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Abstract—Ridesharing services, such as Uber and Didi,
are enjoying great popularity; however, a big challenge
remains in guaranteeing the safety of passenger and driver.
State-of-the-art work has primarily adopted the cloud
model, where data collected through end devices on vehicles
are uploaded to and processed in the cloud. However,
data such as video can be too large to be uploaded onto
the cloud in real time. When a vehicle is moving, the
network communication can become unstable, leading to
high latency for data uploading. In addition, the cost of
huge data transfer and storage is a big concern from a
business point of view. As edge computing enables more
powerful computing end devices, it is possible to design a
latency-guaranteed framework to ensure in-vehicle safety.
In this paper, we propose an edge-based attack detection in
ridesharing services, namely SafeShareRide, which can de-
tect dangerous events happening in the vehicle in near real
time. SafeShareRide is implemented on both drivers’ and
passengers’ smartphones. The detection of SafeShareRide
consists of three stages: speech recognition, driving behav-
ior detection, and video capture and analysis. Abnormal
events detected during the stages of speech recognition or
driving behavior detection will trigger the video capture
and analysis in the third stage. The video data processing is
also redesigned: video compression is conducted at the edge
to save upload bandwidth while video analysis is conducted
in the cloud. We implement the SafeShareRide system
by leveraging open source algorithms. Qur experiments
include a performance comparison between SafeShareRide
and other edge-based and cloud-based approaches, CPU
usage and memory usage of each detection stage, and a
performance comparison between stationary and moving
scenarios. Finally, we summarize several insights into
smartphone based edge computing systems.

I. INTRODUCTION

As ridesharing services, such as Uber in the US and
Didi in China, have become increasingly popular, in-
vehicle safety has become a critical issue. Two kinds
of attacks may happen in vehicles [1]-[3]: drivers being
attacked by passengers or passengers being attacked by
drivers. For example, the driver may be kidnapped by
the passenger or the passenger may encounter a crazy
driver threatening her life. As millions of rides take
place through ride sharing services daily, it is important
to guarantee their safety. To tackle this issue, Didi has
applied facial recognition, itinerary sharing, SOS calling,

privacy numbers, driver verification and a safe driving
system to provide ride safety [4]-[6]. However, there
are still several open problems. For example, when the
passenger or driver is being attacked, it may be impossi-
ble for her to press the SOS button or share the itinerary.
In addition, facial recognition and driver verification are
usually only conducted once when a driver first registers
the share ride vehicle. Furthermore, even though real-
time GPS data can be used in a safe driving system to
detect risky driving behavior, dangerous scenarios can
still occur in vehicles with normal driving trajectories.
Therefore, much more effort is required to ensure in-
vehicle safety for ridesharing services.

In addition, the large scale of rides also poses signifi-
cant technical challenges for cloud based infrastructure.
State-of-the-art safe detection systems are usually imple-
mented in the cloud [1], [5]. Take uploading in-vehicle
video data to the cloud as an example. The total amount
of data that needs to be sent to the cloud every day can
easily reach PB scale. Therefore, it can be extremely
difficult for a pure cloud-based approach to keep track
of millions of rides and detect abnormal scenarios in
real time. Additionally, as the vehicle is moving at fast
speed, the wireless channel for applications on a vehicle
may become unstable [7]. Therefore, it may take a
much longer time to upload data to the cloud, let alone
doing further analysis and performing detection. If the
latency of the anomaly detection is high, it is unlikely
to guarantee safety. Therefore, a pure cloud-based safe
driving system is not sufficient.

With the rise of edge computing, end devices now
enable more powerful computing [8]-[10]. Meanwhile,
the computation of mobile devices like smartphones has
become increasingly more powerful. It is feasible to
design and implement an attack detection platform on
mobile devices using edge computing. In this paper,
we propose an edge-based three-stage attack detection
framework, namely SafeShareRide, which aims to ensure
the safety of share rides. The first stage uses speech
recognition to detect keywords such as “help” or a
loud quarrel during a ride. The second stage is driving



behavior detection. It collects driving data from an on-
board diagnostics (OBD) adapter and smartphone sen-
sors, and detects abnormal driving behaviors exhibited
through speed, acceleration and the angular rate. The
third stage is analyzing in-vehicle video recordings to
determine whether there is an emergency. At the be-
ginning of each detection period, the first two stages
are running independently to capture in-vehicle danger.
When the speech recognition recognizes a cry for help
or the driving behavior detection discovers dangerous
driving behaviors, video capture and analysis will be
automatically activated to process the in-vehicle video of
the current detection period. The detection results from
the first two stages, and the extracted video will be sent
to the cloud or edge server. Through this three-stage
detection, SafeShareRide can provide highly accurate
detection with very low bandwidth demand from video
uploading. The contributions of this paper are as follows:

o« An edge-based attack detection service, Safe-
ShareRide, is proposed to address safety concerns
in share rides. SafeShareRide leverages smartphones
as the edge computing platform and consists of
three stages: speech recognition, driving behavior
detection, and video capture and analysis.

e SafeShareRide adopts an edge cloud collaborative
approach which can be summarized as a general
approach for edge enabled applications.

o We implemented SafeShareRide as an android based
application and evaluated its CPU usage, memory
usage, bandwidth and latency. The performance
of the application under stationary and moving
scenarios was compared. We obtained four insights
for edge-based applications.

The remainder of this paper is organized as follows.
We present the background and motivation in Section II.
Section III introduces the design of SafeShareRide. We
discuss preliminary experiments and observations in
Section IV. The system implementation is discussed in
Section V. We present the evaluation of SafeShareRide
in Section VI. In Section VII, we discuss the limitations
and future work of the paper. Related work is discussed
in Section VIII. We finally conclude in Section IX.

II. BACKGROUND AND MOTIVATION

Although ridesharing services have become increas-
ingly popular, in-vehicle safety remains a big challenge
for companies like Uber and Didi. There have been many
news reports about attacks in ridesharing services. In this
section, we will discuss the background and motivation
of SafeShareRide in two aspects: 1) why we need to use
edge computing, and 2) why we choose the smartphone
as the edge computing platform.

A. Edge Computing

Cloud computing can provide powerful computational
capability, but it requires data to be uploaded. Edge
computing has been proposed to enable computation at
the edge of the Internet, where the data is also produced.

There are two main reasons why we need to use
edge computing rather than cloud computing. First, there
is too much data to be uploaded in the cloud based
approach. According to the statistics from [11], about
45,787 rides took place through Uber every minute in
2017. The size of a one-minute 720P video can be as
large as 100MB. Assuming the average ride duration
is about 20 minutes, the total amount of data that
needs to be sent to the cloud every day is around 9.23
PB. Uploading such a huge amount of data bears a
high cost. Second, the latency for uploading data in
moving scenarios can be much greater than in stationary
scenarios. According to the experiments in [10], [12],
4G/LTE may be unstable for moving vehicles. The data
loss rate can increase dramatically as the vehicle’s speed
increases. The latency of uploading data onto the cloud
can be affected by many factors such as speed, weather
conditions, and the locations of base stations. Cloud
computing may not be a robust approach in a moving
scenario. Therefore, it is suitable to use edge computing
for in-vehicle safety detection [13].

B. Smartphone as the Edge Computing Platform

In edge-based attack detection, the choice of the
computing platform is important in the entire system
design. There are many options, such as raspberry pi,
smartphone, pad, on-board devices including Nvidia Jet-
son TX2 and Intel Fog. As most detections are designed
to work at the edge, we need to consider availability,
performance and cost of the edge device, when choosing
the computing platform.

Our reason for choosing the smartphone as the edge
computing platform is multifold. First, smartphones, as
the most popular mobile devices, are accessible to both
passengers and drivers. Second, ride sharing services or
apps are widely available on smartphones. It can be
easier to use a smartphone to examine the start and
end of a ride. Third, there are many machine learning
libraries that can run on the smartphone, like TensorFlow
Lite [14] for Android phone and Core ML [15] for
iPhone. The model inference time can be significantly
reduced.

III. SAFESHARERIDE DESIGN

In this section, we first use an example to illustrate
SafeShareRide, followed by a detailed discussion of each
detection stage. We will discuss the algorithms and
models of each detection stage and then introduce the
application framework of SafeShareRide.



A. Example

Peter calls a ridesharing service through his smart-
phone. When he gets into the car, an app on his phone
is launched to collect audio, driving and video data
to detect abnormal events like kidnapping, fighting and
quarreling. Meanwhile, services running on the driver’s
phone are also automatically activated to detect abnormal
scenarios for the safety of the driver. When emergencies
are detected, the related real-time video, the car infor-
mation as well as the location will be sent to the cloud.
In addition, a video link will be sent to law enforcement.

Peter gets into
the vehicle

Attack happened
on the vehicle
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Fig. 1. The time series of SafeShareRide.
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The time series of SafeShareRide is illustrated in
Figure 1. When Peter gets into the car, all three stages
of detection are launched on his smartphone as well as
the driver’s. For every detection period 7', the program
runs on both sides to collect the audio and driving
data, and process them to determine unsafe events. In
order to reduce the demand for computation and storage
resources, a trigger mechanism is implemented between
these stages. If no emergency is detected, the captured
video data will be abandoned and no computational
analysis is performed on that video. When certain unsafe
events are detected by speech recognition or driving
behavior detection, the video capture and analyzing
process will be triggered to extract related video clips
from the captured video. The compressed video data will
then be sent to the cloud. Video analysis will be con-
ducted in the cloud to further examine in-vehicle safety.
The video clip, along with the contextual information,
such as location, time, and vehicle information, will be
automatically shared with the local police station.

B. Speech Recognition

Speech recognition is the first stage in SafeShareRide.
It is designed to detect abnormal audio, such as keywords
like “help” [16], [17], and abnormal high pitched sounds
such as screaming and loud quarrelling. Specifically,
we leverage an open source speech recognition project
named CMUSphinx [18] for keyword detection.

The speech recognition model used in SafeShareRide
is shown in Figure 2. The model is based on Hidden
Markov Model (HMM) which has been widely used for
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Fig. 2. The speech recognition in SafeShareRide.

speech decoding [19]. First, the microphone records the
audio every T seconds(e.g., 20.0s) and gets a waveform.
Voice Active Detection (VAD) is then used to delete
the silence in the front and back of the waveform. The
waveform is divided into utterances. Each utterance is
further split into a multitude of speech frames. For each
frame, typically 10 milliseconds in length, a feature
vector is extracted to represent the speech frame. The
feature vector is then used in speech frame matching
and scream detection. Gaussian Mixture Model (GMM)
is applied to detect screaming and loud quarrelling [20].
Three more models are used to match the speech to
words. Specifically, the acoustic model calculates the
acoustic properties for each frame. The phonetic dictio-
nary provides the mapping between speech frames and
words. The language model restricts the word search
by giving the possibility of word sequences. The goal
of matching process is to choose the best matching
combination.

C. Driving Behavior Detection

Driving behavior detection is designed to detect
dangerous driving behaviors. We define three danger-
ous driving behaviors in SafeShareRide: drunk driving,
speeding and distracted driving [21]. They are also the
three biggest causes of fatalities on the road !.

The data used for detection is collected from the OBD
adapter, sensors on the phone and GPS. SafeShareRide
leverages the Bluetooth/WiFi communication between
a smartphone and the OBD adapter to get the driving
speed, longitude, and latitude, among others.

The driving behavior detection in SafeShareRide is
shown in Figure 3. According to the evaluation results
of the edge-based approach and the cloud-based ap-
proach [22], it is more efficient to train the model in the
cloud, deploy the model and do inference at the edge.
For the driving behavior detection in SafeShareRide, the
inference on the data from OBD is conducted in near

Thttp://www.nsc.org/Pages/nsc-on-the-road.aspx
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Fig. 3. The driving behavior detection in SafeShareRide.

real time, while the upload of large data set to the cloud
and the download of the detection model to the edge
only happens when idling.

To detect speeding, we compare the driving speed
with the road speed limits obtained from the car’s
navigation system. The detection of distracted driving
and drunk driving is based on the Long Short-Term
Memory (LSTM) model [23]. In SafeShareRide, we
collect driving data from the OBD adapter and then train
an LSTM model on this data set to distinguish normal
driving behavior from abnormal driving behavior [24].
The trained model is then deployed on smartphones. For
each detection process, the collected driving data will
be divided into overlapping sliding windows according
to their timestamps, such as, 0.0-5.0s, 1.0-6.0s, and 2.0-
7.0s. The sliding window driving data is used as the
input of the LSTM model. For each sliding window, the
LSTM model outputs the probability of being abnormal.

D. Video Capture and Analysis

Because video analysis consumes the largest amount
of computing resources, video capture and analysis is
designed as the last stage in SafeShareRide. It will
only be activated when abnormal events are detected
by speech recognition or driving behavior detection. In
addition, in order to reduce the latency of video analysis,
only the video compression is conducted on the phone.
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Fig. 4. The video capture and analysis in SafeShareRide.

As shown in Figure 4, video capture and analysis
adopts an edge-cloud collaborative model. At the edge,

based on the timestamp of the trigger signal, relevant
clips will be extracted from the video and sent to the
cloud. In the cloud, two kinds of detection are used
for the video analysis. The first is action detection,
which can detect excessive movements of the driver and
passenger [25], [26]. For action detection, we first divide
the uploaded video clip into many frames. Each frame
needs to do background subtraction to get the outline of
the human body [27]. We then compare the outline of
every pair of continuous frames to estimate the range of
movement of the human body. Finally, we compare this
range with the normal moving space for passengers and
drivers to determine whether the movement is abnormal.
Here the normal moving space can be defined as the
average moving space in normal cases. The second is
object detection, such as detecting dangerous objects like
guns and knives [28]. CNN can be applied to recognize
such objects from frames [29]. When abnormal move-
ments or dangerous objects are detected, the video will
be shared with the law enforcement via a security link.

E. Application Framework
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Fig. 5. The framework of SafeShareRide.

The overall framework of SafeShareRide is shown
in Figure 5, which consists of two components: the
component of edge or mobile devices, such as iPhone
or Android phones, and the component of cloud, such
as remote servers at the police station.

For the edge component, a three-stage detection model
is deployed to detect the attacks happening on a ve-
hicle. When a passenger gets into the car, all three
stages of detection will be activated. The same detection
model is deployed on both the driver’s and passenger’s
smartphones. The detection frequency is set to be every
20 seconds. During each detection period, the speech
recognition uses the audio information recorded by the
smartphone to extract important key words. The driving
safety detection utilizes the data from OBD and other
sensors to determine whether the driving behavior is



normal, for example, whether the route is zigzag or the
vehicle is speeding. During these two detection stages,
any abnormal event will trigger the third stage detection,
i.e., video capturing and analysis.

The application of SafeShareRide is an edge-cloud
collaborative system, where the data collection and pro-
cessing of audio and driving behavior data is conducted
at the edge while the processing and analysis of video
as well as the storage of related data are conducted in
the cloud. This collaborative system is more efficient
than pure edge or cloud based approaches. Because of
low computation and storage requirements, edge devices
can handle both speech recognition and driving behavior
detection. In addition, edge devices compress videos to
save the bandwidth for video uploading. The content of
videos is analyzed in the cloud since the computation is
intensive.

IV. PRELIMINARY EXPERIMENTS AND
OBSERVATIONS

In contrast to the cloud, edge-based services have
more stable performance and save the bandwidth of
data transmission. In order to evaluate the performance
of each detection stage of SafeShareRide, we set up
three demos corresponding to the three detection stages.
We compared the proposed methods with cloud-based
approaches in terms of latency, detection accuracy, band-
width requirements, memory occupation and power con-
sumption. In addition, we also conducted an energy con-
sumption analysis by running the apps on the smartphone
and comparing them with low energy consumption ap-
plications, such as Gmail.

All the edge-based experiments were conducted on a
mobile phone (Huawei Nexus 6P). In order to monitor
the overall system performance for the cloud-based ap-
proach, the cloud related experiments were conducted on
the Intel Fog Node rather than a virtual machine. The
bandwidth consumption was measured by an app called
Trepn Profiler [30]. The latency was calculated based on
the timestamp on the smartphone.The detection period
was empirically set to be 20.0 seconds.

A. Speech Recognition

In order to evaluate the performance of speech recog-
nition, we defined a list of key phrases or words such as
“help”, “help me”, “help us”, “rescue me”, and “rescue
us” [31]. We collected the audio data for each phrase
from 10 volunteers as the test set. The CMUSphinx
speech recognition and Google Cloud Speech were
compared in terms of latency, accuracy and bandwidth.
Accuracy is defined as the ratio between the number
of correctly recognized phrases and the total size of
the test set. The experiment results are shown in Table
1. We can see that Google Cloud Speech has higher

TABLE 1
THE EXPERIMENT RESULTS OF SPEECH RECOGNITION.

Metric CMUSphinx | Google Cloud Speech
Accuracy 73.6% 86.1%
Latency 2.279s 0.158s
Bandwidth 0KB/s 23KB/s
Energy 0.024] 0.055J
TABLE II

THE EXPERIMENT RESULTS OF DRIVING BEHAVIOR DETECTION.

Metric Huawei Nexus 6P | Intel Fog Node
Latency 0.264s 0.036s
Bandwidth 0KB/s 35KB/s
Energy 0.38J 0.79]
Memory 84MB 170MB

accuracy and lower latency than that of CMUSphinx
speech recognition. Since CMUSphinx works offline,
the bandwidth consumption is 0.0 KB/s. The bandwidth
of Google Cloud Speech is 23.0 KB/s. As we don’t
know how much computational resource the cloud has
consumed, it may not be fair to compare the accuracy
and latency. According to the results in [32], the
accuracy of CMUSphinx can reach above 95% when
used on a small number of vocabularies. The latency
can also be reduced.

Observation 1: Although edge computing is very
promising, it still needs optimization to become more
competitive, comparing with the cloud-based approach.

B. Driving Behavior Detection

For driving behavior detection, we trained the LSTM
detection model in the cloud. We used TensorFlow
Lite [14] as the deep learning framework to perform
model inference at the edge. The length of the slide
window was empirically set to be 5.0 seconds. The data
collected by the OBD adapter included the timestamp,
longitude, latitude, speed, altitude, bearing, gravity, etc.
The collection frequency was 0.1 seconds. We empiri-
cally set the detection probability threshold at 0.8. That
is, if the output probability of LSTM is larger than
0.8, we consider the driving behavior as abnormal. We
measured the average latency, bandwidth assumption,
and energy consumption for one detection process. The
experiment results are shown in Table 2. As we can
see, the latency of both approaches is below one sec-
ond. The edge-based approach does not have bandwidth
requirements, so it is more stable than the cloud-based
approach. When the communication signal is weak, the
edge-based approach will not be affected. The energy
consumption of the edge-based approach is also lower
than that of the cloud-based, so the edge-based driving
behavior detection is more efficient.



TABLE III
THE EXPERIMENT RESULTS OF VIDEO ANALYSIS.

Metric Huawei Nexus 6P | Intel Fog Node

Latency 0.675s 0.603s
Bandwidth 13KB/s 65KB/s

Energy 0.34] 0.81J

Observation 2: It is more effective to train machine
learning models in the cloud and deploy the trained
models on edge devices.

C. Video Capture and Analysis

As we only uploaded corresponding video clips based
on the timestamps from the first two detection stages, the
required bandwidth was significantly reduced compared
to uploading all the video to the cloud. We set up a
demo of video analysis to compare the performance
of the edge-based approach and the cloud-based ap-
proach. In this demo, the video clip was transformed
into 1280x720 (720P) and the number of frames per
second was set to be 30.0. The video data was en-
coded in the H.264 [33] format with a baseline profile.
One intra-frame (IFrame) is configured to be followed
by fifty-nine predictive-frames (PFrames) without a bi-
directional frame (BFrame), because we simulated a live
video stream and could not compute the differences
between the current frame and the next frame. The data
was sent to the edge nodes using the real-time transport
protocol (RTP) over UDP/IP network. We used Simple
RTMP Server [34] to push and pull the video stream.
The data was transmitted through the TCP/IP and HTTP
protocol. For the video analysis, we used the object
classification of OpenCV to analyze the video clips. The
experiment results of video uploading and analysis are
shown in Table 3. As we can see, the edge-based video
analysis approach is both more bandwidth and energy
efficient than the cloud-based approach. The latency of
both approaches is close, smaller than one second.

D. Energy Consumption

As the battery power on smartphones is limited, the
energy consumption of the applications is an impor-
tant factor to consider. We calculated the total energy
consumption by combining the consumption from each
detection stage, and measured it at different detection
periods. As a comparison, we also measured the energy
consumption of Gmail when it was running as a back-
ground application in Huawei Nexus 6P . The energy
consumption of 30 minutes is shown in Figure 6, where
T in SafeShareRide-T indicates that the detection period
is set to be 1" seconds.

From Figure 6, we can see that the energy consump-
tion of SafeShareRide is lower than that of Gmail even
when the detection period is set at 3.0 seconds. When
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Fig. 6. The energy consumption of SafeShareRide and Gmail.

TABLE IV
THE HARDWARE CONFIGURATION COMPARISONS

Metric Huawei Nexus 6P Virtual Machine
CPU 4x1.55 GHz Cortex-A53 4xIntel(R) Xeon(R)
& 4x2.0 GHz Cortex-A57 2.40GHZ
GPU Adreno 430 Microsoft Corporation
Hyper-V
oS Android 8.1.0 Ubuntu 16.04
MEMORY 3 GB RAM 13 GB RAM
BATTERY 3450 mAh —

the detection period is longer, the energy consumption
can be further reduced.

Observation 3: Energy consumption can be further
reduced by enabling different detection frequency at
different detection stage.

V. SYSTEM IMPLEMENTATION

Based on the preliminary experiments and the above
observations, in this section, we introduce the specific
system design of SafeShareRide on Huawei Nexus 6P
and the Microsoft Azure virtual machine. We also
discuss the insights gained through implementing the
detection system.

A. Hardware Configuration

The edge-based SafeShareRide system is based on
Huawei Nexus 6P and a virtual machine of Microsoft
Azure. The virtual machine is responsible for storing and
analyzing the compressed video sent from Huawei Nexus
6P. For the cloud-based approach, all three detection
stages are conducted on the virtual machine. All the data,
including audio from the microphone, driving data from
OBD and video clips from a camera, are sent to the cloud
for further analysis. The virtual machine on Microsoft
Azure is the Standard_D3_v2 series. Table 4 shows the
specific hardware configurations of the Huawei Nexus
6P and the virtual machine.

As we can see from Table 4, the virtual machine is
much more powerful than the smartphone. In the design
of SafeShareRide, we want to leverage the advantages



of both edge and cloud, therefore enhancing the entire
system performance. Computation intensive and data in-
tensive tasks, such as video analysis and model training,
can be conducted on the virtual machine. In addition, as
the battery power of the smartphone is limited, we need
to run energy efficient tasks on the smartphone.

B. System Design

In this section we discuss the system design of Safe-
ShareRide based on the observations that we gained
in the preliminary demos. As shown in Figure 7, we
developed the Android app as well as the web service
on the virtual machine. The connection between speech
recognition activity and the virtual machine and the
connection between driving behavior activity and the
virtual machine only exist in the cloud-based approach.

Virtual
Machine

Apache Web
Server

Programs
(python)

Speech
Recognition
Activity

Driving
Behavior
Activity

Analysis
Activity

Media
Session

Bluetooth .
Session

Fig. 7. The system design of SafeShareRide.

For speech recognition, the Android app reads data
from the microphone through media session APIs and
stores the audio data on the smartphone. The speech-
to-text process is then conducted. In the cloud-based
approach, the audio is sent to the cloud through the
HTTP protocol. For driving behavior detection, we first
set up a service to read the driving data from the
OBD adapter. This service is based on the Bluetooth
protocol. The detection model is trained in the cloud and
then deployed on the smartphone. We perform model
inference on the data collected from the OBD adapter.
For video analysis, the Android app receives video from
a camera through media session APIs. We extract the
video clips, which correspond to the detection periods
where speech recognition or driving behavior detection
identifies abnormal events. These clips are uploaded to
the virtual machine.

On the virtual machine, we deploy an Apache Web
Server to respond to the HTTP request. PHP scripts are

used to direct the HTTP requests. For HTTP requests
to upload the data, they are directed to the MySQL
database. For HTTP requests to run the inference of the
driving behavior model and object classification model,
they are directed to the corresponding python programs.
The results are finally attached to the HTTP response. In
addition, the training process of both the driving behavior
detection and object classification are conducted on the
virtual machine. The inference of object classification is
also conducted on the virtual machine.

C. Detection Models

For the models at each stage, we leveraged open
source libraries to do the implementation. Specifically,
we leveraged the speech recognition toolkit, Pocket-
Sphinx, which is based on CMUSphinx [18] on Android
phones. We designed the phonetic dictionary and lan-
guage model for keywords extraction.

The driving behavior detection model is based on
LSTM [21], [35], [36], which is widely used to model
sequential data. We use one layer of LSTM, which has
128 neurons in each cell and is followed by a sigmoid
classifier. The classifier outputs the probability of a
sequence being abnormal or not. We set learning rate
to 1073, The batch size is 10 and the number of epochs
is 50.

The driving behavior data collected by OBD comes
from a ride which lasted about 1.5 hours and the
sampling frequency is 1.0s. We divided the time series
into overlapping sliding windows. Each sliding window
consist of driving data over five seconds, such as, 0.0-
5.0s, 1.0-6.0s, and 2.0-7.0s. Since the data only in-
cluded normal driving behaviors, we simulated abnormal
driving data by randomly disordering the data of one
dimension in the normal driving data. In this way, we
generated the dataset consist of one half normal driving
data and one half abnormal data. We use 80% for training
and the remaining 20% for test.

The model of the video capture and analysis was based
on CNN, while the algorithm of video analysis was based
on OpenCV [37] and Inception-v3 [28]. We implemented
the object classification on Android using TensorFlow
Lite. We trained the CNN model with pictures containing
knives and guns to identify whether there are such
dangerous objects in each video frame. We built an
image data set which contains many kinds of knives
and guns. The dataset was used to train the inception-v3
model to make the latter perform better for our scenario.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Safe-
ShareRide on four aspects: workload setup, memory and
CPU usage of three stages, edge and cloud performance
comparison, and stationary and moving condition perfor-
mance comparison. In order to evaluate the availability



TABLE V
THE TESTING DATASET FOR EXPERIMENTS
Data Size Time
Audio 579MB 8000s
OBD adapter 322KB 30min
Video 1400MB 600s

and efficiency of SafeShareRide, we chose four metrics,
including CPU usage, memory usage, bandwidth require-
ments, and latency. We deployed the same algorithms on
both Huawei Nexus 6P and the cloud virtual machine.
For the edged-based approach, Android Profile is used to
monitor the CPU usage, memory usage, network usage,
and record the latency of every inference. In the cloud-
based approach, as the virtual machine is based on
Ubuntu, we used Linux commands such as fop, htop, and
time to collect the metrics. The biggest challenge is the
instability of wireless communication. We conducted the
experiments under various network conditions, including
WiFi, 4G stationary, and 4G moving.

A. Setup

To begin with, we first discuss the setup of Safe-
ShareRide as well as the cloud-based approach. For
speech recognition in SafeShareRide, we implemented
PocketSphinx-based app using Google’s speech recogni-
tion toolkit on the smartphone. With Google’s Android-
based speech-to-text service, Android apps can do
speech-to-text translation offline. We also implemented
the module using the CMUSphinx speech recognition
library and the Google Cloud Speech library on the
virtual machine.

For edge-based speech-to-text translation, the speech
recognition module puts the audio file into a recognizer
class and uses the CMUSphinx models or Google’s
offline model to do the inference. For the cloud-based
approach, we use the HTTP protocol to transmit the
audio data to the virtual machine. The URL of HTTP
request directs the data to an audio.php script on the
virtual machine. This script then loads the data into
a MySQL database and launches the inference of the
speech recognition model. The final results are attached
to the HTTP response.

The processes of cloud-based driving behavior de-
tection and video capture and analysis are similar to
those in speech recognition. They are all based on HTTP
protocols and use PHP to direct the data to corresponding
detection methods, which are implemented in python.

As workload is a significant factor influencing perfor-
mance, here we discuss the workload in the experiments.
The testing data sets used in the experiments are shown
in Table V. We used the Mozilla Common Voice Data
sets [38] as the voice experiment data set. In total, we
chose 3994 voice files from Mozilla as the input to the

speech recognition activity. We collected 10 hours of
driving data from the OBD adapter as the testing data
set for driving behavior detection. We also recorded in-
vehicle videos with Huawei Nexus 6P for the object
classification experiments.
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Fig. 8. The Distribution of Audio Data Size.

The distribution of audio data size is shown in Fig-
ure 8. As we can see, it roughly follows a normal
distribution. The mean audio size is between 135 KB
and 180 KB. For OBD data, the size of a file with
300 second driving data is about 53.8 KB. However, a
60 second video recorded by Huawei Nexus 6P can be
around 140MB, which is much larger than the audio and
driving data.

B. Memory Usage and CPU Usage of Three Stages

The three detection stages of SafeShareRide are based
on computationally intensive algorithms and models, for
example, Hidden Markov Model in Speech Recognition,
LSTM in driving behavior detection, and CNN in object
classification. Therefore, it is important to evaluate the
memory and CPU usage. We implemented CMUSphinx,
Google Cloud Sphinx, driving behavior detection model,
and object classification model on the virtual machine.
We collect the Resident Memory Usage (RES) and
single core CPU usage of these algorithms during model
inference. For object detection, we took one hundred
frames as the input of model inference.

Figure 9 and Figure 10 show the RES and CPU usage
of Sphinx and Google Cloud over time. From Figure 9,
we can see that the CPU usage of Sphinx is constantly
above 90%, while the memory usage varies. The peak
RES is 130000 Kb. In contrast, the CPU usage of Google
Cloud Speech is constantly below 5 %, and the peak RES
is only 17200 Kb. The accuracy and latency of Sphinx
is not as good as Google Cloud Speech. However, since
Google Cloud Speech provides the service in the cloud,
what we have measured is only the resource usage of



a single client. Therefore, it is unfair to compare these
two approaches. The following is our first insight:
Insight 1: It is unfair to compare the edge-based
approach with the industry commercial cloud-based
approach because obtaining the complete resource
consumption of the latter is almost impossible.
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Fig. 9. The Resident Memory Usage and CPU Usage of Sphinx Speech
Recognition.
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Fig. 10. The Resident Memory Usage and CPU Usage of Google
Cloud Speech.

Figure 11 and Figure 12 show the RES and CPU usage
of the driving behavior detection model and the object
classification model, respectively. During the model in-
ference, the first step is to load the trained model into
the memory. Therefore, the RES and CPU will increase
greatly at the beginning of the inference. The second step
is to read data into the memory. When the inference is
done, both the memory of the model and data will be
released. For the driving behavior detection model, its
RES peak is 350,000 Kb while the peak CPU usage
is 110%. For the object classification model, its RES
peak is 500,000 Kb while the peak CPU is 100%. Both

are significantly larger than that of speech recognition.
The time cost of driving behavior detection is nearly
7.0 seconds while the object classification model takes
about 2.5 seconds. Therefore, the model inference is not
computationally expensive. It is suitable to do model
inference at the edge. We present our second insight
below.

Insight 2: The model training and inference to be
conducted in the cloud or at the edge should take
specific applications into account.
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Fig. 11. The Resident Memory Usage and CPU Usage of Driving
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Fig. 12. The Resident Memory Usage and CPU Usage of Object
Classification Model Inference

C. Edge and Cloud Performance Comparison

In order to evaluate the performance of SafeShareRide,
we implemented the speech recognition, driving behavior
detection, and object classification on the virtual machine
using the same algorithms and models as those on the
smartphone. Google Cloud Speech is also implemented
on both the smartphone and the cloud. We collected
metrics such as the model inference latency, network



bandwidth usage, average CPU usage and memory us-
age. The results are shown in Table VI, where offline
means that the computation is conducted at the edge,
online means that the data needs to be uploaded to the
cloud, and the computation is also conducted in the
cloud.

For speech recognition, Google Speech Recognition is
the offline version while Google Cloud Speech is online.
PocketSphinx is the Android version of CMUSphinx,
which is more flexible than Sphinx. The online ap-
proaches have much longer latency than the offline since
they also include data uploading latency. The average
CPU usage of Sphinx can be much larger than that
of PocketSphinx, but the average CPU usage of the
Google Cloud Speech is much less than that of Google
Speech Recognition. In contrast, the memory usage of
online approaches is less than offline. As far as we are
concerned, the CPU and memory usage are not related
to online or offline, but rather to specific algorithms
and models. Offline approaches do not need network
communication.

For driving behavior detection, the latency difference
between online and offline approaches is less than that
of speech recognition, as the driving data size is much
smaller than the audio data. In addition, we do not
observe a clear distinction between the average CPU
usage and memory usage between online and offline.

For object classification, as video is the largest among
all the data sets, the latency difference between online
and offline is also the largest. The same happens on
network bandwidth difference. There seems to be no
strong correlation between CPU usage, memory usage
and online or offline status. Our third insight is based
on the above observations.

Insight 3: The CPU and memory usage are not
related with online or offline status. They are more
related with specific algorithms and models.

D. Performance Comparison of Moving & Stationary
Scenarios

Compared with the edge-based approach, one of the
most important disadvantages for the cloud-based ap-
proach is that the data needs to be uploaded to the
cloud. Therefore, the performance of the cloud-based
approach can be greatly affected when the network
communication is not good enough. In order to evaluate
the impact, we conducted two experiments, i.e., Google
Cloud Speech and online object classification, when the
vehicles was running at different speeds. The latency
and accuracy were collected . The results of Google
Cloud Speech are shown in Figure 13. As we can see,
when the vehicle’s speed increases, the latency of speech
recognition increases as well. On the other hand, the
accuracy is not affected. Compared with the stationary

scenario, the latency of Google Cloud Speech increases
by 44.6% when the driving speed is 70 miles per hour.
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Fig. 13. The Latency and Accuracy of Google Cloud Speech under
different driving speeds

The results of online object classification are shown in

Figure 14. Similar to Google Cloud Speech, the accuracy
of object classification is also not affected by driving
speed. However, latency is greatly affected by speed.
When the driving speed is at 60 miles per hour, the
latency is almost 18 times greater than in the stationary
scenario. Applications that have low latency require-
ments will face huge challenges in moving scenarios.
In addition, from Figure 13 and Figure 14, we can see
that the latency of smaller data seems less affected by the
moving condition. Therefore, for large data sets such as
video, it can be more effective to use the edge-based
approach or divide the data into smaller sets before
uploading to the cloud. We present the fourth insight
below:
Insight 4: It can be a huge challenge for cloud-
based approaches in moving scenarios. Edge-based
approaches may be more desirable under moving
conditions.

VII. DISCUSSIONS AND LIMITATIONS

From our system design and evaluation, we can see
that the edge-based approach is more efficient than
the pure cloud-based approach for detecting dangerous
events in ridesharing services. However, there are still
many open problems.

The first problem is the system overhead. To date, we
have launched three activities at three detection stages
of SafeShareRide. For each activity, we set up threads
for various tasks, such as data collection, data upload,
and model inference. A synchronous method was used
to schedule the back-end threads of these activities. We
did not take the system overhead into account when
designing the system. The SafeShareRide system needs
more optimization to guarantee availability.



TABLE VI
THE PERFORMANCE COMPARISON BETWEEN ONLINE AND OFFLINE

Metric Latency(ms) | Bandwidth(KB/s) | Average CPU Usage (one core) | Memory(MB)
PocketSphinx (offline) 613.04 0 5.40% 106.00
Google Speech Recognition (offline) 4.22 0 2.80% 62.00
Sphinx 1856.94 0 90.9% 16.25

Google Cloud Speech (online) 40.28 23 0.69% 2.15

Driving Behavior Detection (offline) 81.16 0 12.30% 164.60
Driving Behavior Detection (online) 248.26 12 107.00% 42.68
Object Classification (offline) 76.64 0 14.00% 197.80
Object Classification (online) 11325.90 2274 116.00% 60.40
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Fig. 14. The Latency and Accuracy of Object Classification under
different driving speeds

The second problem is the application of different
detection models. Currently, these models are imple-
mented using off-the-shelf open source packages. Their
resource utilization can be further improved with more
customization and optimization. In addition, these mod-
els are trained with data sets of limited sizes and sources.
In practice, the performance of the models will vary with
different training and test data.

The third problem is the adaptive scheduling task
between edge and cloud computing. According to our
experiments, both edge and cloud computing have shown
advantages under different conditions. Therefore, it can
be more effective to have a collaborative edge-cloud
model. For a specific task, whether it should be run in
the cloud or at the edge can be dynamically determined
by factors such as the task type, available network
bandwidth, and battery status.

Last but not the least, data privacy remains a big issue.
SafeShareRide analyzes audio, driving data, and video to
detect attacks. However, these data may contain sensitive
personal information. It is important to provide detection
services while complying with privacy regulations.

In the future, we plan to develop an asynchronous
framework to optimize the back-end threads schedul-
ing in the SafeShareRide system. We will also collect

more data to train the models at each detection stage
and improve the detection performance with more cus-
tomization. In addition, we will design an edge-cloud
collaboration scheme based on task type and computing
environment. Finally, privacy preserving data sharing
mechanisms can leveraged to better protect user privacy.

VIII. RELATED WORK

We present the related work in the following two
categories: 1) work that is relevant to driving safety and
2) work on edge computing enabled applications.

A. Driving Safety

Many recent studies have focused on driving behavior
detection. [39] developed an android application to de-
tect dangerous driving behavior using dual cameras on
smartphones. They applied computer vision and machine
learning algorithms to detect whether the driver is tired
or distracted. [40] proposed a method to detect driver
frustration using the video and audio data collected
through an in-vehicle navigation system. SVM is applied
to discriminate between classes. This work is more
focused on the detection of the abnormal emotions
of the drivers, not on dangerous events in ridesharing
services. [41] predicted unsafe driving behaviors based
on facial-expression analysis. They developed a driver-
safety framework to capture vehicle dynamics and the
driver’s facial expressions. A virtual driving safety sim-
ulator is used to collect a large set of accidents. They ap-
plied many classifiers, including Bayesian nets, decision
trees, and support vector machine (SVM), to predict the
probability of unsafe driving behavior. However, their
work only uses video data to predict unsafe driving
behavior,s not other types of data, such as in-vehicle
audio streams and driving data. [42] analyzed driver
behaviors using large scale machine learning algorithms.
They collected data from 78 participants and obtained
3.5 billion video frames. Their data streams include Iner-
tial Measurement Unit(IMU), GPS, and Controller Area
Network(CAN) messages. The video data is integrated
with contextual information such as vehicle state, driver
characteristics, and mental models. This work is more



focused on data management and improvement of the
algorithms.

B. Edge Computing Enabled Applications

Edge computing has enjoyed great popularity in a
wide range of applications, due to its advantage of
conducting computation near the data source. Before this
work, we proposed the framework of SafeShareRide and
set up three demos to illustrate the availability of the de-
tection system [43]. In this paper we redesign the entire
system, implement it as an Android app, and evaluate its
performance in a more systematic way. Edge computing
has been widely used in video analysis. [44] proposed a
video analytic software stack, namely, Rocket. A video
pipeline optimizer is used to optimize the allocation of
resources based on the data and the properties of deep
neural network models. The allocation message is sent
to the resource manager to allocate hardware resources.
[45] applied edge computing to enable latency aware
video analysis. They adopted an edge first design, and
optimized the selection of uploading tasks in order to
minimize the response time. They also designed task
placement schemes to achieve inter-edge collaboration.
[46] proposed a new computing framework called Fire-
work to facilitate distributed data processing and sharing
for Internet of Things applications. Firework is imple-
mented using virtual shared data view and service com-
position. Firework can significantly reduce latency and
bandwidth cost, compared with cloud-based approaches.
However, this work did not take moving scenarios into
account. When a vehicle is moving, the performance of
data sharing can be very different.

IX. CONCLUSION

SafeShareRide is an edge-based approach for attack
detection in ride sharing services. It uses three stages to
provide detections with high accuracy and low overhead.
The three stages include speech recognition, driving
behavior detection, and video capture and analysis. The
trigger mechanism is used to improve detection accuracy
and reduce bandwidth requirement for video analysis.
We designed and implemented the SafeShareRide system
as an android application. We compared the performance
of SafeShareRide with other edge-based and cloud-based
approaches, in terms of the CPU and memory usage in
online and offline scenarios and the latency and accuracy
in moving and stationary scenarios. We drew several in-
sights from these experiments. SafeShareRide has shown
better performance than cloud-based approach in most
scenarios. It is an effective and efficient edge-based
attack detection framework for ride sharing services.
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