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Abstract—Fuel cost contributes significantly to the high oper-
ation cost of heavy-duty trucks. Developing fuel rate prediction
models is the cornerstone of fuel consumption optimization
approaches for heavy-duty trucks. However, limited by accurate
features directly related to the truck’s fuel consumption, state-of-
the-art models show poor performance and are rarely deployed
in practice. In this paper, we use the truck’s engine management
system (EMS) and Instant Fuel Meter (IFM) to collect a three-
month dataset during the period of December 2019 to June 2020.
Seven prediction models, including linear regression, polynomial
regression, MLP, CNN, LSTM, CNN-LSTM, and AutoML, are
investigated and evaluated to predict real-time fuel rate. The
evaluation results show that the EMS and IFM dataset help
to improve the coefficient of determination of traditional lin-
ear/polynomial models from 0.87 to 0.96, while learning-based
approach AutoML improves the coefficient of determination to
attain 0.99. Besides, we explore the actual deployment of fuel
rate prediction with transfer learning and path planning for
autonomous driving.

I. INTRODUCTION

Autonomous trucking techniques have attracted massive
attention from academia and industry due to their efficiency in
fuel consumption. Fuel consumption accounts for a significant
percentage of trucks’ total operating costs [1], [2]. Based
on the total cost of ownership (TCO) report for the heavy-
duty trucks from logistics companies in China 1, the fuel cost
accounted for 30 percent while the labor cost accounted for 20
percent. Compared with trucks driven by a human, the Level-3
autonomous driving truck saves a 0.5 to 1 driver budget with
60K to 150K RMB per year, while the Level-3 truck’s price
is 150K to 200K RMB higher. Optimizing fuel consumption
for heavy-duty trucks has become a fundamental challenge for
improving the trucking economy.

A critical step for optimizing fuel consumption is building
accurate fuel prediction models for heavy-duty trucks [3], [4].
The VECTO model is used in Europe for calculating stan-
dardized energy consumption and CO2 emissions from Heavy-
Duty Trucks (HDTs) for certification purposes [5]. The results
of the fuel rate is average value under different torque, throttle,
and engine speed, which has error tolerance of 7.5% [6]. How-
ever, in order to save fuel with the truck’s planning and control,
we need the fuel rate predicted in fine-grain (millisecond
level) under any torque, engine speed, and throttle with high
accuracy. Generally, there are two major benefits of having a

1https://en.inceptio.ai/

fine-grained and accurate fuel rate prediction model. Firstly,
it’s necessary for intelligent fleet management of human driven
trucks [7]. The fuel rate prediction model could provide a
baseline for fuel consumption of each trip, which guides the
truck drivers to save fuel while driving. Secondly, the fuel
rate prediction model provides more accurate info for the
planning module of an autonomous driving truck. Currently,
the planning module relies on the engine fuel map for fuel
optimization. However, the engine fuel map is coarse-grained
and cannot provide accurate fuel rate. An accurate and fine-
grained fuel rate prediction model helps to provide driving
behavior guidelines, path planning, and vehicle controlling.

Lots of efforts have been made for fuel rate modeling
such as VT-Micro, comprehensive modal emission model
(CMEM), Virginia Tech comprehensive power-based fuel con-
sumption model (VT-CPFM), etc. Generally, these models can
be divided into two main categories: vehicle dynamic and
combustion-based, and learning-based. Among the vehicle dy-
namics and combustion-based approaches, CMEM models the
fuel rate as a polynomial function of engine speed and vehicle
power while VT-Micro models the fuel rate as a polynomial
function of vehicle speed and accelerations [8], [9], [10]. VT-
CPFM is proposed to model the fuel rate prediction as a
second-order polynomial function of vehicle power to avoid
the bang-bang control problem and make the prediction more
practical [3], [4]. TuSimple has adopted VT-CPFM into the
planning module of autonomous driving trucks, which shows
up to 10 percent fuel saving [11]. Similarly, a fourth-order
polynomial regression of engine torque is used for fuel rate
prediction [12]. Combustion-based engine model studies the
relationship between the power and the gear position, the
average speed, the efficiency of the gearbox, the air-drag
coefficients, and the engine parameters. Boris et al. present
how to optimize the operating conditions of a model internal
combustion engine to obtain maximal efficiency [13]. Imed
et al. leveraged the mean attractive force along with the
Willan’s internal combustion engine model to estimate the
fuel efficiency given in liters per 100 kilometers [14]. How-
ever, due to incomplete combustion of the gas, the vehicle’s
equivalent fuel consumption and carbon emissions are usually
50 to 127% higher than the average value [15], [16]. For
learning-based approaches, Elnaz et al. proposed to predict
fuel consumption using artificial neural networks (ANN) based
on cyclic activities like loading time, loaded haulage time,
and so on [17]. Rahimi et al. applied ANN to the prediction
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of fuel consumption of tractors [18]. Wysocki et al. applied
polynomial regression and ANN models to predict the fuel
consumption of heavy duty trucks [19]. Perrotta et al. applied
vector machine (SVM), random forest (RF), and artificial
neural network (ANN) to the fuel rate prediction by leveraging
the sensors on trucks [20]. However, traditional polynomial
regression and multilayer perceptron -based approaches cannot
persist the knowledge learned from previous results like long-
short term memory (LSTM). Fang et al. proposed to leverage
neural networks to create a fine-grained fuel consumption pre-
diction by leveraging Convolutional Neural Networks (CNNs)
and Generative Adversarial Networks (GANs) [21], [22], [23].
Generally, coefficient of determination (R2) is used to show
the performance of regression models like fuel rate prediction.
For state-of-the-art approaches, the highest R2 of fuel rate
prediction is still less than 0.9.

Besides, none of the existing approaches provide a fine-
grained prediction of the fuel rate and could work in real-time
operation. For the VT dataset used in VT-CPFM, the features
include the number of gas emissions like CO, HC, NOx, etc.,
which only have indirect relationships with fuel consump-
tion [3], [4]. For another dataset collected for 468 vehicles in
Southern Africa, only features like payload, elevation gain/lost,
maximum speed, etc., are recorded at road level [24]. These
external factors affects the fuel rate consumption by changing
of intrinsic factors like torque, throttle, and engine speed.
External factors like slope, elevation, road conditions, etc.,
are hard to monitor in real-time. In general, the truck’s fuel
consumption is related to the real-time engine and road status
like speed, RPM, torque, etc. Leveraging engine data from
the CAN bus helps us to predict fuel rate at millisecond-level
with high accuracy. However, existing fuel rate datasets are
either unavailable or does not provide these features with high
accuracy and frequency for fine-grained fuel rate prediction.
Besides, given the unavoidable errors of the fuel rate label
from EMS devices, it’s challenging to have accurate fuel rate
prediction. Therefore, we proposed to monitor these intrinsic
factors with both EMS and high accuracy IFM devices to
collect a fine-grained fuel rate dataset.

To overcome the challenge of lacking a training dataset
for fuel rate prediction, we proposed using the Engine Man-
agement System (EMS) and an Instant Fuel Meter (IFM) to
collect the training dataset. We choose an off-the-shelf CAN
bus parser to read fuel consumption from truck’s EMS with
10mL measurement resolution and 6.3 ± 0.2% error [25].
Regarding the IFM, which provides more accurate fuel mea-
surement, we use Onosokki’s FP-2140H 2 fuel meter with
0.1mL measurement resolution and ±0.2% error. Both EMS
and IFM provide frequent features, including torque, engine
speed, brake status, road, etc. Figure 1 shows the truck, EMS,
and IFM devices used in this study. In this paper, six groups
of features are selected based on the dataset collected with
EMS and IFM. We propose seven learning-based fuel rate
prediction models: linear regression, polynomial regression,
MLP, CNN, LSTM, CNN-LSTM, and automated machine

2https://www.onosokki.co.jp/HP-WK/products/keisoku/vehicle/fp series.
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learning (AutoML). The coefficient of determinism (R2) re-
flect the proportion of the variation in the dependent variable
that is predictable from the independent variable(s) [26]. From
the experimental results, new models using AutoML attain
R2 with 0.975, which outperforms all the state-of-the-art
models, including mathematical modeling-based and ANN-
based modeling. Besides, we apply transfer learning in the
fuel rate prediction to transfer knowledge from trained fuel rate
models to decrease training costs. Moreover, we integrate the
fuel rate prediction and path planning to show its application
in autonomous driving trucking. In summary, this paper makes
the following contributions:

• The EMS and IFM dataset with high accuracy
and frequency features for fine-grained fuel
rate prediction is collected. We have open-
sourced the dataset to the research community at
https://github.com/Torreskai0722/FEAD.

• LSTM, CNN-LSTM, and AutoML improve the R2 of fuel
rate prediction to 0.99, outperforming the state-of-the-art
approaches to a great extent.

• Integrating fuel rate prediction modeling with transfer
learning, planning, and control algorithms helps deploy
and decrease fuel consumption for autonomous driving
trucks.

The rest of the paper is organized as follows. Section II
presents the dataset descriptions. Section III discusses the
models used in this paper for fuel rate prediction. Sections IV
presents the performance and application of the proposed fuel
rate prediction models. Section V concludes the paper.

II. BACKGROUND AND DATASET DESCRIPTION

In this section, we start with the definition of the fuel rate
prediction problem. Followed by two datasets, we collected in
real trucks: EMS and IFM. Since the actual fuel consumption
of a specific truck is highly affected by the truck driver’s
driving behavior and road conditions, we propose to train the
fuel rate prediction model with engine data collected on the
same truck and same road. We define a road from one city to
another city as a route. Therefore, we represent the engine data
in route granularity and propose a route matching algorithm
to merge the same truck’s data on the same route.

Fig. 1. Collecting hardware of our heavy-duty truck dataset. (a) Dataset
collecting truck, (b) EMS equipment, (c) IFM equipment.
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A. Fuel Rate Prediction

Fuel rate modeling is one of the essential tasks for energy-
efficient driving. Heavy-duty trucks with fuel rate prediction
models have proved to cut fuel consumption by at least 10
percent [11]. Since fuel consumption makes up a considerable
portion of heavy-duty truck’s operating costs, an accurate fuel
prediction model can decrease costs a lot.

Fuel rate prediction is a problem that is defined to learn the
engine behavior in fuel rate consumption. Figure 2 shows a
simplified pipeline of the autonomous driving truck system.
We can observe that the fuel rate prediction model’s input is
engine data while the output is the fuel rate, which can be
formulated in Equations 1 and 2. In Equation 2, xt0, xt1, ..., xtn
represents features in engine data while ŷti and yti represent
the predicted and actual fuel rate at time ti. For the regression
problem, mean squared error (MSE) is used to define the loss
of predicted fuel rate. Therefore, the objective of the regression
problem is to get the minimum loss. f represents the fuel rate
prediction model, which can be linear, polynomial, deep neural
network-based functions, etc. For the LSTM-based model,
which takes the history engine data as the input to predict fuel
rate, the model’s restriction is updated as Equation 3, where
the engine date within time t and t−w will be used to predict
the fuel rate at the time t. w is defined as the lookback length
or window size.

Control

Fuel Rate Model

Sensing & Perception Planning Decision

engine 
data

fuel prediction

Fig. 2. A typical pipeline for energy-efficient autonomous driving.
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1
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The truck’s planning module could develop an energy-
efficient trajectory with no safety sacrifices with an accurate
fuel rate prediction. Generally, a big challenge in designing
and implementing the fuel rate model is getting vast amounts
of high-accuracy training data. Generally, the road conditions,
slope, vehicle’s gross weight, wind, latitude, etc., are all
external factors that affect the fuel rate. In fact, these external
factors contribute to the changing of intrinsic factors, including
torque, throttle, engine speed, etc., which affects the fuel rate
consumption directly. Since we are aiming at integrating the
fuel rate prediction model into the truck’s path planning, we
need the fuel rate prediction model to work in fine-grained
and real-time. External factors like slope, elevation, road
conditions, etc., are hard to monitor in real-time. Leveraging
engine data from the CAN bus helps us to predict fuel rate at
millisecond-level with high accuracy. Therefore, we proposed

TABLE I
THE COMPARISON OF EMS AND IFM DEVICES.

EMS IFM
Number of collected features 20 57

Frequency (Hz) 10 20
Fuel rate error 6.3±0.2% ±0.2%
Cost (RMB) 1,000 100,000

to leverage the intrinsic features measured from the truck’s
EMS and an external IFM to collect months of training data
from actual trucks to train the fuel rate prediction model.

Both EMS and IFM devices collect engine status data from
the engine management units through CAN bus. One key
difference is that the fuel rate in EMS dataset is directly read
from the CAN bus while that of the IFM dataset is from a
flow rate device. Both datasets are used in training fuel rate
prediction models. The comparison of these two devices are
shown in Table 1. We can find that they have different types
of features, frequency, fuel rate accuracy, and the device cost.
Since the error of the IFM device is less than 0.2 percent,
we take fuel rate from the IFM device as the ground truth
for training the fuel rate prediction model. Training on the
ground truth helps us to understand the capability of DNN
models for fuel rate prediction. However, the IFM device is
too big and expensive to deploy on a truck for daily operation.
EMS devices are suitable for deployment on any heavy-duty
trucks. Therefore, we also train the fuel rate prediction model
using EMS devices to evaluate the performance of the fuel
rate prediction model in practical deployment. In practical
deployment, the predicted fuel rate based on EMS devices
will be calibrated based on the errors between EMS and IFM
labels.

B. EMS Data

EMS is composed of various sensors, relays, actuators, etc.,
to make the engine work properly. It can provide the engine’s
status information, including engine speed, torque, throttle,
fuel rate, etc., for every 100 milliseconds. Table II shows
selected features we get from the EMS device (x7*) as well
as the IFM device (x8*).

In addition to the truck’s engine status, the collected
dataset provides context information like the truck’s location
(province, city, longitude, latitude, etc.), road level (freeway,
highway, urban, etc.), and truck’s information like vehicle ID,
model, etc. Two months of EMS data covers 29 trucks with
30 million rows of data. One month of IFM data on one truck
contains 872.844 rows of data. Figure 3(a) is an example of the
trajectory of one truck. The detailed descriptions of the EMS
and IFM dataset are shown in Table III. Time means the date
when the EMS dataset is collected. Trucks means the number
of trucks collected in the dataset. Rows means the number of
data instances in the dataset.

We calculate each feature’s correlation index with the fuel
rate to obtain related features for model training. All the EMS
and location features are analyzed with the label x7001 in Ta-
ble II. Based on the correlation analysis results in Table IV, the
most correlated features are throttle (x7006), torque (x704F),
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TABLE II
DATA DESCRIPTIONS IN EMS AND IFM DATASET.

ID Description Unit
x7000 engine speed km / h
x7001 fuel rate litre / hour
x7002 total fuel consumption litre
x7003 brake 1: on , 0: off
x7004 EMS mileage km
x7005 total mileage mile
x7006 throttle %
x7007 temperature of coolant C
x006C GPS speed km / h
x704F torque %
x716D break position %
x8000 engine speed km / h
x8001 instant flow rate litre / hour
x8002 engine fuel rate litre / hour
x8003 retarder torque %
x8004 engine torque %
x8005 engine torque loss %
x8006 current gear position -1, 0, 2, 4, ..., 12
x8007 vehicle speed m / s
x8008 clutch slip rate %
x8009 vehicle weight kg
x8010 longitudinal acceleration m / s2

x8011 lateral acceleration m / s2

TABLE III
DESCRIPTIONS OF EMS AND IFM DATASET.

Name Time Trucks Rows Features
EMS dataset-1 12/2019 9 10,273,969 EMS engine data, latitude, longitude,

triggertime, city, road level, etc.EMS dataset-2 04/2020 29 26,145,539
IFM dataset 06/2020 1 872,844 IFM engine data

and engine speed (x7000), so we choose at least two of them
to compare the impact of each feature to fuel rate, as shown
in Table V.

C. IFM Data

To explore the model’s upper bound for fuel rate prediction,
we use another fuel rate meter device to collect the ground
truth of fuel consumption. IFM device collects fuel rate with
an error lower than 0.2 percent for every 50 milliseconds.

The instant fuel rate monitor captures 57 features in total,
and the frequency is 20 Hz. We use this device on one truck
and drive on the same path for several days, making this
dataset contain the same truck’s same routes. The IFM dataset
contains two fuel rate labels. One is the same as the EMS
dataset, which is reading from the CAN bus (x8002), while

TABLE IV
THE CORRELATION ANALYSIS RESULTS OF SELECTED FEATURES IN THE

EMS DATASET WITH X7001 (FUEL RATE).

r x7000 x7002 x7003 x7004 x7005 x7006 x7007 x006C x704F x716D
x7001 0.530 -0.005 -0.218 0.089 -0.025 0.937 0.217 0.038 0.665 -0.120

TABLE V
EMS DATASET FEATURE GROUPS.

Groups Features Label
G1 engine speed (x7000), throttle (x7006) fuel rate

(x7001)G2 engine speed (x7000), throttle (x7006),
torque (x704F)

G3 engine speed (x7000), torque (x704F)

TABLE VI
THE CORRELATION ANALYSIS RESULTS OF SELECTED FEATURES IN THE

IFM DATASET WITH X8001 (IFM LABEL).

r x8000 x8003 x8004 x8005 x8006 x8007 x8008 x8009 x8010 x8011
x8001 0.496 0.218 0.949 0.076 0.468 0.005 -0.109 0.001 0.122 0.172

TABLE VII
IFM DATASET DESCRIPTION AND FEATURE GROUPS.

Groups Features Label-1 Label-2

G4

engine speed (x8000),
engine torque (x8004),

engine torque loss (x8005),
current gear position (x8006)

instant flow rate
(x8001)

engine fuel rate
(x8002)

G5
G4 +

longitudinal acceleration (x8010)
lateral acceleration (x8011)

G6

engine speed (x8000),
retarder torque (x8003),
engine torque (x8004),

current gear position (x8006)

the other is from the fuel measure device, which is the IFM
label (x8001). We conduct a correlation analysis of selected
features with the label to form feature groups. The correlation
coefficient (r) results are shown in Table VI. Based on the
correlation analysis, we found three features have correlation
coefficients higher than 0.4: engine speed (x8000), engine
torque (x8004), current gear position (x8006). Four remaining
features have positive correlation coefficients: retarder torque
(x8003), engine torque loss (x8005), longitudinal acceleration
(x8010), lateral acceleration (x8011). So we define three
groups: G4 contains three features (x8000, x8004,x8006) and
x8005; G5 adds x8010 and x8011 onto G4; G6 contains three
features (x8000, x8004,x8006) and x8003. Table VII shows
the selection of three groups of features and their labels for
the instant fuel meter dataset.

D. Route modeling and matching

Generally, the actual fuel consumption of a specific truck is
highly affected by the truck driver’s driving behavior. Besides,
since different routes show different traffic and altitude con-
ditions, the fuel rate consumption pattern of the same truck
on different routes can also be different. These observations
motivate us to train different models for different trucks and
routes. In this paper, we define the road between two cities
as a route. Since different drivers drive different trucks, we
merge engine data collected on the same truck and the same
routes for the training of fuel rate prediction models. All the
route-level fuel rate prediction models will be ensembled to
construct a complete model for deployment on trucks.

How to uniquely represent the route collected on the same
truck becomes the first challenge. We define a Route class
that contains header and data, as shown in Figure 4. The
header includes the date, vvid for the vehicle’s ID, city, and
mileage. The data contains path[] and ems[] sequence the
latitude, longitude, and EMS data. Using Route class, each
route within the EMS dataset can be uniquely represented,
and it’s possible to extract the same routes data for training.

After representing the route as a uniform expression, how
to match the same routes becomes another problem. The
GPS data is not updated periodically, which means there are

4



(a) (b)

Fig. 3. (a) A trajectory of one truck in one day. (b) An example of an EMS
samples’ GPS data on the map.

Route header[]

data[]

date, vvid, city, mileage

path[]

ems[]

[[lat0,lng0], [lat1,lng1], …, [[latn,lngn], ]

[[t0, x7000, x7001, …], 
[t1, x7000, x7001, …], 
…, 
[tn, x7000, x7001, …]]

Fig. 4. The code structure of Route class.

random delays in some instances of latitude and longitude
data. Figure 3(b) shows an example of the EMS GPS data
on the map, in which we can observe aperiodic points and
long delays between them. These delays make the route’s
path attribute has a different length even for the same route.
To address this problem and merge the same routes for a
specific truck, we propose a sampling-based route matching
algorithm that samples a fixed number of points between the
route’s source and destination and compares their difference.
The sampling-based route matching algorithm consists of four
main steps:

1: Merge EMS data instance based on city, truck’s vvid, and
date to get the route. For each date in the group, calculate
the total mileages using the x7004 between the start and
endpoints in ems. This step is to extract routes from the
EMS dataset to form a routes pool.

2: Compare the start and endpoint of different routes to
determine the direction of the route. Compare the mileage
of different routes to get the most frequent length of the
routes r1. Since there could be several routes between two
cities, the routes that have less than a one-mile difference
with r1 in the same direction will be grouped. There will
be two groups: each direction has one group;

3: Each route is represented as an element of Route, then
we sample the route to get a fixed-length route r′. The
sampling interval is calculated by length/sample. For
every length/sample row, one row of the path and ems
are selected to add into r′, where sample is a pre-defined
value as 100.

4: Calculate the distance of matrix r′. If the sum of two
routes’ absolute difference is less than a pre-defined
threshold ε, these two routes are the same route.

The purpose for sampling is to find the vehicle vid, dates,

and timestamps that belong to the same route. When training
the fuel rate prediction model, we use all the data from the
same route.

III. PREDICTION MODELS

In this section, we present the methodologies for building
fuel rate prediction models. Generally, the methods can be
divided into two categories: mathematical modeling-based
and learning-based methods. Mathematical modeling-based
methods are usually based on the dynamic models for heavy-
duty trucks to connect features like engine speed, torque, etc.,
with the instant fuel rate [4]. A learning-based approach is
purely a data-driven approach that leverages the regressor or
neural networks to extract knowledge from the raw data. In
this paper, we propose several learning-based methods to build
a fuel rate prediction model for heavy-duty trucks, including
linear/polynomial regression, multilayer perceptron (MLP),
convolutional neural network (CNN), long-short term memory
(LSTM), CNN-LSTM, and AutoML.

A. Linear and Polynomial Regression

Linear and polynomial regressions are methods that are
widely used in fuel rate prediction. For example, the Compre-
hensive Modal Emission Model (CMEM) represents the fuel
rate as a linear formula of engine speed and truck power [8].
Besides, researchers proposed to use a two-dimensional 4th-
order polynomial to model the fuel rate [12]. Moreover, the
Virginia Tech Comprehensive Power-based Fuel Consumption
Model (VT-CPFM) takes a bottom-up approach, representing
the resistance force and truck power as a polynomial of speed
and acceleration [3]. Then the fuel rate is formulated as a
polynomial of the truck power. The basis of these polyno-
mial regressions is to model the fuel rate as a polynomial
combination of features like RPM, truck speed, acceleration,
etc. However, these models’ performance is usually bounded
by the features and polynomial orders. We implement linear
regression (LR) and a 4th-order polynomial regression (PR)
with the collected dataset as the baseline to the deep learning-
based approaches.

B. Deep Learning-based Regression

Deep neural networks (DNN) have been widely deployed
in a variety of applications and scenarios, including CNN
for image classification and semantic segmentation [22], [27],
Recurrent Neural Networks (RNN) for speech recognition
and language modeling [28], [29], and Generative Adversarial
Networks (GAN) for generating datasets [30], [31]. The reason
for DNN’s popularity is its excellent performance in many
applications and its ability to learn from raw, heterogeneous,
and noisy data, which is suitable for fuel rate prediction [32],
[33], [34].

Since the fuel rate prediction is modeled as a regression
problem and tries to map features from raw driving data
with labels, deep neural networks is expected to outperform
traditional linear and polynomial-based approaches. To com-
pare the regression performance in fuel rate prediction, we
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Fig. 5. The model structure of MLP, CNN, LSTM, and CNN-LSTM.

proposed several DNN-based regressions for fuel rate predic-
tion, including MLP, CNN, LSTM, and CNN-LSTM. Figure 5
shows the structures for four deep learning-based models.
MLP has the simplest neural network structure with hidden
layers fully connected and a non-linear activation function
for output. From figure 5, the MLP model consists of eleven
dense layers. Each layer has hundreds of neurons which are
fully connected with former and next layers. As one of the
most successful deep neural networks, CNN performs better
in extracting features from raw pixel data for applications like
object detection and classification. In this paper, we use low-
dimensional convolutional kernels to extract features from the
raw data (batch samples of engine status data). The CNN
model is start with four fully-connected dense layer, then a
convolution layer is used to extract feature maps, followed
by a max polling layer, which is to down sample the feature
map based on maximum values. Then the feature maps will be
flattened and apply to several layers of fully connected dense
layers for regression output.

Unlike traditional neural networks that do not store the
knowledge learned from previous layers, LSTM introduces
loops to make neural networks’ learning persistent. The predic-
tion of the truck’s engine fuel rate is a time sequence problem,
which means the current engine state and the expected engine
state determine the fuel rate. For example, currently the truck
is running on a flat road and it will start to run uphill. Then the
truck will need more torque to run uphill, the delta of current
torque and expected torque will affect the fuel rate. LSTM is
a recurrent neural network which takes a sequence of history
and current EMS/IFM data as well as previous fuel rate as
input to predict the current fuel rate. This design makes LSTM
suitable for applications like time series analysis. The LSTM
model consists of 6 LSTM layers followed by a dense layer for
regression output. The input to the LSTM layer is a window
of samples contains current and history engine status data as
shown in Equation 3. CNN-LSTM is proposed to combine

TABLE VIII
DATA DESCRIPTIONS IN VT DATASET.

Feature CO2, CO,
HC, NOx velocity fuel engine elevation phase

Unit g/s mph g/s rpm m N/A

both CNN’s strength in feature extraction and LSTM’s strength
on time series analysis [35]. It can be found in Figure 5 that
CNN-LSTM is a stack of the CNN model with the LSTM
model.

C. AutoML-based Regression

The model’s structure is fixed for both linear/polynomial
and deep learning-based approaches, and the training process
is to find the best parameters. The searching for parameters
and model structures usually require expertise in machine
learning. How to efficiently search for the most appropriate
model structures and parameters become a big challenge.
AutoML tackles this challenge by enabling the machine to find
the best model for given inputs and labels [36]. In addition,
AutoML ensembles several trained weak regressors to build
a strong regressor. Each regressor usually consists of three
parts: data preprocessor is for data encoding, impulation, and
rescaling; feature preprocessor eliminates features correspond-
ing to zero-valued model coefficients; regressor takes the
features to predict the output [37]. AutoML explores more
combinations and possibilities of algorithms, it usually finds
better models than human beings. In this paper, we implement
an AutoML-based regression based on auto-sklearn for fuel
rate prediction to show its performance compared with human-
designed DNNs [37].

IV. EVALUATION

In this section, we start with the experiment setup and met-
rics for evaluation. The evaluation of the fuel rate prediction
is present in three datasets: EMS dataset, IFM dataset, and
VT dataset. Seven models are trained for fuel rate prediction:
linear regression (LR), polynomial regression (PR), MLP,
CNN, LSTM, CNN-LSTM, and AutoML. Next, we discuss
the transfer learning of fuel rate modeling between trucks and
days. Finally, we evaluate the application of integrating fuel
rate modeling with planning and control.

A. Experiment Setup

Hardware and software setup. The experiments are con-
ducted on an Intel Fog Node, which has 8 Intel(R) Xeon(R)
CPU E3-1275 v5 @ 3.60GHz and 32 GB DDR4 memory
with 34.1 GB/s bandwidth. The platform is installed with
Ubuntu 18.04. The software includes sklearn 0.24.2, auto-
sklearn 0.12.7, tensorflow 1.14.0, numpy 1.18.1, etc. We
leverage sklearn and tensorflow for linear/polynomial regres-
sion, MLP, CNN, LSTM and CNN-LSTM-based fuel rate
prediction, while auto-sklearn is used for AutoML-based fuel
rate prediction.
Baseline. The VT dataset is used as a complementary dataset
for evaluation [4]. As a popular fuel rate model, VT-CPFM
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TABLE IX
THE CORRELATION ANALYSIS RESULTS ON THE VT DATASET.

r CO2 CO HC NOx velocity engine elevation phase
fuel rate 0.88 0.47 0.57 0.91 0.4 0.46 0.18 -0.11

takes a bottom-up approach, representing the resistance force
and truck power as a polynomial of speed and acceleration [3].
To better evaluate the proposed learning-based approaches’
performance, we choose VT-CPFM as a baseline and compare
it with learning-based approaches on the VT dataset. The VT
dataset is collected on three trucks, including 128,355 rows
of data. Table VIII shows the features and units in the VT
dataset. Table IX shows the correlation analysis results. We
select six features whose correlation coefficients with the fuel
rate are larger than 0.4, including CO2, CO, HC, NOx, vel,
and engine.
Cross validation. To evaluate these learning-based models’
performance on various datasets, all the training models follow
the same procedure. First, we use standard normalization,
which standardizes features by removing the mean and scaling
to unit variance. The effect of features with higher values on
the fuel rate is decreased. Next, we use cross-validation with
five folds to divide the training and testing data [38]. As is
shown in Figure 6, we divide all the dataset into average five
parts. Then choose one of the five parts as testing dataset
while the remaining parts as training dataset to train the model.
Besides, ten percent of the training data is used to validate
the training loss to save the best model. So five models will
be trained and validated. We calculated the average R2 and
accuracy of five models as the result. For LSTM, the input to
the model contains a look-back window, which means some
history data is also used for training. After training, the average
R2 and accuracy of five folds are calculated.

Fig. 6. Illustration of five fold cross validation.

Metrics. The problem of fuel rate prediction can be formulated
as a regression problem, which means the model is trying to
learn the mapping between the input features and the fuel rate.
As is shown in Section II, MSE is used as the loss function,
and the training process is to find the minimum MSE until
convergence. Therefore, we use the coefficient of determinism
(R2) to evaluate the fuel rate prediction model’s performance.
As shown in Equation 4, R2 is defined as one minus the sum of
predicted errors’ square divided by errors’ square when using
the mean value as the predicted value. yti and ŷti represent the
actual and predicted fuel rate, respectively, while ȳ represents
the mean value of actual fuel rate during time ti and tN .
We can find that R2 represents the distance of the predicted
value with the actual and average values. To understand the

TABLE X
THE RESULTS ON VT DATASET.

Metrics LR VT-CPFM MLP CNN LSTM CNN-LSTM

R2 0.8704 0.8177 0.9172 0.9164 0.8985 0.9260
Accuracy 0.8483 0.9196 0.9256 0.9352 0.8333 0.9318

TABLE XI
NUMBER OF PARAMETERS FOR SIX MODELS USED ON THE VT DATASET.

Model LR VT-CPFM MLP CNN LSTM CNN-LSTM

Parameters 7 462 71,501 44,977 394,651 1,687,677

regression performance from another perspective, we define
the accuracy of the fuel rate prediction. From Equation 5, the
accuracy is defined as one minus the absolute error’s median
value divided by the mean value.

1) Coefficient of Determination:

R2 = 1−
∑N

i=1 (yti − ŷti)2∑N
i=1 (yti − ȳ)

2
(4)

2) Accuracy:

Accuracy = 1− median {|yt1 − ŷt1 | , ..., |ytN − ŷtN |}
ȳ

(5)

B. Comparison with VT-CPFM

As a baseline, we implement VT-CPFM as a 5th order poly-
nomial regression of the input. The results for 5-fold average
R2 and accuracy are shown in Table X. We find that learning-
based models show better performance than VT-CPFM in
both R2 (0.8177) and accuracy (0.9196). CNN-LSTM has
the highest R2 with 0.926, while CNN has the best accuracy
with 0.9352. The comparison of the VT dataset shows that
learning-based approaches are more efficient than the VT-
CPFM. One explanation for it is the number of parameters for
training models. Table XI shows the numbers of parameters
for different fuel rate prediction models. For VT-CPFM, which
takes six features with 5th order polynomial regression, the
total number of model parameters is 462. However, the number
of parameters in CNN-LSTM models is 1.69 million. It can be
found that the number of parameters in DNN models is around
97x to 3653x that of the polynomial regression (VT-CPFM)
model. This huge number of parameters make the DNN-based
model extract more knowledge from the raw engine data.

Observation 1: Deep learning-based approaches show better
regression performance in fuel rate prediction than tradi-
tional polynomial regression, mainly due to the huge number
of parameters (around 97 to 3653 times).

C. EMS Dataset Results

We apply the same route matching algorithm on the EMS
dataset to get a specific truck’s data to train models, including
LR, PR, MLP, CNN, LSTM, and CNN-LSTM. Three feature
groups of the EMS dataset are chosen for training. The results
for R2 and accuracy of all three groups are shown in Table XII.
The window size in LSTM is set as 10. We can observe from
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TABLE XII
RESULTS FOR LEARNING-BASED APPROACHES WITH ONE TRUCK’S SAME

ROUTE ON EMS DATASET.

Groups Metrics LR PR MLP CNN LSTM CNN-LSTM

G1
R2 0.8681 0.9215 0.9135 0.9222 0.8788 0.9145

accuracy 0.8768 0.9608 0.9578 0.9557 0.8860 0.9618

G2
R2 0.8682 0.9222 0.9131 0.9223 0.9523 0.9146

accuracy 0.8758 0.9595 0.9467 0.9583 0.9340 0.9619

G3
R2 0.4948 0.5622 0.5445 0.5631 0.9474 0.5427

accuracy 0.5413 0.6777 0.6342 0.6333 0.8886 0.6808

TABLE XIII
PERFORMANCE OF CNN-BASED FUEL RATE MODEL BEFORE AND AFTER

ROUTE MATCHING.

vid - 9964 row CNN - R2 CNN - Accuracy Training Time (s)

after route matching 84,334 0.9224 0.9655 400
before route matching 652,937 0.9081 0.9474 3,800

the results that G2 shows better performance than other groups.
As we have seen in Table IV, throttle and torque have much
higher correlation coefficient with the fuel rate than engine
speed. In fact, the torque is correlated with the fuel rate
because the higher the torque output, the higher the fueling
level. Besides, to achieve a certain torque, the in-cylinder
mixture needs a certain amount of fuel, which is controlled
by the throttle position. Therefore, fuel rate is highly related
to torque and throttle. LSTM shows better performance in G2
and G3 than all the other models, especially in G3 where all
the other models have R2 less than 0.57. The reason is that
LSTM takes current as well as history data as input to train the
fuel rate prediction model. LSTM could extract and maintain
history information. The results of G3 mean that the history
of torque information makes a big impact on the fuel rate. By
looking into the results of G2 and G3, we can find that the
current throttle data makes an even bigger impact on fuel rate
than the history of torque information, that’s why the LSTM
model in G2 achieves the highest R2.

To show the effectiveness of the route matching algorithm,
we apply it to EMS dataset-1. There are a total of 148 routes
in EMS dataset-1. There are 126 routes matched classified as
the same routes. Besides, to show the effectiveness of route
matching for fuel rate prediction model, we also show the
results of CNN-based fuel rate prediction model before and
after route matching in Table XIII. The experiments are done
on the same truck with vehicle ID (vid) ending with 9964.
We can find that the amount of input rows is reduced by 8
times after route matching. Besides, the R2 has been increased
from 0.9081 to 0.9224, while the accuracy has increased from
0.9474 to 0.9655. These improvements show the effectiveness
of the route matching algorithm. In addition, we selected
three trucks in the EMS dataset to show the performance
of G2. These three trucks are driven by different drivers on
different routes. We apply route matching algorithms to each
truck’s driving data to merge the same routes for fuel rate
prediction model training. Table XIV show the results of
R2 and accuracy. We can find that although there is some
difference between different vehicles, the best R2 is larger
than 0.95 while the best accuracy is larger than 0.96 for each
vehicle.

TABLE XIV
RESULTS FOR LEARNING-BASED APPROACHES FOR THREE TRUCKS IN

EMS DATASET.

Groups Metrics LR PR MLP CNN LSTM CNN-LSTM

vid - 89B7
R2 0.8646 0.9065 0.9106 0.9502 0.9481 0.9105

accuracy 0.8203 0.9492 0.9490 0.9766 0.9147 0.9343

vid - 9964
R2 0.8682 0.9222 0.9131 0.9223 0.9523 0.9146

accuracy 0.8758 0.9595 0.9467 0.9583 0.9340 0.9619

vid - F069
R2 0.9652 0.9943 0.7951 0.9944 0.9580 0.9944

accuracy 0.9166 0.9845 0.7818 0.9843 0.8705 0.9863

TABLE XV
R2 OF LSTM WITH DIFFERENT LOOKBACK WINDOW SIZE

LSTM - window 5 10 15 20 25 30
G2 0.8832 0.9523 0.9538 0.9567 0.9552 0.9559

To show the performance of LSTM more deeply, we change
the window size of the input for training and get the R2

for them in Table XV. Since EMS data is generated every
100ms, we set the window size as 5, 10, 15, 20, 25, and 30,
respectively. The longest window covers history EMS data
for 3 seconds. As we can observe from Table XV, when
the window size increases, the R2 of LSTM first increases
significantly from 0.88 to 0.95, then it converges. The reason
is that when the window size is not enough to contain all the
history information, the increase will help the LSTM model
to predict the fuel rate. However, the R2 would not further
increase after a certain point because the added history data is
not necessary anymore. On the other hand, a larger windows
size means less real-time fuel rate prediction because the
LSTM model needs to take all the needed historical data as
input. Given these two findings, we choose 20 as the window
size, which means to predict fuel rate every 2 seconds.

Observation 2: Current throttle and history torque play a
significant role in fuel rate prediction. The performance of
the LSTM model converges when the window size increases
to a certain point.

D. IFM Dataset Results

Compared with the EMS dataset, the frequency of IFM is
higher, and the value of the IFM is more accurate. To show
the performance of different models under different feature
groups and labels, we train several models with different
configurations and present R2 and accuracy for the IFM label
and EMS label in Table XVI and Table XVII. For LSTM, the
window size is set as 50 (2.5 seconds).

Table XVI shows that the results for R2 and accuracy
vary for different groups and approaches. We can find that
AutoML shows the best R2 and accuracy for all groups
on both IFM and EMS label. The details of the AutoML
model trained on IFM dataset is shown in Table XXIII,
Table XXIV, and Table XXV. We can find that it ensembles
several weak regressors with different data preprocessing and
feature processing algorithms together to construct a strong
regressor. There are two primary reasons why AutoML can
achieve better performance than other deep-learning based
methods [36], [39]. First, for raw data which contains noises

8



R2: 0.9128
accuracy: 0.9372

R2: 0.9157
accuracy: 0.9513

R2: 0.9341
accuracy: 0.7927

R2: 0.9604
accuracy: 0.8944

R2: 0.9381
accuracy: 0.9576

R2: 0.9983
accuracy: 0.9933

R2: 0.9309
accuracy: 0.9721

Fig. 7. Time histories of the IFM and model-predicted fuel rate for all the models under group G5.

and errors, AutoML performs better than non-expert in feature
engineering [39]. Feature engineering is the process of finding
the best set of variables and the best data encoding and normal-
ization for input to the model training process, while AutoML
can search for more combinations of raw data preprocessing
to get the best method [36]. Second, through hyperparameter
optimization, meta-learning, and neural network searching,
AutoML could search for a wider model space than human
beings to get the best model [40], [41], [39].

Figure 7 shows a 200s time histories of IFM collected and
predicted fuel rate. We can observe that EMS and IFM fuel
rate shows obvious difference. The predicted fuel rate from
AutoML aligns exactly with the IFM label. For LSTM, the
trend of predicted fuel rate is consistent with IFM label but
there is constant difference between them, which makes it has
high R2 but low accuracy.

Compared with the learning-based approach on the VT
dataset, the highest R2 is improved from 0.9260 to 0.9983,

proving that high-quality EMS data helps the fuel rate pre-
diction. Compared with the EMS dataset with city-level same
routes, the IFM with EMS label has improved the highest R2

from 0.9523 to 0.9983. Because when the training data is fine-
tuned to smaller levels (from city level to road level). Besides,
the R2 and accuracy trained with the EMS label are higher
than with the IFM label, mainly because the EMS label’s error
is±5% while the IFM label’s error is±0.2%. So model trained
on EMS label is expected to show 5% error. The model trained
with IFM label still has better performance than with the EMS
label. In terms of real-time performance, the training of fuel
rate prediction models is usually offline while the inference is
executing online to predict fuel rate based on current status.
The training and inference time of all the models on Intel
Fog Reference is shown in Table XVIII. We can find that the
inference time are all less than 3ms, which is much less than
the data interval of IFM and EMS devices.
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TABLE XVI
THE RESULTS OF LEARNING-BASED FUEL RATE MODELS WITH LABEL-1.

Groups Metrics LR PR MLP CNN LSTM CNN-LSTM AutoML

G4 R2 0.8632 0.6092 0.9218 0.9213 0.9483 0.9278 0.9968
accuracy 0.8853 0.9315 0.9578 0.953 0.8295 0.9648 0.9915

G5 R2 0.9128 0.9157 0.9341 0.9309 0.9604 0.9381 0.9983
accuracy 0.9372 0.9513 0.7927 0.9721 0.8944 0.9576 0.9933

G6 R2 0.8646 0.8121 0.9212 0.9165 0.9481 0.9213 0.9976
accuracy 0.8904 0.9333 0.9646 0.9541 0.8247 0.9375 0.9924

TABLE XVII
THE RESULTS OF LEARNING-BASED FUEL RATE MODELS WITH LABEL-2.

Groups Metrics LR PR MLP CNN LSTM CNN-LSTM AutoML

G4 R2 0.9379 0.9305 0.9597 0.9626 0.9561 0.9656 0.9990
accuracy 0.9332 0.9711 0.9698 0.9738 0.8547 0.9762 0.9930

G5 R2 0.9567 0.9612 0.9567 0.9687 0.9565 0.9745 0.9983
accuracy 0.9745 0.9712 0.9806 0.9784 0.8478 0.9704 0.9911

G6 R2 0.9409 0.9325 0.9657 0.9644 0.9546 0.9693 0.9988
accuracy 0.9343 0.9695 0.9752 0.9717 0.8608 0.9704 0.9925

Observation 3: High-quality engine data helps the fuel rate
prediction. AutoML shows the best performance on both
EMS and IFM datasets.

E. Transfer Learning of Fuel Rate Modeling

As a data-driven approach, the composition of the dataset
determines the learning-based model’s performance. However,
the longer trucks are driving, the more data is collected, but
it is a waste of resources and time to train the model from
scratch all the time. Transfer learning is proposed to train the
model based on the former models’ learned knowledge [42].
We extract a small dataset that collects four trucks’ EMS data
for several days when driving on the same route. The transfer
learning is conducted in two aspects: transfer between trucks
and transfer between days. From the model structure of MLP,
CNN, LSTM, and CNN-LSTM in Figure 5, the CNN-LSTM
model is a stack of CNN layers with LSTM layers together
while MLP is a combination of Dense layers. CNN and LSTM
are two representative model architectures which contains the
dense, convolutional, and LSTM layers. Therefore, we choose
CNN and LSTM models for the evaluation of transfer learning.

Transfer between trucks. We use three trucks’ data as the
input to train a base model and transfer the knowledge from
this base model into a fine-tuned model with the fourth truck’s
data as a training dataset. In comparison, a model is trained
from scratch with the fourth truck’s data.

Transfer between days. We use all the four trucks’ EMS
data except one day as the input to train a base model and
transfer the knowledge from this base model to a fine-tuned
model with the EMS data on a remaining day as a training
dataset. Similarly, a model with the same structure is trained
with one-day EMS data as the baseline.

TABLE XVIII
THE TRAINING AND INFERENCE TIME FOR MODELS ON IFM DATASET.

Model LR PR MLP CNN LSTM CNN-LSTM AutoML
Training (mins) 1 1 15 17 125 100 300
Inference (ms) 0.1 0.1 0.1 0.1 0.3 0.2 2.9

TABLE XIX
TRANSFER LEARNING BETWEEN VEHICLES.

Models Rows Training time R2

CNN
baseline 20644 4.5 minutes 0.9668

base model 183403 58.3 minutes 0.9332
fine-tuned model 20644 4.5 minutes 0.9673

LSTM
baseline 20644 75 minutes 0.9045

base model 183403 10.38 hours 0.9204
fine-tuned model 20644 75 minutes 0.9099

TABLE XX
TRANSFER LEARNING BETWEEN DAYS.

Models Rows Training time R2

CNN
baseline 15492 3.5 minutes 0.9486

base model 188556 41.7 minutes 0.9349
fine-tuned model 15492 3.5 minutes 0.9512

LSTM
baseline 15492 58 minutes 0.9090

base model 188556 11.8 hours 0.9264
fine-tuned model 15492 58 minutes 0.9135

The transfer learning results between vehicles and days are
shown in Table XIX and Table XX, respectively. From both
cases, the training time of transferring the knowledge from a
base model or training from scratch is the same for both CNN
and LSTM. Generally, if there is one base model that could
predict the fuel rate consumption of all vehicles under all dates,
then the base model should be easily trained for a specific date
or vehicle. However, compared with the baseline, which uses
the one date or one vehicle dataset and trains from scratch, the
base model takes the same time to converge. This result means
that there is rare knowledge transfer from the base model to
the fine-tuned model. Since the dataset is collected on the
same route, the fuel rate prediction model is customized for
each vehicle and each date. Besides, the performance of fine-
tuned models has a slightly higher R2 compared with training
from the scratch. However, the R2 of the fine-tuned LSTM
model is lower than its base model. One potential explanation
is that the base model’s training data and training time are
higher than the baseline and fine-tuned model. Although more
parameters make it possible for deep learning-based models to
construct a much complex model than traditional polynomial
regression models, it usually requires huge data to train the
model from scratch. The more parameters the model has, the
more training data it requires [43]. More rows of training data
and time are needed to achieve higher regression performance
for the LSTM model.

TABLE XXI
VALIDATION OF CNN-BASED FUEL RATE PREDICTION WITH NEWLY

COLLECTED DRIVING DATA.

remaining two days
vid - 9964 first four days before retrain after retrain

rows of driving data 28,152 23,883
R2 0.9193 0.9001 0.9131

accuracy 0.9580 0.9162 0.9611
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Validation with newly collected driving data. When the fuel
rate model is deployed, it’s necessary to validate the model’s
performance with newly collected data. Therefore, we choose
one truck whose vid ends with 9964 which has six days of
driving data is collected on the same route. We use the first
four days as a training dataset to train a CNN-based fuel
prediction model, while the remaining two days as newly
collected data to test the performance of the model. From
the results in Table XXI, we can see that before retraining,
the performance of the remaining two days is slightly lower
than the first four days. The R2 is decreased to 0.9001 from
0.9193, while the accuracy is reduced from 0.9580 to 0.9162.
After retraining the model with the newly collected two days
driving data, the R2 is increased to 0.9131 and the accuracy
is increased to 0.9611. The retraining of the model takes
eight minutes. This validation shows that the prediction model
shows good performance with newly collected driving data.
And the model can be easily fine-tuned to achieve the same
level of accuracy and R2 as the original model.

Observation 4: The fuel rate prediction model is customized
for each vehicle and each date. For the deployment of fuel
rate prediction models on real trucks, the route-level models
should be ensembled together into a complete model.

F. Fuel Rate Prediction in Planning and Control

In this experiment, we demonstrate our accurate fuel rate
prediction can effectively benefit the planning and control
(PnC) algorithm w.r.t the fuel consumption for heavy-truck.
One of the classic fuel-efficient PnC algorithms for heavy-
duty trucks is predictive cruise control (PCC) [44], [45], which
is an optimization algorithm calculating the optimal speed
according to the road profile w.r.t fuel consumption, travel
time, and speed band. The essential part of PCC’s optimization
function is the cost of fuel consumption rate. Thus, we
integrate our AutoML model, which has the highest fuel rate
prediction accuracy, into the PCC optimization function.

In PCC evaluation experiments, we adopt a simplified
vehicle model, its longitudinal dynamics is formulated as:

F = η(sin(θ(s)) + µ(ṡ))gMveh +
1

2
ρairAfCdṡ+ s̈Mveh

(6)
in which η is total power efficiency from engine torque to
propulsion force, θ(s) is road gradient with respect to the
distance ahead of vehicle, µ(ṡ) is tire rolling friction, Mveh

indicates the vehicle mass, ρair is the density of air, Af means
the front area of vehicle and Cd is the air drag constant. The
parameters in this model are shown in Table. XXII. We adopt
the original solving method in [44], [45] and change the fuel
model into our model and VT-CPFM model for evaluation.

Figure 10 shows our test road’s altitude and the optimal
speed from PCC using different fuel rate models. The test
road is around 14 kilometers and costs about 700 seconds
for the whole drive. From Figure 8, we can observe that VT-
CPFM accelerates earlier than our model, because PCC with
VT-CPFM produced a worse speed allocation result and led
the vehicle to accelerate too early during the period of upward

TABLE XXII
PARAMETERS OF VEHICLE

Parameter Metric Units Value
Vehicle Weight kg 49000

Tire Rolling Coefficient µ - 0.0065
Front Area Af m2 9.7737

Air Drag Constant Cd - 0.62

slope, which is a very crucial impact to fuel consumption. The
distance difference in Figure 10 is not obvious because the
value is small compared with the x-axis units. However, from
the same distance range in Figure 11, we can find a noticeable
velocity difference between these two methods, and the fuel
consumption is also different. It is reflected in Figure 9, there
is a sharp increase of fuel consumption during 200 300s. We
also plot the velocity difference (Vours − VV T−CPFM ), and
fuel consumption in distance domain, as shown in Figure 11,
to explain why our precise fuel model can save more fuel.
From a macro perspective, our model’s speed is lower than
VT-CPFM’s speed at the very beginning uphill road which
lead to fuel saving. From a micro perspective, each significant
change of fuel consumption is the result of lower acceleration
and lower speed compared to VT-CPFM. Since the truck is
heavy, even a very small acceleration will lead to large fuel
consumption on an uphill road. This figure also reflects that
VT-CPFM accelerates the truck too much around the hilltop.
Overall, the AutoML and VT-CPFM’s total fuel consumption
is 10570 grams and 11240 grams, respectively, which is 5.97%
total fuel saving on this road.
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Fig. 8. Optimal speed using our AutoML fuel prediction model (blue line)
and VT-CPFM’s noisy model (red line).

Observation 5: Accurate fuel rate prediction can effectively
benefit the planning and control (PnC) algorithm w.r.t the
fuel consumption for heavy-trucks.

V. CONCLUSIONS

Fuel rate prediction is an essential step for the decrease
of fuel consumption for heavy-duty trucks. In this paper, we
studied the fuel rate prediction of autonomous driving trucks
with a high-accuracy dataset collected from EMS and IFM de-
vices. We propose a sampling-based route matching algorithm
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Fig. 9. Fuel consumption of PCC evaluation with our model (blue line) and
VT-CPFM’s noisy model (red line).
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Fig. 10. Road profile (yellow line), and optimal speed using our AutoML
fuel prediction model (blue line) and VT-CPFM’s noisy model (red line).
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Fig. 11. Velocity Difference (Vours−VV T−CPFM ) (yellow line), and fuel
consumption of our model (blue line) and VT-CPFM’s noisy model (red line).

to prepare engine data for model training. We propose seven
models, including LR, PR, MLP, CNN, LSTM, CNN-LSTM,
and AutoML, trained to predict the fuel rate consumption.
Besides, we include the VT-dataset to train these models as
the baseline to evaluate the EMS and IFM dataset. At the same
time, the VT-CPFM is implemented as the baseline to fuel rate
prediction models. Metrics like R2 and accuracy are used for
the evaluation of the fuel rate prediction.

Compared with traditional approaches like linear and poly-
nomial regression, learning-based approaches show better re-
gression performance for fuel rate prediction on all the dataset.
This is mainly owing to the huge number of parameters
in learning-based models. However, learning-based models
need much longer time to train compared with linear and
polynomial regression.

We also observed that current throttle and history torque
play a significant role in fuel rate prediction. In the LSTM
model, the performance of R2 converges when the window
size increases to a certain point. The choice of window size
is a trade-off between regression performance and real-time
prediction.

The VT dataset does not include torque and throttle data.
The EMS and IFM dataset contains millisecond-level torque,
throttle, and engine RPM data. We found that high-quality
engine data helps the fuel rate prediction. AutoML shows the
best performance on both EMS and IFM datasets.

We also studied the transfer learning of the fuel rate predic-
tion model between different trucks and days. We found that
there is rare knowledge transferred between different vehicles
and dates. The fuel rate prediction model is customized for
each vehicle and each date.

The fuel rate prediction model is integrated into the path
planning of autonomous trucking. We implemented AutoML
and VT-CPFM -based fuel rate prediction into the predictive
cruise control (PCC) optimization function to show the actual
fuel saving when using fuel rate prediction model,. The
evaluation results show that accurate fuel rate prediction can
effectively benefit the planning and control (PnC) algorithm
w.r.t the fuel consumption for heavy-truck.
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APPENDIX

A. Abbreviation and Definition

Abbreviation Definition

TCO total cost of ownership
RMB Ren Min Bi
MEMS comprehensive modal emission model
EMS engine management system
IFM instant fuel meter
MSE mean squared error
R2 coefficient of determination
MLP multi-layer perceptron
CNN convolutional neural network
DNN deep neural network
ANN artifical neural network
LR linear regression
PR polynomial regression
LSTM long-short term memory
AutoML automated machine learning
PCC predictive cruise control

VT-CPFM
Virginia Tech comprehensive
power-based fuel consumption model

PnC planning and control

B. AutoML Model Details

REFERENCES

[1] (2020) The Real Cost of Trucking – Per Mile Operating Cost of a
Commercial Truck. [Online]. Available: https://www.thetruckersreport.
com/infographics/cost-of-trucking/
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