged for further
nalysis.

.3. Event monitor

The implementation of the event monitor requires Android sys-
em’s support, so that we can monitor all the events information.

e implement this function by modifying the BatteryStatsSer-
ice class (as Listing 2 shows), which collects all the system and

pplication events that related with battery usage. For each event
oted in BatteryStatsService, we log its states and make it visi-
le to users. When BatteryStatsService receives an event, it will
roadcast an Intent message, which could be received and logged
y the Bugu client.
atics and Systems 4 (2014) 183–195

Listing 2. The example of logging wakelock event.

public void noteStartWakelock(int uid, int pid,
String name, int type) {

enforceCallingPermission();
synchronized (mStats) {

mStats.noteStartWakeLocked(uid, pid , name
, type);

}
if(enableEventListen){

synchronized(helper)
{

helper.noteStartWakelock(uid, pid,
name, type);

}
}

}

In addition, we also use the event monitor to trigger energy-
optimization actions by sending some special Intent messages to
energy-aware services of the Android system. One message we sent
is Wi-Fi tail, which will be generated when the Wi-Fi enters the tail
stage. As far as the message is received, the system could leverage
the tail stage to piggyback some asynchronous data, such as a post
of twitter cached before.

3.4. User interfaces

To easily use the Bugu service, we provide friendly user inter-
faces as Fig. 3 shows. By default, we show all the applications power
information in the server as Fig. 3(a) presents, users can search the
particular application or category. For each log file, we support six
operations as illustrated in Fig. 3(b). Power figure (Fig. 3(d)) shows
the most power consumption processes’ power variation with time.
Event figure (Fig. 3(e)) focuses on one application and shows its
event information.

4. Evaluation

In this section, we evaluate our work on tablet and smartphone.
We present how the Bugu service works for three groups of users:
end user, application developer and system developer. After col-
lecting 100 applications power data, we did some analysis and
found several observations. Moreover, we analyze the overhead
of Bugu and summarize the implications we got from the exper-
iments.

4.1. Experiment setup

As we described above, Bugu acquires system information from
two classes, PowerProfile and BatteryStats, and calculate applica-
tion power consumption based on our power models. To verify the
accuracy of data read from PowerProfile class, we first compared the
resource file between different Android OS versions. We found that
the file is corresponding to mobile phone models, not the Android
operating system. It is the same when we updated from Android
2.3 to Android 4.0. Besides, we wrote our own testing benchmarks
to see if the results are consistent with the data recorded in the
file. We mainly tested brightness, CPU, socket connection and file
input/output. In our experiments, the benchmark applications run
foreground and other applications were terminated to keep the
accuracy. We connected a resistor between battery and phone, then
attached the National Instruments devices [17] to record the volt-
age of the resistor and the phone. Hence, we got the current of the
phone based on the resistor. After that we can calculate power as

well as energy information. The resource file contains power data
of different state of screen, Wi-Fi, CPU, bluetooth and so on. We run
our benchmarks to compare the data we collected with the infor-
mation in the file. Besides, we calculated file I/O data and put it in

Y. Li et al. / Sustainable Computing: Informatics and Systems 4 (2014) 183–195 187

 client

o
fi

N
s
d
t
r
e
a
s

4

k

4

q
o

T
E

can see that Opera consumes less power than Firefox, which makes
it more competitive. To figure out the behind reasons, we analyzed
Fig. 3. The Bugu

ur power calculating system, which is not supplied in the resource
le.

The mobile devices we used for these experiments are Google
exus S and Motorola Xoom. Their hardware parameters are pre-

ented in Table 3 that includes sensors information. Both of these
evices use Android 4.0.4 OS. According to AndroLib’s statistics [18],
here are 640,000 android applications in the market. To ensure
epresentative results, the applications we choose cover most cat-
gories. They have over one million installs and ranked in Top-100
s claimed by Google Play. Table 4 lists the information and repre-
entative applications.

.2. Bugu case studies

We introduce three case studies here to illustrate how different
inds of users can take advantage of the Bugu service.
.2.1. End user scenario
An end user usually wants battery work longer without fre-

uently charging. Aside from saving energy by operating system
r shutting down unused devices, this goal can also be achieved

able 3
xperiment platforms.

Hardware components Nexus S Xoom

CPU ARMv7 Processor rev 2 ARMv7 Processor rev 0
Frequency (MHz) 100–1000, 5 steps 216–1000, 8 steps
RAM (MB) 335 718
Sensor KR3DM Accelerometer KXTF9 Accelerometer

GP2A Light Ambient Light
Sensor Sensor
AK8973 Magnetic AK8975 Magnetic
Sensor Sensor
 user interfaces.

through installing energy-friendly applications. The Bugu server
maintains a lot of applications’ power data with the hardware plat-
form information. End users can request these information and
search the category of the application they want to install, the
data returned is ranked by the power consumption of applications.
Except the application’s characteristics, such as UI and special func-
tionality that improve user experience, end users can also take
power consumption into consideration.

Take browser as an example, assume users want to install Opera
on their device. They can simply send the type of device and
application name Opera to the Bugu server. Table 5 lists several
applications’ data stored in the server, and the browser part will
be returned to the users. Noted that the power data is calculated
under the general usage situation. In this experiment, we chosen
six popular websites including cnn, espn, amazon, opened them one
by one and each time scrolled down to see all the information. We
the event information and raw power log data of Opera and Firefox,

Table 4
Summary of selected applications.

Category Applications

Business Documents To Go, UPS Mobile, Pocket Cloud Remote,
etc.

Game Fruit Ninja, Temple Run 2, Talking Tom Cat, etc.
Finance Google Finance, Expense Manager, TurboTax SnapTax,

etc.
Health and Fitness Instant Heart Rate, Workout Trainer, Lose It, etc.
Media and Video YouTube, RealPlayer, Movies by Flixster, etc.
Music and Audio iHeartRadio, Amazon MP3, Google Play Music, etc.
Education Kids Animal Piano Free, How to Draw, Aldiko Book

Reader, etc.
Tools PicsArt, Barcode Scanner, Tiny Flashlight, etc.

188 Y. Li et al. / Sustainable Computing: Informatics and Systems 4 (2014) 183–195

(a) Event informationof YouTube runningon Ne xus S. (b) The power variation informationon Nexus S.

(c) Event information of YouTube running on Motorola
Xoom.

(d) The power variation informationon Motorola Xoom.

Fig. 4. The comparison of YouTube event and power information.

Table 5
The comparison of applications power consumptions.

Browser Application power (mW) Game Application power (mW)

Opera 123.42 NinJump 141.73
Dolphin 162.15 Temple Run 142.75
Firefox 304.63 Cut the Rope 149.12

Health Application power (mW) Reading Application power (mW)

t
m
e
S

4

p
h
w
a
s
d

s
i
p
T
f
o
i
i
F
s
i
X
p
i
i

system did for starting new activity. So if the developers want to
optimize YouTube, they should focus more on handling user inputs
efficiently and balancing data downloaded.
Instant heart rate 65.96

Lose It 83.55

Cardiograph 92.26

he results show that their CPU power has big difference. Firefox
ay do more processing and calculation to improve user experi-

nce, further analysis about their power behavior can be found in
ection 4.3.3.

.2.2. Application developer scenario
On one hand, the Bugu server provides related applications’

ower data for application developers to compare. On the other
and, developers can get event information from the Bugu client,
hich gives the optimization direction from power consumption

spect. In this section, we use video application as an example to
how how Bugu works. In our experiment, the new application
eveloped is YouTube.

To include the influence that application may bring to the
ystem, the Bugu server not only provides each applications’
nformation, but also gives other four most power consumption
rocesses of each application and compares the union of them.
hus, there are six processes compared in Fig. 5. The data is collected
rom Nexus S, and we can see that system processes which support
ur applications consume much more power than the application
tself. For instances, systemui is responsible for drawing the user
nterface, mediaserver provides sound and other support for media.
rom the perspective of the target application, YouTube is in a good
ituation, its power is lower than others. Fig. 4 presents the event
nformation and power variation of YouTube on both Nexus S and

oom. These information helps developers deeply understand the
ower issue. For event information, the x-axis is time; the y-axis

s the processes that generate these events. The recorded events
nclude wakelock, sensor, screen, etc. We only found wakelock
Kindle 86.34
Daily Bible 131.23
Audible 158.95

information in this scenario, the mediaserver process appeared in
both devices, and rild, surfaceflinger occupy wakelock on Nexus S
while systemui on Xoom side. YouTube also occupies the wakelock
for a long time as showed in Fig. 4(a) and (c), developers can analyze
their code to improve the wakelock utilization, for instance, release
wakelock in app pause state. Fig. 4(b) and (d) demonstrate power
variation of processes which occupy the event or has high power
consumption, YouTube consumes high power when we start the
application, while mediaserver periodically reached the high point.
After analyzed the resource usage information in the beginning of
YouTube, we found it transmitted network packets and dealt with
user inputs (e.g. touch, click). No other abnormal data detected.
Another reason for such high power consumption is the preparation
Fig. 5. The power comparison of seven video applications.

Y. Li et al. / Sustainable Computing: Informatics and Systems 4 (2014) 183–195 189

4

c
B
s
p
m
c
W
J
e
S
a
c

m
t
I
t
n
o
f
r
c

F
a

(a)

(b)
Fig. 6. The power comparison of seven games.

.2.3. System developer scenario
System developers care more about the whole system power

onsumption, not a particular application or hardware component.
ugu provides power information of all processes running in the
ystem, which exactly helps them to know the whole picture. From
revious experiments, we observed that system processes consume
uch more power than target application itself. To show it is a

ommon issue, we did another experiment on game applications.
e evaluated 7 popular games: Angry Birds, Cut The Rope, Nin-

ump and so forth. Fig. 6 demonstrates the power consumption of
ach game and several corresponding system processes on Nexus
. We can see that system processes, such as irq/308-mxt224, medi-
server and zygote, consumed much power, they were not negligible
omparing with our target applications.

Except active applications, background applications are also a
ain concern for system designers. We did several experiments

o show how applications and the system behave in sleep mode.
n the experiments, we first tested the situation that only sys-
em processes exist and no applications opened. From Fig. 7 we
otice that surfaceflinger occupied the wakelock almost all the time

n Xoom, while systemui and rild dominated on the Nexus S. sur-
aceflinger and systemui work on the user interface drawing and
endering part, rild is responsible for the phone service. These pro-
esses acquired and released wakelock continuously, which make

(a)

(b)

ig. 7. The comparison of devices event information under “sleep” mode with no
pplication running.
Fig. 8. The comparison of devices power information under “sleep” mode with
background applications.

the processor can hardly get the chance to work in C states. Compar-
ing with Nexus S, Xoom can last much more longer after one fully
charge. To present the real case when users use these devices, we
did the experiments with applications running in the background.
The most common situation it represents is when users go to sleep,
their mobile devices are in sleep state without exiting all opened
applications. Fig. 8 shows the power variation of top three power
consuming processes of Nexus S and Xoom under “sleep” mode
with unclosed applications. Before we put the devices into “sleep”
mode, we opened facebook, twitter, youtube, angrybird and pandora,
and played with each of them for a few minutes. From the fig-
ure we know that most applications’ power are low, while system
processes still consume a lot. Hence, system developers should
focus more on optimizing these background processes and services.

4.3. Applications power information analysis

In this section, we analyze mobile applications’ power data
in both foreground and background situation. For each case, we
describe applications’ total power and distribution among main
hardware components.

4.3.1. Apps run in foreground
We first introduce foreground scenario. In the experiments of

100 applications, their power ranges from 20 mW to over 700 mW.
10% of them consumes less than 50 mW, 50% is less than 200 mW.
The average power is 227 mW, and 20% is greater than 335 mW
in our dataset. It is reasonable that the power varies so much. Pdf
reader will run longer than Angry Bird with the same battery capac-
ity. Intuitively, the power consumption of applications in the same
category should be in the same level. To further prove the state-
ment, aside from video and game applications presented above,
we also took the Education, Health and Fitness applications’ data
into consideration. In these four categories, Education apps con-
sume less power than the other three categories; only the power
of NYTimes greater than 200 mW. Most of Media and Health apps
power are within 300 mW and 200 mW respectively. In a specific

category, the applications’ power also varies. The power difference
between Temple Run 2 and Speed Skater is as high as 300 mW.
For applications produced by the same company, the difference is

190 Y. Li et al. / Sustainable Computing: Informatics and Systems 4 (2014) 183–195

ckgro

s
3

p
h
s
c
a
b
o
A
a
c
a
r
c
p
A
t
c
H
v

4

e
r
p
a
d

m
d
a
g
1
T
g
t
2
t
l
p

f
s
r
s
t
s

n
d

variation is mainly caused by the target application.
In the Music and Audio category, the most popular applica-

tions are Pandora and iHeartRadio. Figs. 11 and 12 demonstrate
their CPU and system power variation when listen to music. By
Fig. 9. The comparison of applications ba

maller as “Talking” series (Talking Angela 320 mW, Talking Ben
50 mW, Talking Tom Cat 410 mW) suggest.

To figure out where the power goes, we analyzed the detailed
ower information logged by the Bugu client which contains main
ardware components’ power dissipation for each application. We
ummarize two metrics which are important factors to reflect
omponent power information: NumberofAppearance, it is defined
s number of applications use the component over total num-
er of applications, and PowerRatio, which equals the percentage
f the component consumed power over total application power.
ccording to our experiment results, CPU is used in all applications
nd its average PowerRatio is the highest in the components we
onsidered. This means most of the time the CPU dominates the
pplications’ power. 13% and 20% applications use GPS and Audio
espectively, and they contribute nearly 20% power to the appli-
ations. Although there are only 14% applications in our dataset
lay with Video module, the average PowerRatio is as high as 61%.
fter focusing on high video power ration application, we found

hat video power is much higher than CPU power except two appli-
ations that their video power and CPU power are almost equal.
ence, when applications play video, its main power dissipation
ery likely transfers from CPU to Video.

.3.2. Apps run in background
For background applications, we classify them as two cat-

gories: idle background and active background. The former
epresents the applications that will stop working and enter sus-
end status when in background. Active background means the
pplications that still have activities even in background, such as
ownload applications and music applications.

Idle Background: The idle background situation is common for
ost applications, especially for media apps and games. Fig. 9

emonstrates background power and foreground power of 21
pplications in our dataset. 60% of the applications, their back-
round power is less than 50 mW, and two of them are over
00 mW. The background power varies from 1.5 mW to 190 mW.
he applications are listed by their category. Similar with the fore-
round case, the background power of applications which are in
he same category also varies; Office Suite background power is
0 mW while Olive Office Premium reaches 80 mW. For applica-
ions with high ratio of background power to foreground power,
ike Expense Manager, we found their power is dominated by CPU
ower consumption.

When applications go to idle background state, users move their
ocus to the new foreground application. Except maintaining the
tatus in case they will run again in a short time, they should occupy
esources as less as possible. Hence, an energy efficient application
hould reduce their background power consumption and maintain
he ratio of background power to foreground power in a relatively

mall range.

Active Background: Some applications still active and function
ormally when they are in background. For example, we open Pan-
ora to listen to music and at the same time we check emails or read
und and foreground power consumption.

news in foreground. In that situation, we claim that Pandora is in
ActiveBackground state. For this kind of applications, they complete
most of their work in active background situation.

In the experiments, we choose five popular applications from
Music and Audio category: Pandora, iHeart Radio, Amazon MP3,
TuneIn Radio and Spotify, and four download applications: Down-
load Manager, tTorrent Lite, uTorrent and aTorrent. Amazon MP3
randomly played local songs and radio applications played several
stations, four download applications downloaded a 325 M video
file. Fig. 10 describes their power dissipation in foreground, active
background and idle background situations. When the applications
enter active background situation, their power dissipation is less
than foreground case and most of them only decrease a little. The
power consumption of uTorrent in the two cases are almost the
same, Pandora’s power reduce 20 mW which is about 5% of total
power. For idle background situation, six of their power are less
than 5 mW, aTorrent’s idle background power is also less than 6% of
total foreground case power. Spotify and aTorrent decrease around
half of the power when enter active background case, the user expe-
rience of the two applications did not change, there was no visible
delay to play music and download the video. The possible explana-
tion may relate to other functionality suspended in background.

4.3.3. Real Apps case studies
We analyzed several applications’ power information, which

includes: Pandora, iHeartRadio, Facebook, Firefox, by tracking
resource usage information through Bugu. With the consideration
of system processes and the comparison of similar applications’
data, we revealed some underlying reasons of high power situ-
ations. In the experiments, we installed target applications in a
clean OS and the logged power is the whole system power. Since
we only run the target application in foreground and suspend all
background processes (e.g. Google Services), any system power
Fig. 10. The comparison of applications power consumption in foreground, active
background and idle background.

Y. Li et al. / Sustainable Computing: Informatics and Systems 4 (2014) 183–195 191

c
t
m
t
a
r
d
a
a
t
c
(
o
h
m
s
w
i
d
m
p
f
s
i

F

Fig. 11. The system and CPU power information of Pandora.

omparing the two applications’ system power, we noticed that
he power of iHeartRadio was higher than Pandora’s when playing

usic. The CPU power in the two applications was reasonable as
he high power situations were caused by handling user input, such
s changing channel/song, and network transmission. To find the
oot cause that lead to high system power of iHeartRadio, we first
etailed compared the resource usage information which includes
udio, video, wakelock, CPU time and network packets of the two
pplications. Fig. 13 shows their audio and wakelock time, the audio
ime of iHeartRadio was all 0. Hence, when we calculate the appli-
ation power, the result of iHeartRadio was less than Pandora’s
showed in Section 4.3.2) as the audio power and wakelock power
f iHeartRadio were almost 0. However, it did not illustrate the
igh system power of iHeartRadio. Next, we analyzed the infor-
ation of all processes running in the system. Aside from Bugu,

ystem (uid:1000) and the target application, the active process
as mediaserver (uid:1013) in both cases. Because the audio time

s logged in MediaPlayer.java in Android OS, we think iHeartRa-
io did not use build-in player program to communicate with
ediaserver, which causes high system power consumption when
laying music. The resource usage information of Douban Artists
urther proved the statement since the trend of audio time and
ystem power were similar with Pandora’s. The wakelock data of
HeartRadio and Douban Artists was almost the same, and the high

Fig. 12. The system and CPU power information of iHeartRadio.

ig. 13. The information of wakelock and audio time for Pandora and iHeartRadio.
Fig. 14. The system and CPU power variation of Facebook.

wakelock usage in Pandora was mainly the result of frequent adver-
tising. Social network application becomes the main platform that
keeps people in touch in today’s society. In our experiments, we
checked the latest news of friends and posted the status with and
without photo. The power variation of Facebook and resource usage
information are demonstrated in Figs. 14 and 15 respectively. At the
starting of the application and dealing with the user inputs, CPU
power dominated the whole system power. There is a high power
period from 81s to 115s, and it is caused by taking a photo as shown
in Fig. 15 (Facebook Full Wakelock and Facebook Accelerometer over-
lapped). When we prepared to post status, the location process
became active for several seconds and it used Particial Wakelock
and GPS. Users may share their location in the posted status. As the
result, the corresponding system power was increased a little bit.
The same situation can be also found in Twitter, the location pro-
cess appeared and the system power increased. When we posted
a status with photo, Twitter delegated the job to Android default
application Gallery while Facebook handled by itself. On the aspect
of the system power, the two approaches are similar although the
wakelock and accelerometer were used by different processes.

For browser applications, we analyzed Firefox and compared
its data with Opera’s as the high power consumption of Firefox
demonstrated in the previous section. We opened several popular
webpages. On the perspective of system processes, the situations of
the two applications were similar. The particial wakelock’s time of
mediaserver and location process occasionally increased, they were
not actually in active state. The wakelock time of Google Search Box
also increased, which was more frequent than in other applications,
such as YouTube and TempleRun. For application itself, CPU power
dominated the whole power. Aside from user inputs, network activ-
ity also causes high CPU usage. Fig. 16 illustrates the system power
and packets information when Firefox was in foreground. The peak
points of high packets transmission correspond to high power con-

sumption. There are a lot of times that packets were over 10,000,
while the situation happened much less in Opera’s case. Hence,
we think it is the main reason for high power consumption of

Fig. 15. The part of the system resource usage information when playing with Face-
book.

192 Y. Li et al. / Sustainable Computing: Inform

F
h
i
c
a

4

l
w
m
c
t
3
w
t
g
t
t
p
5

4

fi
u
m
o
a
t
a
i
f
p

Fig. 16. The system power and packets information of Firefox browser.

irefox. For download applications, high packets transmission may
elp save energy since the system can go to sleep state after the job

s done. However, it is not hold for frequent user interactive appli-
ations as the interval time between two tasks (user inputs) is not
lways longer enough for system to switch to the sleep state.

.4. Bugu accuracy

As discussed in Section 5, there is no ground truth for application
evel power consumption. Hence, to analyze the accuracy of Bugu,

e focused on the whole system power. Fig. 17 demonstrates the
easured power and estimated power for several popular appli-

ations. We used a BK Precision programmable power supply [19]
o power up the smartphone, which provides a constant voltage of
.8 V and records current data. We calculated the system power,
hich is listed as measured power, based on the current informa-

ion. The estimated power is calculated and logged by Bugu. For
ame, music and video applications, the estimated power is greater
han hardware measured power; for social and utility applications,
he most results from Bugu is equal or less than the measured
ower. The average error rate of Bugu for total system power is
%.

.5. Bugu overhead

The overhead of Bugu is mainly caused by the power pro-
ler and event monitor. The data processing is done when the
ser wants to read an experiment record. When we did experi-
ents described above, we also recorded the power consumption

f Bugu. The power consumption of Bugu is around 5–10 mw, which
ccounts for 2.52% of the foreground application power consump-
ion on average. Moreover, we compared the system power with

nd without Bugu. The power results were calculated by attach-
ng the power meter to the battery. For the situation that no active
oreground application exists, Bugu causes 200 mW extra system
ower. Because Bugu samples resource usage information once per

Fig. 17. The comparison of measured power and
atics and Systems 4 (2014) 183–195

second, it stops the CPU and system to stay in a low power state
and lead to such amount of system power overhead. In real measur-
ing cases, there is always a “target” application running, the average
extra power Bugu generated on the system level is around 100 mW.
Compare with 1000–1500 mW whole system power, the overhead
is acceptable.

4.6. Implications

4.6.1. Radio service
Our experiments show that rild, which is the daemon of Android

radio service, generates a lot of wakelocks even when the device
is not active. Even though the power consumption of this service
is not high, it keeps the processor active and consumes a large
amount of energy. These wakelocks are generated during process-
ing unsolicited commands, such as network status change, SMS
notify, USSD (Unstructured Supplementary Service Data) notify
and signal strength or time changed. Among these unsolicited
commands, some of them, such as SMS notify, are important to
users. However, we do notice that a large amount of unsolicited
commands, such as signal strength change, received are not highly
required. To design an energy-efficient Android radio layer inter-
face, we should reevaluate the structure of unsolicited command
processing part by filtering part of the commands. In this way, we
can increase the chance of making the device work in the “real
sleep mode”. Another approach is putting the long lasting service
to a low power coprocessor, so that the coprocessor can handle
part of the data processing without waking up whole system.

4.6.2. Hardware interrupts
In addition, we observed that several processes, such as irq/308-

mx224 and irq/38-sec head consumes a large amount of energy
when we ran several applications. irq/308-mxt224 is the threaded
interrupt handler for the touchscreen controller. Different with tra-
ditional cell phones and normal computer systems, current mobile
devices have much more sensors to supply various functionality to
users. These sensors generate a large amount of hardware inter-
rupts and consume a large amount of energy. Aside from rild, the
sensor related processing can also be delegated to the low power
coprocessor. We argue that we should revisit the design of inter-
rupt handling part for current mobile operating systems since the
design of hardware platform is totally different now.

4.6.3. Energy-efficient applications
As our experiments in Section 4.3 show, applications’ power

consumption varies a lot. In low battery status, users can stop

some unnecessary applications to save energy for phone service.
Besides, the power consumption of applications in the same cate-
gory can be very different even though the functionality of them
are the same. That means, it is possible to develop energy efficient

 estimated power for popular applications.

nformatics and Systems 4 (2014) 183–195 193

a
a
h
n
a
m
p
s
b
i
t
e
s
c

4

t
m
c
s

a
A
w
e
p
w
r
a
o
s
e
e
t

5

t
n
m

a
m
m
a
w
fi
S
d
w
e
a
t
o
o
i
a
m
T
c
a
o
s

Y. Li et al. / Sustainable Computing: I

pplications without influencing user experience. In detail, there
re two directions that we can look into. Aside from the main
ardware components, other parts such as DSP, sensors are also
eeded to be used in an energy-efficient way. For example, video
pplications may use video module more than CPU since video
odule power consumption dominates the whole application’s

ower. Another direction is to improve applications’ background
ituation. From the experiment results, some applications in the
ackground are not really suspended. Considering the user behav-

or that they usually put applications in background rather than kill
hem, these applications may generate big influence on the system
nergy. Hence, when the developers implement applications, they
hould reevaluate the background case and decrease the power
onsumption as much as possible.

.6.4. System power management design
One important goal that we design operating system is to protect

he hardware from misuse by applications. However, some power
anagement APIs, like wakelock, are not used efficiently and they

an cause big energy issue. We think the APIs for application design
hould be reevaluated from energy saving angle.

The energy consumption of screen, processor, radio and Wi-Fi
ccounts for about 95% of the whole system energy consumption.
mong these devices, it is hard to decrease the power of screen,
hich accounts for about 50%, through many kinds of system level

nergy-efficient strategies. In addition, the space to decrease the
ower of radio and Wi-Fi is low if the users need to use them. Even if
e could filter some of the unsolicited commands, we cannot make

adio work in low power mode. Thus, it is nearly inevitable to design
n energy-efficient strategy that can drop the energy consumption
f the system significantly. So, we claim that there is no chance to
olve the power problem for mobile devices with a single energy-
fficient strategy. The mobile operating system needs a group of
nergy-efficient design strategies to work together to accomplish
his goal.

. Discussions

Throughout the performance evaluation of Bugu, we noticed
hat there are two fundamental issues about power profiling that
eed to be answered, i.e. Accuracy of software based power measure-
ent tool and Ground truth for power measurement.

Is software based power measurement tool a good choice? There
re two basic approaches to measure power/energy: hardware
easurement using power meters and software based measure-
ent tool leveraging power models. Different power models are

pplied in the software measurement tools. For instances, hard-
are components utilization power model in PowerTutor [20] and
nite state machine of components’ states transition in Eprof [21].
ince the software approach is easier to use and no additional
evice is required, more and more people prefer to choose soft-
are tools to measure power/energy consumption. However, in our

xperiments, we found the software-based results are not stable
t least for some applications. In Fig. 18, we listed two applica-
ions’ power information measured by Bugu and PowerTutor. In
ur experiments, each application ran 5 times and each time the
perations we did are identical. In order to eliminate application
nterference, only the target application and the measurement tool
re opened. We normalized the power consumption to the mini-
um value in the total 5 results to emphasize the power variation.

he data shows that the variation can be as large as 20%, in that

ase, what result should we use? It is hard to tell the correct value
nd it is possible that if we continue measure, there will be more
ptions come out. The situation may be caused by the operating
ystem process, the communication between application and OS
Fig. 18. The comparison of different power results.

and the complicated hardware/software interactions. Hence, the
software-based result is reasonable after repeated experiments and
a single experiment data is not very useful. In other words, the
results measured by the software-based tools are accurate at some
extent.

Ground truth? How to evaluate the accuracy of a power mea-
surement tool? The common approach is comparing the calculated
results with the ground truth. However, the ground truth for appli-
cation level power is not easy to get. As we described above,
comparing with other software-based tools is not a good choice.
From the hardware measurement point of view, a simple approach
is using power meter to get the whole system data. If we want to get
each component’s power information, the measurement should be
did on the testbed where the circuit information is provided. While
the two approaches are for system power, they cannot give an accu-
rate power information for each application if there are multiple
application running in the system. So, most researchers only run
one application to match the results in training stage. The big chal-
lenge is how to get the ground true of allocating system power to
each application and considering the application interference.

6. Related work

Nowadays energy becomes more and more important. There are
many researchers working on the energy saving issue. As early as
2002, energy has been treated as a first-class resource in ECOSys-
tem [22] which contains a currentcy model and allocate the energy
to different tasks according to user preferences to extend battery
lifetime. Besides, Koala [23] predicts the performance and energy
consumption and dynamically control frequency to save energy.
Since mobile devices become more and more popular, researchers
are also interested in saving energy in mobile field [24,25]. For
example, Cinder [26] also leverage the idea and treat energy as
a resource, but it allocates energy directly to each processes and
uses hierarchical structure to control the resource, which avoid-
ing the competing between parent and child processes. Roy et al.
[27] implemented Cinder and showed the good performance even
with malicious applications. However, all these researches are
from system viewpoint and they need to change original operat-
ing system, which is not easy to implement and spread. The Bugu
service can benefit three groups of people, for system developers,
it is a tool to analyze existing problems and then modify system
accordingly.

To save power, we first need to measure the power. The easiest
way is using multimeters to read data and calculate power directly,
so we need extra device to calculate power in the early stage. The

prototype version of PowerScope [28] uses a digital multimeter to
sample the current drawn of the profiling computer and records
system activity at the same time. As a result, it generates an energy
profile for later analysis. PowerPack [29] also uses digital meter

1 nform

t
d
t
p
e
m
[
e
Z
e
f
l
A
t
e
t
c

m
[
e
e
c
p
c
d
c
g
e
[
a
s
c
e
a
a
t
w
H
t
t
a

7

i
a
w
a
c
e
s
a
e
c
o

A

e
i
o
2

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

94 Y. Li et al. / Sustainable Computing: I

o measure, while it focuses on each hardware components (CPU,
isk, memory, etc.). For convenience, researchers use power model
o calculate power consumption. Dempsey [30] extracts power
arameters to model the disk drive power consumption. Bertran
t al. [31] took advantage of performance counters to build power
odel and provided per component power consumption. Quanto

32] system addresses network communication power model in
mbedded system, the key parameter is network event. Dong and
hong [33] provided a self-constructive approach to build system
nergy model for mobile systems by using the smart battery inter-
ace to get enough information. Bugu system provides application
evel energy information by monitoring hardware status. Although
ppScope [34] also applies that approach, they get time informa-

ion by monitoring kernel events. Besides, their goal is to measure
nergy and build energy metering. Our work pays more attention
o analyzing the results we get and use them to bring benefits for
lients.

Speaking of saving energy for mobile devices, researchers pay
ore attention to specific components. For instances, EnTracked

35] uses dynamically changing context to schedule GPS so that it is
nergy-efficient as well as keep the performance. MAUI [36]saves
nergy through fine-grained code offload after evaluating energy
onsumption under connectivity constrains. Duan and Bi [37] pro-
osed a hybrid approach which leverages mobile RAM and phase
hange memory to achieve memory energy optimization. Our work
oes not care particular part of mobile devices or specific appli-
ation. We focus on general applications running in the system,
ive users application-level energy information and help them save
nergy from both application and system aspects. Pathak et al.
21] presented an energy accounting approach on application level
nd proposed saving energy by optimizing I/O bundle. The Bugu
ervice illustrates the event information and application power
onsumption, and gives the whole system power picture. It ben-
fits both application developer and system developer. Carat [38]
lso compares application’s power consumption by collecting from

 community of mobile devices. They provide hog report describes
he energy hungry applications among all clients and bug report
hich shows the energy hungry applications only on your machine.
owever, without information of applications in the same category,

hey cannot detect if the hog application has an energy bug. Besides,
hey cannot provide more analysis for developers to optimize their
pplications.

. Conclusions

In this paper, we analyzed mobile applications’ power behav-
or using Bugu which is an application level power profiler and
nalyzer for mobile phones. Bugu is composed of a server side
hich provides power information of different applications, and

 client side that analyzes power and event information for spe-
ific applications. We implemented Bugu on Android platform and
valuated its accuracy (95%) and overhead. We showed the case
tudies of finding the root causes of large power consumption. The
nalysis of 100 applications’ power information is useful for many
nergy/power related researches on mobile devices, and the impli-
ations derived from the observation point out several potential
ptimization directions.

cknowledgements

The authors would like to thank the anonymous review-

rs for their comments and kindly suggestions. This work is
n part supported by NSF grant CNS-1205338, the Introduction
f Innovative R&D team program of Guangdong Province (No.
01001D0104726115), and Wayne State University Office of Vice

[

atics and Systems 4 (2014) 183–195

President for Research. This material is based upon work supporting
while serving at the National Science Foundation.

References

[1] Global mobile data traffic forecast update, http://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/white
paper c11-520862.html

[2] Number of android applications, http://www.appbrain.com/stats/number-of-
android-apps

[3] A. Pathak, Y.C. Hu, M. Zhang, Bootstrapping energy debugging on smartphones:
a first look at energy bugs in mobile devices, in: Proceedings of the 10th ACM
Workshop on Hot Topics in Networks, ser. HotNets-X, New York, NY, USA, ACM,
2011, pp. 5:1–5:6.

[4] Green software awareness survey, http://www.sig.eu/blobs/Nieuws/2011/
Results%20Survey-201109.pdf

[5] Battery doctor, https://play.google.com/store/apps/details?id=com.ijinshan.
kbatterydoctor en

[6] Juicedefender, https://play.google.com/store/apps/details?id=com.latedroid.
juicedefender

[7] Battery stats plus, https://play.google.com/store/apps/details?id=com.
rootuninstaller.bstats

[8] Dr.power, http://tawkon.com/blog/en/dr power
[9] R. Mittal, A. Kansal, R. Chandra, Empowering developers to estimate app

energy consumption, in: Proceedings of the 18th Annual International Con-
ference on Mobile Computing and Networking, ser. Mobicom’12, New York,
NY, USA, ACM, 2012, pp. 317–328, http://dx.doi.org/10.1145/2348543.2348583
(Online), Available from:.

10] Trepn profiler, qualcomm Developer Network, https://developer.qualcomm.
com/mobile-development/increase-app-performance/trepn-profiler

11] R.T. Fielding, Architectural styles and the design of network-based software
architectures (Ph.D. dissertation), 2000.

12] H. Chen, Y. Li, W. Shi, Fine-grained power management using process-level
profiling, in: Sustainable Computing: Informatics and Systems, ser. SUSCOM,
January, 2012.

13] M. Dong, L. Zhong, Power modeling and optimization for OLED displays, IEEE
Trans. Mobile Comput. 11 (2012) 1587–1599.

14] Google, Wakelock, android power management, http://developer.android.
com/reference/android/os/Pow-erManager.html

15] C. Maia, L.M. Nogueira, L.M. Pinho, Evaluating android OS for embedded
real-time systems, in: Operating Systems Platforms for Embedded Real-Time
Applications, ser. OSPERT 10, July, 2010.

16] S. Tilkov, A brief introduction to rest, 2007, December http://www.infoq.com/
articles/rest-introduction

17] Pxi platform, Industry leading, pc-based platform for test, measurement, and
control, National Instruments, http://www.ni.com/pxi/

18] Accumulated number of application and games in the android market,
http://www.androlib.com/appstats.aspx

19] BP Precision, b&K Precision Corp. Model 1785B, http://www.bkprecision.com/
20] M. Gordon, L. Zhang, B. Tiwana, R. Dick, Z.M. Mao, L. Yang, PowerTutor: a power

monitor for android-based mobile platforms, http://ziyang.eecs.umich.edu/
projects/powertutor/

21] A. Pathak, Y. Hu, M. Zhang, Where is the energy spent inside my app?: fine
grained energy accounting on smartphones with Eprof, in: Proceedings of the
7th ACM European Conference on Computer Systems, ser. EuroSys’12, New
York, NY, USA, ACM, 2012, pp. 29–42.

22] H. Zeng, C.S. Ellis, A.R. Lebeck, A. Vahdat, Ecosystem: managing energy as a
first class operating system resource, in: Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ser. ASPLOS-X, New York, NY, USA, ACM, 2002, pp. 123–132,
http://dx.doi.org/10.1145/605397.605411 (Online), Available from:.

23] D.C. Snowdon, E. Le Sueur, S.M. Petters, G. Heiser, Koala: a platform for
OS-level power management, in: Proceedings of the 4th ACM European Con-
ference on Computer Systems, ser. EuroSys’09, New York, NY, USA, ACM, 2009,
pp. 289–302, http://dx.doi.org/10.1145/1519065.1519097 (Online), Available
from:.

24] J. Flinn, M. Satyanarayanan, Energy-aware adaptation for mobile applica-
tions, in: Proceedings of the Seventeenth ACM Symposium on Operating
Systems Principles, ser. SOSP’99, New York, NY, USA, ACM, 1999, pp. 48–63,
http://dx.doi.org/10.1145/319151.319155 (Online), Available from:.

25] N. Vallina-Rodriguez, J. Crowcroft, ErdOS: achieving energy savings in
mobile OS, in: Proceedings of the Sixth International Workshop on
MobiArch, ser. MobiArch’11, New York, NY, USA, ACM, 2011, pp. 37–42,
http://dx.doi.org/10.1145/1999916.199926 (Online), Available from:.

26] S.M. Rumble, R. Stutsman, P. Levis, D. Mazières, N. Zeldovich, Appre-
hending joule thieves with cinder, in: Proceedings of the 1st ACM
Workshop on Networking, Systems, and Applications for Mobile Hand-
helds, ser. MobiHeld’09, New York, NY, USA, ACM, 2009, pp. 49–54,
http://dx.doi.org/10.1145/1592606.192618 (Online), Available from:.
27] A. Roy, S.M. Rumble, R. Stutsman, P. Levis, D. Mazières, N. Zeldovich,
Energy management in mobile devices with the cinder operating
system, in: Proceedings of the Sixth Conference on Computer Sys-
tems, ser. EuroSys’11, New York, NY, USA, ACM, 2011, pp. 139–152,
http://dx.doi.org/10.1145/1966445.1966459 (Online), Available from:.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0015
http://www.sig.eu/blobs/Nieuws/2011/Results Survey-201109.pdf
http://www.sig.eu/blobs/Nieuws/2011/Results Survey-201109.pdf
https://play.google.com/store/apps/details?id=com.ijinshan.kbatterydoctor_en
https://play.google.com/store/apps/details?id=com.ijinshan.kbatterydoctor_en
https://play.google.com/store/apps/details?id=com.latedroid.juicedefender
https://play.google.com/store/apps/details?id=com.latedroid.juicedefender
https://play.google.com/store/apps/details?id=com.rootuninstaller.bstats
https://play.google.com/store/apps/details?id=com.rootuninstaller.bstats
http://tawkon.com/blog/en/dr_power
dx.doi.org/10.1145/2348543.2348583
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0055
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0060
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0065
http://developer.android.com/reference/android/os/Pow-erManager.html
http://developer.android.com/reference/android/os/Pow-erManager.html
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0075
http://www.infoq.com/articles/rest-introduction
http://www.infoq.com/articles/rest-introduction
http://www.ni.com/pxi/
http://www.androlib.com/appstats.aspx
http://www.bkprecision.com/
http://ziyang.eecs.umich.edu/projects/powertutor/
http://ziyang.eecs.umich.edu/projects/powertutor/
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0105
dx.doi.org/10.1145/605397.605411
dx.doi.org/10.1145/1519065.1519097
dx.doi.org/10.1145/319151.319155
dx.doi.org/10.1145/1999916.199926
dx.doi.org/10.1145/1592606.192618
dx.doi.org/10.1145/1966445.1966459

nform

[

[

[

[

[

[

[

[

[

[

[

eral international conferences. He is a recipient of the NSF
Y. Li et al. / Sustainable Computing: I

28] J. Flinn, M. Satyanarayanan, PowerScope: a tool for profiling the energy usage of
mobile applications, in: Second IEEE Workshop on Mobile Computing Systems
and Applications, WMCSA’99, February, 1999, pp. 2–10.

29] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, K.W. Cameron, PowerPack: energy pro-
filing and analysis of high-performance systems and applications, IEEE Trans.
Parallel Distrib. Syst. 21 (5) (2010) 658–671.

30] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, R. Wang, Modeling
hard-disk power consumption, in: Proceedings of the 2nd USENIX Conference
on File and Storage Technologies, FAST’03, Berkeley, CA, USA, USENIX Associa-
tion, 2003, pp. 217–230.

31] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, E. Ayguade, Decomposable
and responsive power models for multicore processors using performance
counters, in: Proceedings of the 24th ACM International Conference on Super-
computing, ACM Press, 2010, pp. 147–158.

32] R. Fonseca, P. Dutta, P. Levis, I. Stoica, Quanto: tracking energy in net-
worked embedded systems, in: Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’08, Berkeley,
CA, USA, USENIX Association, 2008, pp. 323–338 (Online), Available from:
http://dl.acm.org/citation.cfm?id=1855741.1855764

33] M. Dong, L. Zhong, Self-constructive high-rate system energy modeling
for battery-powered mobile systems, in: Proceedings of the 9th Inter-
national Conference on Mobile Systems, Applications, and Services, ser.
MobiSys’11, New York, NY, USA, ACM, 2011, pp. 335–348, http://dx.doi.org/
10.1145/1999995.2000027 (Online), Available from:.

34] C. Yoon, D. Kim, W. Jung, C. Kang, H. Cha, AppScope: application energy meter-
ing framework for android smartphone using kernel activity monitoring, in:
USENIX Annual Technical Conference, ser. USENIX ATC’12, Boston, MA, USA,
June, 2012.

35] M.B. Kjaergaard, J. Langdal, T. Godsk, T. Toftkjaer, Demonstrating entracked
a system for energy-efficient position tracking for mobile devices, in:
Proceedings of the 12th ACM International Conference Adjunct Papers on Ubiq-
uitous Computing, ser. Ubicomp’10 Adjunct, New York, NY, USA, ACM, 2010,
pp. 367–368, http://dx.doi.org/10.1145/1864431.1864439 (Online), Available
from:.

36] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu, R. Chandra, P.
Bahl, MAUI: making smartphones last longer with code offload, in: Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Ser-
vices, ser. MobiSys’10, New York, NY, USA, ACM, 2010, pp. 49–62.
37] R. Duan, M. Bi, C. Gniady, Exploring memory energy optimizations in smart-
phones, in: 2011 International Green Computing Conference and Workshops
(IGCC), July, 2011, pp. 1–8.

38] A. Oliner, A. Iyer, E. Lagerspetz, S. Tarkoma, I. Stoica, Carat: collaborative energy
debugging, https://www.wattsupmeters.com
atics and Systems 4 (2014) 183–195 195

Youhuizi Li is currently a Ph.D. candidate at Wayne
State University. She received her B.S. degree from Xidian
University in 2010, and M.S. degree from Wayne State Uni-
versity in 2013, both in Computer Science. Her research
interests include sustainable computing, mobile system
power management, energy-friendly software design and
optimization. She has co-authored a couple of journals and
international conference papers.

Hui Chen is a Ph.D. candidate in computer science at
Wayne State University. His major research interests
include computer systems and sustainable computing.
Currently, he is working on user-centric power manage-
ment for mobile operating systems. He received his B.S.
degree in school of Mechano-electronic engineering from
Xidian University in 2004, and M.S. degree in computer
science and engineering from Beijing Institute of Technol-
ogy in 2008.

Weisong Shi is a professor of computer science at Wayne
State University. He received his B.S. from Xidian Univer-
sity in 1995, and Ph.D. degree from the Chinese Academy
of Sciences in 2000, both in Computer Engineering. His
current research focuses on computer systems, sustain-
able computing, mobile and cloud computing, smart
health. Dr. Shi has published more than 140 peer reviewed
journal and conference papers. He has served the program
chairs and technical program committee members of sev-
CAREER award, one of 100 outstanding Ph.D. disserta-
tions (China) in 2002, Career Development Chair Award
of Wayne State University in 2009, and the “Best Paper

Award” of ICWE’04, IPDPS’05, HPCChina’12 and IISWC’12.

http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0140
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0145
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0150
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0155
http://dl.acm.org/citation.cfm?id=1855741.1855764
dx.doi.org/10.1145/1999995.2000027
dx.doi.org/10.1145/1999995.2000027
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0170
dx.doi.org/10.1145/1864431.1864439
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0180
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
http://refhub.elsevier.com/S2210-5379(14)00037-7/sbref0185
https://www.wattsupmeters.com

	Power behavior analysis of mobile applications using Bugu
	1 Introduction
	2 System design
	2.1 The Bugu server
	2.2 The Bugu client
	2.2.1 Power profiler
	2.2.2 Event monitor
	2.2.3 Power and event analyzer

	3 Implementation
	3.1 The Bugu server
	3.2 Power profiler
	3.3 Event monitor
	3.4 User interfaces

	4 Evaluation
	4.1 Experiment setup
	4.2 Bugu case studies
	4.2.1 End user scenario
	4.2.2 Application developer scenario
	4.2.3 System developer scenario

	4.3 Applications power information analysis
	4.3.1 Apps run in foreground
	4.3.2 Apps run in background
	4.3.3 Real Apps case studies

	4.4 Bugu accuracy
	4.5 Bugu overhead
	4.6 Implications
	4.6.1 Radio service
	4.6.2 Hardware interrupts
	4.6.3 Energy-efficient applications
	4.6.4 System power management design

	5 Discussions
	6 Related work
	7 Conclusions
	Acknowledgements
	References

