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ABSTRACT
With the rapid development of Internet-of-Things, sensors and
devices are connected enabling a variety of applications. One of
the most attractive applications is Video Analysis for Public Safety
(VAPS), which has got massive attention from both research com-
munity and industry. However, there are still challenges in the
system design and implementation of the VAPS service, especially
in the mobile environment. For example, law enforcement officers
are equipped with body-worn camera when they are on duty, how
to connect body-worn cameras with the law enforcement vehicle
and enable the law enforcement vehicle to perform near real-time
video analysis for the officer are still open questions. Inspired by the
promising edge computing technology, we propose an IoT-Enabled
public safety service called AutoVAPS which integrates body-worn
cameras and other sensors on the vehicle for public safety. In Auto-
VAPS, we propose a reference architecture that consists of the data
layer for data management, the model layer for edge intelligence,
and the access layer for privacy-preserving data sharing and access.
Object detection is implemented as a case study of AutoVAPS. Early
evaluation illustrated the applicability and challenges of AutoVAPS.
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1 INTRODUCTION
In the era of Internet-of-Things (IoT), computing devices are coming
increasingly connected. There could be an estimated 50 billion
IoT devices by 2020 with a potential yearly economic impact of
$11.1 trillion by 2025 [3]. However many IoT use cases, such as
Video Analytics for Public Safety (VAPS) [4] face development and
operational challenges that limit their potential impact.

Due to small fiscal budgets, size, weight, and power constraints,
and the complexity of public safety operations, analytic integration
and optimization is a significant challenge for public safety. This
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is counter to the majority of video research which focuses more
on algorithmic design and have a lack of safety or mission critical
requirements. An end-to-end architecture that includes represen-
tative public safety datasets and standardized performance-based
metrics is lacking for VAPS, hindering the development of public
safety applications. For example, law enforcement routinely em-
ploy IoT devices of body-worn cameras, mobile devices, vehicle
dash cameras, and vehicle-based computing. However there are
still many architectural and operational challenges hindering the
generation of near real-time actionable intelligence.

In response, we propose an IoT enabled service, AutoVAPS, that
is representative of desired and future public safety vehicles with
embedded computer. The AutoVAPS reference architecture is an
extension of prior work on OpenVDAP [17], specifically designed to
integrate body-worn cameras and other public safety sensors while
leveraging the advancements in edge computing [12]. It consists of
three layers: data, model, and access. The data layer automatically
aggregates relevant context information from on-vehicle, body-
worn, and cloud-based sensors onto the vehicle. The model layer
supports edge intelligence, storing many common algorithms and
models. The access layer enables privacy-preserving data sharing
and access through open developer Restful API interfaces. As part
an agile design process, we evaluated an initial prototype of Auto-
VAPS with an object detection use case and measured the latency
composition, variance of inter frame, and frame loss and rate. The
contributions of this paper are as follows:

• A proposed reference architecture based on OpenVDAP but
intended for public safety research and development .
• AutoVAPS prototype that integrated representative public
safety sensors and vehicles.
• Initial performance of AutoVAPS that highlights latency chal-
lenges of the public safety environment.

The paper is organized as follows. Sections 2 depicts the motiva-
tion of AutoVAPS. Section 3 discusses the reference architecture of
AutoVAPS. We present the case study of AutoVAPS in Section 4, the
evaluation of the proposed service is discussed in Sections 5, and
summarize the paper in the last section.

2 MOTIVATION AND SCOPE
Currently there is significant research in autonomy in vehicles
which require edge computing based architectures to achieve the
vision of a self-driving cars. Like the cloud computing, there are
many different ways to architecture compute and storage; there
isn’t a one size fits all solution. Embedding vehicle compute is
challenging due to size, weight, and power constraints. As the
public safety community, with unique operational requirements,
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integrates technology into their vehicles, there is a need to optimize
and gracefully degrade performance as resources become degraded.

In the era of cloud computing, technology still fails to provide
situational awareness capabilities with the desired reliability, ro-
bustness, and compatibility for public safety. As the community
transitions to a more edge computing centric network, there is
an opportunity to address some of the shortcomings of a cloud
centric architecture and enable development of capabilities [15] to
(1) improve incident or threat description, (2) to improve two-way
situational awareness, and (3) that minimize implementation of
new workload or policies.

AutoVAPS will be a reference architecture that will enable this
capability development and built upon the lessons learned from
years of iterative public safety driven designs [2, 13–16]. This initial
development is scoped to enabling VAPS researchwith dash or body-
worn cameras and illustrated by Figure 1. This is driven by the law
enforcement operational realities of single vehicle patrols[15] and
the widespread adoption of body-worn cameras.

Body-worn Camera Edge Node
Real time video

History video/image
Other Sensors

Traffic/Weather 
DataGuidance/Warning

Dash Camera

Law Enforcement
Officer

Law Enforcement
Vehicle

Figure 1: Initial AutoVAPS scope.

Specifically consider law enforcement officer is on duty, she/he
is equipped with a body-worn camera, which will collect the front
video and sends the data to the law enforcement vehicle. On the ve-
hicle there is an edge node which receives various sensors streams,
such as video from the body-worn or vehicle dash cameras. To-
gether these sensors capture some perspective of the officer and
the surroundings around them. The edge node manages all the
data and executes the analytical applications, such as license plate
detection, object detection, or situational awareness cues. Guidance
or warning will be communication across either the local or back
haul network if the officer is in a potentially dangerous situation.

This scenario defined by operational realities also the highlight
need for an IoT reference architecture designed for public safety.
The consumer passengers of self driving cars likely will not be
equipped with body-worn cameras similar to an law enforcement
officer. Body-camera support is a foundational requirement for
AutoVAPS whereas not for consumer-based research. AutoVAPS
can reduce risk for future VAPS by providing the architecture and
interfaces that may be lower priority for consumer focused research.

3 REFERENCE ARCHITECTURE
The proposed AutoVAPS three layer reference architecture is based
on OpenVDAP [17]. The access layer enables privacy-preserving
data sharing/access; the data layer enables efficient data storage
and management; and the model layer enables edge intelligence.
Figure 2 illustrates the reference architecture for object detection.
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Figure 2: The reference architecture of AutoVAPS.

3.1 Access Layer
The primary objective of Access Control is to enable developers to
access data and analytic results through a Python flask microframe-
work Restful API, as well as communications and authenticate be-
tween different applications. The RESTful API is designed as read-
able URLs which contain several segments indicating the type,
identifier, and an Unix timestamp of the data. It can be represented
as http://ip-address:port/type/identifier/timestamp. Here ip-address
and port are static, and type including body-camera, dash-camera,
weather, OBD, and traffic. Identifier can be video or image or raw-
data.

The Access Control module includes three sub-modules: an appli-
cation level access sub-module, a system level access sub-module,
and an authority management sub-module. The former two sub-
modules are used to manage all the data access operations, commu-
nications and IO operations, cooperatively. The application level
access sub-module is designed to accept popular application level
protocols, like HTTP, RTSP, and forward the authenticated queries
to service providers, like the Restful API module. The prototype ac-
cess control was registered to NGX_HTTP_ACCESS_PHASE in NGINX,
which is a free, open-source, high-performance HTTP server and
reverse proxy. When NGINX receives an HTTP request to the data
layer, the implemented NGINX module will collect the information
about the request, including data type and the identity of the re-
quest, and sends these information to the authority management
sub-module for authentication, which is implemented by web.py
framework, and provide a white-list based model as the primary
access control model.

However, as AutoVAPS provides not only raw data but also real
file path, extra IO operations for reading a file are also included. Ad-
ditionally, various Inter-Process Communications (IPCs) are widely
used between different applications and a system level access sub-
module for IPC management is proposed. All the access operations
are determined by the application level across modules.

http://ip-address:port/type/identifier/timestamp
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3.2 Model Layer
With the burgeoning of AI-based applications developed for public
safety, AutoVAPS should support a variety of artificial intelligence
algorithms and models. However, the on-vehicle computing plat-
form is not appropriate for executing large scale models due to
large compute and storage requirements.

This layer is designed to contain many common algorithms
and models that are frequently used for VAPS. These models are
compressed based on the powerful models and can run smoothly on
the edge node. After compressing, the models are optimized based
on the computing power of the on-vehicle computing platform.
Meanwhile, models can be trained based on some personalized data,
whichmakes themodel fit for some personalized behavior detection.
When the model layer gets requests from the access layer, it first
loads the request model and then sends requests to data layer for
corresponding data. Based on the model layer, developers can build
public safety applications more openly and easily. Additionally one
of the challenges we face is deciding to support either Tensorflow
or PyTorch, the two most popular open source machine learning
frameworks, for the initial prototype.

3.3 Data Layer
The data Layer is designed to automatically collect and manage
vehicle data. This includes driving data from the on-vehicle sensors
like On-Board Diagnostics (OBD) and LiDAR, videos and images
from the camera, High Definition (HD) Map data, and some con-
text information. Context data of driving, such as road condition,
weather, traffic information, can play an important role in decision
making and support assistant driving, battery cell management,
remote diagnostics, and abnormal driving behavior detection.

The database and file system to manage different types of data:
structured data including the data from the sensor, weather data,
and traffic data is persisted into database, while video, HD map,
LiDAR cloud point data, and image data are stored and indexed
with additional metadata. Frequently used and some static data like
the RTSP URL of the body-worn camera will be cached. Requests
from the RESTful API module or model layer will be automatically
directed. Specifically the Real Time Streaming Protocol (RTSP) is
used for video transmission from the body-worn camera to the
edge node, with video stored and cached in Redis.

4 CASE STUDY
The vision of AutoVAPS is to interface a body-worn camera with the
in-vehicle edge node to do near real-time video analytics. To achieve
this, two problems should be solved: the real-time transmission of
the video stream from body-worn camera to the edge node, and the
real-time analysis of the video stream on the edge node.

4.1 System Overview
The initial prototype design of AutoVAPS is shown in Figure 3
where the requests from the user trigger the pipeline. Here we
assume the user requests for video analytic results. Two cameras
are connected with the edge node: body-worn camera is connected
via Wi-Fi and video transmission via RTSP protocol, while dash
camera is connected via USB port. OpenCV is used to open either

the RTSP URL or the USB camera to get the video stream. For body-
worn camera, to decrease the influence of Wi-Fi communication
delay, a Multi-Process(MP) scheme is used to average the speed
of frame reading and model inference. A Convolutional Neural
Network (CNN) [10] trained for object detection receives the newest
frame from the buffer and do inference. For USB camera, as it is
wired connected with the edge node, the communication delay is
stable. Therefore, the frame is directly loaded into the CNN model
to do inference. After model inference, the results will be appended
into the video and be sent to the user through Restful API module.

Edge
Node

CNN Model

RTSP/UDP

OpenCV VideoCapture()

Put frame

Get Frame

Results Appended in Video

Buffer

MP

USB
Dash camera

Wi-Fi
Body-worn camera

Request Trigger

Response Video
Results

Frame

Model Inference

Figure 3: The system design of object detection.

4.2 Real Time Video Transmission
For real-time video analytics, the video transmission is essential
when determining the overall performance. AutoVAPS implements
the Real Time Streaming Protocol (RTSP), an application-level pro-
tocol, for video stream transmission [11]. RTSP provides a variety
of delivery channels like UDP, multicast UDP and TCP, and it allows
the user to choose delivery mechanisms using RTP.

For body-worn camera, the initial prototype AutoVAPS RTSP
server only supported UDP, subsequently introducing potential
frame loss in transmitting video frames from body-worn camera
the edge node. Frame loss increases the transmission delay, and
stifles the the object detection analytic due to a lack of input video.
Meanwhile, it only takes several milliseconds to read a frame from
the body-worn camera, but it takes tens of milliseconds to do model
inference. Therefore, the reading frame process is much faster than
the model inference resulting in increasingly latent data for inter-
ference. This reading and processing issue can be addressed by a
proposed Multi-Process Scheme, Algorithm 1, which uses a buffer
to decrease the difference of frame reading and processing speeds.
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Algorithm 1 Pseudocode of Multi-Process Scheme.

1: function Frame-Reading(url )
2: f ← VideoCapture(url) // Get the newest frame
3: if (buffer.length < buffer.size) then
4: Add f into the buffer
5: buffer.length = buffer.length + 1
6: else
7: Dequeue the oldest frame from buffer
8: Add f into the buffer
9: end if
10: end function
11:
12: function Frame-Processing
13: while True do
14: f ← bu f f er .dequeue() // Get frame from the buffer
15: Load the CNN modelM
16: resutls ← M .In f erence(f ) //Do model inference on f
17: f ← f .append(resutls) Add results on f
18: end while
19: end function

In this algorithm, the work is divided into two processes. One
process Frame-Reading, which reads frame using OpenCV and puts
the newest frame into the buffer. The other process receives a
buffered frame and conducts model inference. Through this design
of reading and processing, the latency between the final shown up
video with the body-worn camera’s video can be greatly decreased.
Because in the reading process, when a new frame comes and the
buffer is full, we choose to abandon the oldest frame and store the
new frame. As Frame-Processing only takes frame from the buffer,
which guarantees that the frame to do model inference is always
the newest. The MP scheme can be seen as a trade-off between the
frame per second (FPS) and real-time performance. Many frames
are abandoned to prioritize processing the most recent frames.

4.3 Algorithmic Design
The prototype object detection can be divided into three states:
loading, detection, and visualization. 1) In the loading state, the
image is captured from the body-worn camera. The trained CNN
model from the TensorFlow Model Zoo is loaded into memory. We
did not optimize the network architecture of the CNN [1]. 2) Detec-
tion is the core state of the whole process. In this state, we run the
MobileNet-SSD [5] model to detect the objects, including vehicles,
signs, and human being. As a state-of-the-art deep learning model,
MobileNet-SSD can be regarded as a combination of MobileNet and
Single Shot MultiBox Detector (SSD) [9]. MobileNet replaces the
lightweight depthwise separable convolution layer with standard
convolution layer to reduce the number of computations, which
is more suitable for the resource-constrained vehicle computing
platform. SSD is a widely used deep learning model for objection
detection. 3) In the visualization state, the images are composited
into the video and the results of the detection will be visualized to
users. For each frame of the video, outputs are boxes, classes, and
scores. Each box represents an image segment where a particular

object was detected and each score represents the confidence for
the class. The output is the number of detections.

For the prototype, OpenCV VideoCapture() and read() functions
are used to capture the video, split it into each frame, and read in
the memory. TensorFlow Object Detection API[6] 1.10 is leveraged
to run the deep learning model for object detection. The MobileNet-
SSD downloaded from the TensorFlow detection model zoo is pre-
trained on the MS-COCO dataset[7].

5 EVALUATION
For public safety applications, the most significant part is the avail-
ability and stability of real-time analytic performance. To evaluate
the performance of AutoVAPS, we implemented the system based on
Garmin VIRB Ultra 30 body-worn camera, Intel Real Sense SR300,
and Intel Fog Reference Design. And we measure the latency break-
down, time variance of frame, and frame loss rate.

5.1 Experimental Design
The hardware configuration of the body-worn camera and dash
camera is shown in Table 1. The video format of both cameras
is H.264. The Intel Fog Reference has 8 Intel Xeon(R) CPU with
3.60GHz frequency. And it has 32GB memory. We use the Intel Fog
Reference as the on-vehicle computing device as the edge node.

Table 1: The hardware configuration of body-worn camera
and dash camera.

Name Model Resolution FPS Connection
& Bandwidth

Body-worn
Camera

Garmin VIRB
Ultra 30 1920x1080 60 802.11 b/g/n

450Mbps
Dash

Camera
Intel Real

Sense SR300 640x480 30 USB 2.0
480Mbps

For experiments, a Wi-Fi hotspot is set up in Garmin body-worn
camera and the edge node connects to body-worn camera via Wi-Fi.
We measure the latency of the whole process including reading
frame, model inference, and results output. Body-worn camera is
measured in two cases: one is the distance from body-worn camera
to edge node is 1 meter, the other is 20 meters. Dash camera is also
measured in two cases: using Multi-Process(MP) scheme and not
using Multi-Process(MP) scheme. These four cases are shown as
Body-Camera-1M, Body-Camera-20M, Dash-Camera-MP, and Dash-
Camera-No-MP. And the buffer size in the MP scheme was the two
most recent frames.

5.2 Latency Breakdown
Figure 4 shows the time sequence of AutoVAPS. For each frame,
t0 and t1 represents the start time and end time of the read frame
process, so t1-t0 is the read frame delay. t2 and t3 represent the start
time and end time of model inference respectively, so the model
inference delay is t3-t2. Result output is done exactly after model
inference and t4 is the end time for result output, so t4-t3 is the
result output delay.

The latency breakdown of read frame delay, model inference de-
lay, and result output delay in four cases are shown in Figure 5. From
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Figure 4: The time sequence of AutoVAPS.

Figure 5, we can see that the model inference makes up the majority
of the total delay andMP schememakes the read frame delay longer.
The resulting delay is the smallest and similar across cases. Also,
when the distance of Wi-Fi connection increases, reduced signal
strength makes the reliability of video data transmission decreases.
From Figure 5, the read frame delay of Body-Camera-20M is higher
than that of Body-Camera-1M by 9 ms. The MP scheme makes the
read frame delay higher to decrease the difference between read
frame delay and processing delay. For body-worn camera without
MP scheme, the processing program crashes frequently because
the frame processing is much slower than frame reading. And we
can see the overall delay of these four cases are less than 150ms,
which can be seen as near real-time.
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Figure 5: The latency breakdown of AutoVAPS.

Observation 1: The delay of model inference still takes a large
portion of the overall delay. So designing appropriate models to
speed up model inference on edge is still a challenge.

5.3 Variance of Inter Frame
In order to evaluate the variance of inter frame, we calculate the
∆t1, which is the difference of (n + 1)th frame’s t1 and that of the
nth frame’s, and it equals to tn+11 − tn1 . ∆t3 represents the difference
of processing time of nearby two frames. ∆t1 and ∆t3 are also
marked in Figure 4. And we make the Cumulative Distribution
Function(CDF) of ∆t1 and ∆t3 in Figure 6 and Figure 7.

Figure 6: The variance of receiving inter frame.

Figure 7: The variance of processing inter frame.

In Figure 6, the majority of variance of receiving inter frame
for Body-Camera-1M, Body-Camera-20M, and Dash-Camera-MP is
under 50ms, while that for Dash-Camera-No-MP is about 250ms.
It reveals that the frame reading through MP scheme is more real-
time. In Figure 7, over 80 percent of ∆t3 for all four cases are in
the range of 230-270ms. For Body-Camera-1M, Body-Camera-20M,
and Dash-Camera-MP, the difference of ∆t3 and ∆t1 is about 190ms.
And the difference for Dash-Camera-No-MP is about 20ms. The
additional 170ms is the overhead of applying the MP scheme. How-
ever, without the MP scheme to abandon the old frame and model
inter on the latest frame, the result will always be out-of-date. In
addition, the performance of Body-camera-20M and Body-camera-
1M is almost the same. Although 1m case receives frames faster,
the processing time is much longer than the reading time. Thus the
inter frame is determined by the processing time.
Observation 2: Multi-Process scheme can decrease the difference
of frame reading speed and processing speed. But how to optimally
determine the trade-off between the buffer size and timeliness of
processing frames remains a challenge.
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Table 2: The frame loss and rate in four cases.

Type Total
Frame

Received
Frame

Receiving
Frame Loss

Receiving Frame
Loss Rate

Processed
Frame

Processing
Frame Loss

Process Frame
Loss Rate

Total Frame
Loss Rate

Body Camera(1M) 5093 2691 2402 47.16% 641 2050 76.18 87.41%
Body Camera(20M) 3907 1599 2308 59.07% 321 1278 79.92% 91.78%
Dash Camera(MP) 2743 2723 20 0.73% 721 2002 73.52% 73.71%

Dash Camera(No-MP) 1171 300 871 74.38% 300 0 0 74.38%

5.4 Frame Loss and Rate
The frame loss and rate for those four cases are shown in Table 2.
Since RTSP/UDP is used to communicate between the body-worn
camera end edge node, there is a potential for frame loss. We ob-
served a receiving frame loss of body-worn camera of 50–60 percent.
As the transmission distance increases, the receiving frame loss
also increases. It can be seen from Table 2 that the reading frame
loss of 20M case is higher than that of the 1M case by over 12 per-
cent. The difference of the reading frame loss is owing to the signal
strength of Wi-Fi connection degrades when the distance increases.
Meanwhile, there is processing frame loss for body-worn camera
because of the MP scheme, with total frame loss rate of about 74–92
percent. When total frame loss rate is 90 percent, only 10 percent
of the original video can be shown resulting in an output of 6 FPS.
For dash camera, the receiving frame loss rate for Dash-Camera-MP
is less than 1 percent. But that for Dash-Camera-No-MP is 74.38
percent because the frame reading needs to wait for the processing
of the former frame. And it doesn’t lose any frame in processing,
while that for Dash-Camera-MP is 73.25 percent. The overall frame
loss is almost the same for these two cases. Therefore, using MP or
not depends on the reliability of the communication. For body-worn
cameras using Wi-Fi, MP scheme can be a better choice.
Observation 3: The frame loss is unavoidable because frame read-
ing is faster than processing. Discarding out-of-date frames can
make the analysis more real-time but it decreases the FPS. But how
to achieve real-time performance with low overhead is a challenge.

6 SUMMARY
In this paper, we propose an IoT-Enabled public safety service
called AutoVAPS which can integrate body-worn camera and other
cameras for public safety. It is designed as an reference architecture
which includes a data layer for data management, a model layer
for edge intelligence, and an access layer for privacy-preserving
data sharing and access. This preliminary work illustratesAutoVAPS
applicability to public safety and prioritize development for the next
iteration of AutoVAPS. Future work will leverage publicly available
representative public safety datasets to further refine AutoVAPS and
experiment with semantic-based analytics [8] whosemore primitive
models may address some of the challenges with processing speed.
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