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Abstract— The recent proliferation of computing technologies
(e.g., sensors, computer vision, machine learning, and hardware
acceleration), and the broad deployment of communication mech-
anisms (e.g., DSRC, C-V2X, 5G) have pushed the horizon of
autonomous driving, which automates the decision and control
of vehicles by leveraging the perception results based on multiple
sensors. The key to the success of these autonomous systems
is making a reliable decision in real-time fashion. However,
accidents and fatalities caused by early deployed autonomous
vehicles arise from time to time. The real traffic environment
is too complicated for current autonomous driving computing
systems to understand and handle. In this paper, we present
state-of-the-art computing systems for autonomous driving, in-
cluding seven performance metrics and nine key technologies,
followed by twelve challenges to realize autonomous driving. We
hope this paper will gain attention from both the computing
and automotive communities and inspire more research in this
direction.

I. INTRODUCTION

Recently, with the vast improvements in computing tech-
nologies, e.g., sensors, computer vision, machine learning,
hardware acceleration, and the wide deployment of commu-
nication mechanisms, e.g., Dedicated short-range communica-
tions (DSRC), Cellular Vehicle-to-Everything (C-V2X), and
5G, autonomous driving techniques have attracted massive
attention from both the academic and automotive communi-
ties [1], [2]. According to [3], the global autonomous driving
market expects to grow up to $173.15B by 2030. Many au-
tomotive companies have made enormous investments in this
domain, including ArgoAI, Audi, Baidu, Cruise, Mercedes-
Benz, Tesla, Uber, and Waymo, to name a few [4], [5], [6],
[7]. Several fleets of SAE (Society of Automotive Engineers)
L4 vehicles have been deployed around the world [8], [9].

To achieve autonomous driving, determining how to make
the vehicle understand the environment correctly and make
safe controls in real-time is the essential task. Rich sensors
including camera, LiDAR (Light Detection and Ranging),
Radar, Inertial Measurement Unit (IMU), Global Navigation
Satellite System (GNSS), and Sonar, as well as powerful
computation devices, are installed on the vehicle [10], [11],
[12], [13], [14]. This design makes autonomous driving a real
powerful "computer on wheels." In addition to hardware, the
rapid development of deep learning algorithms in object/lane
detection, simultaneous localization and mapping (SLAM),
and vehicle control also promotes the real deployment and
prototyping of autonomous vehicles [15], [16], [17], [18]. The

autonomous vehicle’s computing systems are defined to cover
everything (excluding the vehicle’s mechanical parts), in-
cluding sensors, computation, communication, storage, power
management, and full-stack software. Plenty of algorithms
and systems are designed to process sensor data and make
a reliable decision in real-time.

However, news of fatalities caused by early developed
autonomous vehicles (AVs) arises from time to time. Until
August 2020, five self-driving car fatalities happened for level-
2 autonomous driving: four of them from Tesla and one from
Uber [19]. Table I summarizes the date, place, company,
and reasons for these five fatalities. The first two fatalities
attributed to Tesla happened in 2016 with the first accident
occurring because neither the Autopilot system nor the driver
failed to recognize the truck under thick haze. The vehicle in
the second incident mistook the truck for open space. In the
2018 incident involving Tesla, the autopilot failed to recognize
the highway divider and crashed into it. The most recent
fatality from Tesla happened in 2019 because the vehicle failed
to recognize a semi-trailer. The fatality from Uber happened
because the autonomous driving system failed to recognize
that pedestrians jaywalk.

In summary, all four incidents associated with Tesla are due
to perception failure, while Uber’s incident happened because
of the failure to predict human behavior. Another fact to pay
attention to is that currently, the field-testing of level 2 au-
tonomous driving vehicles mostly happens in places with good
weather and light traffic conditions like Arizona and Florida.
The real traffic environment is too complicated for the current
autonomous driving systems to understand and handle easily.
The objectives of level 4 and level 5 autonomous driving
require colossal improvement of the computing systems for
autonomous vehicles.

This paper presents state-of-the-art computing systems for
autonomous driving, including seven performance metrics and
nine key technologies, followed by eleven challenges and
opportunities to realize autonomous driving. The remaining
parts of this paper are organized as follows: Section II dis-
cusses the reference architecture of the computing systems
for autonomous driving. In Section III, we show some metrics
used in the evaluation of the computing system. Section IV dis-
cusses the key technologies for autonomous driving. Section V
presents possible challenges. Finally, this paper concludes in
Section VI.
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TABLE I
LIST OF FATALITIES CAUSED BY LEVEL 2 AUTONOMOUS DRIVING VEHICLES.

Date Place Company Reason

20 Jan. 2016 Handan, Hebei China Tesla fail to recognize truck under a thick haze
07 May 2016 Williston, Florida USA Tesla mistook the truck for open sky
18 Mar. 2018 Tempe, Arizona USA Uber fail to recognize pedestrians jaywalk at night
23 Mar. 2018 Mountain View, California USA Tesla fail to recognize the highway divider
1 Mar. 2019 Delray Beach, Florida USA Tesla fail to recognize semi-trailer

TABLE II
END-TO-END APPROACHES FOR AUTONOMOUS DRIVING.

Work Methods Characteristics

[24] supervised DNN raw image to steering angles for off-road
obstacle avoidance on mobile robots

[25] supervised DNN map an input image to a small number of
key perception indicators

[26] supervised DNN CNN to map raw pixels from a camera
directly to steering commands

[27] supervised DNN FCN-LSTM network to predict multi-modal
discrete and continuous driving behaviors

[28] DQN automated driving framework in simulator
environment

[29] DQN lane following in a countryside road without
traffic using a monocular image as input

II. REFERENCE ARCHITECTURE

As an essential part of the whole autonomous driving
vehicle, the computing system plays a significant role in the
whole pipeline of driving autonomously. There are two types
of designs for computing systems on autonomous vehicles:
modular-based and end-to-end based.

Modular design decouples the localization, perception, con-
trol, etc. as separate modules and make it possible for people
with different backgrounds to work together [20]. The DARPA
challenges is a milestone for the prototyping of autonomous
driving vehicles, including Boss from CMU [21], Junior from
Stanford [22], TerraMax and BRAiVE from University of
Parma [23], etc. Their designs are all based on modules
including perception, mission planning, motion planning, and
vehicle controls. Similarly, the survey fleet vehicles developed
by Google and Uber are also modular-based [4], [7]. The main
differences for these AV prototypes are the software and the
configuration of sensors like camera, LiDAR, Radar, etc.

In contrast, the end-to-end based design is largely motivated
by the development of artificial intelligence. Compared with
modular design, end-to-end system purely relies on machine
learning techniques to process the sensor data and generate
control commands to the vehicle [24], [25], [26], [27], [28],
[29]. Table II shows a detailed description of these end-to-
end designs. Four of them are based on supervised DNNs to
learn driving patterns and behaviors from human drivers. The
remaining two are based on Deep Q-Network (DQN), which
learns to find the optimum driving by itself. Although the
end-to-end based approach promises to decrease the modular
design’s error propagation and computation complexity, there
is no real deployment and testing of it [30].

As most prototypes are still modular-based, we choose it
as the basis for the computing system reference architecture.

Figure 1 shows a representative reference architecture of the
computing system on autonomous vehicles. Generally, the
computing system for autonomous driving vehicles can be
divided into computation, communication, storage, security
and privacy, and power management. Each part covers four
layers with sensors, operating system (OS), middleware, and
applications. The following paragraphs will discuss the corre-
sponding components.

For safety, one of the essential tasks is to enable the “com-
puter” to understand the road environment and send correct
control messages to the vehicle. The whole pipeline starts
with the sensors. Plenty of sensors can be found on an au-
tonomous driving vehicle: camera, LiDAR, radar, GPS/GNSS,
ultrasonic, inertial measurement unit (IMU), etc. These sensors
capture real-time environment information for the computing
system, like the eyes of human beings. Operating system
(OS) plays a vital role between hardware devices (sensors,
computation, communication) and applications. Within the OS,
drivers are bridges between the software and hardware devices;
the network module provides the abstraction communication
interface; the scheduler manages the competition to all the
resources; the file system provides the abstraction to all the
resources. For safety-critical scenarios, the operating system
must satisfy real-time requirements.

As the middle layer between applications and operating sys-
tems [31], middleware provides usability and programmability
to develop and improve systems more effectively. Generally,
middleware supports publish/subscriber, remote procedure call
(RPC) or service, time synchronization, and multi-sensor col-
laboration. A typical example of the middleware system is the
Robot Operating System (ROS) [32]. On top of the operating
system and middleware system, several applications, including
object/lane detection, SLAM, prediction, planning, and vehicle
control, are implemented to generate control commands and
send them to the vehicle’s drive-by-wire system. Inside the
vehicle, several Electronic Control Units (ECUs) are used to
control the brake, steering, etc., which are connected via Con-
troller Area Network (CAN bus) or Automotive Ethernet [33].
In addition to processing the data from on-board sensors, the
autonomous driving vehicle is also supposed to communicate
with other vehicles, traffic infrastructures, pedestrians, etc. as
complementary.

III. METRICS FOR COMPUTING SYSTEM

According to the report about autonomous driving tech-
nology from the National Science & Technology Council
(NSTC) and the United States Department of Transportation
(USDOT) [34], ten technology principles are designed to
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Fig. 1. Representative reference architecture of the computing system for
autonomous driving.

foster research, development, and integration of AVs and guide
consistent policy across the U.S. Government. These principles
cover safety, security, cyber security, privacy, data security,
mobility, accessibility, etc. Corresponding to the autonomous
driving principles, we define several metrics to evaluate the
computing system’s effectiveness.

Accuracy Accuracy is defined to evaluate the difference
between the detected/processed results with the ground truth.
Take object detection and lane detection, for example, the
Intersection Over Union (IOU) and mean Average Precision
(mAP) are used to calculate the exact difference between
the detected bounding box of objects/lanes and the real po-
sitions [35], [36]. For vehicle controls, the accuracy would be
the difference between the expected controls in break/steering
with the vehicle’s real controls.

Timeliness Safety is always the highest priority. Au-
tonomous driving vehicles should be able to control them-
selves autonomously in real-time. According to [20], if the
vehicle is self-driving at 40km per hour in an urban area
and wants the control effective every 1 meter, then the whole
pipeline’s desired response time should be less than 90ms. To
satisfy the desired response time, we need each module in the
computing system to finish before the deadline.

Power Since the on-board battery powers the whole com-
puting system, the computing system’s power dissipation can
be a big issue. For electrical vehicles, the computing system’s
power dissipation for autonomous driving reduces the vehicle’s
mileage with up to 30% [37]. In addition to mileage, heat dissi-
pation is another issue caused by high power usage. Currently,
the NVIDIA Drive PX Pegasus provides 320 INT8 TOPS of
AI computational power with a 500 watts budget [38]. With the
power budget of sensors, communication devices, etc., the total
power dissipation will be higher than 1000 watts. The power
budget is supposed to be a significant obstacle for producing
the real autonomous driving vehicle.

Cost Cost is one of the essential factors that affect the
board deployment of autonomous vehicles. According to [39],
[40], the cost of a level 4 autonomous driving vehicle attains
300,000 dollars, in which the sensors, computing device,
and communication device cost almost 200,000 dollars. In
addition to the hardware cost, the operator training and vehicle
maintenance cost of AVs (like insurance, parking, and repair)
is also more expensive than traditional vehicles.

Reliability To guarantee the safety of the vehicle, relia-
bility is a big concern [41]. On one hand, the worst-case
execution time is supposed to be longer than the dead-
line. Interruptions or emergency stops should be applied in
such cases. On the other hand, failures happen in sensors,
computing/communication devices, algorithms, and systems
integration [42]. How to handle these potential failures is also
an essential part of the design of the computing system.

Privacy As the vehicle captures a massive amount of sensor
data from the environment, vehicle data privacy becomes a big
issue. For example, the pedestrian’s face and the license plate
captured by the vehicle’s camera should be masked as soon
as possible [43]. Furthermore, who owns the driving data is
also an important issue, which requires the system’s support
for data access, storage, and communication [44].

Security The secureness of the on-board computing system
is essential to the success of autonomous driving since, ulti-
mately, the computing system is responsible for the driving
process. Cyber attacks can be launched quickly to any part of
the computing system [44], [45]. We divide the security into
four aspects: sensing security, communication security, data
security, and control security [46], [47]. We envision that the
on-board computing system will have to pass a certain security
test level before deploying it into real products.

IV. KEY TECHNOLOGIES
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Fig. 2. A typical example of a computing system for autonomous driving.

An autonomous vehicle involves multiple subjects, includ-
ing computing systems, machine learning, communication,
robotics, mechanical engineering, and systems engineering,
to integrate different technologies and innovations. Figure 2
shows a typical example of autonomous driving vehicles
called Hydra, which is developed by The CAR lab at Wayne
State University [48]. An NVIDIA Drive PX2 is used as the
vehicle computation unit (VCU). Multiple sensors, including
six cameras, six radars, one LiDAR, one GNSS antenna, and
one DSRC antenna, are installed for sensing and connected
with VCU. The CAN bus is used to transmit messages between
different ECUs controlling steering, throttle, shifting, brake,
etc. Between the NVIDIA Drive PX2 and the vehicle’s CAN
bus, a drive-by-wire system is deployed as an actuator of
the vehicle control commands from the computing system.
Additionally, a power distribution system is used to provide
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extra power for the computing system. It is worth noting that
the computing system’s power distribution is non-negligible in
modern AVs [49]. In this section, we summarize several key
technologies and discuss their state-of-the-art.

A. Sensors

1) Cameras: In terms of usability and cost, cameras are
the most popular sensors on autonomous driving vehicles. The
camera image gives straightforward 2D information, making
it useful in some tasks like object classification and lane
tracking. Also, the range of the camera can vary from several
centimeters to near one hundred meters. The relatively low
cost and commercialization production also contribute to the
complete deployment in the real autonomous driving vehicle.
However, based on lights, the camera’s image can be affected
by low lighting or bad weather conditions. The usability of the
camera decreases significantly under heavy fog, raining, and
snowing. Futhermore, the data from the camera is also a big
problem. On average, every second, one camera can produce
20-40MB of data.

2) Radar: The radar’s full name is Radio Detection and
Ranging, which means to detect and get the distance using
radio. The radar technique measures the Time of Flight (TOF)
and calculates the distance and speed. Generally, the working
frequency of the vehicle radar system is 24GHz or 77GHz.
Compared with 24GHz, 77GHz shows higher accuracy in
distance and speed detection. Besides, 77GHz has a smaller
antenna size, and it has less interference than 24GHz. For
24GHz radar, the maximum detection range is 70 meters,
while the maximum range increases to 200 meters for 77GHz
radar. According to [10], the price for Continental’s long-range
radar can be around $3000, which is higher than the camera’s
price. However, compared with a camera, radar is less affected
by the weather and low lighting environment, making it very
useful in some applications like object detection and distance
estimation. The data size is also smaller than the camera. Each
radar produces 10-100KB per second.

3) LiDAR: Similar to Radar, LiDAR’s distance informa-
tion is also calculated based on the TOF. The difference is
that LiDAR uses the laser for scanning, while radar uses
electromagnetic waves. LiDAR consists of a laser generator
and a high accuracy laser receiver. LiDAR generates a three-
dimensional image of objects, so it is widely used to detect
static objects and moving objects. LiDAR shows good perfor-
mance with a range from several centimeters to 200 meters,
and the accuracy of distance goes to centimeter-level. LiDAR
is widely used in object detection, distance estimation, edge
detection, SLAM [50], [17], and High-Definition (HD) Map
generation [51], [52], [53], [18]. Compared with the camera,
LiDAR shows larger sensing range and its performance is
less affected by bad weather and low lighting. However, in
terms of the cost, LiDAR seems less competitive than camera
and radar. According to [11], the 16 lines Velodyne LiDAR
costs almost $8000, while the Velodyne VLS-128E costs over
$100,000. High costs restrict the wide deployment of LiDAR
on autonomous vehicles, contributing to the autonomous ve-
hicle’s high cost. LiDAR can generate almost 10-70MB data

per second, a huge amount of data for the computing platform
to process in real-time.

4) Ultrasonic sensor: Ultrasonic sensor is based on ultra-
sound to detect the distance. Ultrasound is a particular sound
that has a frequency higher than 20kHz. The distance is also
detected by measuring TOF. The ultrasonic sensor’s data size
is close to the radar’s, which is 10-100KB per second. Besides,
the ultrasonic sensor shows good performance in bad weather
and low lighting environment. The ultrasonic sensor is much
cheaper than the camera and radar. The price of the ultrasonic
sensor is always less than $100. The shortcoming of ultrasonic
sensors is the maximum range of only 20 meters, limiting its
application to short-range detection like parking assistance.

5) GPS/GNSS/IMU: Except for sensing and perception of
the surrounding environment, localization is also a significant
task running on top of the autonomous driving system. In the
localization system of the autonomous vehicle, GPS, GNSS,
and IMU are widely deployed. GNSS is the name for all the
satellite navigation systems, including GPS developed by the
US, Galileo from Europe, and BeiDou Navigation Satellite
System (BDS) [12] from China. The accuracy of GPS can
vary from several centimeters to several meters when different
observation values and different processing algorithms are
applied [13]. The strengths of GPS are low costs, and the
non-accumulation of error over time. The drawback of GPS is
that the GPS deployed on current vehicles only has accuracy
within one meter: and GPS requires an unobstructed view in
the sky, so it does not work in environments like tunnels, for
example. Besides, the GPS sensing data updates every 100ms,
which is not enough for the vehicle’s real-time localization.

IMU stands for inertial measurement unit, which consists
of gyroscopes and accelerometers. Gyroscopes are used to
measure the axes’ angular speed to calculate the carrier’s po-
sition. In comparison, the accelerometer measures the object’s
three axes’ linear acceleration and can be used to calculate the
carrier’s speed and position. The strength of IMU is that it does
not require an unobstructed view from the sky. The drawback
is that the accuracy is low, and the error is accumulated
with time. IMU can be a complementary sensor to the GPS
because it has an updated value every 5ms, and it works
appropriately in environments like tunnels. Usually, a Kalman
filter is applied to combine the sensing data from GPS and
IMU to get fast and accurate localization results [14].

Table III shows a comparison of sensors, including camera,
radar, LiDAR, and ultrasonic sensors with human beings. From
the comparison, we can easily conclude that although humans
have strength in the sensing range and show more advantaged
application scenarios than any sensor, the combination of all
the sensors can do a better job than human beings, especially
in bad weather and low lighting conditions.

B. Data Source

1) Data characteristics: As we listed before, various sen-
sors, such as GPS, IMU, camera, LiDAR, radar, are equipped
in AVs, and they will generate hundreds of megabytes of data
per second, fed to different autonomous driving algorithms.
The data in AVs could be classified into two categories:
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TABLE III
COMPARISONS OF CAMERA, RADAR, LIDAR, AND ULTRASONIC SENSOR.

Metrics Human Camera Radar LiDAR Ultrasonic
Techniques - Lights Electromagnetic Laser Reflection Ultrasound

Sensing Range 0-200m 0-100m 1cm-200m (77GHz)
1cm-70m (24GHz) 0.7-200m 0-20m

Cost - ∼$500 ∼$3,000 $5,000 - $100,000 ∼$100
Data per second - 20-40MB 10-100KB 10-70MB 10-100KB

Bad weather
functionality Fair Poor Good Fair Good

Low lighting
functionality Poor Fair Good Good Good

Application
Scenarios

Object Detection
Object Classification

Edge Detection
Lane Tracking

Object Classification
Edge Detection
Lane Tracking

Object Detection
Distance Estimation

Object Detection
Distance Estimation

Edge Detection

Object Detection
Distance Estimation

real-time data, and historical data. Typically, the former is
transmitted by a messaging system with the Pub/Sub pattern in
most AVs solutions, enabling different applications to access
one data simultaneously. Historical data includes application
data. The data persisted from real-time data, where structured
data, i.e., GPS, is stored into a database, and unstructured data,
i.e., video, is stored as files.

2) Dataset and Benchmark: Autonomous driving dataset is
collected by survey fleet vehicles driving on the road, which
provides the training data for research in machine learning,
computer vision, and vehicle control. Several popular datasets
provide benchmarks, which are rather useful in autonomous
driving systems and algorithms design. Here are a few popular
datasets: (1) KITTI: As one of the most famous autonomous
driving dataset, the KITTI [54] dataset covers stereo, optical
flow, visual odometry, 3D object detection, and 3D tracking.
It provides several benchmarks, such as stereo, flow, scene,
optical flow, depth, odometry, object tracking [55], road, and
semantics [56]. (2) Cityscapes: For the semantic understanding
of urban street scenes, the Cityscapes [57] dataset includes
2D semantic segmentation on pixel-level, instance-level, and
panoptic semantic labeling, and provides corresponding bench-
marks on them. (3) BDD100K: As a large-scale and diverse
driving video database, BDD100K [58] consists of 100,000
videos and covers different weather conditions and times of the
day. (4) DDD17: As the first end-to-end dynamic and active-
pixel vision sensors (DAVIS) driving dataset, DDD17 [59]
has more than 12 hours of DAVIS sensor data under different
scenarios and different weather conditions, as well as vehicle
control information like steering, throttle, and brake.

3) Labeling: Data labeling is an essential step in a super-
vised machine learning task, and the quality of the training
data determines the quality of the model. Here are a few
different types of annotation methods: (1) Bounding boxes: the
most commonly used annotation method (rectangular boxes) in
object detection tasks to define the location of the target object,
which can be determined by the x and y-axis coordinates in the
upper-left corner and the lower-right corner of the rectangle.
(2) Polygonal segmentation: since objects are not always
rectangular, polygonal segmentation is another annotation ap-
proach where complex polygons are used to define the object’s
shape and location in a considerably precise way. (3) Semantic
segmentation: a pixel-wise annotation, where every pixel in

an image is assigned to a class. It is primarily used in cases
where environmental context is essential. (4) 3D cuboids: They
provide 3D representations of the objects, allowing models to
distinguish features like volume and position in a 3D space.
(5) Key-Point and Landmark are used to detect small objects
and shape variations by creating dots across the image. As to
the annotation software, MakeSense.AI [60], LabelImg [61],
VGG image annotator [62], LabelMe [63], Scalable [64], and
RectLabel [65] are popular image annotation tools.

C. Autonomous Driving Applications

Plenty of algorithms are deployed in the computing system
for sensing, perception, localization, prediction, and control. In
this part, we present the state-of-the-art works for algorithms
including object detection, lane detection, localization and
mapping, prediction and planning, and vehicle control.

1) Object detection: Accurate object detection under chal-
lenging scenarios is essential for real-world deep learning
applications for AVs [66]. In general, it is widely accepted
that the development of object detection algorithms has gone
through two typical phases: (1) conventional object detec-
tion phase, and (2) deep learning supported object detection
phase [67]. Viola Jones Detectors [68], Histogram of Oriented
Gradients (HOG) feature descriptor [69], and Deformable
Part-based Model (DPM) [70] are all the typical traditional
object detection algorithms. Although today’s most advanced
approaches have far exceeded the accuracy of traditional
methods, many dominant algorithms are still deeply affected
by their valuable insights, such as hybrid models, bounding
box regression, etc. As to the deep learning-based object
detection approaches, the state-of-the-art methods include the
Regions with CNN features (RCNN) series [71], [72], [36],
[73], Single Shot MultiBox Detector (SSD) series [74], [75],
and You Only Look Once (YOLO) series [76], [77], [15].
Girshick et al. first introduced deep learning into the object
detection field by proposing RCNN in 2014 [36], [78]. Later
on, Fast RCNN [71] and Faster RCNN [72] were developed
to accelerate detection speed. In 2015, the first one-stage
object detector, i.e., YOLO was proposed [76]. Since then,
the YOLO series algorithms have been continuously proposed
and improved, for example, YOLOv3 [15] is one of the
most popular approaches, and YOLOv4 [79] is the latest
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version of the YOLO series. To solve the trade-off problem
between speed and accuracy, Liu et al. proposed SSD [74] in
2015, which introduces the regression technologies for object
detection. Then, RetinaNet was proposed in 2017 [80] to
further improve detection accuracy by introducing a new loss
function to reshape the standard cross-entropy loss.

2) Lane detection: Performing accurate lane detection in
real-time is a crucial function of advanced driver-assistance
systems (ADAS) [16], since it enables AVs to drive themselves
within the road lanes correctly to avoid collisions, and it
supports the subsequent trajectory planning decision and lane
departure.

Traditional lane detection approaches (e.g. [81], [82], [83],
[84], [85], [86]) aims to detect lane segments based on diverse
handcrafted cues, such as color-based features [87], the struc-
ture tensor [88], the bar filter [89], and ridge features [90]. This
information is usually combined with a Hough transform [91],
[92] and particle or Kalman filters [93], [94], [89] to detect
lane markings. Then, post-processing methods are leveraged
to filter out misdetections and classify lane points to output
the final lane detection results [95]. However, in general, they
are prone to effectiveness issues due to road scene variations,
e.g., changing from city scene to highway scene and hard
to achieve reasonable accuracy under challenging scenarios
without a visual clue.

Recently, deep learning-based segmentation approaches
have dominated the lane detection field with more accurate
performance [96]. For instance, VPGNet [97] proposes a
multi-task network for lane marking detection. To better utilize
more visual information of lane markings, SCNN [98] applies
a novel convolution operation that aggregates diverse dimen-
sion information via processing sliced features and then adds
them together. In order to accelerate the detection speed, light-
weight DNNs have been proposed for real-time applications.
For example, self-attention distillation (SAD) [99] adopts an
attention distillation mechanism. Besides, other methods such
as sequential prediction and clustering are also introduced.
In [100], a long short-term memory (LSTM) network is
presented to face the lane’s long line structure issue. Similarly,
Fast-Draw [101] predicts the lane’s direction at the pixel-wise
level. In [102], the problem of lane detection is defined as a
binary clustering problem. The method proposed in [103] also
uses a clustering approach for lane detection. Subsequently,
a 3D form of lane detection [104] is introduced to face the
non-flatten ground issue.

3) Localization and mapping: Localization and mapping
are fundamental to autonomous driving. Localization is re-
sponsible for finding ego-position relative to a map [105].
The mapping constructs multi-layer high definition (HD)
maps [106] for path planning. Therefore, the accuracy of
localization and mapping affects the feasibility and safety
of path planning. Currently, GPS-IMU based localization
methods have been widely utilized in navigation software
like Google Maps. However, the accuracy required for urban
automated driving cannot be fulfilled by GPS-IMU systems
[107].

Currently, systems that use a pre-build HD map are more
practical and accurate. There are three main types of HD

maps: landmark-based, point cloud-based, and vision-based.
Landmarks such as poles, curbs, signs, and road markers can
be detected with LiDAR [108] or camera [109]. Landmark
searching consumes less computation than the point cloud-
based approach but fails in scenarios where landmarks are
insufficient. The point cloud contains detailed information
about the environment with thousands of points from Li-
DAR [110] or camera [111]. Iterative closest point (ICP) [112]
and normal distributions transform (NDT) [113] are two
algorithms used in point cloud-based HD map generation.
They utilize numerical optimization algorithms to calculate
the best match. ICP iteratively selects the closest point to
calculate the best match. On the other side, NDT represents
the map as a combination of the normal distribution, then uses
the maximum likelihood estimation equation to search match.
NDT’s computation complexity is less than ICP [114], but it
is not as robust as ICP. Vision-based HD maps are another
direction recently becoming more and more popular. The
computational overhead limits its application in real systems.
Several methods for matching maps with the 2D camera as
well as matching 2D image to the 3D image are proposed for
mapping [115], [116], [117].

In contrast, SLAM [118] is proposed to build the map
and localize the vehicle simultaneously. SLAM can be di-
vided into LiDAR-based SLAM and camera-based SLAM.
Among LiDAR-based SLAM algorithms, LOAM [119] can
be finished in real-time. IMLS-SLAM [120] focuses on reduc-
ing accumulated drift by utilizing a scan-to-model matching
method. Cartographer [121], a SLAM package from Google,
improves performance by using sub-map and loop closure
while supporting both 2D and 3D LiDAR. Compared with
LiDAR-based SLAM, camera-based SLAM approaches use
frame-to-frame matching. There are two types of matching
methods: feature-based and direct matching. Feature-based
methods [122], [123], [124] extract features and track them to
calculate the motion of the camera. Since features are sparse in
the image, feature-based methods are also called sparse visual
SLAM. Direct matching [125], [126], [127] is called dense
visual SLAM, which adopts original information for matching
that is dense in the image, such as color and depth from
an RGB-D camera. The inherent properties of feature-based
methods lead to its faster speed but tend to fail in texture-
less environments as well. The dense SLAM solves the issues
of the sparse SLAM with higher computation complexity.
For situations that lack computation resources, semiDense
[128], [129] SLAM methods that only use direct methods are
proposed. Besides the above methods, deep learning methods
are also utilized in solving feature extraction [130], motion
estimation [131], and long-term localization [132].

4) Prediction and planning: The prediction module eval-
uates the driving behaviors of the surrounding vehicles and
pedestrians for risk assessment [30]. Hidden Markov model
(HMM) has been used to predict the target vehicle’s future
behavior and detect unsafe lane change events [133], [134].

Planning means finding feasible routes on the map from
origin to destination. GPS navigation systems are known
as global planners [135] to plan a feasible global route,
but it does not guarantee safety. In this context, the local

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3043716

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

planner is developed [136], which can be divided into three
groups: (1) Graph-based planners that give the best path to
the destination. (2) Sampling-based planners which randomly
scan the environments and only find a feasible path. (3)
Interpolating curve planners that are proposed to smooth
the path. A* [137] is a heuristic implementation of Dijkstra
that always preferentially searches the path from the origin
to the destination (without considering the vehicle’s motion
control), which causes the planning generated by A* to not
always be executed by the vehicle. To remedy this problem,
hybrid A* [138] generates a drivable curve between each
node instead of a jerky line. Sampling-based planners [139]
randomly select nodes for search in the graph, reducing the
searching time. Among them, Rapidly-exploring Random Tree
(RRT) [140] is the most commonly used method for automated
vehicles. As an extension of RRT, RRT* [141], [142] tries
to search the optimal paths satisfying real-time constraints.
How to balance the sampling size and computation efficiency
is a big challenge for sampling-based planners. Graph-based
planners and sampling-based planners can achieve optimal
or sub-optimal with jerky paths that can be smoothed with
interpolating curve planners.

5) Vehicle control: Vehicle control connects autonomous
driving computing systems and the drive-by-wire system. It
adjusts the steering angle and maintains the desired speed to
follow the planning module’s trajectories. Typically, vehicle
control is accomplished by using two controllers: lateral
controller and longitudinal controller. Controllers must handle
rough and curvy roads, and quickly varying types, such as
gravel, loose sand, and mud puddles [143], which are not
considered by vehicle planners. The output commands are
calculated from the vehicle state and the trajectory by control
law. There are various control laws, such as fuzzy control
[144], [145], PID control [146], [147], Stanley control [143]
and Model predictive control (MPC) [148], [149], [150]. PID
control creates outputs based on proportional, integral, and
derivative teams of inputs. Fuzzy control accepts continuous
values between 0 and 1, instead of either 1 or 0, as inputs
continuously respond. Stanley control is utilized to follow the
reference path by minimizing the heading angle and cross-
track error using a nonlinear control law. MPC performs a
finite horizon optimization to identify the control command.
Since it can handle various constraints and use past and
current errors to predict more accurate solutions, MPC has
been used to solve hard control problems like following
overtaking trajectories [151]. Controllers derive control laws
depending on the vehicle model. Kinematic bicycle models
and dynamic bicycle models are most commonly used. In
[152], a comparison is present to determine which of these
two models is more suitable for MPC in forecast error and
computational overhead.

D. Computation Hardware

To support real-time data processing from various sensors,
powerful computing hardware is essential to autonomous ve-

1The cost of each unit is based on the price listed on their web site when
the product is released to the market.

hicles’ safety. Currently, plenty of computing hardware with
different designs show up on the automobile and computing
market. In this section, we will show several representative
designs based on Graphic Processor Unit (GPU), Digital
Signal Processor (DSP), Field Programmable Gate Arrays
(FPGA), and Application-Specific Integrated Circuit (ASIC).
The comparisons of GPU, DSP, FPGA, and ASIC in terms of
architecture, performance, power consumption, and cost are
shown in Table IV.

NVIDIA DRIVE AGX is the newest solution from NVIDIA
unveiled at CES 2018 [38]. NVIDIA DRIVE AGX is the
world’s most powerful System-on-Chip (SoC), and it is ten
times more powerful than the NVIDIA Drive PX2 platform.
Each DRIVE AGX consists of two Xavier cores. Each Xavier
has a custom 8-core CPU and a 512-core Volta GPU. DRIVE
AGX is capable of 320 trillion operations per second (TOPS)
of processing performance.

Zynq UltraScale+ MPSoC ZCU104 is an automotive-grade
product from Xilinx [153]. It is an FPGA-based device de-
signed for autonomous driving. It includes 64-bit quad-core
ARM R© CortexTM-A53 and dual-core ARM Cortex-R5. This
scalable solution claims to deliver the right performance/watt
with safety and security [154]. When running CNN tasks, it
achieves 14 images/sec/watt, which outperforms the Tesla K40
GPU (4 images/sec/watt). Also, for object tracking tasks, it
reaches 60 fps in a live 1080p video stream.

Texas Instruments’ TDA provides a DSP-based solution for
autonomous driving. A TDA3x SoC consists of two C66x
Floating-Point VLIW DSP cores with vision AccelerationPac.
Furthermore, each TDA3x SoC has dual Arm Cortex-M4
image processors. The vision accelerator is designed to ac-
celerate the process functions on images. Compared with
an ARM Cortex-15 CPU, TDA3x SoC provides an eight-
fold acceleration on computer vision tasks with less power
consumption [155].

MobileEye EyeQ5 is the leading ASIC-based solution to
support fully-autonomous (Level 5) vehicles [156]. EyeQ5 is
designed based on 7nm-FinFET semiconductor technology,
and it provides 24Tops computation capability with 10 watts’
power budget. TPU is Google’s AI accelerator ASIC mainly
for neural network and machine learning [157]. TPU v3 is the
newest release, which provides 420 TFLOPS computation for
a single board.

E. Storage

The data captured by an autonomous vehicle is proliferating,
typically generating between 20TB and 40TB per day, per
vehicle [158]. The data includes cameras (20 to 40MB), as
well as sonar (10 to 100KB), radar (10 to 100KB), and
LiDAR (10 to 70MB) [159], [160]. Storing data securely
and efficiently can accelerate overall system performance.
Take object detection for example: the history data could
contribute to the improvement of detection precision using
machine learning algorithms. Map generation can also benefit
from the stored data in updating traffic and road conditions
appropriately. Additionally, the sensor data can be utilized to
ensure public safety and predict and prevent crime. The biggest
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TABLE IV
THE COMPARISON OF DIFFERENT COMPUTING HARDWARE FOR AUTONOMOUS DRIVING.

Boards Architecture Performance Power Consumption Cost1

NVIDIA DRIVE PX2 GPU 30 TOPS 60W $15,000

NVIDIA DRIVE AGX GPU 320 TOPS 300W $30,000

Texas Instruments TDA3x DSP - 30mW in 30fps $549

Zynq UltraScale+ MPSoC ZCU104 FPGA 14 images/sec/Watt - $1,295

Mobileye EyeQ5 ASIC 24 TOPS 10W $750

Google TPU v3 ASIC 420 TFLOPS 40W $8 per hour

challenge is to ensure that sensors collect the right data, and
it is processed immediately, stored securely, and transferred
to other technologies in the chain, such as Road-Side Unit
(RSU), cloud data center, and even third-party users [161].
More importantly, creating hierarchical storage and workflow
that enables smooth data accessing and computing is still
an open question for the future development of autonomous
vehicles.

In [162], a computational storage system called HydraSpace
is proposed to tackle the storage issue for autonomous driving
vehicles. HydraSpace is designed with multi-layered storage
architecture and practical compression algorithms to manage
the sensor pipe data. OpenVDAP is a full-stack edge-based
data analytic platform for connected and autonomous vehicles
(CAVs) [161]. It envisions for the future four types of CAVs
applications, including autonomous driving, in-vehicle info-
tainment, real-time diagnostics, and third-party applications
like traffic information collector and SafeShareRide [163].
The hierarchical design of the storage system called driving
data integrator (DDI) is proposed in OpenVDAP to provide
sensor-aware and application-aware data storage and process-
ing [161].

F. Real-Time Operating Systems

According to the automation level definitions from the
SAE [164], the automation of vehicles increases from level
2 to level 5, and the level 5 requires full automation of
the vehicle, which means the vehicle can drive under any
environment without the help from the human. To make the
vehicle run in a safe mode, how to precept the environment
and make decisions in real-time becomes a big challenge. That
is why real-time operating systems become a hot topic in the
design and implementation of autonomous driving systems.

RTOS is widely used in the embedded system of ECUs to
control the vehicle’s throttle, brake, etc. QNX and VxWorks
are two representative commercialized RTOS widely used in
the automotive industry. The QNX kernel contains only CPU
scheduling, inter-process communication, interrupt redirection,
and timers. Everything else runs as a user process, including
a unique process known as “proc,” which performs process
creation and memory management by operating in conjunction
with the microkernel [165]. VxWorks is designed for embedded
systems requiring real-time, deterministic performance and, in
many cases, safety and security certification [166]. VxWorks
supports multiple architectures, including Intel, POWER, and

ARM. VxWorks also uses real-time kernels for mission-critical
applications subject to real-time constraints, which guarantees
a response within pre-defined time constraints.

RTLinux is a microkernel-based operating system that sup-
ports hard real-time [167]. The scheduler of RTLinux allows
full preemption. Compared with using a low-preempt patch
in Linux, RTLinux allows preemption for the whole Linux
system. RTLinux makes it possible to run real-time critical
tasks and interprets them together with the Linux [168].

NVIDIA DRIVE OS is a foundational software stack from
NVIDIA, which consists of an embedded RTOS, hypervi-
sor, NVIDIA CUDA libraries, NVIDIA Tensor RT, etc. that
is needed for the acceleration of machine learning algo-
rithms [169].

G. Middleware Systems

Robotic systems, such as autonomous vehicle systems, often
involve multiple services, with many dependencies. Middle-
ware is required to facilitate communications between different
autonomous driving services.

Most existing autonomous driving solutions utilize the ROS
[32]. Specifically, ROS is a communication middleware that
facilitates communications between different modules of an
autonomous vehicle system. ROS supports four communica-
tion methods: topic, service, action, and parameter. ROS2 is
a promising type of middleware developed to make commu-
nications more efficient, reliable, and secure [170]. However,
most of the packages and tools for sensor data process are still
currently based on ROS.

The Autoware Foundation is a non-profit organization
supporting open-source projects enabling self-driving mobil-
ity [171]. Autoware.AI is developed based on ROS, and it is the
world’s first "all-in-one" open-source software for autonomous
driving technology. Apollo Cyber [172] is another open-source
middleware developed by Baidu. Apollo aims to accelerate the
development, testing, and deployment of autonomous vehicles.
Apollo Cyber is a high-performance runtime framework that is
greatly optimized for high concurrency, low latency, and high
throughput in autonomous driving.

In traditional automobile society, the runtime envi-
ronment layer in Automotive Open System Architec-
ture(AutoSAR) [173] can be seen as middleware. Many compa-
nies develop their middleware to support AutoSAR. However,
there are few independent open-source middlewares nowadays
because it is a commercial vehicle company’s core technology.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3043716

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

Auto companies prefer to provide middleware as a component
of a complete set of autonomous driving solutions.

H. Vehicular Communication

In addition to obtaining information from the on-board sen-
sors, the recent proliferation in communication mechanisms,
e.g., DSRC, C-V2X, and 5G, has enabled autonomous driving
vehicles to obtain information from other vehicles, infrastruc-
tures like traffic lights and RSU as well as pedestrians.

1) LTE/4G/5G: Long-Term Evolution (LTE) is a transi-
tional product in the transition from 3G to 4G [174], which
provides downlink peak rates of 300 Mbit/s, uplink peak rates
of 75 Mbit/s. The fourth-generation communications (4G)
comply with 1 Gbit/s for stationary reception and 100 Mbit/s
for mobile. As the next-generation mobile communication,
U.S. users that experienced the fastest average 5G download
speed reached 494.7 Mbps on Verizon, 17.7 times faster than
that of 4G. And from Verizon’s early report, the latency of
5G is less than 30 ms, 23 ms faster than average 4G metrics.
However, we cannot deny that 5G still has the following
challenges: complex system, high costs, and poor obstacle
avoidance capabilities.

2) DSRC: DSRC [1] is a type of V2X communication
protocol, which is specially designed for connected vehicles.
DSRC is based on the IEEE 802.11p standard, and its working
frequency is 5.9GHz. Fifteen message types are defined in
the SAE J2735 standard [175], which covers information like
the vehicle’s position, map information, emergence warning,
etc. [1]. Limited by the available bandwidth, DSRC messages
have small size and low frequency. However, DSRC provides
reliable communication, even when the vehicle is driving 120
miles per hour.

3) C-V2X: C-V2X combines the traditional V2X network
with the cellular network, which delivers mature network
assistance and commercial services of 4G/5G into autonomous
driving. Like DSRC, the working frequency of C-V2X is also
the primary common spectrum, 5.9 GHz [2]. Different from
the CSMA-CA in DSRC, C-V2X has no contention overheads
by using semi-persistent transmission with relative energy-
based selection. Besides, the performance of C-V2X can be
seamlessly improved with the upgrade of the cellular network.
Generally, C-V2X is more suitable for V2X scenarios where
cellular networks are widely deployed.

I. Security and Privacy

With the increasing degree of vehicle electronification and
the reliance on a wide variety of technologies, such as sensing
and machine learning, the security of AVs has risen from
the hardware damage of traditional vehicles to comprehensive
security with multi-domain knowledge. Here, we introduce
several security problems strongly associated with AVs with
the current attacking methods and standard coping methods.
In addition to the security and privacy issues mentioned as
follows, AVs systems should also take care of many other
security issues in other domains, such as patching vulnerabil-
ities of hardware or software systems and detecting intrusions
[176].

1) Sensing security: As the eye of autonomous vehicles,
the security of sensors is nearly essential. Typically, jamming
attacks and spoofing attacks are two primary attacks for
various sensors [44], [45]. For example, the spoofing attack
generates an interference signal, resulting in a fake obstacle
captured by the vehicle [46]. Besides, GPS also encounters
spoofed attacks [47]. Therefore, protection mechanisms are
expected for sensor security. Randomized signals and redun-
dant sensors are usually used by these signal-reflection sensors
[177], [178], including LiDAR and radar. The GPS can check
signal characteristics [179] and authenticate data sources [180]
to prevent attacks. Also, sensing data fusion is an effective
mechanism.

2) Communication security: Communication security in-
cludes two aspects: internal communication and outside com-
munication. Currently, internal communication like CAN, LIN,
and FlexRay, has faced severe security threats [181], [182],
[183]. The cryptography is frequently-used technology to keep
the transmitted data confidential, integrated, and authenticated
[184]. However, the usage of cryptography is limited by the
high computational cost for these resource-constrained ECUs.
Therefore, another attempt is to use the gateway to prevent
unallowed access [185]. The outside communication has been
studied in VANETs with V2V, V2R, and V2X communications
[186], [187], [188]. Cryptography is the primary tool. A trusted
key distribution and management is built in most approaches,
and vehicles use assigned keys to authenticate vehicles and
data.

3) Data security: Data security refers to preventing data
leakage from the perspectives of transmission and storage. The
former has been discussed in communication security, where
various cryptography approaches are proposed to protect data
in different scenarios [189], [190]. The cryptography is also
a significant technology of securing data storage, such as
an encrypted database [191] and file system [192]. Besides,
access control technology [193] protects stored data from
another view, widely-used in modern operating systems. An
access control framework [194] has been proposed for AVs
to protect in-vehicle data in real-time data and historical data,
with different access control models.

4) Control security: With vehicles’ electronification, users
could open the door through an electronic key and control their
vehicles through an application or voice. However, this also
leads to new attack surfaces with various attack methods, such
as jamming attacks, replay attacks, relay attacks, etc. [44]. For
example, attackers could capture the communication between
key and door and replay it to open the door [195]. Also,
for those voice control supported vehicles, the attackers could
successfully control the vehicle by using voices that humans
cannot hear [196]. Parts of these attacks could be classified
into sensing security, communication security, or data security,
which can be addressed by corresponding protection mecha-
nisms.

5) Privacy: Autonomous vehicles heavily rely on the data
of the surrounding environment, which typically contains user
privacy. For example, by recognizing buildings in cameras,
attackers can learn the vehicle location [197]. Or an attacker
can obtain the location directly from GPS data. Thus, the most
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straightforward but the most difficult solution is to prevent data
from being obtained by an attacker, such as access control
[193], [194] and data encryption [44]. However, autonomous
vehicles will inevitably utilize location-based services. Except
for the leak of current location, attackers could learn the home
address from the vehicle trajectory [198]. Thus, data desensiti-
zation is necessary to protect privacy, including anonymization
and differential privacy [199].

V. CHALLENGES AND DISCUSSIONS

From the review of the current key technologies of the
computing system for autonomous driving, we find that there
are still many challenges and open issues for the research
and development of L4 or L5 autonomous driving vehicles.
In this section, we summarize twelve remaining challenges
and discuss the challenges with our visions for autonomous
driving.

A. Artificial intelligence for AVs

Most of the AV’s services (e.g., environmental perception
and path planning) are carried out by artificial-intelligence-
based approaches. As the focus of the automotive industry
gradually shifts to series production, the main challenge is how
to apply machine learning algorithms to mass-produced AVs
for real-world applications. Here, we list three main challenges
in artificial intelligence (AI) for AVs.

1) Standardization of safety issue: one of the main chal-
lenges is that machine learning algorithms are unstable in
terms of performance. For example, even a small change to
camera images (such as cropping and variations in lighting
conditions) may cause the ADAS system to fail in object
detection and segmentation [200], [201], [27]. However, the
automotive safety standard of ISO 26262 [202] was defined
without taking deep learning into consideration because the
ISO 26262 was published before the boom of AI, leading to
the absence of proper ways to standardize the safety issue
when incorporating AI for AVs [203].

2) Infeasibility of scalable training: to achieve high per-
formance, machine learning models used on AVs need to
be trained on representative datasets under all application
scenarios, which bring challenges in training time-sensitive
models based on Petabytes of data. In this case, collaborative
training [204], model compression technologies [205], [206],
[207], [208], [209], [210], and lightweight machine learning
algorithms [211], [212], [213] were proposed in recent years.
Besides, getting accurate annotations of every pedestrian,
vehicle, lane, and other objects are necessary for the model
training using supervised learning approaches, which becomes
a significant bottleneck [214].

3) Infeasibility of complete testing: it is infeasible to test
machine learning models used on AVs thoroughly. One reason
is that machine learning learns from large amounts of data
and stores the model in a complex set of weighted feature
combinations, which is not intuitive or difficult to conduct
thorough testing [215]. In addition, previous work pointed out
that, to verify the catastrophic failure rate, around 109 hours
(billion hours) of vehicle operation test should be carried out

[216] and the test needs be repeated many times to achieve
statistical significance [203].

B. Multi-sensors Data Synchronization

Data on the autonomous driving vehicle has various sources:
its sensors, other vehicle sensors, RSU, and even social media.
One big challenge to handle a variety of data sources is how
to synchronize them.

For example, a camera usually produces 30-60 frames per
second, while LiDAR’s point cloud data frequency is 10HZ.
For applications like 3D object detection, which requires
camera frames and point cloud at the same time, should
the storage system do synchronization beforehand or let
the application developer do it? This issue becomes more
challenging, considering that the timestamp’s accuracy from
different sensors falls into different granularities. For example,
considering the vehicles that use network time protocol (NTP)
for time synchronization, the timestamp difference can be as
long as 100ms [217], [218]. For some sensors with a built-
in GNSS antenna, the time accuracy goes to the nanosecond
level. In contrast, other sensors get a timestamp from the host
machine’s system time when accuracy is at the millisecond
level. Since the accuracy of time synchronization is expected
to affect the vehicle control’s safety, handling the sensor data
with different frequency and timestamp accuracy is still an
open question.

C. Failure Detection and Diagnostics

Today’s AVs are equipped with multiple sensors, including
LiDARs, radars, and GPS [219]. Although we can take ad-
vantage of these sensors in terms of providing a robust and
complete description of the surrounding area, some open prob-
lems related to the failure detection are waiting to be solved.
Here, we list and discuss four failure detection challenges:
(1) Definition of sensor failure: there is no standard, agreed-
upon universal definition or standards to define the scenario of
sensor failures [41]. However, we must propose and categorize
the standard of sensor failures to support failure detection by
applying proper methods. (2) Sensor failure: more importantly,
there is no comprehensive and reliable study on sensor failure
detection, which is extremely dangerous since most of the
self-driving applications are relying on the data produced by
these sensors [42]. If some sensors encountered a failure,
collisions and environmental catastrophes might happen. (3)
Sensor data failure: in the real application scenario, even when
the sensors themselves are working correctly, the generated
data may still not reflect the actual scenario and report the
wrong information to people [220]. For instance, the camera
is blocked by unknown objects such as leaves or mud, or the
radar deviates from its original fixed position due to wind
force. In this context, sensor data failure detection is very
challenging, (4) Algorithm failure: In challenging scenarios
with severe occlusion and extreme lighting conditions, such as
night, rainy days, and snowy days, deploying and executing
state-of-the-art algorithms cannot guarantee output the ideal
results [221]. For example, lane markings usually fail to be
detected at night by algorithms that find it difficult to explicitly
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utilize prior information like rigidity and smoothness of lanes
[222]. However, humans can easily infer their positions and fill
in the occluded part of the context. Therefore, how to develop
advanced algorithms to further improve detection accuracy is
still a big challenge.

For a complex system with rich sensors and hardware
devices, failures could happen everywhere. How to tackle
the failure and diagnosing the issue becomes a big issue.
One example is the diagnose of lane controller systems from
Google [223]. The idea is to determine the root cause of mal-
functions based on comparing the actual steering corrections
applied to those predicted by the virtual dynamics module.

D. How to Deal with Normal-Abnormal?
Normal-abnormal represents normal scenarios in daily life

that are, abnormal in the autonomous driving dataset. Typ-
ically, there are three cases of normal-abnormal: adverse
weather, emergency maneuvers, and work zones.

1) Adverse weather: One of the most critical issues in the
development of AVs is the poor performance under adverse
weather conditions, such as rain, snow, fog, and hail, be-
cause the equipped sensors (e.g., LiDAR, radar, camera, and
GPS) might be significantly affected by the extreme weather.
The work of [224] characterized the effect of rainfall on
millimeter-wave (mm-wave) radar and proved that under heavy
rainfall conditions, the detection range of millimeter-wave
radar can be reduced by as much as 45%. Filgueira et al. [225]
pointed out that as the rain intensity increases, the detected
LiDAR intensity will attenuate. At the same time, Bernardin et
al. [226] proposed a methodology to quantitatively estimate the
loss of visual performance due to rainfall. Most importantly,
experimental results show that, compared to training in narrow
cases and scenarios, using various data sets to train object
detection networks may not necessarily improve the perfor-
mance of these networks. [227]. However, there is currently
no research to provide a systematic and unified method to
reduce the impact of weather on various sensors used in AVs.
Therefore, there is an urgent need for novel deep learning
networks that have sufficient capabilities to cope with safe
autonomous driving under severe weather conditions.

2) Emergency maneuvers: In emergency situations, such
as a road collapse, braking failure, a tire blowout, or suddenly
seeing a previously “invisible” pedestrian, the maneuvering
of the AVs may need to reach its operating limit to avoid
collisions. However, these collision avoidance actions usually
conflict with stabilization actions aimed at preventing the
vehicle from losing control, and in the end, they may cause
collision accidents. In this context, some research has been
done to guarantee safe driving for AVs in emergent situa-
tions. For example, Hilgert et al. proposed a path planning
method for emergency maneuvers based on elastic bands
[228]. [229] is proposed to determine the minimum distance
at which obstacles cannot be avoided at a given speed. Guo
et al. [230] discussed dynamic control design for automated
driving, with particular emphasis on coordinated steering and
braking control in emergency avoidance. Nevertheless, how
an autonomous vehicle safely responds to different classes of
emergencies with on-board sensors is still an open problem.

3) Work zone: Work zone recognition is another challenge
for an autonomous driving system to overcome. For most
drivers, the work zone means congestion and delay of the
driving plan. Many projects have been launched to reduce
and eliminate work zone injuries and deaths for construction
workers and motorists. "Workzonesafety.org" summarizes re-
cent years of work zone crashes and supplies training programs
to increase public awareness of the importance of work-zone
safety. Seo [231] proposed a machine learning-based method
to improve the recognition of work zone signs. Developers
from Kratos Defense & Security Solutions [232] present an
autonomous truck which safely passes a work zone. Their
system relied on V2V communications to connect the self-
driving vehicle with a leader vehicle. The self-driving vehicle
accepted navigation data from the leader vehicle to travel along
its route while keeping a pre-defined distance. Until now, the
work zone is still a threat to drivers and workers’ safety but
has not attracted too much attention to autonomous driving
researchers. There are still significant gaps in this research
field, waiting for researchers to explore and tackle critical
problems.

E. Cyberattack Protection

Attacks and defenses are always opposites, and absolute
security does not exist. The emerging CAVs face many security
challenges, such as reply attacks to simulate a vehicle’s elec-
tronic key and spoof attacks to make vehicle detour [195], [44].
With the integration of new sensors, devices, technologies,
infrastructures, and applications, the attack surface of CAVs
is further expanded.

Many attacks focus on one part of the CAVs system and
could be protected by the method of fusing several other
views. For example, a cheated roadblock detected by radars
could be corrected by camera data. Thus, how to build such a
system to protect CAVs, systematically, is the first challenge
for the CAVs system. The protection system is expected to
detect potential attacks, evaluate the system security status,
and recover from attacks.

Besides, some novel attack methods should be attended.
Recently, some attacks have been proposed to trick these
algorithms [233]. For example, a photo instead of a human
to pass the face recognition or a note-sized photo posted on
the forehead makes machine learning algorithms fail to detect
faces [234]. Thus, how to defend the attacks on machine
learning algorithms is a challenge for CAVs systems.

Furthermore, some new technologies could be used to en-
hance the security of the CAVs system. With the development
of quantum computing technology, the existing cryptography
standards cannot ensure protected data, communication, and
systems. Thus, designing post-quantum cryptography [235]
and architecture is a promising topic for CAVs and infras-
tructure in ITS.

Also, we noticed that the hardware-assistant trusted exe-
cution environment [236] could improve the system security,
which provides an isolated and trusted execution environment
(TEE) for applications. However, it has limited physical mem-
ory size, and execution performance will drop sharply as the
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total memory usage increases. Therefore, how to split the
system components and make critical parts in the TEE with
high security is still a challenge in design and implementation.

F. Vehicle Operating System

The vehicle operating system is expected to abstract the
hardware resources for higher layer middleware and au-
tonomous driving applications. In the vehicle operating system
development, one of the biggest challenges is the compatibility
with the vehicle’s embedded system. Take Autoware as an
example: although it is a full-stack solution for the vehicle op-
erating system that provides a rich set of self-driving modules
composed of sensing, computing, and actuation capabilities,
the usage of it is still limited to several commercial vehicles
with a small set of supportable sensors [237]. On a modern
automobile, as many as 70 ECUs are installed for various
subsystems, and they are communicated via CAN bus. For
the sake of system security and commercial interests, most
of the vehicles’ CAN protocol is not open-sourced, which is
the main obstacle for developing a unified vehicle operating
system.

AUTOSAR is a standardization initiative of leading auto-
motive manufacturers and suppliers founded in the autumn
of 2003 [173]. AUTOSAR is promising in narrowing the
gap for developing an open-source vehicle operating system.
However, most automobile companies are relatively conserva-
tive to open-source their vehicle operating systems, restricting
the availability of AUTOSAR to the general research and
education community. There is still a strong demand for a
robust, open-source vehicle operating system for AVs.

G. Energy Consumption

With rich sensors and powerful computing devices imple-
mented on the vehicle, energy consumption becomes a big
issue. Take the NVIDIA Drive PX Pegasus as an example: it
consumes 320 INT8 TOPS of AI computational power with a
500 watts budget. If we added external devices like sensors,
communication antennas, storage, battery, etc., the total energy
consumption would be larger than 1000W [38]. Besides, if
a duplicate system is installed for the autonomous driving
applications’ reliability, the total power dissipation could go
up to almost 2000W.

How to handle such a tremendous amount of power dis-
sipation is not only a problem for the battery management
system; it is also a problem for the heat dissipation system.
What makes this issue more severe is the size limitation and
auto-grid requirements from the vehicle’s perspective. How
to make the computing system of the autonomous driving
vehicle become energy efficient is still an open challenge.
E2M tackles this problem by proposing as an energy-efficient
middleware for the management and scheduling deep learning
applications to save energy for the computing device [49].
However, according to the profiling results, most of the energy
is consumed by vehicles’ motors. Energy-efficient autonomous
driving requires the co-design in battery cells, energy manage-
ment systems, and autonomous vehicle computing systems.

H. Cost

In the United States, the average cost to build a traditional
non-luxury vehicle is roughly $30,000, and for an AV, the
total cost is around $250,000 [238]. AVs need an abundance
of hardware equipment to support their normal functions.
Additional hardware equipments required for AVs, include
but are not limited to, the communication device, computing
equipment, drive-by-wire system, extra power supply, various
sensors, cameras, LiDAR, and radar. In addition, to ensure
AV’s reliability and safety, a backup of these hardware devices
may be necessary [239]. For example, if the main battery fails,
the vehicle should have a backup power source to support
computing systems to move the vehicle.

The cost of building an autonomous vehicle is already
very high, not to mention the maintenance cost of an AV,
e.g., diagnostics and repair. High maintenance costs lead to
declining consumer demand and undesirable profitability for
the vehicle manufacturers. Companies like Ford and GM
have already cut their low-profit production lines to save
costs [240], [241].

Indeed, the cost of computing systems for AVs currently in
the research and development stage is very high. However, we
hope that with the maturity of the technologies and the emer-
gence of some alternative solutions, the price will ultimately
drop to a level that individuals can afford. Take battery packs
of electric vehicles (EVs) as an example: when the first mass-
market EVs were introduced in 2010, their battery packs were
estimated at $1,000 USD per kilowatt-hour (kWh). However,
Tesla’s Model 3 battery pack costs $190 per kilowatt-hour,
and General Motors’ 2017 Chevrolet Bolt battery pack is
estimated to cost $205 per kilowatt-hour. In 6 years, the price
per kilowatt-hour has dropped by more than 70% [242]. Also,
Waymo claims to have successfully reduced the experimental
version of high-end LiDAR to approximately $7,500. Besides,
Tesla, which uses only radar instead of LiDAR, says its
autonomous vehicle equipment is around $8,000 [238]. In
addition to the reduction of hardware costs, we believe that
the optimization of computing software in an AV can also
help reduce the cost to a great extent.

I. How to Benefit from Smart Infrastructure?

Smart infrastructure combines sensors, computing plat-
forms, and communication devices with the physical traffic
infrastructure [243]. It is expected to enable the AVs to
achieve more efficient and reliable perception and decision
making. Typically, AVs could benefit from smart infrastructure
in three aspects: (1) Service provider It is struggling for an
AV to find a parking space in the parking lot. By deploying
sensors like RFID on the smart infrastructure, parking services
can be handled quickly [244]. As the infrastructure becomes
a provider for parking service, it is possible to schedule
service requests to achieve the maximum usage. Meanwhile,
AVs can reduce the time and computation for searching
services. (2) Traffic information sharing: Traffic information
is essential to safe driving. Lack of traffic information causes
traffic congestion or even accidents. Roadside Units (RSUs) is
implemented to provide traffic information to passing vehicles

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3043716

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



13

through V2X communications. Besides, RSUs are also used
to surveil road situations using various on-board sensors like
cameras and LiDARs [245]. The collected data is used for
various tasks, including weather warning, map updating, road
events detection, and making up blind spots of AVs. (3) Task
offloading: Various algorithms are running on vehicles for
safe driving. Handling all workloads in real-time requires a
tremendous amount of computation and power, infeasible on
a battery-powered vehicle [246]. Therefore, offloading heavy
computation workloads to the infrastructure is proposed to
accelerate the computation and save energy. However, to
perform feasible offloading, the offloading framework must
offload computations to the infrastructure while ensuring tim-
ing predictability [247]. Therefore, how to schedule the order
of offloading workloads is still a challenge to benefit from the
smart infrastructure.

J. Dealing with Human Drivers

According to NHTSA data collected from all 50 states and
the District of Columbia, 37,461 lives were lost on U.S. roads
in 2016, and 94% of crashes were associated with “a human
choice or error” [248]. Although autonomous driving is pro-
posed to replace human drivers with computers/machines for
safety purposes, human driving vehicles will never disappear.
How to enable computers/machines in AVs to interact with a
human driver becomes a big challenge [249].

Compared with a human driver, machines are generally
more suited for tasks like vehicle control and multi-sensor data
processing. In contrast, the human driver maintains an advan-
tage in perception and sensing the environment [250]. One
of the fundamental reasons is that the machine cannot think
like a human. Current machine learning-based approaches
cannot handle situations that are not captured in the training
dataset. For example, in driving automation from SAE, one
of the critical differences between level 2 and level 3/4/5 is
whether the vehicle can make decisions like overtaking or lane
changing by itself [251]. In some instances, interacting with
other human drivers becomes a big challenge because human
drivers can make mistakes or violate traffic rules.

Many works focus on getting a more accurate speed and
control predictions of the surrounding vehicles to handle the
machine-human interaction [252], [133]. Deep reinforcement
learning shows promising performance in complex scenarios
requiring interaction with other vehicles [100], [28]. However,
they are either simulation-based or demonstration in limited
scenarios. Another promising direction to tackle machine-
human interaction is through V2X communications. Compared
with predicting other vehicles’ behavior, it is more accurate to
communicate safety information [253].

K. Experimental Platform

The deployment of autonomous driving algorithms or proto-
types requires complex tests and evaluations in a real environ-
ment, which makes the experimental platform becomes one
of the fundamental parts of conducting research and devel-
opment. However, building and maintaining an autonomous
driving vehicle is enormous: the cost of a real autonomous

driving vehicle could attain $250,000; maintaining the vehicle
requires parking, insurance, and auto maintenance. Let alone
the laws and regulations to consider for field testing.

Given these limitations and problems, lots of autonomous
driving simulators and open-source prototypes are proposed
for research and development purposes. dSPACE provides an
end-to-end simulation environment for sensor data processing
and scenario-based testing with RTMaps and VEOS [254].
The automated driving toolbox is Mathwork’s software, which
provides algorithms and tools for designing, simulating, and
testing ADAS and autonomous driving systems [255]. AVL
DriveCube is a hardware-in-the-loop driving simulator de-
signed for real vehicles with simulated environments [256]. In
addition to these commercialized products, there are also open-
source projects like CARLA and Gezabo for urban driving or
robotics simulations [257], [258].

Another promising direction is to develop affordable re-
search and development of autonomous driving platforms.
Several experiment platforms are quite successful for indoor or
low-speed scenarios. HydraOne is an open-source experimen-
tal platform for indoor autonomous driving, and it provides
full-stack programmability for autonomous driving algorithms
developers and system developers [259]. DragonFly is another
example that supports self-driving with a speed of fewer than
40 miles per hour and a price of less than $40,000 [260].

L. Physical Worlds Coupling

Autonomous driving is a typical cyber-physical sys-
tem [261], where the computing systems and the physical
world have to work closely and smoothly. With a human
driver, the feeling of a driver is easily coupled with the vehicle
control actions. For example, if the driver does not like the
abrupt stop, he or she can step on the brake gradually. In
autonomous driving, the control algorithm will determine the
speed of braking and accelerating. We envision that different
human feelings, coupled with complex traffic environment,
bring an unprecedented challenge to the vehicle control in
autonomous driving. Take the turning left as an example: how
fast should the drive-by-wire system turn 90 degrees? An ideal
vehicle control algorithm of turning left should consider many
factors, such as the friction of road surface, vehicle’s current
speed, weather conditions, and the movement range, as well
as human comfortableness, if possible. Cross-layer design and
optimization among perception, control, vehicle dynamics, and
drive-by-wire systems might be a promising direction [262].

VI. CONCLUSION

The recent proliferation of computing and communica-
tion technologies like machine learning, hardware acceler-
ation, DSRC, C-V2X, and 5G has dramatically promoted
autonomous driving vehicles. Complex computing systems
are designed to leverage the sensors and computation devices
to understand the traffic environments correctly in real-time.
However, the early developed autonomous vehicles’ fatalities
arise from time to time, which reveals the big gap between
the current computing system and the expected robust system
for level-4/level-5 full autonomous driving. In this paper, we
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present the state-of-the-art computing systems for autonomous
driving, including seven performance metrics, nine key tech-
nologies, and twelve challenges and opportunities to realize
the vision of autonomous driving. We hope this paper will
bring these challenges to the attention of both the computing
and automotive communities.
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transform and particle filter for robust lane detection and tracking,” in
2010 IEEE Intelligent Vehicles Symposium. IEEE, 2010, pp. 993–997.

[92] S. Zhou, Y. Jiang, J. Xi, J. Gong, G. Xiong, and H. Chen, “A novel
lane detection based on geometrical model and gabor filter,” in 2010
IEEE Intelligent Vehicles Symposium. IEEE, 2010, pp. 59–64.

[93] Z. Kim, “Robust lane detection and tracking in challenging scenarios,”
IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1,
pp. 16–26, 2008.

[94] R. Danescu and S. Nedevschi, “Probabilistic lane tracking in difficult
road scenarios using stereovision,” IEEE Transactions on Intelligent
Transportation Systems, vol. 10, no. 2, pp. 272–282, 2009.

[95] A. B. Hillel, R. Lerner, D. Levi, and G. Raz, “Recent progress in road
and lane detection: a survey,” Machine vision and applications, vol. 25,
no. 3, pp. 727–745, 2014.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3043716

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



16

[96] R. Gopalan, T. Hong, M. Shneier, and R. Chellappa, “A learning
approach towards detection and tracking of lane markings,” IEEE
Transactions on Intelligent Transportation Systems, vol. 13, no. 3, pp.
1088–1098, 2012.

[97] S. Lee, J. Kim, J. Shin Yoon, S. Shin, O. Bailo, N. Kim, T.-H. Lee,
H. Seok Hong, S.-H. Han, and I. So Kweon, “Vpgnet: Vanishing point
guided network for lane and road marking detection and recognition,”
in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 1947–1955.

[98] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial as deep:
Spatial CNN for traffic scene understanding,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[99] Y. Hou, Z. Ma, C. Liu, and C. C. Loy, “Learning lightweight lane
detection CNNs by self attention distillation,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 1013–
1021.

[100] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep neural network
for structural prediction and lane detection in traffic scene,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 3,
pp. 690–703, 2016.

[101] J. Philion, “FastDraw: addressing the long tail of lane detection by
adapting a sequential prediction network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
11 582–11 591.

[102] Y.-C. Hsu, Z. Xu, Z. Kira, and J. Huang, “Learning to cluster
for proposal-free instance segmentation,” in 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.

[103] Y. Hou, “Agnostic lane detection,” arXiv preprint arXiv:1905.03704,
2019.

[104] N. Garnett, R. Cohen, T. Pe’er, R. Lahav, and D. Levi, “3D-LaneNet:
end-to-end 3D multiple lane detection,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 2921–2930.

[105] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localisation techniques
and their potentials for autonomous vehicle applications,” IEEE Inter-
net of Things Journal, vol. PP, pp. 1–1, 03 2018.

[106] K. Jiang, D. Yang, C. Liu, T. Zhang, and Z. Xiao,
“A flexible multi-layer map model designed for lane-
level route planning in autonomous vehicles,” Engineering,
vol. 5, no. 2, pp. 305 – 318, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2095809918300328

[107] C. Urmson, J. Anhalt, M. Clark, T. Galatali, J. Gonzalez, J. Gowdy,
A. Gutierrez, S. Harbaugh, M. Johnson-Roberson, P. Koon, K. Peterson,
and B. Smith, “High speed navigation of unrehearsed terrain: Red team
technology for grand challenge 2004,” Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-04-37, 01 2004.

[108] A. Hata and D. Wolf, “Road marking detection using LiDAR reflective
intensity data and its application to vehicle localization,” 10 2014, pp.
584–589.

[109] J. Suhr, J. Jang, D. Min, and H. Jung, “Sensor fusion-based low-cost
vehicle localization system for complex urban environments,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, pp. 1–9,
08 2016.

[110] I. Zolanvari, S. Ruano, A. Rana, A. Cummins, A. Smolic, R. Da Silva,
and M. Rahbar, “DublinCity: annotated LiDAR point cloud and its
applications,” 09 2019.

[111] B. Su, J. Ma, Y. Peng, and M. Sheng, “Algorithm for RGBD point cloud
denoising and simplification based on k-means clustering,” vol. 28, pp.
2329–2334 and 2341, 10 2016.

[112] P. Besl and H. McKay, “A method for registration of 3-D shapes.”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 14, pp. 239–256, 03 1992.

[113] P. Biber and W. Straßer, “The normal distributions transform: A new
approach to laser scan matching,” vol. 3, 11 2003, pp. 2743 – 2748
vol.3.

[114] M. Magnusson, A. Nuchter, C. Lorken, A. Lilienthal, and J. Hertzberg,
“Evaluation of 3D registration reliability and speed - a comparison of
ICP and NDT,” 05 2009, pp. 3907 – 3912.

[115] R. Wolcott and R. Eustice, “Visual localization within LiDAR maps for
automated urban driving,” IEEE International Conference on Intelligent
Robots and Systems, pp. 176–183, 10 2014.

[116] Q.-H. Pham, M. A. Uy, B.-S. Hua, D. T. Nguyen, G. Roig, and S.-K.
Yeung, “LCD: learned cross-domain descriptors for 2D-3D matching,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 11 856–11 864, 04 2020.

[117] C. Mcmanus, W. Churchill, A. Napier, B. Davis, and P. Newman, “Dis-
traciton suppression for vision-based pose estimation at city scales,” 05
2013.

[118] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localiza-
tion and mapping: A survey of current trends in autonomous driving,”
IEEE Transactions on Intelligent Vehicles, vol. PP, pp. 1–1, 09 2017.

[119] J. Zhang and S. Singh, “LOAM: lidar odometry and mapping in real-
time,” 07 2014.

[120] J.-E. Deschaud, “IMLS-SLAM: scan-to-model matching based on 3D
data,” 05 2018, pp. 2480–2485.

[121] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2D LiDAR SLAM,” 05 2016, pp. 1271–1278.

[122] R. Mur-Artal and J. Tardos, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. PP, 10 2016.

[123] S. Sumikura, M. Shibuya, and K. Sakurada, “OpenVSLAM: a versatile
visual SLAM framework,” 10 2019, pp. 2292–2295.

[124] D. Schlegel, M. Colosi, and G. Grisetti, “ProSLAM: graph SLAM from
a programmer’s perspective,” 05 2018, pp. 1–9.

[125] R. Newcombe, S. Lovegrove, and A. Davison, “DTAM: dense tracking
and mapping in real-time,” 11 2011, pp. 2320–2327.

[126] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-D
mapping with an RGB-D camera,” Robotics, IEEE Transactions on,
vol. 30, pp. 177–187, 02 2014.

[127] M. Labbé and F. Michaud, “RTAB-Map as an open-source LiDAR and
visual simultaneous localization and mapping library for large-scale
and long-term online operation: LabbÉ and michaud,” Journal of Field
Robotics, vol. 36, 10 2018.

[128] J. Engel, T. Schoeps, and D. Cremers, “LSD-SLAM: large-scale direct
monocular SLAM,” vol. 8690, 09 2014, pp. 1–16.

[129] H. Rebecq, T. Horstschaefer, G. Gallego, and D. Scaramuzza, “EVO:
a geometric approach to event-based 6-DOF parallel tracking and
mapping in real-time,” IEEE Robotics and Automation Letters, vol. PP,
12 2016.

[130] S. Yang, Y. Song, M. Kaess, and S. Scherer, “Pop-up SLAM: semantic
monocular plane SLAM for low-texture environments,” 10 2016, pp.
1222–1229.

[131] K.-N. Lianos, J. Schönberger, M. Pollefeys, and T. Sattler, “VSO: visual
semantic odometry,” 09 2018.

[132] A. Gawel, C. Don, R. Siegwart, J. Nieto, and C. Cadena, “X-View:
graph-based semantic multi-view localization,” IEEE Robotics and
Automation Letters, vol. 3, pp. 1687 – 1694, 07 2018.

[133] X. Geng, H. Liang, B. Yu, P. Zhao, L. He, and R. Huang, “A scenario-
adaptive driving behavior prediction approach to urban autonomous
driving,” Applied Sciences, vol. 7, no. 4, p. 426, 2017.

[134] S. Yamazaki, C. Miyajima, E. Yurtsever, K. Takeda, M. Mori, K. Hit-
omi, and M. Egawa, “Integrating driving behavior and traffic context
through signal symbolization,” in 2016 IEEE Intelligent Vehicles Sym-
posium (IV). IEEE, 2016, pp. 642–647.

[135] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. Werneck, “Route planning in trans-
portation networks,” 04 2015.

[136] D. Gonzalez Bautista, J. Pérez, V. Milanes, and F. Nashashibi, “A
review of motion planning techniques for automated vehicles,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–11, 11 2015.

[137] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” Intelligence/sigart Bulletin -
SIGART, vol. 37, pp. 28–29, 12 1972.

[138] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston,
S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil,
D. Orenstein, J. Paefgen, I. Penny, and S. Thrun, “Junior: The stanford
entry in the urban challenge,” Journal of Field Robotics, vol. 25, pp.
569 – 597, 09 2008.

[139] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotic Research - IJRR,
vol. 30, pp. 846–894, 06 2011.

[140] S. LaValle and J. Kuffner, “Randomized kinodynamic planning.”
vol. 20, 01 1999, pp. 473–479.

[141] J.-H. Ryu, D. Ogay, S. Bulavintsev, H. Kim, and J.-S. Park, Devel-
opment and Experiences of an Autonomous Vehicle for High-Speed
Navigation and Obstacle Avoidance, 01 2013, vol. 466, pp. 105–116.

[142] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*,” 06 2011, pp. 1478–1483.

[143] G. Hoffmann, C. Tomlin, M. Montemerlo, and S. Thrun, “Autonomous
automobile trajectory tracking for off-road driving: Controller design,
experimental validation and racing,” 08 2007, pp. 2296 – 2301.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3043716

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



17

[144] S. Allou, Z. Youcef, and B. Aissa, “Fuzzy logic controller for au-
tonomous vehicle path tracking,” 12 2017, pp. 328–333.

[145] I. Emmanuel, “Fuzzy logic-based control for autonomous vehicle: A
survey,” International Journal of Education and Management Engi-
neering, vol. 7, pp. 41–49, 03 2017.

[146] A. Baskaran, A. Talebpour, and S. Bhattacharyya, End-to-End Drive
By-Wire PID Lateral Control of an Autonomous Vehicle, 01 2020, pp.
365–376.

[147] M. Prexl, N. Zunhammer, and U. Walter, “Motion prediction for
teleoperating autonomous vehicles using a PID control model,” 11
2019, pp. 133–138.

[148] W. Choi, H.-S. Nam, B. Kim, and C. Ahn, Model Predictive Control
for Evasive Steering of Autonomous Vehicle, 02 2020, pp. 1252–1258.

[149] J. Yu, x. guo, X. Pei, z. chen, and M. Zhu, “Robust model predictive
control for path tracking of autonomous vehicle,” 02 2019.

[150] H. Jafarzadeh and C. Fleming, “Learning model predictive control for
connected autonomous vehicles,” 08 2019.

[151] S. Dixit, U. Montanaro, S. Fallah, M. Dianati, D. Oxtoby, T. Mizutani,
and A. Mouzakitis, “Trajectory planning for autonomous high-speed
overtaking using MPC with terminal set constraints,” 11 2018.

[152] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” 06
2015, pp. 1094–1099.

[153] (2019) Xilinx Announces the World’s Highest Performance Adaptive
Devices for Advanced ADAS and AD Applications. [Online].
Available: https://www.xilinx.com/news/press/2019/xilinx-announces-
the-world-s-highest-performance-adaptive-devices-for-advanced-adas-
and-ad-applications.html

[154] (2020) Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit.
[Online]. Available: https://www.xilinx.com/products/boards-and-
kits/zcu104.html

[155] “Texas Instruments TDA,” http://www.ti.com/processors/automotive-
processors/tdax-adas-socs/overview.html, accessed: 2018-12-28.

[156] (2020) The Evolution of EyeQ. [Online]. Available:
https://www.mobileye.com/our-technology/evolution-eyeq-chip/

[157] (2019) An in-depth look at google’s first tensor processing unit (TPU).
[Online]. Available: https://cloud.google.com/blog/products/gcp/an-in-
depth-look-at-googles-first-tensor-processing-unit-tpu

[158] “Flood of data will get generated in autonomous cars,”
https://autotechreview.com/features/flood-of-data-will-get-generated-
in-autonomous-cars, accessed: 2020-2-18.

[159] “Data storage is the key to autonomous vehicles’ future,”
https://iotnowtransport.com/2019/02/12/71015-data-storage-key-
autonomous-vehicles-future/, accessed: 2019-12-30.

[160] “The basics of LiDAR - light detection and ranging - remote sensing,”
https://www.neonscience.org/lidar-basics, accessed: 2020-2-18.

[161] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong,
“OpenVDAP: an open vehicular data analytics platform for CAVs,” in
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018, pp. 1310–1320.

[162] L. L. Ruijun Wang and W. Shi, “HydraSpace: computational data
storage for autonomous vehicles,” in IEEE Collaborative and Internet
Computing Vision Track (CIC), December, 2020.

[163] L. Liu, X. Zhang, M. Qiao, and W. Shi, “SafeShareRide: edge-
based attack detection in ridesharing services,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC). IEEE, 2018, pp. 17–29.

[164] (2019) Self-driving car. [Online]. Available:
https://en.wikipedia.org/wiki/Self-driving_car

[165] D. Hildebrand, “An architectural overview of QNX.” in USENIX
Workshop on Microkernels and Other Kernel Architectures, 1992, pp.
113–126.

[166] “VxWorks,” https://www.windriver.com/products/vxworks/, accessed:
2018-12-28.

[167] V. Yodaiken et al., “The RTLinux manifesto,” in Proc. of the 5th Linux
Expo, 1999.

[168] H. Sato and T. Yakoh, “A real-time communication mechanism for
RTLinux,” in 2000 26th Annual Conference of the IEEE Industrial
Electronics Society. IECON 2000. 2000 IEEE International Conference
on Industrial Electronics, Control and Instrumentation. 21st Century
Technologies, vol. 4. IEEE, 2000, pp. 2437–2442.

[169] (2020) NVIDIA DRIVE - Software. [Online]. Available:
https://developer.nvidia.com/drive/drive-software

[170] (2020) ROS 2 Documentation. [Online]. Available:
https://index.ros.org/doc/ros2/

[171] (2020) Welcome to the Autoware Foundation. [Online]. Available:
https://www.autoware.org/

[172] Baidu, “Apollo Cyber,” [Online]. [Online]. Available:
https://github.com/ApolloAuto/apollo/tree/master/cyber

[173] AUTOSAR, “AUTOSAR website,” [Online], https://www.autosar.org/.
[174] L. Liu, Y. Yao, R. Wang, B. Wu, and W. Shi, “Equinox: A road-side

edge computing experimental platform for CAVs,” in 2020 Interna-
tional Conference on Connected and Autonomous Driving (MetroCAD).
IEEE, 2020, pp. 41–42.

[175] S. S. V. Standard, “Dedicated Short Range Communications (DSRC)
message set dictionary,” SAE International, November, 2009.

[176] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions
using system calls: alternative data models,” in Proceedings of the 1999
IEEE Symposium on Security and Privacy (Cat. No.99CB36344), 1999,
pp. 133–145.

[177] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle:
Adversarial optical channel exploits against LiDARs for automotive
applications,” in Cryptographic Hardware and Embedded Systems –
CHES 2017, W. Fischer and N. Homma, Eds. Cham: Springer
International Publishing, 2017, pp. 445–467.

[178] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on
automated vehicles sensors: Experiments on camera and LiDAR,”
Black Hat Europe, vol. 11, p. 2015, 2015.

[179] A. Konovaltsev, M. Cuntz, C. Hättich, and M. Meurer, “Autonomous
spoofing detection and mitigation in a GNSS receiver with an adaptive
antenna array,” in ION GNSS+ 2013. The Institute of Navigation,
September 2013. [Online]. Available: https://elib.dlr.de/86230/

[180] B. W. O’Hanlon, M. L. Psiaki, J. A. Bhatti, D. P.
Shepard, and T. E. Humphreys, “Real-time GPS spoofing
detection via correlation of encrypted signals,” NAVIGATION,
vol. 60, no. 4, pp. 267–278, 2013. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/navi.44

[181] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in 2010 IEEE
Symposium on Security and Privacy, 2010, pp. 447–462.

[182] J. M. Ernst and A. J. Michaels, “Lin bus security analysis,” in IECON
2018 - 44th Annual Conference of the IEEE Industrial Electronics
Society, 2018, pp. 2085–2090.

[183] D. K. Nilsson, U. E. Larson, F. Picasso, and E. Jonsson, “A first
simulation of attacks in the automotive network communications pro-
tocol flexray,” in Proceedings of the International Workshop on Com-
putational Intelligence in Security for Information Systems CISIS’08,
E. Corchado, R. Zunino, P. Gastaldo, and Á. Herrero, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 84–91.

[184] D. R. Stinson and M. Paterson, Cryptography: theory and practice.
CRC press, 2018.

[185] J. H. Kim, S. Seo, N. Hai, B. M. Cheon, Y. S. Lee, and J. W. Jeon,
“Gateway framework for in-vehicle networks based on CAN, FlexRay,
and ethernet,” IEEE Transactions on Vehicular Technology, vol. 64,
no. 10, pp. 4472–4486, 2015.

[186] A. Nanda, D. Puthal, J. J. P. C. Rodrigues, and S. A. Kozlov, “Internet
of autonomous vehicles communications security: Overview, issues,
and directions,” IEEE Wireless Communications, vol. 26, no. 4, pp.
60–65, 2019.

[187] F. Qu, Z. Wu, F. Wang, and W. Cho, “A security and privacy review of
VANETs,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 6, pp. 2985–2996, 2015.

[188] I. Ali, A. Hassan, and F. Li, “Authentication and privacy schemes
for vehicular ad hoc networks (VANETs): A survey,” Vehicular
Communications, vol. 16, pp. 45 – 61, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S221420961830319X

[189] H. Zhong, L. Pan, Q. Zhang, and J. Cui, “A new message authentication
scheme for multiple devices in intelligent connected vehicles based on
edge computing,” IEEE Access, vol. 7, pp. 108 211–108 222, 2019.

[190] S. Garg, A. Singh, K. Kaur, G. S. Aujla, S. Batra, N. Kumar, and
M. S. Obaidat, “Edge computing-based security framework for big
data analytics in VANETs,” IEEE Network, vol. 33, no. 2, pp. 72–81,
2019.

[191] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query processing,”
in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 85–100. [Online]. Available:
https://doi.org/10.1145/2043556.2043566

[192] M. Blaze, “A cryptographic file system for UNIX,” in Proceedings
of the 1st ACM Conference on Computer and Communications
Security, ser. CCS ’93. New York, NY, USA: Association

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3043716

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



18

for Computing Machinery, 1993, p. 9–16. [Online]. Available:
https://doi.org/10.1145/168588.168590

[193] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE Communications Magazine, vol. 32, no. 9, pp. 40–48, Sep.
1994. [Online]. Available: https://doi.org/10.1109/35.312842

[194] Q. Zhang, H. Zhong, J. Cui, L. Ren, and W. Shi, “AC4AV: a flexible
and dynamic access control framework for connected and autonomous
vehicles,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[195] S. Kamkar, “Drive it like you hacked it: New attacks and tools to
wirelessly steal cars,” in Presentation at DEFCON, 2015.

[196] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu,
“DolphinAttack: inaudible voice commands,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 103–117. [Online]. Available:
https://doi.org/10.1145/3133956.3134052

[197] Z. Xiong, W. Li, Q. Han, and Z. Cai, “Privacy-preserving auto-driving:
A gan-based approach to protect vehicular camera data,” in 2019 IEEE
International Conference on Data Mining (ICDM), 2019, pp. 668–677.

[198] H. Li, D. Ma, B. Medjahed, Y. S. Kim, and P. Mitra, “Analyzing and
preventing data privacy leakage in connected vehicle services,” SAE
Int. J. Adv. & Curr. Prac. in Mobility, vol. 1, pp. 1035–1045, 04
2019. [Online]. Available: https://doi.org/10.4271/2019-01-0478

[199] F. Martinelli, F. Mercaldo, A. Orlando, V. Nardone, A. Santone,
and A. K. Sangaiah, “Human behavior characterization for driving
style recognition in vehicle system,” Computers & Electrical
Engineering, vol. 83, p. 102504, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0045790617329531

[200] P. L. X. W. Xingang Pan, Jianping Shi and X. Tang, “Spatial as deep:
Spatial cnn for traffic scene understanding,” in AAAI Conference on
Artificial Intelligence (AAAI), February 2018.

[201] M. Ghafoorian, C. Nugteren, N. Baka, O. Booij, and M. Hofmann, “El-
gan: Embedding loss driven generative adversarial networks for lane
detection,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2018, pp. 0–0.

[202] Q. V. E. Hommes, “Review and assessment of the iso 26262 draft road
vehicle-functional safety,” SAE Technical Paper, Tech. Rep., 2012.

[203] Q. Rao and J. Frtunikj, “Deep learning for self-driving cars: Chances
and challenges,” in 2018 IEEE/ACM 1st International Workshop on
Software Engineering for AI in Autonomous Systems (SEFAIAS), 2018,
pp. 35–38.

[204] S. Lu, Y. Yao, and W. Shi, “Collaborative learning on the edges: A
case study on connected vehicles,” in 2nd {USENIX} Workshop on
Hot Topics in Edge Computing (HotEdge 19), 2019.

[205] M. Courbariaux, Y. Bengio, and J.-P. B. David, “Training deep neural
networks with binary weights during propagations. arxiv preprint,”
arXiv preprint arXiv:1511.00363, 2015.

[206] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in neural
information processing systems, 2015, pp. 1135–1143.

[207] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Advances in neural information processing systems,
2014, pp. 1269–1277.

[208] M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing
systems, 2013, pp. 2148–2156.

[209] B. B. Sau and V. N. Balasubramanian, “Deep model compres-
sion: Distilling knowledge from noisy teachers,” arXiv preprint
arXiv:1610.09650, 2016.

[210] P. Luo, Z. Zhu, Z. Liu, X. Wang, X. Tang et al., “Face model
compression by distilling knowledge from neurons.” in AAAI, 2016,
pp. 3560–3566.

[211] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[212] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” arXiv preprint, pp. 1610–02 357, 2017.

[213] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[214] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving video database with scalable annotation
tooling,” arXiv preprint arXiv:1805.04687, vol. 2, no. 5, p. 6, 2018.

[215] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[216] R. W. Butler and G. B. Finelli, “The infeasibility of experimental
quantification of life-critical software reliability,” in Proceedings of the
conference on Software for citical systems, 1991, pp. 66–76.

[217] D. Mills, RFC1305: Network Time Protocol (Version 3) Specification,
Implementation. RFC Editor, 1992.

[218] (2020) GPS Accuracy. [Online]. Available:
https://www.gps.gov/systems/gps/performance/accuracy/

[219] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles:
Contactless attacks against sensors of self-driving vehicle,” DEF CON,
vol. 24, no. 8, p. 109, 2016.

[220] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of
deep-neural-network-driven autonomous cars,” in Proceedings of the
40th international conference on software engineering, 2018, pp. 303–
314.

[221] L. Tang, Y. Shi, Q. He, A. W. Sadek, and C. Qiao, “Performance
test of autonomous vehicle LiDAR sensors under different weather
conditions,” Transportation research record, vol. 2674, no. 1, pp. 319–
329, 2020.

[222] Y. Tamai, T. Hasegawa, and S. Ozawa, “The ego-lane detection under
rainy condition,” in World Congress on Intelligent Transport Systems
(3rd: 1996: Orlando Fla.). Intelligent transportation: realizing the
future: abstracts of the Third World Congress on Intelligent Transport
Systems, 1996.

[223] J.-w. Lee and B. B. Litkouhi, “System diagnosis in autonomous
driving,” Oct. 27 2015, US Patent 9,168,924.

[224] S. Zang, M. Ding, D. Smith, P. Tyler, T. Rakotoarivelo, and M. A.
Kaafar, “The impact of adverse weather conditions on autonomous
vehicles: How rain, snow, fog, and hail affect the performance of a
self-driving car,” IEEE Vehicular Technology Magazine, vol. 14, no. 2,
pp. 103–111, 2019.

[225] A. Filgueira, H. González-Jorge, S. Lagüela, L. Díaz-Vilariño, and
P. Arias, “Quantifying the influence of rain in LiDAR performance,”
Measurement, vol. 95, pp. 143–148, 2017.

[226] F. Bernardin, R. Bremond, V. Ledoux, M. Pinto, S. Lemonnier,
V. Cavallo, and M. Colomb, “Measuring the effect of the rainfall on
the windshield in terms of visual performance,” Accident Analysis &
Prevention, vol. 63, pp. 83–88, 2014.

[227] M. Hnewa and H. Radha, “Object detection under rainy conditions for
autonomous vehicles,” arXiv preprint arXiv:2006.16471, 2020.

[228] J. Hilgert, K. Hirsch, T. Bertram, and M. Hiller, “Emergency path plan-
ning for autonomous vehicles using elastic band theory,” in Proceedings
2003 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM 2003), vol. 2, 2003, pp. 1390–1395 vol.2.

[229] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes, “Collision
avoidance and stabilization for autonomous vehicles in emergency
scenarios,” IEEE Transactions on Control Systems Technology, vol. 25,
no. 4, pp. 1204–1216, 2017.

[230] J. Guo, P. Hu, and R. Wang, “Nonlinear coordinated steering and
braking control of vision-based autonomous vehicles in emergency
obstacle avoidance,” IEEE Transactions on Intelligent Transportation
Systems, vol. 17, no. 11, pp. 3230–3240, 2016.

[231] Y.-W. Seo, J. Lee, W. Zhang, and D. Wettergreen, “Recognition of high-
way workzones for reliable autonomous driving,” IEEE Transactions
on Intelligent Transportation Systems, vol. 16, pp. 1–11, 08 2014.

[232] A. Barwacz. (2019) Self-driving work zone vehicles enhance
safety. [Online]. Available: https://www.gpsworld.com/self-driving-
work-zone-vehicles-enhance-safety/

[233] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A.
Chen, K. Fu, and Z. M. Mao, “Adversarial sensor attack on LiDAR-
based perception in autonomous driving,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 2267–2281. [Online]. Available:
https://doi.org/10.1145/3319535.3339815

[234] S. Komkov and A. Petiushko, “AdvHat: Real-world adversarial attack
on ArcFace face ID system,” 2019.

[235] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature,
vol. 549, pp. 188–194, 2017.

[236] Z. Ning, F. Zhang, W. Shi, and W. Shi, “Position paper: Challenges
towards securing hardware-assisted execution environments,” in
Proceedings of the Hardware and Architectural Support for
Security and Privacy, ser. HASP ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3092627.3092633

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3043716

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



19

[237] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: Enabling autonomous vehicles with embedded systems,”
in 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS). IEEE, 2018, pp. 287–296.

[238] S. LeVine, “What it really costs to turn a car into a self-driving
vehicle,” https://qz.com/924212/what-it-really-costs-to-turn-a-car-into-
a-self-driving-vehicle/, March 2017.

[239] D. Sedgwick, “When driverless cars call for backup,”
https://www.autonews.com/article/20170218/OEM10/302209969/when-
driverless-cars-call-for-backup, February 2017.

[240] G. Guilford, “Ford can only afford to give up on cars because of
american protectionism,” https://qz.com/1262815/fords-move-to-stop-
making-cars-was-enabled-by-american-protectionism/, April 2018.

[241] A. Luft, “The Chevrolet Sonic’s days are numbered,”
https://gmauthority.com/blog/2020/07/the-chevrolet-sonics-days-
are-numbered/, July 2020.

[242] U. of Concerned Scientists, “Electric vehicle batteries: Materials, cost,
lifespan,” https://www.ucsusa.org/resources/ev-batteries, March 2018.

[243] R. M. J. M. A. J. Keith, Volker, “Smart infrastructure: Getting more
from strategic assets,” 2016.

[244] Z. Pala and N. Inanc, “Smart parking applications using RFID tech-
nology,” 10 2007, pp. 1 – 3.

[245] A. Al-Dweik, R. Muresan, M. Mayhew, and M. Lieberman, “IoT-
based multifunctional scalable real-time enhanced road side unit for
intelligent transportation systems,” 04 2017, pp. 1–6.

[246] L. Lin, X. Liao, H. Jin, and P. Li, “Computation offloading toward
edge computing,” Proceedings of the IEEE, vol. 107, pp. 1584–1607,
07 2019.

[247] Z. Dong, W. Shi, G. Tong, and K. Yang, “Collaborative autonomous
driving: Vision and challenges,” 02 2020.

[248] U. Releases, “Fatal traffic crash data,” Article (CrossRef Link), 2016.
[249] (2020) SafeDI scenario-based AV policy framework –

an overview for policy-makers. [Online]. Available:
https://www.weforum.org/whitepapers/safe-drive-initiative-safedi-
scenario-based-av-policy-framework-an-overview-for-policy-makers

[250] B. Schoettle, “Sensor fusion: A comparison of sensing capabilities of
human drivers and highly automated vehicles,” University of Michigan,
2017.

[251] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing
for autonomous driving: Opportunities and challenges,” Proceedings of
the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.

[252] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, “Decision
making for autonomous driving considering interaction and uncertain
prediction of surrounding vehicles,” in 2017 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2017, pp. 1671–1678.

[253] R. Deng, B. Di, and L. Song, “Cooperative collision avoidance for
overtaking maneuvers in cellular V2X-based autonomous driving,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4434–
4446, 2019.

[254] (2020) Empowering Safe Autonomous Driving. [Online]. Available:
https://www.dspace.com/en/inc/home/applicationfields/our_solutions_for
/driver_assistance_systems.cfm

[255] (2020) Automated Driving Toolbox: Design, simulate, and test
ADAS and autonomous driving systems. [Online]. Available:
https://www.mathworks.com/products/automated-driving.html

[256] (2020) AVL DRIVINGCUBE: A new way to speed
up the validation and approval process of ADAS/AD
systems. [Online]. Available: https://www.avl.com/pos-test/-
/asset_publisher/gkkFgTqjTyJh/content/avl-drivingcube

[257] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[258] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: an open urban driving simulator,” arXiv preprint
arXiv:1711.03938, 2017.

[259] Y. Wang, L. Liu, X. Zhang, and W. Shi, “HydraOne: an indoor
experimental research and education platform for CAVs,” in 2nd
{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 19),
2019.

[260] (2018) PerceptIn’s self-driving vehicles go on
sale in November for $40,000. [Online].
Available: https://venturebeat.com/2018/09/12/perceptins-self-driving-
vehicles-go-on-sale-in-november-for-40000/

[261] D. Goswami, R. Schneider, A. Masrur, M. Lukasiewycz,
S. Chakraborty, H. Voit, and A. Annaswamy, “Challenges in
automotive cyber-physical systems design,” in 2012 International
Conference on Embedded Computer Systems (SAMOS). IEEE, 2012,
pp. 346–354.

[262] C. Lv, X. Hu, A. Sangiovanni-Vincentelli, Y. Li, C. M. Martinez, and
D. Cao, “Driving-style-based codesign optimization of an automated
electric vehicle: A cyber-physical system approach,” IEEE Transactions
on Industrial Electronics, vol. 66, no. 4, pp. 2965–2975, 2018.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2020.3043716

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


