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ABSTRACT
Autonomous mobile robots (AMRs) have been widely utilized in
industry to execute various on-board computer-vision applications
including autonomous guidance, security patrol, object detection,
and face recognition. Most of the applications executed by an AMR
involve the analysis of camera images through trained machine
learning models. Many research studies on machine learning focus
either on performance without considering energy efficiency or on
techniques such as pruning and compression to make the model
more energy-efficient. However, most previous work do not study
the root causes of energy inefficiency for the execution of those
applications on AMRs. The computing stack on an AMR accounts
for 33% of the total energy consumption and can thus highly impact
the battery life of the robot. Because recharging an AMR may
disrupt the application execution, it is important to efficiently utilize
the available energy for maximized battery life.

In this paper, we first analyze the breakdown of power dissipa-
tion for the execution of computer-vision applications on AMRs and
discover three main root causes of energy inefficiency: uncoordi-
nated access to sensor data, performance-oriented model inference
execution, and uncoordinated execution of concurrent jobs. In order
to fix these three inefficiencies, we propose E2M, an energy-efficient
middleware software stack for autonomous mobile robots. First,
E2M regulates the access of different processes to sensor data, e.g.,
camera frames, so that the amount of data actually captured by
concurrently executing jobs can be minimized. Second, based on a
predefined per-process performance metric (e.g., safety, accuracy)
and desired target, E2M manipulates the process execution period
to find the best energy-performance trade off. Third, E2M coordi-
nates the execution of the concurrent processes to maximize the
total contiguous sleep time of the computing hardware for maxi-
mized energy savings. We have implemented a prototype of E2M
on a real-world AMR. Our experimental results show that, com-
pared to several baselines, E2M leads to 24% energy savings for the
computing platform, which translates into an extra 11.5% of battery
time and 14 extra minutes of robot runtime, with a performance
degradation lower than 7.9% for safety and 1.84% for accuracy.
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1 INTRODUCTION
An Autonomous Mobile Robot (AMR) is mainly composed of me-
chanical parts (e.g., wheels, engine, etc.), sensors (e.g., camera), and
computing hardware (e.g., CPU, GPU) that allow the robot to au-
tonomously drive and perform a pre-defined set of jobs. Due to
their relatively low cost, high flexibility, and high reliability, vari-
ous AMRs have been designed and employed in several industry
applications [4, 10, 25]. For example, an AMR can be programmed
to patrol the fences of a private area so that the security team can be
timely notified of intrusions. Typical jobs for AMRs include security
patrol, object detection, and face recognition [40]. However, the
correct operation of an AMR is strictly dependent on its limited bat-
tery life. Therefore, it is important to ensure high energy efficiency
to maximize the battery life of AMRs.

Some previous studies have focused on reducing the energy con-
sumption due to themechanical parts of the AMR. For example, they
propose solutions to dynamically find the most energy-efficient
path to reach a certain location [3, 5, 8, 15]. However, these so-
lutions do not take into consideration the computational portion
of the AMR’s energy consumption. In fact, as we show in Section
3, the computing resources of a typical AMR can account for the
33% of the total energy consumption. The most common applica-
tions of AMRs use machine learning models in computer-vision
applications. Thus, in order to improve the energy efficiency of the
computing resources of an AMR, it is important to focus on the ex-
ecution of computer-vision based applications. Unfortunately, most
previous research studies on such applications either focus mainly
on performance [28, 29, 42] or employ pruning and compression
techniques to make the trained model more energy efficient [46].
To the best of our knowledge, no previous work has yet studied the
energy efficiency of AMRs during the execution of computer-vision
based applications.

Due to the above-described shortcomings of existing literature
on AMRs, in this paper we first conduct an in-depth study of the
computer-vision application execution on AMRs to profile its en-
ergy consumption and to discover the main sources of inefficiency.
We find two main sources of high energy consumption across
various applications: access to sensor data and model inference.
Accordingly, we find three main inefficiencies for these two en-
ergy sources. First, uncoordinated access to sensor data. Each
computer-vision process directly interacts with the sensors, e.g.,
camera, of the AMR to acquire data, e.g., camera frames. As a re-
sult, N concurrently executing processes may acquire N camera
frames for inference within a short period of time. If the N ac-
quired frames are similar to each other, using one of the N frames
for all the concurrent processes would not change their inference

https://doi.org/10.1145/3318216.3363302


results, which leads to energy waste for acquiring more camera
frames than necessary. Second, performance-oriented model
inference execution. A computer-vision process on an AMR con-
tinuously performs frame acquisition and model inference without
waiting time, i.e., without delaying the next frame acquisition and
inference time. Although this execution mode ensures high perfor-
mance (e.g., safety, accuracy), it also prevents the computing hard-
ware (e.g., CPU, GPU) to reach deep sleep states for energy savings.
Third, uncoordinated execution of concurrent jobs. Multiple
executing inference processes executing concurrently, even with
a per-process optimized waiting time, may still prevent the com-
puting hardware from reaching the deep-sleep state. In fact, most
computing systems can reach the deep sleep state only after a cer-
tain amount of time has passed. Thus, uncoordinated waiting times
may cause the computing hardware to never reach the necessary
contiguous idle time to enter the sleep state.

In order to address the above described inefficiencies, we propose
E2M, a generalized energy-efficient middleware for autonomous
mobile robots. E2M consists of four major components: sensor
buffer, performance analyzer, energy saver, and coordinator. The
sensor buffer is designed to capture the sensor data (e.g., camera
frames). It allows to coordinate the concurrent access to sensor data
and reduce the total amount of data collected for energy savings.
The energy saver profiles the energy consumption of the executing
processes based on their waiting times. The performance analyzer
profiles the performance of each running process based on a prede-
fined per-process metric and desired target. The coordinator collects
the information about energy consumption and performance analy-
sis to find the best waiting times for each process that maximize the
contiguous idle time of the computing hardware for energy savings
while ensuring good performance for each process. In practice, the
coordinator controls the waiting time by controlling the feed time
of sensor data to each process.

In summary, this paper makes the following three contributions:

• We analyze the computational energy consumption of au-
tonomous mobile robots and find three main sources of inef-
ficiency: uncoordinated access to sensor data, performance-
oriented model inference execution, and uncoordinated exe-
cution of concurrent jobs.

• We propose an Energy-Efficient Middleware (E2M) for au-
tonomous mobile robots to fix the three inefficiencies. E2M
coordinates the access of processes to sensor data and coor-
dinates the execution of the processes to maximize energy
savings while ensuring good performance.

• We develop a prototype of E2M on a real-world AMR and
test it on a real scenario. Our experimental results show that
E2M leads to 24% energy savings for the computing platform,
which translates into an extra 11.5% of battery time and 14
extra minutes of robot runtime, with a performance degra-
dation lower than 7.9% for safety and 1.84% for accuracy.

The rest of the paper is organized as follows. Section 2 studies the
related work. Section 3 describes our analysis of the AMR’s energy
consumption. Sections 4 and 5 describe the design of E2M and
its implementation, respectively. Section 6 evaluates the proposed
solution. Section 7 proposes a discussion on the limitations and
future work of E2M. Section 8 concludes the paper.

2 RELATEDWORK
Autonomous mobile robots can autonomously execute a large va-
riety of jobs with little to none human intervention. On the other
hand, one major limitation of AMRs is their limited battery life,
which leads them to often interrupt the executing job and reach the
nearest available charging station. In order to increase the battery
life of AMRs, a variety of approaches have been proposed by related
work.

Previous studies have proposed to find the most energy-efficient
path for robots to move to a certain location or to cover a large
area [2, 3, 5, 8, 15, 45, 47]. Other solutions coordinate various AMRs
to optimize their charging scheduling [6, 20, 21, 23, 24, 32, 35–37].
Most of the above studies focus on the energy consumption of the
robots due to the mechanical parts. Different from all the above
solutions, in this paper we focus on the computational energy
consumption, which can account for the 33% of the total energy
consumption.

The energy consumption of robots is mainly influenced by the
type of task allocated to its computational unit. To this end, a lot
of work has been done to find the best task allocation strategy
for AMRs [9, 11, 19, 27, 31, 34, 43]. For example, some approaches
attempt to move tasks across robots to save energy considering
the distance from the target area or the energy allowance [41, 48].
Other solutions propose to ensure the continuous coverage of a
single task (e.g., multiple drones to follow a car) by moving the task
across robots in relation to their energy budget [7]. However, none
of the above solutions have considered how to minimize the task
execution energy consumption on the robots.

A large portion of jobs executed by robots are related to com-
puter vision, which exploit cameras and machine learning models
to make the robots more intelligent and autonomous. While some
related studies focus mainly on performance [28, 29, 42] without
considering the energy consumption, other solutions focus on prun-
ing and compression techniques to make the trained model more
energy efficient [38, 46]. However, none of these studies focus on
how those applications are executed on the computing hardware
of the robots. Note that we still need to manage the computing
resources energy consumption, even if every application running
on the multi-purpose AMR is pruned. This is because we want to
ensure a desired level of performance for each application running
on the AMR. However, when multiple applications run concur-
rently in a shared environment, they are likely to slow down each
other [12, 13, 18]. As a result, the amount of computing resources
utilized may increase, which may lead to increased energy con-
sumption. E2M is proposed to address this problem and ensure
the desired applications performance while minimizing the AMR’s
computing resources energy consumption. In particular, we find
that it is possible to improve their energy efficiency by introducing
a short waiting time in each application, which trades off perfor-
mance for lower energy consumption. In addition, we study how
to coordinate the waiting times of concurrently executing applica-
tions to minimize the energy consumption due to capturing camera
frames and running model inferences. To the best of our knowledge,
this is the first work to study and improve the energy efficiency of
executing computer-vision applications on AMRs.
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3 POWER ANALYSIS OF AN AMR
The deep learning based approach has been widely used in au-
tonomous driving applications. However, currently most of the
proposed methods are performance driven without considering the
energy consumption. In this section, we first describe our experi-
mental setup used to execute the experiments. Second, we analyze
the power breakdown of a real AMR platform. Third, we analyze
the power breakdown of computer vision processes to identify the
highest sources of energy consumption. Finally, we analyze the
effect of the waiting time of processes on the computing power
dissipation.

3.1 Experimental Setup
In order to characterize the energy consumption of autonomous mo-
bile robots, we analyze an indoor autonomous mobile robot called
HydraOne [44]. The HydraOne platform is shown in Figure 1(b).
Different from many heavy-weight AMRs used for one specific
application (e.g. moving heavy objects), we consider multi-purpose
AMRs, which can run various computer-vision applications con-
currently. The user can decide which applications to execute at any
time. For example, multi-purpose AMRs can be used in retail stores
to help managers execute applications such as understanding out-
of-stock items, guaranteeing price integrity, confirming product
showcases, and identifying hazardous conditions [1]. Thus, multi-
purpose AMRs do not necessarily need to be heavy-weight. The
HydraOne configuration is a representative design of such robots
with multiple concurrent computer vision applications running
on it. In particular, HydraOne is a full-stack research and educa-
tion platform and includes mechanical components, vision sensors,
computing hardware, and communication system. All resources
on HydraOne are managed by the Robot Operating System (ROS).
Figure 1(a) shows the hardware design of HydraOne. Two leopard
cameras [26] and an RPLiDAR [39] are connected to the computing
platform via USB cable. RPLiDAR is a 2D laser scanner that pro-
vides 360 degree laser range scanning. The results of a set of data
points in space is called point cloud. An Nvidia Jetson TX2 board
is used as the computing platform [33]. One Arduino Mega 2560
board with two motor driver boards are used to control HydraOne.
Two 3S Lipo battery is used to power the whole system: one for the
computing platform; the other for the wheels. The capacity of each
3S Lipo battery is 5000mAh.

On top of HydraOne, we implement a deep learning based end-
to-end free space detection application and an object detection
application. Unfortunately, existing navigation applications can-
not be used in our experiments because they are not designed and
trained in our environment. As a result, we designed and trained a
Convolutional Neural Network (CNN) called HydraNet to achieve
end-to-end free space detection, where the input is the frame from
camera and the output is the controlling command, i.e., linear and
angular speed to the robot. The training dataset, which contains
the image frames labelled with control messages, is obtained by
a human remotely controlling HydraOne. There are five convo-
lutional layers and four Fully Connected Network (FCN) layers
in HydraNet. The convolutional layers are designed to perform
feature extraction. The first three convolutional layers have a 5 × 5
kernel and a 2 × 2 stride. The last two convolutional layers have

a non-strided convolution with a 3 × 3 kernel. The filters of these
five layers are 24, 36, 48, 64, and 64, respectively. Four FCN layers
are designed as the decision maker for the driving and lead to two
output values of linear and angular speed. The number of cells in
each FCN layer are 512, 100, 50, and 10, respectively. Based on the
experience of industry practice and a series of experiments, we
choose Rectified Linear Unit (ReLU) as the activation function for
all nine layers. The RPLidar is used in this context to collect data
about objects distances. For object detection, we choose the combi-
nation of MobileNet and Single Shot MultiBox Detector (SSD) [30].
Through replacing the lightweight depthwise separable convolu-
tion layer with standard convolution layer to reduce the number of
computations, MobileNet becomes more suitable for the resource-
constrained AMRs platform [17]. Furthermore, SSD is a widely used
deep learning model for objection detection.

The power dissipation of the computing platform and sensors is
measured using Watts Up Pro Electricity Consumption Meter [16],
which records both the current and real power every second. The
power dissipation of the wheels is measured using the Lipo battery
charger, which records the energy consumption. The error of power
dissipation is less than 1 percent and it is ignorable. The reason
why we use two different meters is that we have two batteries
installed on HydraOne, one powering the locomotive mechanisms
(e.g., wheels) and the other one powering sensors and computing
resources. We run HydraOne with free space detection and object
detection for 10 minutes and use the charger and the Watts Up Pro
to measure the energy consumption. Then we calculate the average
power dissipation based on the energy consumption and running
time. When the batteries are fully charged, HydraOne platforms
can run with HydraNet and MobileNet-SSD for approximately two
hours.

3.2 AMR Power Breakdown
Figure 2 shows the power dissipation of the entire HydraOne plat-
form. We run HydraNet and MobileNet-SSD on HydraOne for 10
minutes. The total power dissipation of HydraOne is 39.1W. From
Figure 2, we can see that the locomotion of HydraOne (Wheels in
the figure) consume over half of the total power dissipation, the
power dissipation of computation is 33%, and that of the sensors
is 11%. Out of the 33% of computational power dissipation, the
model inference of HydraNet and MobileNet-SSD consume 10%
and 12% of the total power dissipation of the robot, respectively.
The remaining 10% indicated with other in the figure includes the
power dissipation of the operating system and sensor drivers.

As we can observe from this analysis, each implemented applica-
tion may further increase the total computational power dissipation.
Actually, in many cases, AMRs may have to run more than two ap-
plications. For example, a surveillance AMR may implement, other
than the free space detection and object recognition application,
additional applications for face recognition (to timely detect the
identity of intruders), self-diagnostic, and other third-party applica-
tions deemed necessary by the user. This fact leads to the following
observation:

Observation 1: The AMR’s computational power dissipation can
highly influence its autonomy. It is thus necessary to optimize the
computing system of AMRs for high energy efficiency.
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(a) (b)

Figure 1: (a) The hardware design of HydraOne platform. (b) The HydraOne platform.

Figure 2: Power dissipation breakdown of an AMR.

Table 1: Power Dissipation breakdown of HydraNet and
MobileNet-SSD.

Power Dissipation (W) HydraNet MobileNet-SSD
Capturing Frame 2.2 2.2
Model Inference 0.8 2.5
Publish Results 0.9 0.1

3.3 Computer Vision Power Breakdown
We now analyze how the power is used by each application im-
plemented on HydraOne. These applications use deep learning to
detect free space and objects. In general, each application executes
a process for the detection that works in three steps. In the first step,
the process captures a frame from the camera. In the second step,
the process executes model inference. In the last step, the process
publishes/shows the results. The publisher/subscriber mechanism
is used for data communication in ROS. We believe that these three
steps are general enough to characterize most of the other applica-
tions and processes not tested in this paper. In order to understand

the energy consumption of each running process, we measure the
power dissipation during each one of the above described three
steps for HydraNet and MobileNet-SSD. When no waiting time of
the application is applied, the power breakdown results are shown
in Table 1.

From the power breakdown analysis in Table 1, we can see that
capturing frames from camera consumes 2.2W for both HydraNet
and MobileNet-SSD. The power cost of model loading and inference
is 0.8W for HydraNet and 2.5W for MobileNet-SSD. The reason
why MobileNet-SSD consumes more energy than HydraNet is that
MobileNet-SSD has more layers and neural cells than HydraNet.
After model inference, the results of HydraNet are published to
another ROS node, which executes the control message on Hy-
draOne. For object detection, the result will be shown to the user.
The power cost for publish/show results is 0.9W for HydraNet
and 0.1W for MobileNet-SSD. The difference is owing to the over-
head of ROS’s publisher/subscriber mechanism. Thus, on average
across different processes, capturing frames costs 2.2W, running
the model inference costs 1.65W, and publishing/showing the re-
sults costs 0.5W. An important observation must be made about the
application access to camera frames. Currently, applications access
the camera directly and exclusively, which means that when an
application is accessing the camera, other applications can either
wait to access it or access another camera (if available) to avoid
performance degradation. Thus, the total energy consumption of
two applications accessing the camera frames could potentially be
halved by accessing the camera once and sharing the frame among
the two requesting applications. Note that the energy savings with
this method increase with the number of concurrent applications.
As it can be observed in Table 1, the frame capturing and model
inference consumes the 88% of the total process power dissipation.
This leads to the following observation:

Observation 2:High power dissipation in AMR processes is mainly
due to capturing camera frames and executing the model inference.
Thus, to improve the energy efficiency of AMRs, we need to focus on
these two steps.
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3.4 Waiting Time vs Power Dissipation
Given the above observations, we need to find a way to improve the
energy efficiency of capturing camera frames and executing model
inference for AMR processes. To do so, we explore the possibility
to introduce a waiting time between two consecutive inferences
of computer vision processes. The waiting time is defined as the
amount of time between the end of a model inference and the
start of the next one. As mentioned in Section 1, currently these
processes execute inferences continuously, which leads to highest
performance but also to high energy consumption. By introducing
a waiting time, we are delaying the execution of the next inference
to trade off performance for energy savings. Note that the waiting
time, other than reducing the energy consumption due to the in-
ference, reduces also the number of camera frames captured. Thus,
by manipulating the waiting time we can improve the energy effi-
ciency of the two steps in computer vision processes that consume
the highest amount of energy. Here, we use the term performance
to indicate in general a specific metric associated with each process.
For example, the performance metric for the free space detection
application is safety, i.e., distance of the robot from obstacles, while
the performance metric for the object detection is accuracy, i.e., how
many objects are actually recognized. It is of primary importance
to meet a desired performance target while reducing the energy
consumption.

To test the effect of the waiting time on energy consumption, we
run HydraNet model inference and MobileNet-SSDmodel inference
with different waiting time on the HydraOne platform and measure
the power dissipation due to the computing system. We conduct the
experiments with waiting time from 0 to 0.5 seconds. The results
are shown in Figures 3(a) and 3(b). Introducing a waiting time in
HydraNet could degrade the safety of HydraOne, i.e., the average
distance of HydraOne from the surrounding objects decreases with
an increasing waiting time. In relation with Figure 3(a), Figure 3(c)
shows the distance of HydraOne from the surrounding objects for
different waiting times. As the figures show, the waiting time can
decrease the power dissipation of the computing platform by up
to 40% for HydraNet and 35% for MobileNet-SSD with less than
0.15m increase of distance to objects. The power consumption of
HydraOne is 7.5W when no inference is executed. Adding the Hy-
draNet inference with zero waiting time, i.e., as the baseline of
reference, increases the power dissipation of the platform to 12.7W
on average, which corresponds to a 41% power increase (similar for
MobilNet-SSD). Introducing the waiting time can help reduce the
power dissipation due to the inference. In particular, by introducing
a 0.1s waiting time in HydraNet (i.e., capture frame and run infer-
ence every 100ms), the power dissipation decreases to 11.4W, which
is 10% lower than no-wait. On the other hand, further increasing
the waiting time leads to smaller increases in power savings and
reaches an average of 10.5W for a 0.5s waiting time, which cor-
responds to a 17% power reduction. The reason for this marginal
increases in power savings for an increased waiting time is that the
average power consumption of the computing platform when wait-
ing time is applied saturates to a minimum power consumption for
longer waiting times. In addition, the performance degradation is
acceptable when introducing small waiting times. From Figure 3(c),
we can observe that the performance of 0.1s waiting time is similar

to that of the baseline. Even for 0.5s waiting time, the increase of
distance to objects is less than 0.15 meters, which is still acceptable.
Thus, high power reductions and small performance degradation
can be obtained using small waiting times. Note that MobileNet-
SSD shows similar behavior but has less sensitivity to increasing
waiting time because MobileNet-SSD has a much longer model
inference time than HydraNet. These experimental results lead us
to the following observation:

Observation 3. The relation between the waiting time and the
power dissipation is non-linear and shows high power reductions for
small waiting times. Thus, it is possible to trade off a small perfor-
mance degradation for high energy savings.

4 ENERGY EFFICIENT MIDDLEWARE
The goal of the Energy Efficient Middleware (E2M) is to provide
a general software solution to make the computer vision based
applications on autonomous mobile robots more energy efficient.
Although there are several different computer-vision applications,
for simplicity here we describe the design of E2M based on two
specific applications that we have fully implemented on our testbed
platform HydraOne, i.e., object detection, which recognizes objects
from camera frames, and end-to-end free space detection, which
directly commands the speed and direction of the robot based on
camera frame analysis. However, the design of E2M is general
enough so that it can be easily used for any type of computer-vision
applications. The design presented in the next sections is based on
introducing waiting time and optimizing the system overhead for
frame capturing and model loading. First, we present the overview
of E2M. Then, we discuss the details of each application within the
E2M system.

4.1 Overview
Figure 4 shows the overview of E2M, which consists of four com-
ponents: the sensor buffer, the performance analyzer, the energy
saver, and the coordinator. E2M locates in the middle between the
lower level hardware (i.e., sensors and wheels) and the applications
(e.g., free space detection and object detection).

The sensor buffer communicates with the sensors including
camera and RPLiDAR to get image frames and point cloud data. Also,
the linear and angular speed can be read from the wheels’ ROS node.
A node is an executable that uses ROS to communicate with other
nodes [1]. Wheel’s ROS node is used to send control messages to the
motor’s driver. The performance analyzer subscribes to the sensor
data from sensor buffer and conducts the model inference of each
application. In addition, it measures the performance metric and
calculates the maximum waiting time for each running application.
Because each application has a specific objective, each application
has a specific performance metric. For example, the performance
of free space detection is determined by the safety of the robot. For
object detection, the performance is determined by the accuracy in
recognizing objects. Because each application has its own metric, in
order to include a new application in E2M, the user (e.g., developer)
just needs to input the performance metric, which will then be
measured by the performance analyzer for E2M decisions. The
energy saver automatically estimates the energy consumption of
each application for various waiting times. All the waiting time,
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(a) (b) (c)

Figure 3: Effect of waiting time on (a) HydraNet and (b) MobileNet-SSD. (c) The distance to the nearest object CDF.

Figure 4: E2M high-level overview.

energy model, and performance analyzer results are sent to the
coordinator, which determines how multiple applications could
work together to maximize the energy saving. The speed of the
AMR is an important input to E2M and it affects not only the
performance requirements of each application but also the energy
saving of E2M.

4.2 Sensor Buffer
From Section 3, we know that uncoordinated access to sensor data
is one of the inefficiency sources of energy of AMRs. In fact, multi-
ple computer vision based applications running simultaneously can
share the sensor but have exclusive access to it to ensure reliability.
The reason for this inefficiency is that the sensor driver gives exclu-
sive access to the application reading the sensor. This means that
multiple applications accessing the sensor within a short period of
time may read similar data multiple times, thus wasting sensor’s
driver and data capturing energy. Therefore, E2M implements a
sensor buffer application to share the video frames among multiple
applications to reduce the energy consumption.

The sharing of the video frames across concurrently executing
applications is based on ROS’s Publisher/Subscriber mechanism.
The design is to capture the sensor data from camera and RPLiDAR
and share the data with other ROS nodes to process the data. The

size of the sensor buffer is statically defined and ROS manages to
drop the extra data.

Each application subscribes to the data it requires from the sen-
sor buffer. During the waiting time periods where no application
need data from a sensor, the sensor data will still be captured and
published by sensor buffer, but the data is not subscribed by other
ROS nodes. There are two reasons for this design. First, although it
is possible to stop the running sensor buffer, the sensor device does
not support the operation of shutdown by receiving a command
from the computing platform. Second, the waiting time is on the
milliseconds level while the time it takes to restart the sensor node
and publish data out is on the seconds level. If the sensor is turned
off, the data will be lost before it restarts. Therefore, the sensor
buffer just keeps running in the design of E2M.

4.3 Performance Analyzer
E2M is designed to save energy with guaranteed performance. Thus,
how to quantify the performance becomes an essential problem. In
general, the performance metric must be defined based on the appli-
cation. Because free space detection determines not only the direc-
tion but also the speed of the robot, the performance is determined
by the safety of the robot. For object detection, the performance
is determined by the detection accuracy. Thus, we define the cu-
mulative accuracy for object detection to evaluate its performance.
One problem is how to compare different performance metrics to
make decisions about the coordinated waiting time of applications.
In order to correctly compare different metrics, all the performance
metrics are normalized using their desired value. Thus, for any
application, a good performance is achieved with a normalized per-
formance value near one. Next, we define two metrics to quantify
the performance of the two example applications implemented on
HydraOne, i.e., the safety index and the cumulative accuracy.

Safety Index. In this paper, we assume that if the robot doesn’t
crash into any object, then the control of the robot is safe. Based
on this assumption, we propose a safety index that aims at keeping
HydraOne from collision. As Figure 5 shows, there are two cases of
HydraOne’s safety index computation. The linear (V ) and angular
(α ) speed of the robot use polar coordinates with origin in the front
of the robot. For cases 1 and 2, the idea is to calculate the safety
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index as the subtraction between the front nearest object distance
and the braking distance. The robot’s speed is decomposed into the
front and the right directions of the robot. The AMR distinguishes
case 1 with case 2 based on the point cloud data from RPLiDAR. The
idea is to compare the change of distance around the degree with
the shortest distance: if the shortest distance value is the trough
then E2M uses case 1, otherwise it uses case 2.

Figure 5: Two cases of safety index.

Case 1: The robot heads to a corner of the wall. In this case, the
difference between the shortest distance to obstacles and braking
distance gives the safety index for case 1, which is expressed as
follows:

S1(v(t ),a(t )) = a(t)cosθ (t ) −
[
v(t ) cosα (t )t0 +

(v(t ) cosα (t ))2
2µд

]
(1)

In Equation 1, t is the time and v(t ) is the speed of the robot
at time t . S1(v(t ),a(t )) represents the safety index of case 1 given
the speed v(t ) and the shortest distance a(t ). The shortest distance
OA is represented as a(t ) and the degree between OA and the front
direction is denoted as θ (t ). t0 represents the reaction time and µ
is the static fraction coefficient. µ reflects the relationship of static
fraction with robot’s weight and it’s determined by the materials
of wheels and ground.

Case 2: The robot heads toward a wall. In this case, the shortest
distance that can be read from RPLiDAR’s scan message is OB.
Because the robot can only go forward, when reading the message
from RPLiDAR only those messages whose degree is within −π/2
to π/2 are used to find the nearest point. Both OB and the robot’s
speed are decomposed in the front direction and right direction of
the robot. Then we can calculate the difference between shortest
distance to obstacles and braking distance for each direction. Then
the lower difference between the two directions is chosen as the
safety index. Equations 2, 3, and 4 show how to calculate safety
index for case 2.

dx (t ) =
a(t )

cosθ (t ) −
s

2 tanθ (t ) −
(
v(t ) cosα (t )t0 +

(v(t ) cosα (t ))2
2µд

)
(2)

dy (t ) =
a(t )

sinθ (t ) −
s

2 −

(
v(t ) sinα (t )t0 +

(v(t ) sinα (t ))2
2µд

)
(3)

S2(v(t ),a(t )) = min{dx (t ),dy (t )} (4)

The speed v(t ) is decomposed into x axis(front) and y axis(right).
dx (t ) represents the shortest distance in the x axis at time t . dy (t )
represents the shortest distance in the y axis at time t .

Cumulative Accuracy. For object detection, we use accuracy
as performance metric. Currently, most related work solutions eval-
uate the performance of object detection algorithms by utilizing
Intersection of Union(IoU) and mean Average Precision(mAP) [14].
However, for a trained object detection model (e.g., MobileNet-SSD
in HydraOne), the detection accuracy for a specific frame does
not change in different executions because we do not change the
trained model. Assuming the robot has 0.1 seconds waiting time,
if we compare the object detection results with waiting time and
without waiting time, the average IoU and mAP will be the same
because the DNN model is the same. However, objects during the
waiting time are not analyzed by the model. As a result, the baseline
that continuously runs without waiting time will have the high-
est number of objects recognized during a certain activity period.
Therefore, we design the cumulative accuracy (CA) to measure how
many objects are analyzed and recognized during a certain active
period and evaluate the object detection performance:

CA =
N∑
i=1

max {a(i, j), j ∈ [1,Mj ]} (5)

where N is the number of times the model inference has been
executed. For the i−th model inference, a(i, j) represents the output
of the model inference, which is a vector consisting ofMj elements,
and each element indicates the probability of being recognized as a
particular object. Thus, max {a(i, j), j ∈ [1,Mj ]} selects the recog-
nized object with the highest probability for each model inference
execution. As a result, CA is the sum of all the highest possibilities
over N times of model inference.

Metric Normalization. The performance metrics of different
applications and their ranges can be different. The goal of normal-
ization is to make E2M a general support for all computer vision
based applications in AMRs and to easily compare the performance
of different applications.

In order for the coordinator to make a final decision on the
waiting time of the applications, the coordinator needs to consider
the performance of each application (see Section 4.5). Therefore,
the performance metrics should be normalized. For safety index,
first we collect the human driving dataset by using the joy stick
to control HydraOne with no crash. The lower the safety index
is, the higher is the possibility for a crash to happen. Then the
normalized safety index can be calculated using the desired safety
index, which is determined as the largest safety index when the
robot is controlled by a human being. For CA, we also use desired
CA value to divide the real-time CA value. The desired CA values
is defined as the total number of objects through the detection
process.

NS = S(v(t ),a(t ))
Sdes

(6)

NCA = CA(v(t ),b(t ))
CAdes

(7)

In Equations 6 and 7, NS and NCA represent normalized safety
index and normalized cumulative accuracy respectively. The higher
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NS is, the more safe is the AMR. The higher NCA is, the better
the AMR recognizes objects. Specifically, Sdes and CAdes repre-
sent the desired safety index and cumulative accuracy, respec-
tively. As a result, the performance analyzer also calculates the
per-application waiting time. The maximum waiting time for Hy-
draNet and MobileNet-SSD can be calculated based on the distance
and speed as follows:

HydraNet waiting time

WAD (v(t ),a(t )) =
S(v(t ),a(t ))

v(t ) − tAD (8)

MobileNet-SSD waiting time

WOD (v(t ),b(t )) =
min{b(t )}

v(t ) − tOD (9)

In Equations 8 and 9,WAD (v(t ),a(t )) andWOD (v(t ),b(t )) repre-
sent the maximum waiting time for HydraNet and MobileNet-SSD
respectively given the speed v(t ) and distance information a(t ) and
b(t ). The higherWAD (v(t ),a(t )) andWOD (v(t ),b(t )) are, the more
energy can be saved. a(t ) represents the shortest distance to the
RPLiDAR and tAD is the average inference time for HydraNet. b(t )
is the distance to objects and tOD is the average inference time for
MobileNet-SSD. The distance to the objects are predicted based on
the RPLiDAR’s scan message and the object’s location in the image.

4.4 Energy Saver
Energy saver is designed to determine the total energy consumption
of the system when the waiting time of each application changes.
The results from the energy saver are directly fed into the coor-
dinator. Equations 10, 11, and 12 show the energy model before
applying E2M:

EBaseline = Eother + EAD + EOD (10)

EAD = EAD−capture + EAD−inf erence + EAD−publish (11)

EOD = EOD−capture + EOD−inf erence + EOD−show (12)
EBaseline is the total energy consumption when E2M is not ap-

plied. EBaseline consists of three components: EAD , which is the en-
ergy consumption of running end-to-end free space detection appli-
cation, i.e., HydraNet; EOD , which stands for the energy consumed
by running object detection application, i.e., MobileNet-SSD; Eother ,
which represents the energy consumption of other parts, including
sensors powering andwheels rotation. For each running application,
HydraNet and MobileNet-SSD, we further break the energy con-
sumption into sensor data capturing EAD−capture or EOD−capture ,
model inference EAD−inf erence or EOD−inf erence , and publishing
commands/showing results EAD−publish or EOD−show .

After applying E2M, the energy model can be represented as:

(13)

EE2M = Eother + Esensor−buf f er + EE2M−overhead

+ tAD −
∑
WAD

tAD
(EAD−inf erence + EAD−publish )

+ tOD −
∑
WOD

tOD
(EOD−inf erence + EOD−publish )

From Equation 13, we can see that sensor buffer is introduced to
capture sensor data instead of letting each application access the

Figure 6: The design of how E2M coordinates multiple appli-
cations.

sensor directly. EE2M represents the total energy consumption af-
ter applying E2M. Esensor−buf f er represents the energy consump-
tion of capturing and sharing sensor data. The length of waiting
time of each application also affects the energy consumption of
model inference and output. In addition, there are computation
overhead in implementing the system: safety index, cumulative
accuracy, and publisher/subscriber mechanism in ROS. Here we
use EE2M−overhead to represent the total energy overhead.

4.5 Coordinator
As anticipated in Section 3, the uncoordinated execution of concur-
rent jobs is another source for inefficiency on AMRs. The coordi-
nator is proposed to coordinate multiple applications so that the
overall energy consumption is minimized. Our design is shown in
Figure 6. We can see that there are two applications: application
A and application B. Based on the energy and waiting time model
we have discussed above, the maximum waiting time and energy
saving for each application can be calculated. However, the problem
is how to coordinate them to minimize the energy consumption
while ensuring good performance. Our idea is to coordinate the
waiting time and inference time to maximize the idle time. Indeed,
increasing the idle time of computing resources helps the comput-
ing hardware to reach the deep-sleep state more often for energy
savings.

In E2M, we assume the presence of a safety-related applica-
tion simply because autonomous mobile robots need at least one
navigation application like HydraNet to be executed. Navigation
applications are often related to a safety index performance metric.
As a result, the main role of the coordinator is how to coordinate the
safety-related application with the other applications to minimize
the energy consumption. Therefore, we enforce a restriction on
their calculated waiting time. The maximum waiting time of the
other applications will not exceed that of the navigation application.
For example, if the computed waiting time of MobileNet-SSD is
longer than the waiting time of HydraNet, we assign the waiting
time of HydraNet to MobileNet-SSD. The reason for implement-
ing this restriction is that the execution of HydraNet’s inference
changes the speed and direction of HydraOne, which indirectly
affects also the performance and thus the waiting time of the other
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applications. As a result, the coordinator optimization problem is
defined as follows:

min EE2M
s.t. 1 − εk < Nk < 1 + εk

0 ⩽Wk ⩽ min(Wmax
k ,Wmax

S ) ∀k ∈ [1,A]
(14)

For every coordinator activation, the objective is to minimize the
energy consumption of the computing platform and the decision
variables are the waiting times for each application for the current
coordination period. Assuming there are A applications, for each
application k there are three restrictions: the first is that the nor-
malized performance metric of the application k should be close
to the desired value, i.e., one, where εk is defined by the user and
represents the acceptable error from the desired value; the second
is that the waiting time for application k is positive and it is lower
than the minimum between the maximum desired waiting time
Wmax
S of the navigation application S and the maximum desired

waiting timeWmax
k of the kth non-navigation application (e.g., as

calculated for HydraNet and MobileNet-SSD in Equation 8 and 9,
respectively).

When there is only one application running (i.e., the navigation
application), the output waiting time of the sensor buffer is directly
applied without the need of publishing/sharing results. Because
the coordinator is needed when multiple applications concurrently
execute, here we cover the case when there are more than one
applications running in parallel. In addition, because we don’t pre-
dict performance analysis and energy savings over future periods,
the coordinator’s work is to find the optimal waiting time with
guaranteed performance for the current coordination cycle. The
optimization process consists of five main steps:
Step 1: Wait for a new inference of the navigation application.When

the navigation application finishes the current inference, its
waiting timeWS is calculated. To minimize the energy con-
sumption, by default the waiting times of all the applications
are set to their max value (i.e., Nk = 1 ∀k ∈ [1,A]).

Step 2: For the non-navigation applications with waiting timeWk
higher thanWS , assign the waiting time of navigation ap-
plication to these application (∀k ∈ [1,A], s.t. Wk > WS ,
thenWk =WS ). The reason is that the navigation application
controls the speed and direction of the robot. If the other
non-navigation applications wait more time than the navi-
gation application, then the speed and direction of the robot
changes during their waiting time, which may degrade their
performance.

Step 3: For the non-navigation applications that have a shorter wait-
ing time than the navigation application (∃k ∈ [1,A] except S ,
s.t.Wk <WS ), get the minimum waiting timeWmin among
these non-navigation applications;

Step 4: AfterWmin has passed, execute all the model inference of
non-navigation application whose waiting time is shorter
thanWS .

Step 5: After all the applications have finished their model infer-
ence, check if there is still enough time to wait for the new
minimum waiting time plus the model inference time. If yes,
go to Step 3. If not, go to Step 1.

Note that we use this heuristic algorithm to solve the above
coordinator optimization problem.We plan to improve the design of
the coordinator algorithm in our future work to provide theoretical
guarantees of optimality.

5 IMPLEMENTATION
The implementation of E2M is conducted on HydraOne platform.
The HydraOne platform is shown in Figure 1(b). HydraOne is an
indoor autonomous mobile robot embedded with two leopard cam-
eras and an RPLiDAR. The leopard camera has 1928H x 1088V
active pixels and a frame rate of 30fps. The RPLiDAR’s accurate
range is from 0.2 meters to 12 meters, which is enough for in-
door scenarios. Each sample acquired by the RPLiDAR is composed
of 8000 distance points around 360 degree view. The computing
platform is an NVIDIA Jetson Tegra X2 board that has an NVIDIA
PascalTM Architecture GPU, 2 Denver 64-bit CPUswith Quad-Core
A57 Complex, and an 8 GB L128 bit DDR4 Memory. The cameras
and RPLiDAR are connected to the Jetson TX2 board via USB 3.0
port.

The ROS framework design of E2M is shown in Figure 7. An
ROS node (i.e., the nodes in the figure) is a process to perform
a certain computation while ROS topics (i.e., the arrows in the
figure) are named buses for ROS nodes to exchange messages [1].
In E2M, we implement seven ROS nodes to access the sensor data
and process the data. Six ROS topics are implemented to exchange
messages including images, point clouds, control commands, and
other customized messages.

Figure 7: The ROS framework of E2M.

5.1 ROS Nodes
Each ROS node runs as a process to perform computation. Among
the seven ROS nodes, /camera and /rplidar are used to access the
sensors to capture and publish the data. Thus, the sensor buffer is
implemented within these two nodes. The performance analyzer
and energy saver are implemented in ROS node /hydranet and
/mobilenet accordingly. The ROS node /hydranet also executes the
model inference of HydraNet for free space detection and calculates
the safety index as well as waiting time for HydraNet. The ROS
node /mobilenet executes the model inference of MobileNet-SSD for
object detection and measures the cumulative accuracy and waiting
time. The ROS node /serial_wheel is designed to get the control mes-
sage /control_hydra from /hydranet and publishes them to the Ar-
duino board that controls the motor drivers. /control_hydra doesn’t
have timestamp but it is necessary for ROS node /mobilenet to syn-
chronize the messages, so the ROS node /control_time is introduced
to convert the control message /control_hydra to a timestamped
control message /control_hydra_time. The /coordinator subscribes to
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messages including waiting time, performance analysis, and energy
saving to calculate the coordinated waiting time then publishes it
to /camera.

5.2 ROS Topics
The ROS topics are defined to exchange messages between ROS
nodes. There are six ROS topics in E2M. The summarized descrip-
tion of these six topics are reported in Table 2. The ROS topics /image
and /scan belong to /sensor_msgs while /control_hydra and /con-
trol_hydra_time belong to the /geometry_msgs library. The header
of each ROS topic includes the timestamp of the message. The
image pixels are stored in the field "data" of /image. The distance
message is stored in the field ranges of /scan. The ROS topic con-
trol_hydra_time is generated by the ROS node control_time, which
subscribers to the control_hydra message and adds to it the header
with the timestamp for /mobilenet.

Two customized ROS message /eem and /wait_time are defined
based on String type in /std_msgs. /eem is defined for ROS node
/hydranet and /mobilenet to share some real-time information in-
cluding waiting time, safety index, and accuracy with ROS node
/coordinator. /wait_time is defined to send to information of coordi-
nated waiting time to the sensor buffer /image.

5.3 Message Synchronization
The synchronization issue arises when one application needs to
process data from different sensors. In E2M, each ROS node is an in-
dividual process that can run anytime, so they can all run in parallel.
The ROS topics are used for ROS nodes to share message. However,
as the communication delay is a random process, the messages
published at the same time may not arrive at the subscribers at the
same time. For ROS node that subscribes to multiple ROS topics and
processes the messages together, the synchronization of different
ROS topics become an essential problem. For example, both ROS
nodes /hydranet and /mobilenet subscribe to topics /image and /scan.
For distributed systems, the synchronization is usually based on
time. Thus, in order to synchronize multiple ROS topics we first
need to attach timestamp to all the ROS topics. Therefore, we add
a ROS node /control_time to transform the control message to a
timestamped control message.

When an ROS node subscribes to ROS topics, the node uses a
callback mechanism to get the real-time message. When multiple
ROS topics are subscribed, the callback function should be called
after the synchronization of all the ROS messages. In E2M, the
synchronization of multiple ROS topics is implemented based on
message_filters. We use the ApproximateTime policy with buffer
length equals to 10 and the slop equals to 0.05s. The buffer is used
to store the unsynchronized messages while the slop defines the
maximum timestamp difference for synchronization.

6 EVALUATION
In this section, we evaluate our E2M system. First, we describe
the testbed configuration used for the experiments. Second, we
compare E2M with several baselines to evaluate the computational
power dissipation. Third, we evaluate the performance of E2M in
terms of safety, accuracy, and latency compared to several baselines.

Finally, we describe the resource consumption of the robot with
and without E2M by comparing CPU, GPU, and memory activity.

6.1 Testbed Configuration
The system implementation and experiments are all based on the
HydraOne platform. According to Figure 2, the energy consump-
tion of sensors on HydraOne occupies the 11% of the total energy
consumption. In the experiments, two cameras and one RPLiDAR
are connected to the computing platform to implement various
baseline cases. The leopard camera consumes 1.3W because of the
connection to the Jetson TX2 board via USB port and another 2.2W
for capturing frames for applications like HydraNet and MobileNet-
SSD. The RPLiDAR consumes 1.9W because of the USB connection
and another 0.9W during the RPLiDAR scanning.

In order to correctly determine the waiting time, we first need to
profile the model inference time of HydraNet and MobileNet-SSD.
Figure 8(a) shows the cumulative distribution function (CDF) of
the inference time for the baseline system (i.e., without waiting
time) while running HydraNet and MobileNet-SSD. We execute
several inferences with the two models and collect the inference
execution time for each execution. As the figure shows, 80% of the
HydraNet inferences is less than 55ms and 80% if the MobileNet-
SSD inferences is less than 320ms. The model inference time of
MobileNet-SSD is much higher than HydraNet because MobileNet-
SSD has much more convolutions layers than HydraNet. Therefore,
we set tAD and tOD as 55ms and 320ms, respectively.

6.2 Power Dissipation
The main objective of E2M is to provide an energy efficient middle-
ware for computer vision applications. Here, we measure the power
dissipation of HydraOne’s computing platform to study the energy
savings introduced by E2M. There are three aspects of energy opti-
mization in E2M: coordinated sensor access, applying of waiting
time, and coordination of concurrent running applications. In or-
der to have a breakdown of energy savings for each one of these
aspects, we define seven baseline cases. Each baseline introduces
one or more of these optimizations.

The description of the seven baseline cases are shown in Table 3.
The case 1 is the baseline to cases 2 to 4. The case 1 considers the
situation where HydraNet and MobileNet run using two cameras
because each application locks the camera to capture the frame
and execute model inference periodically. Case 1 also includes the
power dissipation of RPLidar driver, which is 1.9W of power dissi-
pation. As the data is not used for any computation, the runtime
power dissipation of RPLiDAR will not be included. The case 1
is the general approach to run HydraNet and MobileNet concur-
rently if we don’t have E2M because the camera can be locked
by one application. The case 2 shows the power dissipation when
HydraNet and MobileNet-SSD are running with the sensor buffer.
The introduction of sensor buffer makes it possible to use only one
camera for the execution of two applications. The case 3 improves
the case 2 by using the waiting time for each individual application.
The case 4 executes both applications by improving case 3 with the
coordinator, which is the case to show the performance of E2M.

The power dissipation of the above four cases are shown in Fig-
ure 8. Specially, Figure 8(b) and Figure 8(c) show the results when
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Table 2: ROS topic description in E2M.

Topics /image /scan /control_hydra /contro_hydra_time /eem /wait_time
Library sensor_msgs sensor_msgs geometry_msgs geometry_msgs std_msgs std_msgs
Type Image LaserScan Twist TwistStamped String String

Fields header, height, width,
encoding, data, etc

header, angle_min, angle_max,
angle_increment, ranges,

intensities, etc
linear, angular header, linear, angular header, wait_ad, wait_od,

safety, accuracy header, time

(a) (b) (c)

Figure 8: (a) The inference time CDF of HydraNet and MobileNet-SSD. (b) The power dissipation of E2M in seven cases when
the GPU memory utilization ratio is 0.2. (c) The power dissipation of E2M in seven cases when the GPU memory utilization
ratio is 0.8.

the GPU memory utilization ratio is 0.2 and 0.8, respectively. As
Figure 8(b) shows, comparing case 1, 2, 3, and 4, we can see the
introduction of the sensor buffer, the waiting time, and the coordi-
nator saves 1.3W, 3W, and 0.2W of power dissipation, respectively.
Although most of the power dissipation is saved by the introduction
of the waiting time in each application, we have to note that the
energy savings introduced by the coordinator are also dependent
on the number of running applications. Because so far we have
implemented only two applications in our testbed, it is in our fu-
ture work to implement many other applications on the HydraOne
platform and further study the energy savings of the coordinator.

The main difference between the baseline cases 1 and 2 is that
for case 2 we only capture frame from one leopard camera. The
RPLiDAR consumes 1.9W to connect via USB port and another
0.9W to scan, while the camera consumes 1.3W to connect via USB
port and another 2.2W of capturing frames. Therefore, capturing
frame from only one camera can save 2.2W of power dissipation.
On the other hand, the power dissipation of case 2 is 1.3W lower
than case 1, thus the power overhead of publishing frames from
camera is 0.9W. However, after the camera frames are published,
if an additional application requires the same camera frame, then
the energy of adding another camera can be saved. Therefore, the
sensor buffer can achieve energy saving in the multiple-application
scenario. Overall, the E2M saves 4.5W (i.e., 18.5W-14W) of power
dissipation. Considering the case 1 as the total power dissipation of
the computing platform, then E2M saves up to 4.5W/18.5W=24.3% of
the power dissipation of the computing platform. Comparing with
the total power dissipation of HydraOne which is 39.1W, E2M saves
4.5W/39.1W=11.5% of the power dissipation. Extra 11.5 percent of

Table 3: The descriptions of four cases.

Case # Description
1 Baseline: HydraNet + MobileNet-SSD + Two cameras + RPLidar
2 Case 1 + sensor buffer
3 Case 1 + sensor buffer + waiting time
4 E2M (Case 1 + sensor buffer + waiting time + coordinator)

battery time means the platform can run extra 14 minutes before
being recharged.

Figure 8(c) shows the power dissipation of the above four base-
line cases when the GPU utilization ratio is set as 0.8. Comparing
case 1 to 4 of Figure 8(b) and Figure 8(c), it can be found that the
power dissipation decreases by 0.1W to 0.3W when the GPU uti-
lization ratio increases from 0.2 to 0.8. The reason is that using
GPU other than CPU for model inference accelerates the matrix
computation and decreases the average power dissipation. For the
power dissipation saving, E2M saves power dissipation by 4.4W
and it is 24% of the power dissipation of the computing platform.

These experiments show that E2M can reduce the computational
energy consumption by buffering the sensor data, using the applica-
tions’ waiting time, and by coordinating the application execution.

6.3 Performance Analysis
In order to achieve high stability and availability for the AMRs,
performance is an essential factor to consider. In this paper, the
performance of the system is defined based on the applications
running on top of HydraOne: HydraNet for free space detection
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(a) (b) (c)

Figure 9: (a) The experiment results of normalized safety index. The higher the better. (b) The experiment results of normalized
CA. The higher the better. (c) The experiment results of model inference time.

andMobileNet-SSD for object detection. The performance of E2M is
discussed in three aspects: normalized safety index, normalized cu-
mulative accuracy (CA), and model inference latency. Based on the
implementation on HydraOne platform, we run HydraOne indoor
with the same route for several hours to collect the safety index and
CA. The CDF of the results of normalized safety index, normalized
CA, and model inference latency are shown in Figure 9(a), 9(b),
and 9(c), respectively.

Because the waiting time affects the frequency of model infer-
ence which causes the degradation of performance, we compare the
performance of E2M with the baseline of no waiting time. In Fig-
ure 9(a), we compare the results of normalized safety index of E2M
with no waiting time. Our purpose is to evaluate the average differ-
ence between the baseline’s safety curve and E2M’s safety curve.
As one can observe in the figure 9(a) and 9(b), the E2M CDF curves
are slightly shifted to the left compared to the baseline CDF curve.
Thus, the difference between the baseline’s safety/accuracy and
the E2M safety/accuracy is about the same for all the percentiles.
We can observe that the normalized safety index decreases by 0.05
compared with no waiting time case. This corresponds to just 7.9%
of the normalized safety index with no waiting time. In Figure 9(b),
we compare the results of normalized CA with no waiting time. We
can observe that the normalized CA decreased by 0.014 compared
with the no waiting time case, which corresponds to just 1.84% of
the normalized CA with no waiting time.

Another important performance metric is model inference la-
tency. In Figure 9(c), we compare the model inference latency of
HydraNet and MobileNet-SSD before and after implementing E2M.
After applying E2M, the model inference latency of HydraNet de-
creases by 20ms while that of the MobileNet-SSD increases by
130ms in 80% of the data executions. The decrease of latency for
HydraNet is owing to the ROS’s publisher/subscriber mechanism,
which decomposes the capturing frame and processing frame and
allow them to run in parallel. Compared with capturing the frames
from the camera after the model inference of last frame, the frames
are get from the sensor buffer and processed in parallel. For the
increase of latency for MobileNet-SSD, it’s owing to the design of
E2M. From the ROS framework of E2M in Figure 7, we can see the

the ROS node /mobilenet subscribes to the message of /image, /s-
can, and /control_hydra_time, which means for each cycle of model
inference it needs synchronize these three messages. The /con-
trol_hydra_time message is generated by ROS node /control_time
based on /control_hydra message from /hydranet. However, after
the ROS node /coordinator publishes the coordinated waiting time
to ROS node /camera, the waiting time will be executed so the
/image will be delayed. After that, the ROS node /hydranet needs
to conduct model inference to get the /control_hydra message, so
the model inference of HydraNet is added to the delay. Therefore,
the delay of model inference of MobileNet-SSD can be as high as
130ms. The effect of latency in inference can be resolved by the
waiting time because the delay affects the performance and the
performance affects the waiting time of each application.

These experiments show the E2M can achieve high energy sav-
ings with little performance degradation because it considers the
desired performance within the decisions of the waiting times.

6.4 Resource Consumption
In addition to the energy overhead discussed in power dissipation
section, the resource consumption of the system is also very impor-
tant for the availability of the system. In this paper, we consider
the system resource consumption by analyzing memory, CPU, and
GPU usage. As the HydraOne’s computing platform is a Jetson
TX2 board, we use the tool called tegrastats to get the utilization of
memory, CPU, and GPU. The GPU memory utilization ratio is set
as 0.8.

The experiment results of memory, CPU, and GPU usage before
and after applying E2M are shown in Figure 10(a), 10(b), and 10(c),
respectively. From Figure 10(a), we can observe that the memory
utilization increases by nearly 1GB after applying E2M. One reason
for the increase of memory usage is that the ROS’s publisher/sub-
scriber mechanism contributes to many replicas of the same data,
which is the main reason why E2M currently needs 1GB more of
memory usage. On the other hand, the total system memory of
Jetson TX2 board is 8GB, thus E2M uses 13% of the total system
memory, which could be acceptable. Nevertheless, we plan to up-
grade to ROS 2.0, which introduces shared memory to reduce the
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Figure 10: The comparison of Baseline and E2M in: (a) the memory utilization, (b) the CPU utilization, (c) The GPU utilization.

system memory overhead of ROS topics. This should considerably
lower the E2M memory overhead.

For the CPU utilization, as Jetson TX2 has six CPU cores, at each
timestamp we calculate the summation of six cores’ CPU utilization
as the overall CPU utilization. From the results in Figure 10(b),
we can see that the CPU utilization with E2M is lower than the
baseline by 10% on average. The decrease of CPU usage is owing to
the application of the waiting time. Specifically, the waiting time
decreases the model inference frequency, which, in turns, leads to
a decreased CPU utilization.

The CDF of GPU utilization of the baseline and E2M are shown
in Figure 10(c). Considering the 80 percentile, we can observe that
E2M can decrease the GPU utilization by 42%, which is owing to
the introduce of waiting time. In addition, we can observe that the
possibility for zero GPU utilization with E2M is over 60%. This
phenomenon is caused by the coordination of waiting time across
concurrent applications. When the waiting times of HydraNet and
MobileNet-SSD are coordinated, the possibility for GPU to go to the
sleep state is increased which contributes to more energy savings.

These experiments show that the execution of E2M does not
causes new bottlenecks in the resource utilization of AMRs. On the
contrary, in many cases such as CPU and GPU it contributes to
reduce their activity.

7 DISCUSSION
Although E2M achieves nearly 24% of energy saving with less than
8% performance degradation, there are still some limitations owing
to the design and targeted scenario. In this section, we discuss the
limitations of E2M in three aspects: generality of E2M, multiple
applications coordination, and random process of model inference.

7.1 Generality of E2M
E2M is a middleware designed mainly for autonomous mobile
robots used for industry purposes. E2M is able to be deployed
in any ROS-based AMRs. New applications can be implemented as
plugins. For example, if we want to add the application of avoiding
unexpected obstacles, we can change the way the performance met-
ric for the navigation application is calculated. According to [22],
we can introduce a distance space metric, which suggests that AMR
applications need to respond within a certain response time given

by: Response_space(m)/speed(m/s). For example, if we want a new
decision every 1m at most and the current speed is 40km/h, then the
desired response time is 90ms. We could use this as performance
metric, without changing the described E2M algorithm.

For real autonomous vehicles, they have several commonali-
ties with AMRs, including the need of analyzing camera images
for object detection and driving. However, real environment is so
complicated that even the most complex deep learning model may
fail. Hence, the waiting time of the model inference may cause
a considerable performance degradation. In addition to this, the
multiple cameras on-board with multiple applications running in
parallel, the coordination of sensor access and the coordination of
the application executions can contribute to achieve energy savings
even in the autonomous vehicle case.

7.2 Multiple Applications Coordination
In this paper, we only consider the coordination of concurrent
applications in one cycle, which makes the case becomes easier
because the coordination is just a local optimal solution. However,
if we want to find the global optimal solution that achieves the most
energy saving with guaranteed performance, we need to predict
the performance changing, which can very challenging. In addition,
as we have discussed in the performance analysis of the model
inference latency, ROS node’s messages will contribute to the delay
of the message. Finally, the information that the coordinator gets
can be all out-of-date. These problems may make it hard for E2M
to save energy while guaranteeing performance. One solution is to
use the newer ROS 2.0 rather than the currently used ROS, which
introduces shared memory to improve the throughput and latency
of data-sensitive communications.

7.3 Random Process of Model Inference
From Figure 8(a), we can observe that the inference time is a random
process. Although the model is fixed and the input images are all
from the same scenario, the inference time can vary from 21ms to
88ms for HydraNet and 225ms to 434ms for MobileNet-SSD. The
random process of model inference time makes the waiting time
of each application become a random process. This randomness
makes it difficult for us to predict how long the model inference and
the waiting time can be. Hence, the inference time and the waiting
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time of each application also needs to be dynamic, which makes
the coordination of concurrent applications challenging.

8 CONCLUSION
Autonomous mobile robots (AMRs) have been widely utilized in
industry to execute various on-board computer-vision applications.
Most of the applications involve the analysis of camera images
through trained deep learning models. In this paper, we have first
analyzed the breakdown of energy consumption for the execution
of computer-vision applications on AMRs and discovered three
main root causes of energy inefficiency: uncoordinated access to
sensor data, performance-oriented model inference execution, and
uncoordinated execution of concurrent jobs. In order to fix these
three inefficiencies, we have proposed E2M, an energy-efficient
middleware software stack for autonomous mobile robots. First,
E2M regulates the access of different processes to sensor data, e.g.,
camera frames, so that the amount of data actually captured by
concurrently executing jobs can be minimized. Second, based on a
predefined per-process performance metric (e.g., safety, accuracy)
and desired target, E2Mmanipulates the process execution period to
find the best energy-performance trade off. Third, E2M coordinates
the execution of the concurrent processes to maximize the total
contiguous sleep time of the computing hardware for maximized
energy savings. We have implemented a prototype of E2M on a
real-world AMR. Our experimental results show that E2M leads to
24% energy savings for the computing platform, which translates
into an extra 11.5% of battery time and 14 extra minutes of robot
runtime, with a performance degradation lower than 7.9% for safety
and 1.84% for accuracy.
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