CLONE: Collaborative Learning on the Edges

Sidi Lu, Yongtao Yao, and Weisong Shi Fellow, IEEE

Abstract— The proliferation of edge computing technologies
has boosted the development of new applications for a plethora
of edge devices. However, many applications face privacy issues
and bandwidth limitations. To solve these limitations, we propose
a collaborative learning framework on the edges, named CLONE,
which is steered by the real-world datasets collected from a large
electric vehicle (EV) company and a grocery store of a shopping
mall, respectively. We categorize two application scenarios for
CLONE, ie., CLONE in the training stage (CLONE_training)
and CLONE in the inference stage (CLONE_inference). As to
CLONE_training, we choose the failure prediction of EV battery
and associated components as the first use case. While as for
CLONE_inference, customer tracking in a grocery store is se-
lected as another case study. In this work, the goal of the CLONE
is to support real-time training and inference for connected
vehicles and marketing intelligence services. Our experimental
results on the EV data show that CLONE is able to reduce
model training time without sacrificing algorithm performance.
Furthermore, the experimental results on the video data from the
grocery store reveal that CLONE is a useful approach to solve
the multi-target multi-camera tracking problem in a collaborative
fashion.

Index Terms—Collaborative learning, Distributed artificial
intelligence, Edge computing, Electric vehicle battery failure
prediction, Multi-target multi-camera tracking

I. INTRODUCTION

Edge Data Explosion and Challenges: The wide deployment
of 4G/5G has enabled connected vehicles and Internet Protocol
cameras (IP cameras) as the perfect edge computing platforms
for a plethora of new intelligent services. In the meanwhile,
with the burgeoning growth of the Internet of Everything
(IoE), the amount of data generated by these edge devices
has increased dramatically [1]. For instance, a connected and
autonomous vehicle (CAV) could produce around one gigabyte
of data per second [2] and generate more than 11 TB of
privacy-sensitive data on a daily basis [3], [4]. Besides, IP
cameras could generate over 2,500 petabytes of data per day
[51, [6]. Such huge volumes of data inevitably bring challenges
to researchers and domain experts — processing big data often
requires a large amount of computation and memory resources,
which hinders the application of deep learning algorithms
on the resource-constrained edge devices with the stringent
latency [7].

Popular Solutions and Limitations: In this context, cloud-
only approaches [8], [9], [10] and cloud-edge methodologies
[11], [12], [13], [14] have been proposed to process big data

This work was supported in part by National Science Foundation (NSF)
grant IIS-1724227.

S. Lu and Y. Yao are with the Department of Computer Science, Wayne
State University, Detroit, MI 48202, USA (e-mail: lu.sidi@wayne.edu; yong-
taoyao@wayne.edu).

W. Shi is with the Department of Computer Science, Wayne State Univer-
sity, Detroit, MI 48202, USA (e-mail: weisong@wayne.edu).

generated by edges in the past few years through computation
offloading [14], [15], service scheduling [16], [17], virtual
machine migration [18], [19], and so on. These methods both
incorporate powerful cloud to resolve bandwidth limitations
and provide near real-time services, but they both require
sending amounts of raw data to the cloud via the wireless net-
work. Consequently, data transferring may become the latency
bottleneck and incur a high bandwidth cost [20]. Besides, even
if data is compressed in the edge before being sent to the cloud
[13], the original sensitive data might be exposed, which may
create a potential threat of privacy leakage. Therefore, it can
be seen that various intelligent applications on the edges are
facing challenges in decreasing latency and protecting privacy
[21].

Insights of Edge-Edge Research: In the meanwhile, as the
computation and memory resources of edge devices have
become more and more powerful [12], questions arise whether
always incorporating cloud to process data is desirable moving
forward, and whether we are able to implement novel ap-
proaches on the edge side to face the challenges of analyzing
big data. With these insights, we propose a collaborative
learning setting on the edges (CLONE) which is able to mainly
demonstrate the effectiveness of latency reduction and privacy-
preserving. The basic framework of the CLONE is shown in
Fig. 1.

Local Model M, Local Dataset D4
o e @ 5

Local Model M,
2 2

Processing

Parameters Local Dataset D,

EdgeServer Py,
Local Dataset D,,

4 p,
ar,
P""Pa, hlete’s
an,)
s> o) @ © © 4

Fig. 1. The framework of CLONE. Each edge node trains/runs the neural
network model locally based on its private data and push their own parameters
to the Parameter EdgeServer during the training/inference process. The
Parameter EdgeServer is responsible for performing aggregations or other
necessary operations on the uploaded parameters and sending the updated
parameters back to the edge nodes.

Push Parameters
—————

)
Pull Parameters

Parameter

Local Model M,,

Contributions of This Work: Our core contributions are
not in the development of machine learning-based models
that are built on top of well-understood and mature models
such as long short-term memory networks (LSTMs) [22], [23]
and gradient boosting decision tree (GBDT) [24]. Instead, the
core innovation of our study is in (¢) combining state-of-the-
art algorithms on top of the Federated Learning concept so
that these algorithms can support dynamic distributed learning

TABLE I
SUMMARY OF OBSERVATIONS AND IMPLICATIONS. RF, GBDT, AND LSTMS REPRESENT THE RANDOM FOREST, GRADIENT BOOSTING DECISION TREE,
AND LONG SHORT-TERM MEMORY NETWORKS RESPECTIVELY.

Observations

Implications Sections

Adding driver behavior metrics will improve the prediction accuracy
for the failure of EV battery and associated accessories.

Researchers could build EV failure prediction models based on
driver behavior metrics to build personalized models in real-time.

Section III-C.

LSTMs outperform RF and GBDT in our two experimental groups.

LSTMs are potentially more accurate to predict EV failures.

Section III-C.

Compared with stand-alone learning (ALONE) on the edges, CLONE
is able to reduce model training time without sacrificing algorithm
performance. With more edge nodes involved, the advantages of
CLONE in training time reduction will be more obvious.

CLONE is capable to provide efficient edge computing solutions
for various edge services which have stringent requirements on
the real-time performance and privacy protection.

Section III-F.

CLONE is a useful solution to solve the multi-target multi-camera

CLONE is also capable to track multiple players for team sports

better as it does not need to transfer any amounts of sensitive dataset
via the network.

influenced by video transmission.

tracking proble_m, and it e_nables a]_)pllcatlons such as visual surveil- and track pedestrian for CAVs. Section IV.

lance and suspicious activity detection.

Compareq with the cloud-edge approach, the ‘main advantag;s of Researchers may leverage the CLONE framework to deal with

CLONE is to speed up the analysis tasks and protect user privacy X . . L .
real-time video processing task whose performance is significantly Section V.

(e.g., collaborative reliability analysis and computer vision
computation), and (i7) providing experimental evidence to
establish that CLONE could be employed in both model train-
ing and inference phases, which provides actionable insights
on using the CLONE framework to support other real-world
intelligent services that require the collaboration of diverse
edge devices.

To be concrete, this paper presents a collaborative
learning framework for edges, which could be used
in the training phases (CLONE_training) and inference
phases (CLONE _inference) with the effectiveness of privacy-
preserving and latency reduction. Regarding CLONE_training,
we choose the failure prediction of electric vehicle (EV)
battery and related components as the first use case. As to
CLONE _inference, we choose customer tracking in a grocery
store as the second use case, showing that CLONE is a
powerful solution to the multi-target multi-camera tracking
problem. Specific contributions are listed as follows.

* We have demonstrated the applicability of CLONE in
two typical edge computing scenarios, covering both the
training and inference at the edges in a collaborative
fashion.
To the best of our knowledge, this is the first work to
predict an imminent failure of EV battery and associated
accessories based on the real-world EV dataset which
involves driver behavior metrics.
Our analysis reveals that adding driver behavior metrics
is able to improve the prediction accuracy for the failures
of EV battery and associated accessories.
+ CLONE_training has the capability to reduce the training
time significantly without sacrificing prediction accuracy.
< CLONE _inference is a powerful solution to the multi-
target multi-camera tracking problem.

2
**

R
0‘0

Table I summarizes our observations and implications, and
it serves as a roadmap for the rest of the paper. Section II
provides the framework descriptions of CLONE and the main
differences between CLONE_training and CLONE _inference,
as well as the configuration information of the total edge
devices employed in our two use cases. Section III and Sec-
tion IV present our basic steps and results of the experiments
for the two case studies. Section V reviews and compares with

some previous related works. Finally, Section VI concludes
our contributions and discusses the possible improvements of
CLONE and other potential use cases.

II. CLONE DESIGN

Based on the progress of developing a neural network
model, we divide two categories of application scenarios for
CLONE, i.e., CLONE in the training stage (CLONE_training)
and CLONE in the inference stage (CLONE_inference).
In this section, we introduce the core ideas of CLONE
and illustrate the differences between CLONE_training and
CLONE _inference. Then we describe the hardware configu-
ration information for the experiment setup of the two case
studies.

A. Framework Description

As has been mentioned, Fig. 1 presents the basic framework
of CLONE. These two types of CLONE share the same
core ideas —the training/inference tasks are both solved by
a group of distributed participating edge nodes which are
coordinated by a Parameter EdgeServer. Each edge node has
its local training dataset that is never uploaded to the Parameter
EdgeServer or transferred to the cloud. In CLONE, each edge
node trains/runs the neural network model locally based on its
private data and push their own parameters to the Parameter
EdgeServer during the training/inference process. The Param-
eter EdgeServer is responsible for performing aggregations or
other necessary operations on the uploaded parameters and
sending the updated parameters back to the edge nodes.

B. Differences of Two Application Scenarios

However, there are three main differences between
CLONE_training and CLONE_inference, i.e., the types of
transmitted parameters, the tasks of the Parameter EdgeServer,
and the transmission manners are different. Table II sum-
marizes the main differences between CLONE_training and
CLONE _inference, and it serves as a roadmap for the next
sections which describe two use cases related to these two
application scenarios.

TABLE II
TWO TYPES OF APPLICATION SCENARIOS FOR CLONE.

CLONE_training CLONE_inference
Predict the failures of EV Customer trackine in a
Use Cases battery and related acces- &
. grocery store.
sories.
Parameters The value of network pa- Appearance descriptors.
rameters.
Tasks of ' Store, updatef and delete
EdgeServers Parameter aggregation. trackers, which are de-
fined in Section IV-D.
Transmission | Asynchronous. Synchronous.
Sections Section III. Section IV.

C. Hardware Selection

Applying heterogeneous edge devices may impact the com-
munication latency and therefore the experimental results. In
the light of the foregoing consideration, we adopt three types
of hardware in total shown in Fig. 2—Intel Fog Reference
Design (FRD), NVIDIA GPU Workstation, and Jetson TX2,
to figure out the potential effects of heterogeneous hardware.

Fig. 2. Three categories of hardware. Subfigure 1-3 shows the Intel Fog
Reference Design (FRD), Jetson TX2, and NVIDIA GPU Workstation,
respectively.

The above three categories of edge devices are equipped
with diverse processors, operating systems (OS), and so
on. Intel FRD leverages the field-programmable gate array
(FPGA) technology [25] to cast the proprietary hardware in a
closed chassis allowing users to configure and program it for
diverse edge use cases [26]. Unlike other edge devices that
are equipped with GPUs, Intel FRD host two Intel Arria 10
GX1150 FPGAs that are capable to provide a more consistent
throughput for various workload sizes [27]. As powerful
hardware with the high-quality components (4 x GeForce
RTX 2080 Ti graphics cards), NVIDIA GPU Workstation is
capable to deliver the cluster-level performance for even the
demanding applications [28], [29]. Jetson TX2 is one of the
prominent power-efficient embedded Al platforms that enables

TABLE III
HARDWARE SETUP FOR CLONE.
NVIDIA GPU
Intel RFD Workstation Jetson TX2
Intel Xeon Intel Xeon
CPy E3-1275 v5 E5-2690 v4 ARMV8
GeForce RTX NVIDIA
GPU NONE 2080 Ti Pascal
Frequency 3.6GHz 2.6GHz 2GHz
Core 4 14 6
Memory 32GB 64GB 8GB
0oS Linux 4.13.0 Windows 10 Linux 4.4.38

server-class computing performance on the edge devices [30].
We describe the detailed configuration information of these
edge devices in Table III.

III. USE CASE I: FAILURE PREDICTION OF EV BATTERY
AND RELATED ACCESSORIES

In this section, we present our experimental results of
CLONE_training setting on the first use case —failure pre-
diction of EV battery and associated accessories. The main
idea is to predict upcoming failures in a collaborative fash-
ion by capturing individuals’ driving characteristics. We also
compare the performance of stand-along learning (ALONE)
with CLONE_training in two aspects: (4) training time, and
(ii) evaluation scores including precision, recall, accuracy, and
F-measure. After that, we discuss critical observations based
on the comparison results.

A. Background

Recently, EVs have received significant attention as an
essential part of the efficient and sustainable transportation
system. As the key component of EVs, the battery system
largely determines the safety and durability of EVs [31], [32].
Due to the aging process or abuse maneuvers during the real
operation, various faults may occur at each constituent cell or
the associated accessories. Therefore, it is essential to develop
early failure detection techniques to ensure the availability and
safety of EVs through anticipated replacements. Besides, we
believe driver behavior metrics such as speed and acceleration
reflect the usage of an EV, which could be the main root causes
of EV’s failure. Hence, how to build a personalized model to
predict the failure of EV battery and related components, and
what’s the correlation between driver behavior metrics with
the failure prediction are both open problems. In this work,
we choose the failure of EV battery and related accessories as
our case study to show how the CLONE solution trains the
failure prediction models to ensure the sustainable and reliable
driving in a collaborative fashion.

B. Data Description

The study of the first use case presents an analysis of
EV health characteristics based on the data measured at and
collected from a large EV company. We analyze three different
models of EVs, and the corresponding data is reported and col-
lected every 10 milliseconds during the whole 6-hour duration
of the data collection period. The battery cells of these three
EVs are made by the same battery vendor (BAK company)
with different battery types — Lithium Cobalt Oxide (LCO)
and Nickel Cobalt Manganese (NCM). The battery pack of
each EV consists of 96 battery cells with 30 temperature
sensors to detect and report cell temperatures in real-time.

In general, our data set is collected from the core control
systems of EVs, which includes the vehicle control unit
(VCU) [33], motor control unit (MCU) [34], and battery
management system (BMS) [35]. BMS [35] is responsible
for the battery maintenance and state estimation. The VCU
[33], as a key component of the whole EV, sends orders to

other modules based on the driver manipulation (such as gear
signal, accelerator pedal signal, and vehicle mode) via CAN
communication network [36]. MCU [34] controls the wheel
motor locally according to the command from VCU. Failures
in the MCU may cause abnormal motor torque outputs, which
in turn affect the vehicle safe driving. Therefore, the functional
safety of these systems is particularly important. Fig. 3 shows
the structure diagram of the core control systems.

Driver
Manipulation

VCu MCU BMS

CAN Communication Network

Fig. 3. Three Core Control Systems of EVs.

More specifically, we analyze EV data in the two aspects:
(1) EIC attributes, and (2) driver behavior metrics. Here,
EIC refers to electric, instrumentation, and computer control
systems [37]. It includes battery features collected from BMS
(most commonly used for EV battery durability analysis by
other studies [31], [38], [39], [40], [41]) and the data reported
from other control systems. The number of available features
is more than 250, but not all features have useful value (except
for NONE and constant value). For our study, 42 features listed
in Table IV and Table V were selected as three EVs reported
these attributes and the value of these attributes varies over
time.

TABLE IV
SELECTED EIC FEATURES.

Voltage

Temperature

Power & Energy

BMS_BattVolt

InCar_Temp

BMS_BattSOC

BMS_CellVoltMax

Environment_Temp

BMS_MaxChgPwrCont

BMS_CellVoltMax_Num

BMS_BattTempAvg

BMS_MaxChgPwrPeak

BMS_CellVoltMin

BMS_Inlet_WaterTemp

BMS_MaxDchgPwrCont

BMS_CellVoltMin_Num

BMS_Outlet_WaterTemp

BMS_MaxDchgPwrPeak

MCUE_Volt

BMS_MaxTemp

VCU_Batt_Comp_Pwr

MCUR_ Volt BMS_MinTemp VCU_Batt_PTC_Pwr
Current BMS_TempMaxNum Error Info
BMS_BattCurr BMS_TempMinNum BMS_BatterySysFaultLevel
MCUEF_Curr MCUF_Temp BMS_Low_SOC
MCUR_Curr MCUR_Temp VCU_PTC_ErrSta
TABLE V
SELECTED DRIVER BEHAVIOR METRICS.
VehicleSpeed Acceleration Steering
Driver YawRate WheelSpeedFL WheelSpeedFR
Behavior | WheelSpeedRL WheelSpeedRR EmergencyStop
AccPedalPosition | BrakePedalPosition

Driver behavior metrics are collected from VCU and sensors.

Most of the selected features could be understood intuitively
from Table IV and Table V; hence, we choose some vague
features to give our explanations. Taking account into the
CAN communication demand of different modules, the com-
munication network has been set several bus nodes, including
MCU for the front wheels (MCUF) and rear wheels (MCUR).
"MCUF_Volt” and "MCUR_Volt” represent the voltage value
of MCUF and MCUR. Positive Temperature Coefficient heater
(PTC) is the heating unit in EV. ”VCU_PTC_ErrSta” shows
the failure status of battery PTC, which preheat the battery
at low temperature to make sure the battery is able to work
properly. "BMS_BatterySysFaultLevel” indicates the healthy

states of BMS. State of Charge (SOC) is the indicator of
left capacity, and "BMS_Low _SOC” shows the SOC states
of EVs. ”YawRate” reflects the overall tilt state of EVs.
”AccPedalPosition” and ”BrakePedalPossition” show the real-
time percent of the gas pedal and brake pedal that the driver
pressed on. As to the three error info attributes, they both
show the degradation process from healthy to failed. Besides,
”Comp” is an acronym of the compressor.

C. Experiment Design of ALONE

1) Experiment Goals: Before employing CLONE, we first
combine the whole real-world dataset of three EVs to train
different machine learning models on an Intel FRD. We term
this stand-alone learning as ALONE. The goal is to figure out
a suitable algorithm to predict failures, explore the influence
of the driver behavior metrics on EV failure prediction, and
provide baseline experimental results to compare it with the
algorithm performance of CLONE_training.

2) Experiment Groups: To show the impact of driver
behavior metrics on the battery failure prediction, we conduct
experiments on two experimental groups. Our first step is to
combine all selected EIC attributes and driver behavior metrics
to train models using different methods, and we label this
group as ED Group. Then, we exclude all driver behavior
metrics but keep EIC attributes, and we denote it as E Group.

3) Experiment Setup: We tackle the failure prediction
problem using random forest (RF) [42], gradient boosted
decision tree (GBDT) [43], [44], and long short-term mem-
ory networks (LSTMs) [45], [46] since they have become
highly successful learning models for both classification and
regression problems. The models learned in this use case are
implemented in Python, using tensorflow 1.5.0 [47], keras
2.1.5 [48], and scikit-learn libraries [49] for model building.
To evaluate the proposed prediction approach, we use 5-fold
cross-validation [50], which is a validation technique to assess
the predictive performance of the machine learning models and
to judge how models perform to an unseen dataset [51].

During the training phase, we first discover the best value
of parameters for RF, GBDT, and LSTMs using the hold-out
method [52]. Then, we conduct a grid search on these values
of parameters to find the best combination that achieves the
highest performance. During the testing phase, the first step
is to determine how long the prediction horizon should be.
After conducting a series of sensitivity studies showing the
changes in the value of loss function which captures the error
of the model on the training dataset, we choose 15 seconds
as our prediction horizon so that it is able to predict failures
for the next 1,500 data points. The second step is to measure
the wellness of our prediction approaches. We take F-measure
as the priority criterion, which is the harmonic average of
precision and recall. We also consider other measure criteria
simultaneously, such as precision, recall, and accuracy.

4) ALONE Experiment Results: For each method, we
conduct the testing phase five times and get the precision,
recall, accuracy, and F-measure for each time. We calculate
the average values of these evaluation scores of five times,
and the average values are shown in Fig. 4.

E Group

1.0
0.8
0.6
0.4
0.2
0.0 RF GBDT LSTM Average
B Predsion 0.6615 0.6975 0.8924 0.7505
Recall 0.6900 0.7500 0.9000 0.7800
® Accuracy 0.7008 0.7294 0.8738 0.7680
F-measure| 0.6755 0.7228 0.8962 0.7648
BPredsion ®Recall ®Accuracy = F-measure
ED Group
1.0
0.8
0.6 i
0.4 f
0.2 f
0-0 RF GBDT LSTM Average
m Predsion 0.7492 0.7905 0.9420 0.8272
Recall 0.7814 0.8500 0.9500 0.8605
m Accur acy 0.7833 0.8234 0.9430 0.8499
F-measure 0.7649 0.8192 0.9460 0.8434
mPredsion = Recall ®Accuracy = F-measure

Fig. 4. ALONE Experiment Results.

5) Observations of ALONE experiments: Based on our
experimental results, we have the following observations:

Y« Excluding driver behavior metrics results in around 8%

reduction in the average F-measure (shown in Fig. 4).

Y LSTMs outperforms RF and GBDT in both two groups.

The first observation shows that driver behavior metrics such
as speed, acceleration, and steering are potentially good indi-
cators of the failures of EV battery and associated accessories.
However, driving is significantly influenced by the current
driver, weather, location, and traffic conditions, which requires
a personalized model to capture the real-time driving pattern.

As to the second observation, although the degradation
process of EV failures is complicated, battery and associated
accessories do have their hidden failure patterns [32], [53].
As the more sophisticated neural networks including historical
information, LSTMs are good at capturing hidden patterns
of battery failures based on historical data and generating a
sequence of predictive data points to predict the incoming
patterns.

D. CLONE_training Framework

As shown in Fig. 5, each edge node (vehicle) is responsible
for continuously performing training locally based on its
private data. When a single edge node (vehicle) finishes one
epoch [54], which refers to the number of iterations related
to the total input dataset, it will push the value of current
parameters to the Parameter EdgeServer, where the parameter
values are aggregated to compute the weighted average value.
Then, each edge node (vehicle) will immediately pull the
updated parameter values from the Parameter EdgeServer, and
set the updated parameters as their current parameters to start
the next epoch. The above steps will be repeated as necessary.

Note that when a new edge node (vehicle) joins in, it will
pull the current aggregated parameters from the Parameter

Parameter EdgeServer 1. Downloading hyperparameters

2. Updating models with private data

Connected
Vehicles

4. Aggregating vehicle updates 3. Uploading new parameters

Fig. 5. Each vehicle trains the neural network model locally based on its
private data. Then, the value of current parameters from each vehicle is
uploaded to the Parameter EdgeServer, where those parameters are aggregated
and sent back to vehicles.

EdgeServer first, and set them as the initial parameters for
the first round of training, which is able to speed up the
training process for unseen edge nodes (vehicles). Besides,
since it is asynchronous communication, for each edge node
(vehicle), there is no need to stop and wait for other edge
nodes to complete an epoch, which greatly reduces the latency.
To illustrate the aggregation protocol of CLONE_training, we
need to introduce the loss function first, which is defined as
follows:

Loss = Y _ [0y *18(y) + (1 — 9y) *18(1 — yiy)] - (1)
Here, gy, is the predicted output of a machine learning model,
and the scalar y; is the desired output of the model for each
data sample . We then define the formula to aggregate and
update parameters as follows:

Loss(v)

P(p) = Loss(p)+Loss(v)

Loss(p)
P(p) + Loss(p)+g;ss(v)P(U))
Loss(p) < Loss(v)

Where P represents the value of a parameter, and Loss stands
for the value of the loss function. Besides, p refers to the
Parameter EdgeServer, and v represents a specific edge node
(vehicle). According to the above formula, if the model on
an edge node achieves more accurate results (lower value of
loss function), it will assign a higher weight to the parameters
uploaded by this edge node, so that the required training time
could be minimized efficiently to reach a certain accuracy
level.

E. Implementation of CLONE_training

1) Experimental Goals: We can see in Section III-C5
that driver behavior metrics have non-negligible impacts on
the prediction of EV failures, and employing LSTMs could
achieve better results compared with RF and GBDT. There-
fore, in this section, we aim to deploy LSTMs-based collab-
orative learning approaches on edges based on EIC attributes
and driver behavior metrics. The main goal is to construct
personalized models by continuously tuning parameters in
a collaborative fashion while protecting driver privacy and
predicting failures in real-time.

2) Hardware Selection: To build a heterogeneous hardware
cluster to represent different models of EVs, we adopt two
different types of hardware — Intel FRD and Jetson TX2, with

different CPUs, memory, and so on (shown in Table III).
More specifically, we choose one Intel FRD as the Parameter
EdgeServer, and we treat other two Intel FRDs and one Jetson
TX2 as the edge nodes for vehicles to continuously “learn”
latent patterns.

3) Experiment Setup: In Section III-C, we trained an
accurate LSTMs model with 4 layers on the front and followed
by a fully connected layer (dense layer). Now, we aim to
deploy a distributed LSTMs in a collaborative fashion with
the same number of layers (same hyperparameters) on edge
nodes. We first distribute our whole dataset into three edge
nodes, so that each edge node (vehicle) has its locally private
dataset. Note that the data collection periods of three EVs
are not the same, which means that the dataset is not evenly
distributed.

Dense_1

LSTM 1
kernel: <16x400>
recurrent_kernel:

<100x400>
bias: <400>

LSTM_2
kernel: <100x400:
recurrent_kernel:

<100x400>
bias: <400>

kernel:
<100x24>
©@@ — > bias: <400>

Input
Layer

— —_—

Fig. 6. Model Parameters.

Fig. 6 shows the parameter distribution of the LSTMs
model on the first two LSTMs layers (marked as LSTM_1
and LSTM_2) and the last fully connected layer (labeled as
Dense_1). The “kernel” and “recurrent_kernel” are the param-
eter vectors, and the number inside angle brackets represents
the shape (size) of parameters for each vector. We can see
that parameter vectors are usually high-dimensional, i.e., there
are a huge amount of parameters. For example, (16 x 400)
indicates that there are 16 x 400 of parameters. Our whole
network contains up to 297,700 parameters, including the
weights and the biases. Weight is able to reflect the strength of
the connection between input and output. Bias shows how far
off the predictions are from the real values. During each epoch,
edge nodes (vehicles) push all parameters to the Parameter
EdgeServer to get the updated value of parameters. Same
as Section III-C, we use a 5-fold cross-validation method to
evaluate experiment results of CLONE, which will be present
in Section III-F to have a direct comparison with ALONE.

Throughput

Push (KB/s)
g

(=1
m—
—

I

Pull (KB/s)
[\]
o &
—
| E—
%

[

0 50 100 150 200 250 300
Time (seconds)
Fig. 7. Throughput at the Parameter EdgeServer.

4) Throughput: Fig. 7 shows the throughput at the Param-
eter EdgeServer when three work nodes are working together.
The Parameter EdgeServer receives parameters during the push

process and sends parameters during the pull process. We can
see that the data throughput peak is relatively stable and the
peak appears intermittently. Besides, the maximum throughput
for the push and pull process is around 750 KB/s and 250
KB/s, indicating that there is no big pressure on the network
throughput. Fig. 7 also proves that the push process is usually
much slower than the pull process for CLONE_training, which
was concluded by the work of [55]. This observation shows
the importance to investigate methods that are able to reduce
the communication latency of the push process in the future
work.

F. Comparison between CLONE_training and ALONE

In this subsection, we present the experimental results of
CLONE_training, and compare it with the algorithm perfor-
mance of ALONE in two aspects: (¢) training time, and (i7)
evaluation scores including precision, recall, accuracy, and F-
measure.

To have a clear comparison, we conduct experiments on
three experimental groups. The first group is ALONE, and we
set the epoch of ALONE equal to 210. The second group is
CLONE with the epoch of 70 for each edge node, and we label
it as CLONEI. Since there are three edge nodes in CLONEI,
the equivalent number of iterations in total is also 210 (70
x 3). As to the third group (CLONE2), the epoch is 100 for
a single edge node, which results in 300 (100 x 3) of total
iterations.

1) Training Time Comparison: We first profile and com-
pare how the training time is spent on the three experimental
groups, which is shown in Fig. 8.

Training Time (seconds)

1700
1400

1100
200 — ﬁ_ﬂ

500
ALONE (epoch = CLONE1 (epoch = CLONE2 (epoch =

210) 210=70*3) 300 =100 * 3)
OIntel FRD1 1183 657 928
OIntel FRD2 1573 734 1036
o Jetson TX2 1497 765 1158

Olintel FRD1 Dintel FRD2 @ Jetson TX2

Fig. 8. Training Time Comparison.

For ALONE, the used training time varies with different
edge devices —it takes 1183s and 1573s on two Intel FRDs
respectively, while taking 1497s to execute the training task
on Jetson TX2. As to CLONEI, the training time of each
edge node is much lower than the training time of the single
edge node of ALONE. Since there are three edge nodes in
CLONE]/, the training time of CLONEI should be one-third of
ALONE theoretically. However, due to the inevitable delay of
the parameter transmissions, the training time of CLONEI] is
greater than one-third of ALONE. We then increase the epoch
value from 70 x 3 to 100 x 3 (CLONE2), and it can be seen
that the required training time is longer than CLONEI as it has
a larger number of iteration related to the input dataset during
the training phase, but it still less than ALONE which has a
lower epoch value. Note that with the participation of more

edge nodes and larger size of the input dataset, the advantages
of CLONE_training in training time reduction will be more
obvious. Note that the training time in Intel FRD1 and FRD2
are different, which might be due to the difference in the time
length of usage, system environment, and the distance to the
router.

Evaluation Scores

1

0.8

0.6

0.4

0.2

0

Precision Recall Accuracy F-measure

OALONE (epoch = 210)
CLONEZ2 (epoch =100 * 3)

B CLONE1 (epoch =70 * 3)

Fig. 9. Algorithm performance.

2) Evaluation Score Comparison: We then calculate the
average evaluation scores for each group, which is shown in
Fig. 9. Comparing ALONE and CLONE], we can see that the
overall evaluation scores of CLONEI are lower than ALONE.
This could be caused by the fact that the prediction accuracy
will be improved with the increasing number of iterations pass-
ing the full dataset through the current model, and ALONE
has a higher epoch value (210) than CLONEI (70). However,
the evaluation score of CLONE could be further improved
by increasing the epoch value, e.g., the evaluation scores of
ALONE and CLONE2 are relatively equal. Besides, in the
CLONE setting, due to the hardware difference, powerful
edge nodes that have a higher FLOPS may train the model
faster than other edge nodes. Here, FLOPS is an abbreviation
for floating-point operations per second (’S” stands for the
time unit, i.e.,, second), which is often used to estimate the
computation power of a device (greater GFLOPS usually
indicates a more powerful computation resource and faster
computation speed). Therefore, during the same training time
period, powerful edge nodes can achieve a higher value of
epoch, i.e., finish more training passes than other edge nodes;
therefore, the output of a powerful edge node will make a
greater contribution to the training of the global model, which
leads to better performance when the trained model performs
inference on the data generated by the powerful node. When
the parameters of the poor training results are uploaded to the
Parameter EdgeServer, the global accuracy of CLONEI will
be influenced. This may explain the performance gap between
ALONE and CLONE]1 whose total epoch values are the same.

However, when we further increase the value of epoch
(CLONEY), it is capable to achieve high evaluation scores as
ALONE. Note that, by observing Fig. 8, the training time of
CLONE?2 is much lower than ALONE, even though CLONE2
has a higher epoch.

G. Discussion

Compared with ALONE, CLONE_training is able to reduce
model training time without sacrificing algorithm performance.
With more edge nodes involved, the advantages of CLONE
in training time reduction will be more obvious. Besides,

CLONE_training provides personalized models to predict the
failures of EV battery and associated accessories considering
the current driver behaviors, and CLONE_training is capable
to speed up the analysis tasks while protecting user privacy
better as it does not need to transfer any portion of the sensitive
dataset via the network.

IV. USE CASE II: CUSTOMER TRACKING IN A GROCERY
STORE

In this section, we describe our experiment steps and
results of CLONE_inference setting on the second use case,
i.e., customer tracking in a grocery store, showing how
CLONE _inference could be adopted to solve the multi-target
multi-camera tracking (MTMCT) problem. Different from the
first case study that compares ALONE with CLONE_training
in terms of the training time and evaluation scores, we focus
on three aspects: (i) inference time, (i¢) frames per second
(FPS), and (i7i) throughput per second.

A. Background

As another perfect edge computing platform, surveillance
embedded IP cameras are widely adopted in the crowded
indoor region and public outdoor area [56]. For example, at
grocery stores, IP cameras are used to record video segments
with the initial purpose of theft deterrence and employee pro-
tection. With the prevalence of computer vision and machine
learning technologies, these IP cameras have been equipped
with novel real-time marketing intelligence functions which
were impossible before, such as customer facial recognition,
personalized shopping assistance, and purchase habit modeling
[57], [58], [99], [60]. Although these new functions of IP
cameras are capable to help retailers better market their prod-
uct, the video data generated from the IP cameras is privacy-
sensitive as it contains a huge amount of personal information
[61], [62]. Therefore, how to prevent machine learning-driven
surveillance from violating privacy and confidentiality is one
of the most essential challenges [63].

We choose customer tracking in a grocery store as one of
our case studies to show how CLONE could be used in edge
video analysis, solving the multi-target tracking problem under
the multi-camera system. Although a multitude of previous
works achieve excellent performance in multi-target tracking
[64], [65], [66], [67], [68], multi-camera system tracking
problem still remains as a very new topic comparing to the
classical single-camera tracking [69], [70].

B. Data Description

The study of the second use case is steered by the video
dataset collected from 8 retail surveillance cameras at a
middle-sized grocery store during the same time period.
More specifically, we collect the 3-hour video data from 8
cameras of 3 manufacturers and 6 models — Arecont Vision
(AV20175DN-NL), Axis (Q6000-E, Q6045-E), and Canon
(VB-H41, VB-H45, VB-M50B). These cameras capture the
top-down views monitoring for both the incoming and out-
going customer flow at the entry gate, exit gate, check-out

gate, condiment section, snack foods section, and cosmetic
section, providing both disjoint and overlapped fields of view.
We connected these cameras via Milestone ONVIF Bridge
[71], which is an open ONVIF interface of video-sharing from
XProtect video management software (VMS) systems to other
IP-based systems, to collect and store over 22 gigabytes of
full HD videos (1920 x 1080 pixels) with a frame rate of 30
FPS (frames per second). Fig. 10 present eight different views
from eight IP cameras. In order to protect privacy, we only
illustrated the black-white version of the video image in this

paper.

Fig. 10. Examples of the eight views from eight IP cameras.

C. Experiment Design of ALONE

We first conduct multi-target tracking experiments on an
Intel FRD and the NVIDIA GPU Workstation respectively
based on the three hours of video dataset of a single camera,
before employing CLONE _inference. Note that the edge nodes
(single camera) of CLONE_inference just have two more
operations than ALONE, i.e., pushing appearance descriptors
and pulling appearance descriptors, which will be further
described in Section IV-D; hence, we conduct the ALONE
experiment first to serve as a baseline for the evaluation of
the subsequent CLONE_inference experiment.

1) Algorithm Description of Multi-target Tracking: The
solution of multi-target tracking could be broadly divided
into two phases: (i) detecting phase, and (i%) tracking phase.
During the detecting phase, we implement YOLOv3 (You-
Only-Look-Once-v3) [72], a fast and accurate detector to
detect targets and compute bounding boxes, so that each
target is enclosed in a corresponding bounding box for each
frame. We then conduct target tracking through the Deep
SORT algorithm [67], [68], an extension to SORT [73] that

incorporates deep appearance descriptors to reduce the number
of identity switches caused by the long periods of occlusions.
When a new detection is associated with a tracked target, the
newly detected bounding box is used to update the current
state of the target.

Appearance Descriptors: For each bounding box, Deep
SORT first generates two types of association descriptors —
appearance descriptor and motion descriptor, capturing the
corresponding appearance and motion information respec-
tively. The appearance information of the bounding box is a
128-dimensional feature obtained through the Wide Residual
Network [74] with two convolutional layers and six residual
blocks, which makes appearance descriptors irreversible to the
targets’ original images. Deep SORT calculates the smallest
cosine distance between the appearance descriptors of detected
bounding boxes and the tracked bounding boxes to quantify
the appearance association.

Motion Descriptors: The motion information is defined on the
eight-dimensional state space (z,y,r, h, v1,v2, V3, Us), Where
x and y represent the horizontal and vertical pixel of the
center position of a bounding box, r and & indicate the aspect
ratio and the height of the bounding box respectively, while
v1, Va2, V3, U4 represent the velocities at the four vertices of the
bounding box. Kalman filter framework [75] is responsible for
predicting targets’ next motion states. Deep SORT then calcu-
lates the Mahalanobis distance between the motion descriptor
of the detected bounding boxes and predicted motion states to
characterize the degree of motion matching.

Short-term and Long-term Tracking: The Mahalanobis dis-
tance gives the information of targets’ possible locations from
the motion aspect, which is particularly effective for short-
term prediction and tracking. Besides, the cosine distance con-
siders appearance information, which is particularly useful to
reduce identities switches caused by the long-term occlusions,
especially when motion is less discriminative. Consequently,
Deep SORT combines the Mahalanobis distances and cosine
distance as an indicator to figure out whether a frame-by-frame
association is admissible to keep tracking multiple targets.

2) Experiment Setup: We employed YOLOv3 [72] and
Deep SORT algorithms [76] to detect person and then achieve
multi-target tracking. The models learned in this use case
are also implemented in Python, using tensorflow 1.5.0 [47],
keras 2.1.5 [48], and scikit-learn libraries [49] for model
building. We conduct experiments on an Intel FRD and the
NVIDIA GPU Workstation respectively. Note that NVIDIA
GPU Workstation is a more powerful device than Intel FRD,
and it is capable to provide a cluster-level performance.
We compare the experimental results in terms of inference
time and frames per second (FPS), to explore the impact of
different hardware on the speed of video analysis and inference
for multi-target tracking problem, and to provide a baseline
performance results for the experiments of CLONE_inference.

3) ALONE Experiment Results: Our experimental results
show that the average FPS on the Intel FRD is around 3.25,
and the average FPS on the NVIDIA GPU is 14.88. To
better explore and evaluate ALONE results in terms of the

inference time, we also further divide the solution of multi-
target tracking into four phases: (i) target detection, (ii) fea-
ture extraction, (4i%) data association, and (iv) tracker output.
“Target detection” refers to the process of leveraging YOLOv3
to detect customers and compute the corresponding bounding
boxes. “Feature extraction” indicates the phase of generating
appearance and motion descriptors for each customer frame by
frame. ”Data association” represents the process of combining
the Mahalanobis distances and cosine distance to figure out if
a specific association is acceptable. Finally, “tracker output”
refers to the phase of getting the output of the trackers,
i.e., showing the qualitative results based on the original video.
Fig. 11 shows the average inference time per frame on the
aforementioned four phases of multi-target tracking.

©
€ 0.14 OlIntel FRD ©NVIDA GPU Workstation
©
5 012
u 0.1
O
o8 008
g & o006
£ 8 004 H
n
@ — 0.02
87 % [] o R s -
o Target Feature Data Tracker
€ Detection Extraction Association Output
Four Phases of Multi-target Tracking
Fig. 11. Inference time per frame on the four phases of multi-target tracking.

4) ALONE Experiment Observations: Based on our ex-
perimental results, we have the following observations:

" NVIDIA GPU workstation takes significantly less time

in four stages of inference than the Intel FRD.

Y The average FPS of the complete inference process on
the Intel FRD is not high— around 3.25.

" No matter on the Intel FRD or the NVIDIA GPU, "target
detection” takes the longest time during the inference pro-
cess, while “data association” takes the shortest inference
time on average.

The first observation is in line with expectations since the
NVIDIA GPU workstation is more powerful than the Intel
FRD. As to the second and the third observation, we give
our explanation as follows. The not high value of FPS on
the Intel FRD is not only due to the limitations of hardware
processing capability but also because of the full HD video’s
high resolution, which penalizes the frame-by-frame video
analysis speed. Most importantly, the algorithms used to detect
targets also significantly influence the performance of the
multi-target tracking approach (Deep SORT). In this use case,
we implement YOLOV3 to detect targets and compute the
corresponding bounding boxes. However, the model size of
YOLOvV3 is around 237 MB, and itself is responsible for
detecting up to 80 categories of objects for each frame.
Although in this use case, we only pay attention to person
detection (customer detection), the detection of the person
actually masks all non-human detection results after YOLOvV3
detects all types of objects in each frame. In other words, this
algorithm is not only for human detection, which is one of the
reasons for the slowness. For the use case that only focuses on

person detection or single object detection, exploring a more
suitable approach is necessary.

Besides, we can see in Fig. 11 that leveraging NVIDIA GPU
Workstation may help to shorten inference time. However,
its high price has determined that it is unrealistic to widely
adopt NVIDIA GPU Workstation currently. Our CLONE
experiments below are all performed on the Intel FRDs
(isomorphic), and we focus on the performance changes of
CLONE _inference as the number of edge nodes increases.

D. CLONE inference Framework

CLONE _inference aims to give a simple yet powerful
solution to capture the multi-camera trajectories. For a specific
target, we term a set of the historical appearance descriptors
and the corresponding ID as a tracker. Since the Parameter
EdgeServer is responsible for storing, updating, and deleting
trackers, we describe CLONE_inference from the three aspects
as follows.

Tracker (maximum length = 100)

] i34

8 9

Appearance [: H :] s H

+H 55] Appearance
Descriptors ~ ¢

23 45 6

4 : 6 :

Descriptors 1[5 3
» [!’) -~ - _4 '7j N
Push Appearance ﬂ@ N /PUIE Process‘ Push Appearance H@ ~ ;ulllPrtcesso\f
Descriptors y ﬂ of Frame n Descriptors J U Framen + 1
L»I V. E/_q L’.‘. g, Cl E/d
p s @ ° ® o o o ° o °
2T X s AR X o
ISR T T 1 TRE0RT

Push Process of Frame n Push Process of Frame n + 1

Fig. 12. CLONE in the inference stage (CLONE_inference). We take two
consecutive frames as an example to illustrate how CLONE is able to solve
the multi-target multi-camera tracking problem.

1) Store Trackers: Fig. 12 shows the detailed framework
of CLONE _inference for the use case of multi-target multi-
camera tracking (MTMCT). Each edge node (camera) first de-
tects targets, assigns unique IDs, and computes the associated
appearance descriptors within each frame via the local algo-
rithms. The appearance descriptor is a 128-dimensional feature
obtained through a state-of-the-art neural network which is
illustrated in Section IV-C. Due to the internal complexity
and nonlinear structure of the neural network, the appearance
descriptor is irreversible to the target’s original images that
could potentially be mishandled. When an edge node (camera)
finishes the computation of all targets’ appearance descriptors
for a frame, it will push the current descriptors and associated
IDs to the Parameter EdgeServer immediately. The Parameter
EdgeServer stores the appearance descriptors from all edge
nodes (cameras). After all edge nodes finish the pushing
process for a frame at the same timestamp, they will pull
trackers from the Parameter EdgeServer (this step is based
on the requirement of processing videos frame-by-frame, so
all edge nodes are strictly synchronized, and we discussed the
limitations and improvements of this step in Section IV-G).
Next, the local algorithm of edge nodes quantifies the ap-
pearance association between the newly detected targets with
trackers. The above steps will be repeated as necessary to keep
tracking. Section IV-C will provide a detailed description of
the algorithm used to quantify the appearance association.

2) Update Trackers: In this framework, the Parameter
EdgeServer only stores up to a hundred latest appearance
descriptors for a unique ID, i.e., the maximum number of the
historical appearance descriptors contained in a tracker is 100.
This is because we only need to focus on the latest appearance
descriptors to keep tracking a target. Besides, storing the latest
descriptors is able to control the storage and computation
at a suitable intensity. An example of updating trackers is
shown in Fig. 13. As to a newly detected target on an edge
node, assume the associated ID has been already stored on
the Parameter EdgeServer, if the length of the corresponding
tracker is less than 100 (such as target 1,2,5,6 in Fig. 13), then
this new appearance descriptor will be added to the related
tracker. Otherwise, the latest 100 appearance descriptors will
replace the previously stored descriptors. When there is no
corresponding ID stored on the Parameter EdgeServer, this
appearance descriptor will be assigned a new ID to create a
new tracker (such as target 7 in Fig. 13).

Unmatched
Trackers

Fig. 13. An example of updating and deleting trackers. The right circle
represents a set of the trackers on the Parameter EdgeServer, and the left
sector represents a set of the detected targets and their corresponding IDs on
an edge node.

3) Delete Trackers: Tracked targets do not always stay in
the surveillance area. Therefore, in this work, the Parameter
EdgeServer is also responsible to free up storage space by
deleting the unmatched trackers that have not been associated
with detected targets in the last consecutive 30 frames. An
example of deleting trackers is also shown in Fig. 13.

E. Implementation of CLONE_inference

1) Experiment Goals: The goal of this subsection is to
figure out the impact of different numbers of edge nodes on

the performance of the CLONE_inference. In this use case, we
do not consider the influence of heterogeneous edge devices.
The main reason is that we want to process the video stream
in real-time, which requires all edge nodes to process the
video roughly synchronously, so the time that each edge node
waits for each other could be reasonably controlled. For the
heterogeneous edge devices, we discuss the possible solutions
to solve the MTMCT problem in Section IV-G.

2) Experiment Setup: Based on the description of the
multi-target tracking algorithm (presented in Section IV-C1)
and the framework description of CLONE_inference (illus-
trated in Section IV-D), we assemble a processing pipeline
of CLONE_inference to solve the MTMCT problem shown
in Fig. 14. In Fig. 14, the yellow area indicates the
CLONE _inference setting on the case study of MTMCT, and
the rest area of Fig. 14 presents how to track multiple targets.

Although the Deep SORT algorithm extracts not only ap-
pearance descriptors but also motion descriptors, the partici-
pating edge nodes just need to transmit appearance descriptors
to the Parameter EdgeServer. The reasons as follows. The
motion information of the same target captured by different
cameras is inevitably different. For a particular camera, the
motion descriptors obtained locally only assist its camera to
track the target. Therefore, transmitting motion information
does not help the collaborative working of the various cameras,
which is why we do not consider the transmission of motion
descriptors in CLONE_inference.

3) Experimental Results:

Tracker Output: The qualitative result of CLONE_inference
is shown in Fig. 15. Fig. 15 presents two examples of multi-
camera results from our trackers on the grocery store video
dataset with the same time point. The two customers with id
117 and id 118 in Fig. 15 are simultaneously tracked in two
different camera videos. The same customer is assigned with
the same id on both edge nodes (cameras), which is exactly
the purpose of CLONE_inference.

Throughput: To show the impact of the different num-
bers of participating edge nodes on the performance of
CLONE _inference, we conduct experiments on four experi-

S I

[w=m)

pﬁ

—

Video Streams

Target Detection

//Tﬂviud

Wide Residual
Networks Z:>
i B =

Appearance Descriptor (AD)

Kalman Filtering
Predict) Z>

(x,y,7,h, 01,03, v3,04)

\ Motion Descriptor (MD)
Feature Extraction

Deep SORT
CLONE

Detected AD

)

T edaw

Z> Cosine
Distance

Frame-by-frame 3
=
Detected MD ﬁ
Z> Mahalanobis
. Distance
Predicted MD

Data Association

Tracker Output

Multi-target Multi-camera Tracking

Fig. 14. An illustration of our pipeline for the multi-target multi-camera tracking in CLONE.

Fig. 15. An exemplary output of CLONE’s trackers.

mental groups, which consist of 2, 3, 5, and 8 Intel FRDs
respectively. Fig. 16 shows the throughput at the Parameter
EdgeServer for these four groups when 2, 3, 5, and 8 edge
nodes are working at the same time. The Parameter Edge-
Server receives parameters during the push process and sends
parameters during the pull process.

Two Edge Nodes Two Edge Nodes

z ’(',,‘ 4000
g 40 m 3000
= 30 X
= 2 : 2000
g > 1000
a a
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)
Three Edge Nodes Three Edge Nodes
'a 50 z‘;’\ 4000
E 40 E 3000
=% = 2000
G2 s
E 10 A 1000
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)
Five Edge Nodes Five Edge Nodes
o 50 = 400
4
g E 3000
= = 2000
G 20 3
=) 10 o 1000
o
0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)
Eight Edge Nodes Eight Edge Nodes
—_
0
» S - 4000
Q o 3000
Z i é 2000
20 p—
% El 1000
a a
o 0

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (seconds) Time (seconds)

Fig. 16. Throughput of four experimental groups at the Parameter EdgeServer.

Unlike the throughput result of Section III-E4, we can see
in Fig. 16 that the pull process has overall much higher
throughput than the push process. This is because, in the
push process, only the appearance descriptors related to the
currently detected targets are pushed. However, in the pull pro-

cess, edge nodes need to pull all the stored trackers, i.e., stored
ids and the corresponding historical appearance descriptors,
from the Parameter EdgeServer. The heavier workload of the
pull process leads to a higher throughput.

F. Comparison between CLONE_inference and ALONE

In this subsection, we present the experimental results of
CLONE _inference (four experimental groups) with ALONE
in terms of accuracy and FPS.

As to ALONE, the accuracy is around 63.7%, and for the
CLONE, its accuracy achieves 56.4% on average. We also
observed that with the increasing number of edge nodes, the
accuracy of CLONE_training will decrease.

3.25

315 3.04
281,
2 3 5 8

1

Fig. 17. The Average FPS on a single edge node for ALONE and the four
CLONE_inference groups.

N
N O w O,

o
&)

o

Frames Per Second (FPS)
[6)]

Fig. 17 shows the average value of FPS on a single edge
node for ALONE (the number of edge nodes is one) and
the four CLONE_inference groups, which consists of 2, 3,
5, and 8 participating edge nodes respectively. It can be
seen that when there are more edge nodes working together,
the average FPS on an edge node will decrease, which is
in line with our expectation. The increasing number of the
participating edge nodes leads to the increasing number of
frames that need to be processed at the same time, which in
turn leads to an increasing amount of appearance descriptors’
transmission. Therefore, FPS will decrease when there are
more edge nodes participate in the CLONE_inference. But we
can also see in Fig. 17 that FPS is not decreasing dramatically.
We may adopt more efficient neural networks and figure out
more suitable parameters for CLONE_inference to control the
reasonable value of FPS when there are more edge nodes
working together.

G. Discussion

In this case study, we focus on the isomorphic edge devices
for CLONE_inference to make sure the video streams of
different cameras could be processed roughly synchronously.
Employing isomorphic edge nodes is able to guarantee to
some extent that the speed at which they process video
streams is not much different, which is capable of reasonably
controlling the time that each edge node waits for each other.
Consequently, the latency could be controlled. However, in the
real application scenarios, always adopting isomorphic edge
devices is not easy or even unrealistic. The first solution is to
make the edge device that processes video data faster "wait”
for slower devices, but this solution inevitably influences the
efficiency of CLONE_inference. The second solution is to let

the edge device that processes the video data slower to “’chase”
faster one, i.e., skipping unprocessed frames to catch up with
the faster devices. The disadvantage of the second solution is
that the accuracy of the algorithm could be negatively affected.

Besides, in this work, we deal with the offline video data,
and we claimed “after all edge nodes finish the pushing process
for a frame at the same timestamp, they will pull trackers
from the Parameter EdgeServer” (described in Section IV-D),
to process video data frame-by-frame, making all edge nodes
are strictly synchronized. Otherwise, for two edge nodes
with different analyzing speed, the time gap between the
timestamps of the current frames that they are processing will
become larger and larger. However, in the real application
scenarios, CLONE_inference could be employed to analyze
live video. In this case, each edge node extracts the frame
corresponding to its current time, and the edge node with
slower processing speed will automatically skip some frames
so that the video frames processed by each edge node are
roughly synchronized.

V. RELATED WORK

Recently, machine learning algorithms have been widely
deployed across a variety of domains, but it is difficult to
deploy neural networks on edge devices with limited computa-
tion and storage resources. In this context, model compression
technologies (such as parameter pruning [77], [78], low-rank
approximation [79], [80], and knowledge transfer [81], [82])
as well as lightweight machine learning algorithms (such
as MobileNets [83], Xception [84], and Squeezenet [85])
have been proposed to tackle this challenge, but they can
not guarantee to solve the problem completely when the
training data and machine learning models are particularly
large. Another popular choice to address this limitations is
employing distributed data flow systems such as MapReduce
[86], Spark [87], Naiad [88], and XGBoost [89]. They are
able to robustly scale with the increasing dataset size, but
when training complex neural network tasks, the data flow
systems fail to scale as they are inefficient at executing iterative
workloads [90], [91].

This restriction sparked the development of distributed
machine learning (DML) algorithms [92], [93], [94], [95],
[96], [97] to aid the implementation of complex iterative neural
networks. Later on, federated learning (FL), a novel DML, was
initially proposed by Google researchers [55], which is perfect
to train models in a collaborative manner while preserving the
privacy of sensitive data. Google describes the approach of
FL in four simple steps—nodes download the current model
from the server and start training based on local data. Then,
each node computes an updated model and sends the updates
to the server. Next, the server aggregates these updates. After
that, the server sends a federated model to nodes (repeat as
necessary) [98], [99], [100], [55], [101].

The main difference between the conventional DML and
FL is that FL using decentralized data residing on the end
devices (edge computing environment), while conventional
DML is employed in the data center environment [102]. In data
centers, worker nodes fetch the data from the shared storage

at the beginning of the training process. Hence, the data
samples obtained by different nodes are usually independent
and identically distributed (i.i.d.). However, in FL, the data is
collected at edges directly and stored persistently; thus, the
data distribution at different edge nodes is usually non-i.i.d.

Our work is inspired by FL, but there are four main
differences between the conventional FL. and CLONE. Sim-
ply speaking, conventional FL synchronously aggregates the
parameters during the training process to learn a communal
model. While CLONE could be employed in the training phase
and inference phase, so the tasks of the Parameter EdgeServer
include but not limited to aggregate parameters. Table VI
summarizes the main differences. Traditional FL only uses
the boosting technique to optimize the distributed isomorphic
model, while CLONE generates different architecture models
for different scenarios.

TABLE VI
DIFFERENCES BETWEEN CONVENTIONAL FL AND CLONE.
Conventional FL CLONE
Application Scenarios Training. Training and inference.
Parameter Asynchronous /
e Synchronous.
Transmission Synchronous.
Personalization i\i](())n personaliza- Personalized model.
Tasks of Aggregating pa- | Including but not limited
Parameter EdgeServers rameters. to aggregate parameters.

TABLE VII
ADVANTAGES OF CLONE.
Advantages Description Outperform
Each edge node trains a model
locally based on its private
User data; local model will be up- | DML, FL, Cloud-
Personalization | dated according to the dy- | only method.
namic changes of the local
dataset.
Pri The training data could be | DML, Cloud-only
rivacy X S S
Preserving always kept in its original | method, and cloud-
source. edge method.
Analyze data on board; edge
Latency nodes just need to push param- | DML, Cloud-only
Reduction eters to the Parameter Edge- | method, Cloud-edge
Server instead of amounts of | method.
data.
Reduce security risks by lim-
Security iting the attack surface to only | Cloud-only method,
Protection the edges, instead of the edges | Cloud-edge method.
and the cloud.
Since the models are present
Offline on the edges, the local model | Cloud-only method,
Working work even when there is no | Cloud-edge method.
internet connection available.

At the same time, with the prevalence of DML, cloud-only
approaches [8], [9], [10] and cloud-edge methodologies [103],
[12], [13], [102] have been proposed to tackle the challenges
of analyzing big data in the real-time fashion, which need
to upload a portion of raw data to cloud. Different from
these approaches, we just focus on collaborative learning on
only the edge side, and CLONE has three main strengths: ()
reduce power consumption by eliminating the use of central
data centers, (i¢) speed up the analysis tasks as it always
analyzes real-time data on-board and just need to communicate
with the parameter edge about the current parameters [104],
[22], and (7i7) CLONE is capable to reduce security risk by
limiting the attack surface to only the edges. As a summary,

the advantages of CLONE compared with the conventional
DML, FL, cloud-only approaches, and cloud-edge methods
are shown in Table VII.

VI. CONCLUSION AND FUTURE WORK

Conclusion Remarks: In this paper, we proposed a col-
laborative learning framework on the edges (CLONE), in-
cluding CLONE_training and CLONE_inference. It demon-
strated the effectiveness of privacy serving and latency re-
duction. For CLONE_training, we chose the failure pre-
diction of EV battery and associated components as our
first case study, and the corresponding experimental results
showed that CLONE_training could reduce model training
time without sacrificing algorithm performance. Besides, we
found that adding driver behavior metrics could improve
the prediction accuracy for the EV failure prediction. As to
CLONE _inference, customer tracking in a grocery store was
selected as the second case study. We presented a detailed
description of how the CLONE_inference solution could be
employed to solve the multi-target multi-camera tracking
problem.

Possible Improvements: There are some possible improve-
ments for CLONE. We list three of them for the discussion. (%)
Bandwidth demand: as the increasing number of edge nodes or
the participation of larger neural networks, the communication
of CLONE may be limited by bandwidth. In this context, we
could leverage the Parameter EdgeServer group. In the group,
Parameter EdgeServers communicate with each other. Each
Parameter EdgeServer is only responsible for a portion of
parameters, and they work together to maintain globally shared
parameters and their updates. (ii) Aggregation protocol: it is
essential to find a suitable aggregation rule for the Parameter
EdgeServer to aggregate parameters, which requires excessive
experiments based on the specific experimental conditions.
(#i1) Push/pull latency: as to CLONE_training, pushing pa-
rameters to the Parameter EdgeServer is usually much slower
than pulling parameters. As to CLONE_inference, the case
is different. It is essential to investigate methods to reduce
push/pull latency (possible solutions include structured updates
and sketched updates [55]).

Potential Use Cases: In this work, we choose two case studies,
i.e., failure prediction of EV battery and related components
as well as the customer tracking in a grocery store to show
how CLONE solution could be employed in the training
stage and the inference stage. There are a variety of other
meaningful use cases that CLONE could help, particularly for
two types of scenarios: (%) real-time applications that require
developing suitable machine learning algorithms on the edges,
and (77) due to the privacy or/and the large network bandwidth
constraints, the training dataset cannot be moved away from
its source.

REFERENCES

[1] C. Savaglio, P. Gerace, G. Di Fatta, and G. Fortino, “Data mining at
the IoT edge,” in 2019 28th International Conference on Computer
Communication and Networks (ICCCN). 1EEE, 2019, pp. 1-6.

(2]

[3]

(4]

[5

—_

[6

[}

(71

[8

=

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

B. L. Mearian. (2013) Self-driving cars could create
1IGB of data a second. [Online]. Available: https:
/Iwww.computerworld.com/article/2484219/emerging-technology/
self-driving-cars-could-create- 1 gb-of-data-a-second.html

T. Rossi, “Autonomous and ADAS test cars pro-
duce over 11 TB of data per day” October
10, 2018. [Online]. Available: https://www.tuxera.com/blog/

autonomous-and-adas-test-cars-produce-over- 1 1-tb-of-data- per-day/
S. Lu, X. Yuan, and W. Shi, “EdgeCompression: An integrated frame-
work for compressive imaging processing on CAVs,” in Proceedings
of the 5th ACM/IEEE Symposium on Edge Computing (SEC), 2020.
SecurityInfoWatch, “Data generated by new surveillance cameras
to increase exponentially in the coming years,” January
20, 2016. [Online]. Available: https://www.securityinfowatch.com/
video-surveillance/news/12160483

G. Forecast, “Cisco visual networking index: Global mobile data traffic
forecast update 2017-2022,” Update, vol. 2017, p. 2022, 2019.

G. Ulm, E. Gustavsson, and M. Jirstrand, “OODIDA: On-board/off-
board distributed data analytics for connected vehicles,” arXiv preprint
arXiv:1902.00319, 2019.

J. Bort. (2016) The ’Google Brain’ is a real thing but very few
people have seen it. [Online]. Available: http://www.businessinsider.
com/what-isgoogle-brain-2016-9.

N. Jouppi. (2016) Google supercharges ma-
chine learning tasks with TPU custom chip.
[Online]. Available: https://cloud.google.com/blog/products/gcp/

google-supercharges-machine-learning-tasks- with-custom-chip

B. Lovejoy. (2015) Apple moves to third-generation Siri back-
end, built on open-source Mesos platform. [Online]. Available:
https://9toSmac.com/2015/04/27/siri-backend-mesos/

S. Claudio and F. Giancarlo, “A simulation-driven methodology for IoT
data mining based on edge computing,” ACM Transactions on Internet
Technology (TOIT), 2020.

Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” Acm Sigplan Notices, vol. 52, no. 4, pp. 615-629,
2017.

P. M. Grulich and F. Nawab, “Collaborative edge and cloud neural
networks for real-time video processing,” Proceedings of the VLDB
Endowment, vol. 11, no. 12, pp. 2046-2049, 2018.

M. G. R. Alam, M. M. Hassan, M. Z. Uddin, A. Almogren, and
G. Fortino, “Autonomic computation offloading in mobile edge for
IoT applications,” Future Generation Computer Systems, vol. 90, pp.
149-157, 2019.

S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “LAVEA:
Latency-aware video analytics on edge computing platform,” in Pro-
ceedings of the 2nd ACM/IEEE Symposium on Edge Computing, 2017,
pp. 1-13.

K. Lee, J. Flinn, and B. D. Noble, “Gremlin: scheduling interactions
in vehicular computing,” in Proceedings of the 2nd ACM/IEEE Sym-
posium on Edge Computing, 2017, pp. 1-13.

C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “VideoEdge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). 1EEE, 2018, pp. 115-131.

L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge
servers via docker container migration,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, 2017, pp. 1-13.

S. Y. Jang, Y. Lee, B. Shin, and D. Lee, “Application-aware IoT camera
virtualization for video analytics edge computing,” in 2018 IEEE/ACM
Symposium on Edge Computing (SEC). 1EEE, 2018, pp. 132-144.
A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, K. Karanasos,
J. Padhye, and G. Varghese, “Wanalytics: Geo-distributed analytics for
a data intensive world,” in Proceedings of the 2015 ACM SIGMOD
international conference on management of data. ~ACM, 2015, pp.
1087-1092.

P. Zhang, M. Zhou, and G. Fortino, “Security and trust issues in fog
computing: A survey,” Future Generation Computer Systems, vol. 88,
pp. 16-27, 2018.

D. Park, S. Kim, Y. An, and J.-Y. Jung, “LiReD: A light-weight real-
time fault detection system for edge computing using LSTM recurrent
neural networks,” Sensors, vol. 18, no. 7, p. 2110, 2018.

S. Lu, B. Luo, T. Patel, Y. Yao, D. Tiwari, and W. Shi, “Making disk
failure predictions SMARTer!” in 18th USENIX Conference on File
and Storage Technologies (FAST), 2020, pp. 151-167.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “LightGBM: A highly efficient gradient boosting decision

https://www.computerworld.com/article/2484219/emerging-technology/self-driving-cars-could-create-1gb-of-data-a-second.html
https://www.computerworld.com/article/2484219/emerging-technology/self-driving-cars-could-create-1gb-of-data-a-second.html
https://www.computerworld.com/article/2484219/emerging-technology/self-driving-cars-could-create-1gb-of-data-a-second.html
https://www.tuxera.com/blog/autonomous-and-adas-test-cars-produce-over-11-tb-of-data-per-day/
https://www.tuxera.com/blog/autonomous-and-adas-test-cars-produce-over-11-tb-of-data-per-day/
https://www.securityinfowatch.com/video-surveillance/news/12160483
https://www.securityinfowatch.com/video-surveillance/news/12160483
http://www.businessinsider.com/what-isgoogle-brain-2016-9.
http://www.businessinsider.com/what-isgoogle-brain-2016-9.
https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-custom-chip
https://cloud.google.com/blog/products/gcp/google-supercharges-machine-learning-tasks-with-custom-chip
https://9to5mac.com/2015/04/27/siri-backend-mesos/

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

tree,” in Advances in neural information processing systems, 2017, pp.
3146-3154.

0. Consortium et al., “OpenFog reference architecture for fog comput-
ing,” Architecture Working Group, 2017.

J. Li, J. Jin, D. Yuan, and H. Zhang, “Virtual fog: A virtualization
enabled fog computing framework for internet of things,” IEEE Internet
of Things Journal, vol. 5, no. 1, pp. 121-131, 2018.

S. Biookaghazadeh, M. Zhao, and F. Ren, “Are FPGAs suitable for edge
computing?” in USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18), 2018.

F. Spiga and I. Girotto, “phiGEMM: a CPU-GPU library for port-
ing quantum espresso on hybrid systems,” in 2012 20th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing. 1EEE, 2012, pp. 368-375.

I. V. Morozov, A. Kazennov, R. Bystryi, G. E. Norman, V. Pisarev,
and V. V. Stegailov, “Molecular dynamics simulations of the relaxation
processes in the condensed matter on GPUs,” Computer Physics
Communications, vol. 182, no. 9, pp. 1974-1978, 2011.

T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU scheduling on the NVIDIA TX2: Hidden details revealed,” in
2017 IEEE Real-Time Systems Symposium (RTSS). 1EEE, 2017, pp.
104-115.

L. Bao, L. Fan, and Z. Miao, “Real-time simulation of electric vehicle
battery charging systems,” in 2018 North American Power Symposium
(NAPS). IEEE, 2018, pp. 1-6.

Y. Xing, E. W. Ma, K. L. Tsui, and M. Pecht, “Battery management
systems in electric and hybrid vehicles,” Energies, vol. 4, no. 11, pp.
1840-1857, 2011.

Y. Ma, K. Zhang, J. Gu, J. Li, and D. Lu, “Design of the control system
for a four-wheel driven micro electric vehicle,” in 2009 IEEE Vehicle
Power and Propulsion Conference. 1EEE, 2009, pp. 1813-1816.
H.-P. Li and Y.-w. Li, “The research of electric vehicle’s MCU system
based on i5026262,” in 2017 2nd Asia-Pacific Conference on Intelligent
Robot Systems (ACIRS). 1EEE, 2017, pp. 336-340.

K. W. E. Cheng, B. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-
management system (BMS) and SOC development for electrical vehi-
cles,” IEEE transactions on vehicular technology, vol. 60, no. 1, pp.
76-88, 2011.

L. Ran, W. Junfeng, W. Haiying, and L. Gechen, “Design method of
CAN BUS network communication structure for electric vehicle,” in
International Forum on Strategic Technology 2010. IEEE, 2010, pp.
326-329.

B. Li, W. Wang, L. Jia, D. Wang, and A. Kong, “Study on HIL system
of electric vehicle controller based on NI,” in IOP Conference Series:
Materials Science and Engineering, vol. 382, no. 5. IOP Publishing,
2018, p. 052033.

K. Sarrafan, K. M. Muttaqi, and D. Sutanto, “Real-time state-of-charge
tracking system using mixed estimation algorithm for electric vehicle
battery system,” in 2018 IEEE Industry Applications Society Annual
Meeting (IAS). 1EEE, 2018, pp. 1-8.

X.-W. Yan, Y.-W. Guo, Y. Cui, Y.-W. Wang, and H.-R. Deng, “Electric
vehicle battery soc estimation based on gnl model adaptive kalman
filter,” in Journal of Physics: Conference Series, vol. 1087, no. 5. I0OP
Publishing, 2018, p. 052027.

A. Fotouhi, D. J. Auger, K. Propp, S. Longo, and M. Wild, “A review on
electric vehicle battery modelling: From Lithium-ion toward Lithium—
Sulphur,” Renewable and Sustainable Energy Reviews, vol. 56, pp.
1008-1021, 2016.

E. Peled, D. Golodnitsky, H. Mazor, M. Goor, and S. Avshalomov,
“Parameter analysis of a practical lithium-and sodium-air electric
vehicle battery,” Journal of Power Sources, vol. 196, no. 16, pp. 6835—
6840, 2011.

A. Liaw, M. Wiener et al., “Classification and regression by random-
Forest,” R news, vol. 2, no. 3, pp. 18-22, 2002.

J. Ye, J.-H. Chow, J. Chen, and Z. Zheng, “Stochastic gradient boosted
distributed decision trees,” in Proceedings of the 18th ACM conference
on Information and knowledge management. ACM, 2009, pp. 2061—
2064.

J. H. Friedman, “Stochastic gradient boosting,” Computational Statis-
tics & Data Analysis, vol. 38, no. 4, pp. 367-378, 2002.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

F. D. dos Santos Lima, G. M. R. Amaral, L. G. de Moura Leite,
J. P. P. Gomes, and J. de Castro Machado, “Predicting failures in hard
drives with LSTM networks,” in Proceedings of the 2017 Brazilian
Conference on Intelligent Systems (BRACIS). 1EEE, 2017, pp. 222—
2217.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: a system for
large-scale machine learning,” in Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
vol. 16, 2016, pp. 265-283.

A. Gulli and S. Pal, Deep Learning with Keras. Packt Publishing Ltd,
2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in Python,” Journal of machine learn-
ing research, vol. 12, no. Oct, pp. 2825-2830, 2011.

R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in International Joint Conference on
Artificial Intelligence (IJCAI), vol. 14, no. 2, 1995, pp. 1137-1145.

J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analysis of k-
fold cross validation in prediction error estimation,” IEEE transactions
on pattern analysis and machine intelligence (TPAMI), vol. 32, no. 3,
pp. 569-575, 2010.

J.-H. Kim, “Estimating classification error rate: Repeated cross-
validation, repeated hold-out and bootstrap,” Computational statistics
& data analysis, vol. 53, no. 11, pp. 3735-3745, 2009.

L. He, E. Kim, K. G. Shin, G. Meng, and T. He, “Battery state-of-health
estimation for mobile devices,” in 2017 ACM/IEEE 8th International
Conference on Cyber-Physical Systems (ICCPS). 1EEE, 2017, pp.
51-60.

A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional 1stm and other neural network architectures,” Neural
Networks, vol. 18, no. 5-6, pp. 602-610, 2005.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtérik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” arXiv preprint arXiv:1610.05492, 2016.

W. S. Yuwono, D. W. Sudiharto, and C. W. Wijiutomo, “Design and
implementation of human detection feature on surveillance embedded
ip camera,” in 2018 International Conference on Sustainable Informa-
tion Engineering and Technology (SIET). 1EEE, 2019, pp. 42-47.
W. Zhu, C. B. Owen, H. Li, and J.-H. Lee, ‘“Personalized in-store
e-commerce with the PromoPad: an augmented reality shopping as-
sistant,” Electronic Journal for E-commerce Tools and Applications,
vol. 1, no. 3, pp. 1-19, 2004.

J. Eden, T. Kawchak, and V. Narayanan, “Indoor navigation using text
extraction,” in 2018 IEEE International Workshop on Signal Processing
Systems (SiPS). 1EEE, 2018, pp. 112-117.

A. Cheng. (2019) Why amazon go may soon change the way we shop.
[Online]. Available: https://www.forbes.com/sites/andriacheng/2019/
01/13/why-amazon- go-may-soon-change-the-way- we-want-to-shop/
#435349¢56709

M. Tillman. (2019) ‘What is Amazon Go,
where is it, and how does it work? [On-
line]. Available: https://www.pocket-lint.com/phones/news/amazon/

139650-what-is-amazon- go- where-is-it-and-how-does-it-work

Q. Burrows, “Scowl because you’re on candid camera: Privacy an
dvideo surveillance,” Val. UL Rev., vol. 31, p. 1079, 1996.

C. Slobogin, “Public privacy: camera surveillance of public places and
the right to anonymity,” Miss. 1J, vol. 72, p. 213, 2002.

F. of Humanity Institute, “Artificial intelligence: American attitudes
and trends,” January 9th, 2019. [Online]. Available: https://www.thi.
ox.ac.uk/aipublic2019/

D. Musicki, B. F. La Scala, and R. J. Evans, “Integrated track
splitting filter-efficient multi-scan single target tracking in clutter,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 4,
pp- 1409-1425, 2007.

A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “A mobile vision
system for robust multi-person tracking,” in 2008 IEEE Conference on
Computer Vision and Pattern Recognition. 1EEE, 2008, pp. 1-8.

S. S. Blackman, “Multiple hypothesis tracking for multiple target
tracking,” IEEE Aerospace and Electronic Systems Magazine, vol. 19,
no. 1, pp. 5-18, 2004.

N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE International
Conference on Image Processing (ICIP). 1EEE, 2017, pp. 3645-3649.
N. Wojke and A. Bewley, “Deep cosine metric learning for person
re-identification,” in 2018 IEEE winter conference on applications of
computer vision (WACV). 1EEE, 2018, pp. 748-756.

W. Liu, O. Camps, and M. Sznaier, “Multi-camera multi-object track-
ing,” arXiv preprint arXiv:1709.07065, 2017.

https://www.forbes.com/sites/andriacheng/2019/01/13/why-amazon-go-may-soon-change-the-way-we-want-to-shop/#435349e56709
https://www.forbes.com/sites/andriacheng/2019/01/13/why-amazon-go-may-soon-change-the-way-we-want-to-shop/#435349e56709
https://www.forbes.com/sites/andriacheng/2019/01/13/why-amazon-go-may-soon-change-the-way-we-want-to-shop/#435349e56709
https://www.pocket-lint.com/phones/news/amazon/139650-what-is-amazon-go-where-is-it-and-how-does-it-work
https://www.pocket-lint.com/phones/news/amazon/139650-what-is-amazon-go-where-is-it-and-how-does-it-work
https://www.fhi.ox.ac.uk/aipublic2019/
https://www.fhi.ox.ac.uk/aipublic2019/

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

E. Ristani and C. Tomasi, “Features for multi-target multi-camera
tracking and re-identification,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 6036-6046.
ONVIE. (2018) Meet our members: Henrik sydbo hansen of
milestone. [Online]. Available: https://www.onvif.org/blog/blog/2018/
03/20/meet-members- henrik-sydbo-hansen-milestone/

J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and
realtime tracking,” in 2016 IEEE International Conference on Image
Processing (ICIP). 1EEE, 2016, pp. 3464-3468.

S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

G. Welch, G. Bishop ef al., “An introduction to the kalman filter,” 1995.
X. Hou, Y. Wang, and L.-P. Chau, “Vehicle tracking using Deep SORT
with low confidence track filtering,” in 2019 16th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS).
1EEE, 2019, pp. 1-6.

M. Courbariaux, Y. Bengio, and J.-P. B. David, “Training deep neural
networks with binary weights during propagations. arxiv preprint,”
arXiv preprint arXiv:1511.00363, 2015.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in neural
information processing systems, 2015, pp. 1135-1143.

E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in Advances in neural information processing systems,
2014, pp. 1269-1277.

M. Denil, B. Shakibi, L. Dinh, N. De Freitas et al., “Predicting param-
eters in deep learning,” in Advances in neural information processing
systems, 2013, pp. 2148-2156.

B. B. Sau and V. N. Balasubramanian, “Deep model compres-
sion: Distilling knowledge from noisy teachers,” arXiv preprint
arXiv:1610.09650, 2016.

P. Luo, Z. Zhu, Z. Liu, X. Wang, X. Tang et al, “Face model
compression by distilling knowledge from neurons.” in AAAI 2016,
pp. 3560-3566.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” arXiv preprint, pp. 1610-02 357, 2017.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters andj 0.5 MB model size,” arXiv preprint arXiv:1602.07360,
2016.

J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107-113, 2008.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: a timely dataflow system,” in Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles.
ACM, 2013, pp. 439-455.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785-794.
K. Zhang, S. Alqahtani, and M. Demirbas, “A comparison of distributed
machine learning platforms,” in 2017 26th International Conference on
Computer Communication and Networks (ICCCN). 1EEE, 2017, pp.
1-9.

C. Boden, T. Rabl, and V. Markl, “Distributed machine learning-but
at what COST,” in Machine Learning Systems Workshop at the 2017
Conference on Neural Information Processing Systems, 2017.

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285-296, 2010.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative MapReduce,” in Proceedings
of the 19th ACM international symposium on high performance dis-
tributed computing. ACM, 2010, pp. 810-818.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2012, pp. 2-2.
S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning fast
iterative data flows,” Proceedings of the VLDB Endowment, vol. 5,
no. 11, pp. 1268-1279, 2012.

Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and
J. Hellerstein, “GraphLab: A new framework for parallel machine
learning,” arXiv preprint arXiv:1408.2041, 2014.

R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, and
M. Viroli, “Modelling and simulation of opportunistic IoT services with
aggregate computing,” Future Generation Computer Systems, vol. 91,
pp. 252-262, 2019.

H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentral-
ized data,” arXiv preprint arXiv:1602.05629, 2016.

R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Be-
yond inferring class representatives: User-level privacy leakage from
federated learning,” arXiv preprint arXiv:1812.00535, 2018.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan et al.,
“Towards federated learning at scale: System design,” arXiv preprint
arXiv:1902.01046, 2019.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” learning, vol. 8, p. 9, 2018.

D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
optimizing neural network queries over video at scale,” Proceedings of
the VLDB Endowment, vol. 10, no. 11, pp. 1586-1597, 2017.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, 2016.

Sidi Lu received the B.E. degree from Xidian
University, Xi’an, China, in 2016. She is currently
working toward a Ph.D. degree in Computer Sci-
ence with Wayne State University, Detroit, USA.

) o Her academic advisor at Wayne State University is
e Prof. Weisong Shi. Her research interests include

reliability analysis, collaborative machine learning,
and video processing.

Yongtao Yao is a Ph.D. student under the supervi-
sion of Prof. Weisong Shi at Wayne State University,
Detroit, USA. He received his B.E. degree from Xid-
ian University in 2016. Shi. His research direction is
Edge Computing, and his specific research interests
include model scheduling and video processing.

Weisong Shi is a Charles H. Gershenson Distin-
guished Faculty Fellow and a Professor of Com-
puter Science with Wayne State University, USA,
where he leads the Wayne Mobility Initiative (WMI)
and directs the Connected and Autonomous dRiv-
ing Laboratory (CAR), investigating performance,
reliability, power- and energy-efficiency, trust and
privacy issues of networked computer systems, and
applications. He is one of the leaders in the edge
computing research community and has been very
actively working on edge computing and its applica-

tions in public safety, CAVs, and connected health. His paper entitled “Edge
Computing: Vision and Challenges” has been cited more than 2500 times.
In 2016, he co-chaired the NSF Workshop on Grand Challenges in Edge
Computing. In 2018, Dr. Shi led the development of IEEE Course on Edge
Computing. In 2019, Dr. Shi served as the lead guest editor for the edge
computing special issue on the prestigious Proceedings of the IEEE journal.
He is the Founding Steering Committee Chair of the ACM/IEEE Symposium
on Edge Computing (SEC). He is an IEEE Fellow and an ACM Distinguished
Scientist.

https://www.onvif.org/blog/blog/2018/03/20/meet-members-henrik-sydbo-hansen-milestone/
https://www.onvif.org/blog/blog/2018/03/20/meet-members-henrik-sydbo-hansen-milestone/
http://iot.eng.wayne.edu/edge/goals.php
http://iot.eng.wayne.edu/edge/goals.php
https://innovationatwork.ieee.org/event/free-webinar-ieee-introduction-to-edge-computing/
https://innovationatwork.ieee.org/event/free-webinar-ieee-introduction-to-edge-computing/
http://proceedingsoftheieee.ieee.org/view-recent-issues/august-2019/

	Introduction
	CLONE Design
	Framework Description
	Differences of Two Application Scenarios
	Hardware Selection

	Use Case i: failure prediction of EV battery and related accessories
	Background
	Data Description
	Experiment Design of ALONE
	Experiment Goals
	Experiment Groups
	Experiment Setup
	ALONE Experiment Results
	Observations of ALONE experiments

	CLONE_training Framework
	Implementation of CLONE_training
	Experimental Goals
	Hardware Selection
	Experiment Setup
	Throughput

	Comparison between CLONE_training and ALONE
	Training Time Comparison
	Evaluation Score Comparison

	Discussion

	Use Case ii: customer tracking in a grocery store
	Background
	Data Description
	Experiment Design of ALONE
	Algorithm Description of Multi-target Tracking
	Experiment Setup
	ALONE Experiment Results
	ALONE Experiment Observations

	CLONE_inference Framework
	Store Trackers
	Update Trackers
	Delete Trackers

	Implementation of CLONE_inference
	Experiment Goals
	Experiment Setup
	Experimental Results

	Comparison between CLONE_inference and ALONE
	Discussion

	Related Work
	Conclusion and Future Work
	References
	Biographies
	Sidi Lu
	Yongtao Yao
	Weisong Shi

