
A Comparison of End-to-End Architectures for
Connected Vehicles

Sidi Lu∗, Nejib Ammar†, Akila Ganlath†, Haoxin Wang† and Weisong Shi∗
∗Department of Computer Science, Wayne State University, Detroit, MI 48202, USA

†Toyota Motor North America R&D, InfoTech Labs, Mountain View, CA 94043, USA
{lu.sidi, weisong}@wayne.edu, {nejib.ammar, akila.ganlath, haoxin.wang}@toyota.com

Abstract—With an ever-increasing number of vehicle
services, connected vehicles (CVs) are becoming more
software-dependent than ever, which is bringing a tremen-
dous burden on the infrastructure. However, how to ef-
ficiently support such a tremendous amount of services
is unknown. This paper takes the first step to exam-
ine different vehicle architectures. We first illustrate the
evolution of automotive software and computing system.
Next, we introduce the concept of software-defined vehicle,
classify essential CV applications, and list their perfor-
mance requirements such as communication mode, critical
latency, data rate per vehicle, and communication range.
Then, we choose over-the-air (OTA) update as our case
study, followed by the introduction of four types of CV
architectures. Then, we discuss advantages and drawbacks
of each type of architecture. Finally, we conclude this article
by presenting an edge-based architecture for CVs, named
EdgeArC.

I. CONNECTED VEHICLES: FROM PRESENT TO
FUTURE

Recently, with the wide deployment of communica-
tion mechanisms (e.g., DSRC, V2X, 5G) and the vast
improvements in computing technologies (e.g., sensors,
deep learning, and high-performance computing), there
has been an acceleration in the research and development
(R&D) efforts to bring the idea of connected vehicles
(CVs) to fruition, and a plethora of intelligent appli-
cations are enabled in CVs such as remote real-time
diagnostics, adaptive cruise control, and fuel efficiency
optimization. These software-based services fuel the CV
market. For example, the global CV market is projected
to reach $225 billion by 2027 with a compound annual
growth rate (CAGR) of 17% [1]. Besides, Automotive
Edge Computing Consortium (AECC) predicts that every
new vehicle will be connected by 2025, which will result
in 50% of national vehicles (with a total number up to
400 million) on the road with connected features [2].

The Evolution of Automotive Software: The past
decade has seen the transformation in consumer elec-
tronics from the early days of hardware differentiation
to nowadays software differentiation, where consumers
are more and more looking into new applications and

DC

ZC ZC

DC

ZC ZC

Cloud

(a) Traditional Architecture (b) Software-Defined Architecture

DC Domain Controller

ZC Zone Controller

Electronic Control Unit

CPU + FPGA

Cluster

GPU Cluster

FPGA ClusterTPU Cluster

Roadside

Unit

Cellular

Tower

EdgeServer

⋯

Fig. 1: The paradigm shifts in automotive computing
system architecture.

services for improved user experience. The automotive
industry has sensed the urgency of enhancing their
software capabilities. Today’s vehicles can already have
up to 150 million lines of software code, distributed
among more than 100 electronic control units (ECUs).
The complexity and quantity of software for future CV
will continue to increase exponentially, pushing the value
of software in a future CV far exceeds that of the
traditional vehicles made of mainly mechanical hardware
with self-contained electronic devices such as ECUs.

The Evolution of Automotive Computing System:
Moreover, the forthcoming evolution in CV also requires
a major re-design of the underlying supporting auto-
motive computing system architecture. Currently, most
production vehicles are equipped with various small
and fixed-function ECUs, which are usually produced
by different suppliers. ECUs are connected through a
Controller Area Network (CAN bus) so that ECUs
can communicate with each other without a host com-
puter. The various automotive functions are distributed
across multiple ECUs located throughout a vehicle as
shown in Fig. 1 (a). Given the limited resources in
an ECU’s micro-controller, it is almost impossible to
deploy diverse computation-intensive applications with-

1

out incurring significant efforts in redesigning vehicle’s
computing system architecture.

Therefore, some leading automotive companies such
as Tesla and APTIV [3] have adopt a type of sensible
computing system architecture as shown in Fig. 1 (b).
The idea behind this in-vehicle high performance com-
puter architecture is to keep most existing ECU designs
as is to not only better meet the software-based func-
tional safety (FuSA) and real-time constraints, but also
ease the transition from traditional vehicle architectures
to the future of software-defined architecture. ECUs are
partitioned into multiple functionally related zones con-
trolled by their zone controllers (ZCs). ZCs are further
interconnected with each other and partitioned into a
set of domains controlled by domain controllers (DCs).
Both ZCs and DCs are modern microprocessors capable
of running embedded Linux operating systems. This
system architecture not only greatly simplifies vehicles’
system interconnection, but also makes the deployment
of software functionalities to both ZCs and DCs possible.
Through wireless connections, this architecture can be
easily complemented by edge servers and clouds for
collaboration.

The Need of End-to-End Architecture: Although the
automotive software and computing system architecture
are transforming vehicle capabilities, they also making
automotive development trapped in a maze of com-
plexity. This is mainly because that the development
of automotive-software and computing system modules
frequently occurs in isolation, and these changes are
happening so rapidly that automotive OEMs and other
industry stakeholders are now struggling to keep pace.
In addition, integrating and upgrading the features that
consumers increasingly expect for CVs also incurs enor-
mous costs to automotive companies.

In this context, a suitable end-to-end architecture that
integrates independent software elements into a compre-
hensive platform can improve functionality and decrease
complexity, whereby the customer is central and the
vehicle is integrated as optimally as possible into daily
life and the needs of the customer. However, today’s
CV architectures are not optimized to handle the ever-
increasing volumes of CV data, nor can they reliably and
efficiently support time-sensitive CV services on a large
scale. Therefore, choosing a suitable end-to-end CV
architecture to support the efficient communication and
collaboration between vehicle, edge server, and cloud is
necessary to fill this gap.

The rest of the paper is organized as follows. We
first elaborate on the big picture of the software-defined
vehicle and four types of vehicle applications in Sec. II.
Then, we summarize performance requirements of vehi-
cle applications in Sec. III. Sec. IV describes our selected

use case, i.e., over-the-air (OTA) update, and Sec. V
demonstrates four typical architectures. After comparing
four architectures in Sec. VI, we present an edge-based
architecture in Sec. VII and conclude the whole paper
in Sec. VIII.

II. SOFTWARE-DEFINED VEHICLE & APPLICATIONS

A. A Forthcoming Evolution in Automotive Industry
In recognition of the growing complexity and impor-

tance of software, as well as the forthcoming evolution
in automotive computing system architecture, thought-
leaders from automotive industry have begun working
toward software-defined vehicles (SDV) [4]. The idea
behind SDV is to emphasize a software-centric view
of customers’ experience with the vehicle, which can
be personalized and updated with newer versions of
software and newer services to be deployed throughout
the life-cycle of the vehicle. And software updates and
new service additions no long require customers visiting
a dealership, but can be done through an over-the-air
(OTA) update technology whenever as needed, which has
already proven to improve consumer satisfaction [5].

However, current automotive hardware architectures
are not well suited for the automotive industry’s existing
waterfall software development practices. The main rea-
son is that the existing computing devices in CV are still
constrained by limited computing power and inefficient
communication protocols. To address such issues, the
automotive industry is looking into the successful cloud-
native technologies to help with such a SDV trans-
formation. One recent example is the Scalable Open
Architecture for Embedded Edge (SOAFEE) consortium
led by Arm’s [6].

The key concept of the cloud-native design principle is
Service Oriented Architecture (SOA) where applications
are decomposed as a set of self-contained functional
services (sometimes also called micro-services) that can
be deployed and orchestrated onto computing devices
at different locations. These micro-services are typically
deployed as either containers or virtual machines (VMs),
depending on the nature of the application requirements.
A properly designed cloud-native vehicle architecture,
can consolidate a modern vehicle’s various resources
(such as system hardware, software, cloud services) into
an integrated and centrally managed platform. Vehicle
services can be run as different micro-services inside
either a container or virtual machine, enabling scalable
management and smooth migration of micro-services
across different computing devices, in the vehicle, on
the edge, or across clouds.

B. Application Landscape
Inspired by previous studies [7], we divide CV appli-

cations into four categories according to their themes as

2

Four Type of CV Applications

(Software-centric)

Safety Services

Collision

avoidance

Auto emergency

braking

Pothole and

black ice

detection

Mobility

Service

Path

planning

Self

parking
Intersection

control

Information

Service

Map

generation

Fuel

efficiency

optimization

Air quality

monitoring

Computation Service

In-vehicle

meeting

In-vehicle

delivery

In-vehicle

entertainment

⋯

⋯ ⋯

⋯

Fig. 2: Four types of CV applications.

shown in Fig. 2, related to safety, mobility, information,
and computation:
i) Safety application mitigate the risk of hazards by

issuing warnings to vehicle operators or to directly
controlling a single vehicle’s actuators. These ap-
plications usually address the critical need and/or
call for hard real-time data processing and vehicle
response.

ii) Motion application includes individual motion ser-
vices and group motion services. Individual motion
services intelligently provide (soft) real-time motion
advisories for a single vehicle based on vehicle’s
real-time locations, destinations, and dynamic driv-
ing environment. Group motion application uses
vehicle sensors and external data to influence or
control the behavior of vehicles in aggregate.

iii) Information application aim to enhance users’
comfort and ability to perform other tasks while
driving or allow viewing vehicle parameters re-
motely. These applications usually tolerate trans-
mission delays (soft real-time or non time-critical)
and errors.

iv) Computation application reflects the efficient
on-board computation capability of CVs, which
can help computation-constrained connected de-
vices/things to finished computation-intensive tasks
even when CV is in charging or parking mode.

III. APPLICATION REQUIREMENTS

The end-to-end CV architecture are derived by study-
ing the needs of the CV applications and use cases
[7]–[9]. In this section, we summarize application and
their system performance requirements based on the
requirements classification given in [8], [9].

Specifically, [9], [10] summarize the system perfor-
mance requirements of vehicle applications, including
the related communication mode, minimum transmission
frequency, and critical latency, as shown in Table I.
The coverage distance associated with these applications
varies from 0 m to full communication range, depending
on the use case.

In addition, considering the cooperation between vehi-
cle, edge server, and cloud, [8], [11] list the performance

requirement of different V2X applications, as shown in
Table II, including end-to-end latency, reliability, data
rate per vehicle (kb/s), and communication range. Here,
V2P refers to vehicle-to-pedestrian. V2N stands for
vehicle-to-network, where the vehicle connects to an
entity within the network, e.g., a back-end server or a
traffic information system. The communication range is
qualitatively defined as long for >500 meters, medium
from 200 to 500 meters, and short for < 200 meters.

IV. OVER-THE-AIR UPDATE

A. Why OTA is important?

The number of automotive recalls and costs linked to
software failures has risen exponentially in the U.S. —
in 2020, a total of 83.2 million vehicles have undergone
recalls, of which 75 million (90%) vehicles have been
affected by software related problems. This reveals that
more than a quarter of vehicles on the roads nationally
have been recalled due to the software problem at least
once a year (with an estimated 286.9 million registered
vehicles in the U.S. [14]). Since the average cost of
an auto recall over the last 10 years was about $500
per vehicle [15], it can be estimated that the average
software-related recall cost nationally is around $38
billion in 2020. With the increasing number of vehicles,
the software-related safety threat and cost is greater than
ever.

All these software-related recalls could have been
avoided if there were OTA software updates. OTA up-
dates not only provide assistance for patching against
security holes, but also support patching against auto-
motive glitches in software that can cause malfunction
in cars. OTA updates also provide enormous advantages
in keeping in-vehicle software systems up-todate and
maintaining consumer satisfaction.

B. Comparative Study of OTA Update Characteristics

ABI Research [16] predicts that the number of OTA
supported vehicles will be around 203 million by 2022
with a CAGR of 58.15%. In the meanwhile, many
established automotive companies are already on the
path of providing OTA udpate services for CVs.

Halder et al. [5] presented a comparative study of
OTA update characteristics for car companies, including
Tesla, BMW and Mercedes Benz. In addition, they also
present a comparative analysis of in-vehicle features that
support OTA updates in automobile companies. Based on
[5] and latest news [5], [12], [13], we summarize useful
information in Table III and Table IV. It can be seen
that Tesla came first with the ability to update various
vehicle services, including maps, . Toyota currently offer
OTA map update functionality and provide update for
new audio multimedia platform, and it aims to develop

3

TABLE I: CV application and the related performance requirements [9], [10].

Use case Communication mode Minimum transmission
frequency Critical latency

Intersection collision warning Periodic message broadcasting 10 Hz 100 ms
Lane change assistance Co-operation awareness between vehicles 10 Hz 100 ms
Overtaking vehicle warning Broadcast of overtaking state 10 Hz 100 ms
Head on collision warning Broadcasting messages 10 Hz 100 ms
Co-operative forward
collision warning

Co-operation awareness between vehicles
associated to unicast 10 Hz 100 ms

Emergency vehicle waning Periodic permanent message broadcasting 10 Hz 100 ms

Co-operative merging assistance Co-operation awareness between vehicles
associated to unicast 10 Hz 100 ms

Collision risk waning Time limited periodic messages on event 10 Hz 100 ms
Regulatory contextual
speed limit notification Periodic, permanent broadcasting messages 1-10 Hz depending

on technology Not relevant

Green light optimal speed advisory Periodic, permanent broadcasting messages 10 Hz 100 ms
Electronic toll collection Intemet velicle and unicast full duplex session 1 Hz 200 ms

Co-operative adaptive cruise control Cooperation awareness 2 Hz (some systems
require 25 Hz) 100 ms

Co-operative vehicle highway
automatic system (platoon) Cooperation awareness 2 Hz 100 ms

Intersection collision wanning Periodic message broadcasting 10 Hz 100 ms
Lane change assistance Co-operation awareness between vehicles 10 Hz 100 ms
Overtaking vehicle warning Broadcast of overtaking state 10 Hz 100 ms
Head on collision waming Broadcasting messages 10 Hz 100 ms

Co-operative forward collision waming Co-operation awareness between vehicles
associated to unicast 10 Hz 100 ms

Emergency vehicle warning Periodic permanent message broadcasting 10 Hz 100 ms

Co-operative merging assistance Co-operation awareness between vehicles
associated to unicast 10 Hz 100 ms

Collision risk warning Time limited periodic messages on event 10 Hz 100 ms
Regulatory contextual speed
limit notification Periodic, permanent broadcasting of messages 1-10 Hz depending

on technology Not relevant

Green light optimal speed advisory Periodic, permanent broadcasting of messages 10 Hz 100 ms
Electronic toll collection Internet vehicle and unicast full duplex session 1 Hz 200 ms

Co-operative adaptive cruise control Cooperation awareness 2 Hz (some systems
require 25 Hz) 100 ms

Co-operative vehiclehighway
automatic system (platoon) Cooperation awareness 2 Hz 100 ms

TABLE II: Performance requirements of different V2X applications [8], [11].
Use Case Type V2X Mode End-to-End Latency Reliability Data Rate per Vehicle (kb/s) Communication Range

Cooperative awareness V2V/V2I 100 ms 90–95% 5–96 Short to medium
Cooperative sensing V2V/V2I 3 ms >95% 5–25,000 Short
Cooperative maneuvers V2V/V2I <3–100 ms >99% 10–5,000 Short to medium
Vulnerable road user (VRU) V2P 100 ms 95% 5–10 Short
Traffic efficiency V2N/V2I >1 s <90% 10–2,000 Long
Teleoperated driving V2N 5–20 ms >99% >25,000 Long

its own new operating system by 2025, named Arene,
which allows updating new features over the air [13].
With these new promising advancement, future Toyota
vehicles will be able to stand toe-to-toe with Tesla in
terms of OTA software updates [12].

V. FOUR TYPES OF ARCHITECTURES

In this section, we list and discuss four types of
architectures to support the collaboration between vehi-
cles, edge servers, and clouds, including cnetralized ar-
chitecture, decentralized architecture, publish/subscribe
architecture, and broadcast architecture. A roadside unit
(RSU) and cellular tower could both be treated as the
edge server.

A. Centralized Architecture
Centralized architecture [17], also known as client-

server architecture, refers to a type of architecture in
which a set of client vehicles request and receive ser-
vices from a centralized server/cloud. The centralized
server/cloud waits for requests from client vehicles and
then responds to those requests through a standardized
interface, while the client vehicle does not need to know
the specifications and details of the centralized server/-
cloud. This computing model is particularly effective
when the client vehicle and the centralized server/cloud
each perform different routine services.

Mender [18] is an open source end-to-end OTA soft-
ware update manager with a centralized architecture.
Particularly, Fig. 3 shows an example of the centralized

4

TABLE III: Comparative study of OTA update characteristics [5], [12].

Car Companies S/W Update
Triggered by Whom Update Notification Driving Possibility

during Update Process

Tesla Tesla Sent through an embedded ATT 3G data Noconnection or a Wi-Fi router for Model S cars

BMW BMW Customer receives notification through NoConnected Drive system present in the car

Mercedes Benz Costumer Update notification sent through an embedded NoVerizon 3G data connection for C and S class cars

Audi Information N/A Update notification sent through an embedded T-Mobile 3G Nodata connection for its A3, A4, A5, Q2, Q5 and Q7 cars

General Motors Information N/A GM vehicles are equipped with the OnStar 4G LTE-WiFi Noconnectivity

Toyota Toyota Currently uses a standard LTE connection to update Nobut plans to use Starlink satellite internet

TABLE IV: Comparative study of the in-vehicle features that support OTA updates [5], [12], [13].
Car

Companies

Maps
and

navigation
Infotainment

Power
Management

Options

Location based
Air Suspension

Settings

Forward
Collision
Warning

Traffic
aware

Navigation

Blind
Spot

Warning

Auto
Emergency

Braking

Dashcam
Feature

Tesla ! ! ! ! ! ! ! ! !

BMW ! # # # # # # # #

Mercedes Benz # ! # # # # # # #

Audi ! # # # # # # # #

General Motors # ! # # # # # # #

Toyota ! ! # # # # # # #

architecture. Taking the urban information sharing as an
example, a client vehicle can run a related application
to continuously collect urban information (such as road
boundary information and lane detection results), while
a centralized server/cloud can run another application
program to perform assigned computation tasks for its
corresponding terminals. Client vehicles can simultane-
ously pull or push information from/to the centralized
server/cloud, and at the same time, client vehicles can
perform other tasks.

Cloud

Latest Software

and Firmware

OEM

Software & firmware

update

Vehicles

Fig. 3: An example of the centralized architecture.

B. Decentralized Architecture

Decentralized architecture, i.e., peer-to-peer (P2P) ar-
chitecture, is another solution for the communication and
collaboration between vehicles, edge servers, and clouds,
whereby two vehicles interact directly with each other
without the participation of a third party (as shown in
Fig. 4). A decentralized architecture distributes comput-
ing tasks among vehicles, with all vehicles contributing
and consuming resources within the vehicular network
without the need for a centralized server.

This architecture is suitable for the applications be-
tween vehicles, such as vehicle sharing and P2P vehicle
rental. For example, HireGo [19] is a decentralized P2P
private vehicle hire application, which is steered by
the blockchain technology. Recently, P2P vehicle rental,
i.e., leasing idle vehicles to other people in need of
driving, is becoming an increasingly popular way to earn
additional income. The existing centralized applications
suffer from high transaction fees and centralized owner-
ship, which makes it easy to be targeted by hackers. In
addition, as to P2P vehicle rental, another disadvantage
of a centralized system is the monopoly of valuable user
data. For example, a user may have built a good rental
reputation over the years, and the user’s review history
is managed by a client server and may be revoked at any
time. Decentralized architectures based on blockchain
smart contracts show the potential to overcome these
shortcomings, because it can return the control to end
users and also eliminate the need of high-priced third
parties.

As another example, the Mobility Open Blockchain
Initiative (MOBI) [20] has initiated a global standard
for a decentralized vehicle charging network, which in-

Fig. 4: An example of the decentralized architecture.

5

tegrates blockchain-related technologies. Led by General
Motors and Honda, this standard targets to create a user-
centric energy community for decentralized vehicles.
Specifically, it includes two key use cases: (1) vehicle-to-
grid integration, which allows electric vehicles to share
electricity with the grid, and (2) P2P applications, which
enables the power sharing between electric vehicles.

C. Publish/Subscribe Architecture

Publish/subscribe architecture is widely used in
serverless application scenarios. In a publish/subscribe
architecture (as shown in Fig. 5), the message sender is
called publisher, and the message receiver is called sub-
scriber. Publishers can send the message asynchronously
to different subscribers without knowing who the recip-
ient is. The publisher only needs to send the message to
the message queue, and the subscriber can take out the
messages they are interested in, i.e., any message related
to a topic will be received by all of the subscribers to
the topic. Publish/subscribe architecture can be used to
enable event-driven applications, with the objective of
improving the application scalability and performance.

Publisher

Subscriber

Subscriber

Topic

Publisher

msgmsg

msg msg

msg
msg

msg
msg

Fig. 5: An example of the publish/subscribe architecture.

More specifically, take the traffic warnings as an
example [21], we can consider vehicles as mobile sensors
collecting traffic information, accidents, etc. Vehicles
report it collected information to the connected edge
server based on vehicle-to-vehicle (V2V) communi-
cation. Edge server receive, store, and combine the
information pushed from different vehicles in diverse
locations, and then, generate and spread traffic warnings
for reaching vehicles in the affected area.

In the publish/subscribe architecture, the vehicle only
receives notifications related to a certain topic of the
subscription. For example, a vehicle may be subscribed
to receive only traffic warnings that may affect its route
to its destination. The related notification continues to
propagate within the affected zone to notify new reach-
ing vehicles. Vehicles that receive such warnings will
automatically recalculate suitable routes to avoid affected
areas. It is worth noting here that this scenario can be
easily expanded to support numerous applications, such

as accident warnings, road works, free parking spots,
fuel prices, advertisements, etc.

D. Broadcast Architecture

Due to the concentration of traffic on urban roads,
vehicles often approach each other at intersections. In
this case, the broadcast architecture (as shown in Fig. 6)
is suitable for transmitting real-time traffic information
at the intersection. For example, real-time safety-related
traffic information can be broadcast to any vehicle in the
affected area, whether or not they are interested in the
information. Then, each vehicle that receives broadcast
messages will rebroadcast them to other approaching
vehicles, i.e., perform successive broadcasts.

Vehicle Accident

Vehicle_1 Vehicle_2

Vehicle_4

Vehicle_3

Fig. 6: An example of the broadcast architecture.

Figure 6 present an example of the broadcast archi-
tecture showing a vehicle collision accident near at an
intersection. Suppose vehicle 1 generate the collision ac-
cident message, which will be broadcast to surrounding
vehicles. If this message is only forwarded to one vehicle
(vehicle 2) and cannot be delivered to the direction of
vehicle 4, then vehicle 4 and the vehicles behind it will
arrive at the accident point without being warned about
the collision. This shows the significance of successive
broadcasts for collision messages.

Since the collision messages is safety-related and con-
tains urgent information, it should be broadcast in a real-
time manner. However, the successive broadcasts will
inevitably increase the network payload and therefore
leads to excessive latency (known as the broadcast storm
problem). Therefore, broadcasting urgent information to
all vehicles still still has a long way to go.

VI. ARCHITECTURE COMPARISON AND DISCUSSION

In this section, we compare four architectures that
are discussed in Sec. V and summarize their related
advantages, disadvantages, suitable vehicle applications,
and the role of edges in terms of OTA update (as shown
in Table V).

6

TABLE V: A summary of architecture comparison.

Architectures Advantages Drawbacks Suitable Applications The Role of Edges in OTA

Client-server
Architecture

Consistency, efficiency,
and affordability
• Less IT management time
• Fewer admins
• Easy to track/collect data

• Safety and Resilience: A single
software failure can influence
various vehicles
• Scalability: limited
• Bandwidth: handicap

OTA update, (HD) map
generation, fuel efficiency
optimization

• Notify vehicles which software
should be updated
• Provide updates to vehicles
• Provide its location info and its
WiFi range to cloud
• Enough memory capacity

Decentralized
(P2P) Architecture

• Cybersecurity: prevent
a DDoS attack
• Efficient data management
• Scalability

Only P2P architecture cannot
satisfy all the real-world
application requirements
(vehicle is moving)

Vehicle sharing, vehicle rental,
vehicle-to-grid integration,
P2P applications

Vehicle itself is an edge computing
platform
• Communication
• Computation

Publish/Subscribe
Architecture

• Asynchronous: little risk of
performance degradation
• Scalability and flexibility: easy
to add or removing subscribers

• Testing can be a challenge
• An unexpected surge in
message emission
• Requires a well-defined policy

OTA, accident warnings,
road works, free parking spots,
fuel prices, advertisements

• Provide updates to various
vehicles if needed
• Have the memory capacity
to hold both the old and new
software image from cloud

Broadcast
Architecture

• low cost of network deployment,
• High communication efficiency,
• Low server traffic load

• Inability to provide
personalized services
• Lack of pertinence
• High network bandwidth

traffic live information in road
intersections

Broadcast information to vehicles
(push-based)

Centralized Architecture: The main advantages of a
centralized architecture are its high efficiency, consis-
tency, and affordability. Specifically, a central server con-
trolling the entire OTA network can reduce the number
of administrators and IT management time. Additionally,
all data on a centralized network needs to go through
the central server, making it easy to track, collect, and
analyze data across the network.

Nevertheless, a centralized architecture does have its
drawbacks. For example, a single point of software
failure on the central server can be a risk factor for a
group of vehicles: if the central server fails, individual
client vehicles connected to it will not be able to pro-
cess driver requests. In addition, they also offer limited
scalability. Since a single central server is responsible
for the processing of all applications, the way to scale
up the network is to add more processing capability,
storage, and bandwidth to the server, which may not
be a cost-effective method in the long run. Moreover,
lack of bandwidth may also become a hindrance. If there
are fluctuating periods of OTA activities, a single server
can quickly become a bottleneck, because the processing
power of the central server may struggle to keep up with
the sudden burst of concurrent requests.

Decentralized Architecture: Compared with centralized
architecture, decentralized architecture has the following
main advantages: (1) First, it allows vehicles to use
blockchain technology to securely share information and
conduct transactions without personal information. (2)
Second, it is able to manage a large number of vehicles
without exponentially increasing the cost of edge servers.
(3) Besides, vehicle operators can use P2P software in
OTA updates to more effectively reduce cybersecurity
risks. In a centralized architecture, most cybersecurity
attacks are possible. Because to paralyze vehicle fleets,
all attackers do is focus their attacks on centralized
edge servers/clouds, which puts businesses at higher risk.
However, these attack methods are often not effective

against decentralized networks. (4) Additionally, the de-
centralized architecture enables more efficient real-time
data management, which is critical for vehicle services.
This is because, in a decentralized architecture, real-time
data transfer occurs between nodes and does not need to
go through a server. (5) Moreover, with millions of CVs
in the near future, one of the biggest advantages of a
decentralized architecture is the ability to manage a large
number of vehicles without multiplying the cost. For
example, Streembit [22] claims that their P2P network
design can grow to 1.28 billion devices in seconds,
without additional cost, and they point out can address
the scalability issues of connected vehicles.

However, only decentralized architecture cannot sat-
isfy all the real-world application requirements. For
example, it is challenging to support efficient and reliable
OTA update, as vehicles are moving at different speed,
leading to unstable connectivity.

Publish/Subscribe Architecture: A key advantage of
the publish/subscribe architecture is that it supports asyn-
chronous applications, so there is little risk of perfor-
mance degradation because of processes getting caught
in long-running data exchanges. Also, removing and
addting subscribers to a defined topic is a matter of con-
figuration and does not require complex programming.
Therefore, a publish/subscribe architecture can provide
great scalability and flexibility.

As for the downsides of a publish/subscribe archi-
tecture, first, testing can be a challenge. Because the
interaction is asynchronous, testing is not a matter of
making a request and then analyzing the result. Instead,
a message must be sent into the architecture, and observe
the behavior of processes to figure out when and how
it processes the message. Also, when the number of
processes for a given topic keeps increasing over time,
the testing process can become more difficult to manage.
Besides, unexpected surges of message transmission may
lead to network congestion. Furthermore, it requires an

7

explicit message format and message transmission pol-
icy; otherwise, the whole process may become confusing
and error-prone.

Broadcast Architecture: In a broadcast architecture, a
sender push data, software, or firmware to a predefined
vehicle network without a specific target, and vehicles
are forced to accept messages from the sender, so it has
advantages and disadvantages. In terms of advantages,
first, network equipment and maintenance are simple,
and network deployment costs are low.Second, the infor-
mation can be transmitted to all vehicles on a network
at once, leading to an efficient data communication. In
addition, the traffic load on the server is low since the
server does not need to send data to each vehicle client
individually.

As to the disadvantages, first, it cannot provide person-
alized services in a timely manner according to the spe-
cific requirements of vehicle services. Besides, it lacks
pertinence: vehicles are forced to receive data whether
or not they actually need to receive data. In addition,
although the server traffic load is low, it broadcast all
information to all vehicles, which requires the high
bandwidth of the network.

VII. EDGEARC: EDGE-BASED ARCHITECTURE FOR
CONNECTED VEHICLES

The upgrading of automotive end-to-end architecture
is mainly reflected in three aspects: hardware architec-
ture, software architecture, and communication architec-
ture. As described in Fig. 1 (b), hardware architecture is
changing from distributed to domain control/centralized
development. Software architecture is developing from
high coupling of software and hardware to hierarchical
decoupling (containerized), as discussed in Sec. II. In
terms of communication architectures supporting the
collaboration between vehicles, edge devices, and cloud,
each type of the aforementioned architecture (e.g., cen-
tralized architecture, decentralized architecture, publish/-
subscribe architecture, and broadcast architecture) has its
suitable application scenario (as shown in Table V).

In this section, we propose and illustrate an edge-
based architecture for CVs, called EdgeArC (as depicted
in Fig. 7), which enables the vehicle to collaborate
with surrounding vehicles, offloading workloads to edge
servers and connected devices/things (denoted as XEdge)
and remote cloud.

Specifically, Fig. 7 presents the three-tier paradigm
of EdgeArC. In EdgeArC, vehicles are software-defined
where the consolidation of functional blocks within the
vehicle can be enabled, and the performance, safety, and
comfort of CVs can be continuously improved through
OTA updates. In vehicle, a hypervisor is deployed on top
of the vehicle computing unit, which can provide well

XEdge

Cloud

V2V

Vehicle

Vehicle Computing Unit

Hypervisor / Host OS

Container

Software-Defined Vehicle

Real Time

Diagnostics

Path

Planning
⋯

Container⋯Vehicle

Fig. 7: An illustration of EdgeArC.

isolated virtualized environments for diverse software.
Each ECU codebase can run almost unmodified in its
own virtual machine and the resulting server platform
may run a mix of real-time operating system (RTOS)
for safety-critical and hard real-time applications (such
as collision avoidance and real-time diagnostics) and rich
operating system (OS) for the soft real-time services
(e.g., map generation) and non time-critical services
(e.g., infotainment).

Besides, thanks to the rapid development of the
Vehicle-to-Vehicle (V2V) technologies, vehicle services
could be migrated to collaborative vehicles that have
idle computation resources. Here, the decentralized ar-
chitecture is an appropriate communication architecture
to support the data transmission between vehicle fleets.
More importantly, vehicle data and services could also be
offloaded to XEdge (e.g., roadside units, cellular towers,
gas stations, charging piles, and the computation devices
that are installed in a connected home) and receive cor-
responding analysis results, where the publish/subscribe
and broadcast architecture are suitable communication
architectures. In the XEdge layer of Fig. 7, an arc that
decreases in size from left to right indicates a decreasing
number of these XEdge devices that may be encountered
by the host vehicle. In the meanwhile, XEdge devices
may also upload data or computation-intensive services
to cloud for further analysis and then receive related
results, and the centralized architecture is suggested for
XEdge devices to send and receive data through cellular
or satellite communication, etc.

VIII. CONCLUSION

In this article, to determine the appropriate end-to-end
CV architecture designing strategies, we first illustrate
the evolution of automotive software and computing sys-
tem. Next, we introduce the concept of software-defined
vehicle, classify essential CV applications, and list their

8

performance requirements such as communication mode,
critical latency, data rate per vehicle, and communication
range. Then, we choose over-the-air (OTA) update as
our case study, followed by the introduction of four
types of CV architectures. Then, we discuss advantages
and drawbacks of each type of architecture. Finally,
we conclude this article by presenting an edge-based
architecture for CVs, called EdgeArC.

REFERENCES

[1] A. M. Research, “Connected Car Market Size, Share, Growth
& Trends Analysis Report by Technology, Connectivity So-
lution, Service, End-Use, And Segment Forecasts, 2020-
2027,” https://reports.valuates.com/market-reports/ALLI-Manu-
3Z1/connected-car, 2019.

[2] AECC, “Distributed computing in an aecc system (online),” ht
tps://aecc.org/resources/publications/, August 2021.

[3] L. Bauer, “Smart vehicle architecture: A sustainable approach to
building the next generation of vehicles,” in APTIV White Paper,
June 2020.

[4] “Software-defined vehicles,” https://www.arm.com/solutions/au
tomotive/software-defined-vehicles, accessed: 2021-12-17.

[5] S. Halder, A. Ghosal, and M. Conti, “Secure over-the-air software
updates in connected vehicles: A survey,” Computer Networks,
vol. 178, p. 107343, 2020.

[6] “Soafee: Scalable open architecture for embedded edge,” https:
//soafee.io, accessed: 2021-12-17.

[7] N. Williams and M. Barth, “A qualitative analysis of vehicle
positioning requirements for connected vehicle applications,”
IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 1,
pp. 225–242, 2020.

[8] M. Boban, A. Kousaridas, K. Manolakis, J. Eichinger, and W. Xu,
“Connected roads of the future: Use cases, requirements, and
design considerations for vehicle-to-everything communications,”
IEEE vehicular technology magazine, vol. 13, no. 3, pp. 110–123,
2018.

[9] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan,
K. Lin, and T. Weil, “Vehicular networking: A survey and
tutorial on requirements, architectures, challenges, standards and
solutions,” IEEE communications surveys & tutorials, vol. 13,
no. 4, pp. 584–616, 2011.

[10] T. ETSI, “Intelligent transport systems (its); vehicular communi-
cations; basic set of applications; definitions,” Tech. Rep. ETSI
TR 102 6382009, 2009.

[11] ——, “Intelligent transport systems; vehicular communications;
basic set of applications; part 2: Specification of cooperative
awareness basic service, std,” ETSI EN Std, vol. 302, pp. 637–2,
2014.

[12] TechWalls, “Toyota’s new move to take on Tesla in advanced auto
software,” https://www.techwalls.com/toyota-new-move-take-on-
tesla-advanced-auto-software/, October 2021.

[13] Aroged, “Toyota to release its own Arene operating system
for cars by 2025,” https://www.aroged.com/2022/01/04/toyota-
to-release-its-own-arene-operating-system-for-cars-by-2025/,
January 2022.

[14] H. Laguna, “Recap of 2020 recalls reveals impact of pandemic
on compliance and the continuing threat (online),” https://www.
recallmasters.com/sor/, May 2020.

[15] C. Isidore and P. Valdes-dapena, “Hyundai’s recals 82,000
electric cars is one of the most expensive in history (online),”
https://www.kktv.com/2021/02/26/hyundais-recals-82000-electri
c-cars-is-one-of-the-most-expensive-in-history/, Feb 2021.

[16] ABIresearch, “ABI Research Anticipates Accelerated Adop-
tion of Automotive Software Over-the-Air Updates with Nearly
180 Million New SOTA-Enabled Cars Shipping Between
2016 and 2022,” https://www.abiresearch.com/press/abi-research-
anticipates-accelerated-adoption-auto/, 2016.

[17] C. Olaverri-Monreal, “Autonomous vehicles and smart mobility
related technologies,” Infocommunications Journal, vol. 8, no. 2,
pp. 17–24, 2016.

[18] Lakshan, “Importance of Secure and Robust
OTA Updates for Embedded Linux Systems,”
https://www.seeedstudio.com/blog/2021/11/26/importance-
of-secure-and-robust-ota-updates-for-embedded-linux-systems/,
2021.

[19] A. Scott-Briggs, “HireGo – Peer to Peer Car Hire and Car
Sharing Platform,” https://techbullion.com/hirego-peer-to-peer-
car-hire-car-sharing-platform/, 2018.

[20] T. Gresham, “Honda, GM-led group develops
global blockchain standard for EV grid integration,”
https://www.utilitydive.com/news/honda-gm-led-group-develops-
global-blockchain-standard-for-ev-grid-integra/587263/, 2020.

[21] I. Leontiadis, “Publish/subscribe notification middleware for ve-
hicular networks,” in Proceedings of the 4th on Middleware
doctoral symposium, 2007, pp. 1–6.

[22] Streembit, “Autonomous vehicle management,” 2020. [Online].
Available: https://zovolt.com/wp-content/uploads/zovolt auton
omous vehicles.pdf

9

