
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing
https://doi.org/10.1007/s42514-022-00100-4

REGULAR PAPER

EdgeWare: toward extensible and flexible middleware for connected
vehicle services

Sidi Lu1 · Yongtao Yao1 · Bing Luo1 · Zhifeng Yu2 · Dalong Li2 · Weisong Shi1

Received: 24 October 2021 / Accepted: 8 April 2022
© China Computer Federation (CCF) 2022

Abstract
The dramatic development of Edge Computing technologies is strongly stimulating the adoption of machine learning models
on connected and autonomous vehicles (CAVs) so that they can provide a variety of intelligent onboard services. When
multiple services running on the resource-constrained CAVs, how limited resources can dynamically support the desired
services is of the utmost importance for both automakers and domain researchers. In this context, efficiently and dynamically
managing vehicle services becomes critical for autonomous driving. While previous research focused on service scheduling,
computation offloading, and virtual machine migration, we propose EdgeWare, an extensible and flexible middleware to
manage the execution of vehicle services, which is open-source to the community with four key features: i) on-demand model
switch, i.e., easily switch and upgrade machine learning models, ii) function consolidation and deduplication to eliminate
duplicate copies of repeating functions and maximize the reusability of vehicle services, iii) build event-driven applications
to reduce workload, and iv) dynamic workflow customization which enables customizing workflow to extend the functional-
ity. Our experiment results show that EdgeWare accelerates the execution of services about 2.6 × faster compared to the silo
approach and save CPU and memory utilization up to around 50% and 17% respectively, and it allows domain researchers
to dynamically add new services on CAVs or easily switch to the upgraded applications for the life cycle management of
vehicle services.

Keywords Middleware · Model upgrade · Edge computing

1 Introduction

Connected and autonomous vehicle: The proliferation of
communication, robotics, and Edge Computing (Shi et al.
2016) has pushed the horizon of autonomous driving. There
has been an acceleration in the research and development
(R &D) efforts to bring the idea of connected and autono-
mous vehicles (CAVs) to fruition. For instance, the advent
of Tesla’s Autopilot (Gillmore and Tenhundfeld 2020),
Google’s Waymo (Gibbs 2017), and Baidu’s Apollo (Xu
et al. 2020) brought CAVs to the spotlight. In the mean-
while, as the perfect Edge Computing platform (Lu et al.
2019), a plethora of intelligent applications are enabled
in CAVs such as remote real-time diagnostics (Orf et al.
2020) and advanced driver assistance (Kukkala et al. 2018),
which is driven by the enormous vehicle data generated by
the equipped multiple sensors such as camera, radar, and
LiDAR. These essential components of CAVs are expected
to generate around 40 terabytes of data every eight hours of
driving, which is the amount of data generated by almost

 * Sidi Lu
 lu.sidi@wayne.edu

 Yongtao Yao
 yongtaoyao@wayne.edu

 Bing Luo
 bing@wayne.edu

 Zhifeng Yu
 zhifeng.f.yu@gmail.com

 Dalong Li
 dalongli@gmail.com

 Weisong Shi
 weisong@wayne.edu

1 Department of Computer Science, Wayne State University,
Detroit, MI 48202, USA

2 Edgemind Solutions LLC, Detroit, MI 48201, USA

http://orcid.org/0000-0001-9846-7570
http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-022-00100-4&domain=pdf

 S. Lu et al.

1 3

3 thousand people (Sidi and Weisong 2021). Moreover,
driven by the exponential growth in the usage of CAVs, it is
estimated that by 2025, there will be 470 million CAVs on
highways worldwide, generating 280 petabytes of data Liu
et al. (2020).

Vehicle computing: In the future, more and more data
will be generated on CAVs, and it in turn calls for a new
computing paradigm called Vehicle Computing (Sidi and
Weisong 2021), which refers to the enabling technologies
allowing computation to be performed on CAVs. However,
different from the data center in the cloud, CAVs nowadays
usually have limited computing power, which is mainly hin-
dered by the highly priced hardware system — a level 4
CAV (fully autonomous driving vehicle) can cost up to three
hundred thousand dollars, in which sensors and the comput-
ing platform cost almost two-thirds of the total price (Sidi
and Weisong 2021). Therefore, the computation capability
of most CAVs are still limited, and it is necessary to explore
how to support multiple computation intensive services for
CAVs.

Model upgrading and dependency: The research of
Deep Neural Networks (DNNs) has been gaining ever-
increasing impetus for autonomous driving due to their state-
of-the-art performance. Each year, a multitude of new DNN
architectures are proposed Wu et al. (2019) for the emerging
intelligent in-vehicle services with more stringent require-
ments on accuracy improvement, latency reduction, privacy-
preserving, and energy efficiency, etc. For example, as to
camera video processing, R-CNN series (Girshick 2015; Ren
et al. 2015; Girshick et al. 2014; He et al. 2017), SSD series
(Liu et al. 2016; Fu et al. 2017), and YOLO series (Redmon
et al. 2016; Redmon and Farhadi 2017, 2018) are proposed
for object detection within two to three years and have been
proved to surpass the performance of previous models. This
indicates the necessity of dynamic model upgrading for CAV
services.

Besides, considering different in-vehicle services, they
usually requires the execution of codependent models on
the same vehicle computation platform. For instance, in the
case of vehicle type identification and vehicle tracking, they
both call for the inference results of vehicle detection model.
It is an inevitable trend that routine in-vehicle services call
for multiple codependent/collaborative deep neural network
(DNN) models to finish complicated tasks with remarkable
performance (Vanini et al. 2014; Zhou et al. 2015, 2014).

Computation intensive services: However, most of the
DNNs focus on boosting accuracy at the expense of substan-
tially increased model complexity — the depth of the cur-
rent state-of-the-art networks, such as Inceptionv4 (Szegedy
et al. 2017) and ResNet-50 (Akiba et al. 2017), can reach
dozens or even hundreds of layers to outperformed previ-
ous networks for related tasks with accuracy. A single layer
may require millions of matrix multiplications. Such heavy

calculation brings challenges to deploy these DNN models
on a CAV with limited computation resources. Even though
CAV computation platforms are becoming increasingly
powerful (Dong et al. 2016, 2017), it still falls short when
faced with users’ growing desire for running more resource-
hungry applications, such as intersection analysis Lee et al.
(2017) and driver behavior detection Liu et al. (2018). These
aforementioned facts make it appealing and crucial to ensure
that a range of intelligent services (DNN models) can be
deployed and executed effectively and dynamically a single
resource-constrained CAV computation platform and CAV
fleets.

Real-world challenges: In the real-world applications, it
is common to analyze data streams from different aspects, so
researchers usually deploy multiple DNNs on a single CAV
working on the same data stream. Take the video analytic
as an example, researchers may run the people recognition
model in a company surveillance system to identify if the
unauthorized people entered a specific area, and at the same
time, a behavior detection may also need to detect if there
are suspicious actions happened in the surveillance area.
Besides, as to autonomous vehicles, they may require accu-
rate lane detection, pedestrian recognition, and so on. As
more and more services deployed on CAVs, how shall we
dynamically manage and support multiple services becomes
a critical problem, which brings more challenges as well as
opportunities:

First, how limited resources in CAVs can support the
desired services is an open problem. Previous works mainly
focus on compressing algorithms by leveraging pruning
methods (Cheng et al. 2017; Han et al. 2015), or employ
lightweight machine learning packages such as Caffe2,
MXNet, and PyTorch. However, no matter how lightweight
an algorithm could be, the duplicated calculation (function)
among various algorithms still be the bottleneck of the com-
putation resource utilization. Besides, a recent study from
Facebook shows that highly heterogeneous devices and low-
level software frameworks make it difficult for an application
developer to optimize service performance (Wu et al. 2019).
We believe that a middleware should be present to dedupli-
cate redundant functions and effectively manage the services
so that further optimization is possible just like OpenGL
organizes the GPU usage.

Second, how to dynamically support dynamic routine
vehicle services is another challenge. In real-world appli-
cations, the types and numbers of vehicle services will be
changed over time or different application scenarios. For
example, surveillance systems could have very different
required services from the home to the public areas.

Furthermore, when new on-demand requirements are
coming in, extra computation resources are often required
and usually affect the routine services on the resource-con-
strained CAVs. For example, the police may track people’s

EdgeWare: toward extensible and flexible middleware for connected vehicle services

1 3

behavior in real-time as a routine service but may seek a
particular person when an emergency happens.

Research gaps: Different from existing approaches, we
are not trying to optimize service algorithms or design the
service scheduling approaches and offload intensive compu-
tations to the remote powerful site since these could be done
by application developers. We are also not trying to optimize
camera configures, which should be done from the operating
system aspect.

Instead, we made the first step towards an extensible and
flexible middleware to dynamically manage the execution,
switch, upgrade, and customization of connected vehicle
(CV) services—we propose EdgeWare that encapsulates
analysis services in the plug and play function modules and
dynamically load or execute them on-demand, and users
can choose to distribute and enable necessary modules. We
investigate the behavior of multiple modules and observe
a new relationship between data and function. We propose
function consolidation and deduplication mechanism in
EdgeWare that reduces the redundancy in function modules
and accelerate the overall data analysis for both real-time
edge services. This further enables cooperative analysis
among different CAVs. Our case study shows that EdgeWare
accelerates execution of services about 2.6× faster compared
to silo approach and save CPU and memory utilization up to
50% and 17%, respectively.

Summary of our contributions:

• The extensible and flexible middleware, EdgeWare, is
proposed to dynamically manage the execution, switch,
upgrade, and customization of vehicle services. It brings
a new view of how we deal with vehicle data and vehicle
services/functions. Our EdgeWare code used in this study
is hosted at https:// github. com/ GbllY ao/ EdgeW are. git.

• A simple yet powerful mechanism, function consoli-
dation and deduplication, is designed to effectively
integrate different services on CAVs with filtering out
redundant functions so that it can save half of the CPU
utilization and 17% of memory utilization, and it can
speed up the service execution by 2.6× of silo approach.

• The service with event-driven characteristic of EdgeWare
involves a trigger followed by a series of DNNs. Only
when the trigger was invoked, the later DNNs will be
executed. Therefore, building event-driven applications
can be used to avoid unnecessary execution of DNNs so
that the workload could be further reduced.

• The experiment results of our case study prove that Edge-
Ware could easily support the on-demand model switch
and upgrade, and it could enable customizing workflow
to extend the functionality of vehicle services.

The remainder of the paper is as follows. Section 2 elabo-
rates on the motivation of this work. In Sect. 3, we describe

the architecture of EdgeWare and discuss how to develop
the main techniques that help EdgeWare achieve its goal.
Then, we present EdgeWare’s case study and its implemen-
tation in Sect. 4. Evaluation and discussion are presented in
Sect. 5, followed by a discussion of related work in Sect. 6,
and finally we conclude the paper in Sect. 7.

2 Motivation

In this section, we seek to answer the following questions:
Why intelligent services call for machine learning (ML)
model switch and upgrade? Why function consolidation and
deduplication is needed for real-world applications? Why
event-driven characteristic should be the key feature of vehi-
cle services? Finally, why do we seek to enable dynamic
workflow customization?

2.1 Life‑cycle management calls for continuous
model upgrade

ML Models Degrade with Time: Keeping ML models
updated is a necessary step mainly due to the problem of
Concept drift Tsymbal (2004), which refers to a non-station-
ary learning problem change over time in unforeseen ways
Žliobaitė (2010). The training and the service data often
mismatch in real-world problems, and this causes problems
because the output of ML models become less accurate as
time passes Hand (2006).

New ML models with better performance: Besides,
ML models focus on continually boosting accuracy and
decreasing computational intensity, etc. One such example
is the You Only Look Once (YOLO) series (Redmon et al.
2016; Redmon and Farhadi 2017, 2018). In 2015, YOLO
was firstly proposed Redmon et al. (2016). Since then, the
YOLO series algorithms have been continuously proposed
and improved from YOLOv1 Redmon et al. (2016) to the
latest version YOLOv4 Bochkovskiy et al. (2020), includ-
ing the popular light-weight version such as YOLOv3-Tiny
Huang et al. (2018).

Diverse data analytic aspects: In addition, it is common
to analyze data streams from different aspects with diverse
goals. Take autonomous vehicles (AVs) as an example, as
the switching between autonomous and manual operation
modes, the involved primary computation models are also
changed Norris et al. (2011), e.g., from the main compu-
tation of lane departure warning and trajectory planning
decisions to the traditional stability and reliability-related
computation such as tire pressure monitoring and battery
failure detection.

Towards this end, some previous work has proposed
the concept of continuous learning (Liu 2017; Beneventi
et al. 2017) to retrain models and therefore prevent model

https://github.com/GbllYao/EdgeWare.git

 S. Lu et al.

1 3

degradation without supporting model switching. The most
common and direct way is to upgrade ML models. There-
fore, it is necessary to build an automated middleware that
can support model switching and upgrading for the life-cycle
management.

2.2 Maximizing services’ reusability needs function
deduplication

Redundant function among diverse services: As has been
mentioned, multiple services running on the same CAV
might have redundant functions (calculations). For exam-
ple, suppose there are four video-based services including
person detection, person tracking, gender classification,
and age estimation. Person detection independently detects
people for each frame, then the other three services both
depend on person detection results to do further analysis.
In this context, we can encapsulate each service into a func-
tion module and save the person detection module results
to the memory so that the other three modules can call the
detection results directly and conduct calculations quickly.
Therefore, we introduce the idea of function consolidation
and deduplication, which makes it easy to ship the output of
a service for after-the-fact analysis and further computation
to reduce the redundant work.

2.3 Workload reduction calls for event‑driven
applications

Heavy calculations of DNNs: As a subset of ML models,
DNNs are currently gaining high momentum in industry
and academia due to its state-of-the-art performance on
previously-thought hard problems, but most of the DNNs
focus on boosting accuracy at the expense of substantially
increased model complexity, and such heavy calculation
brings challenges to deploy even a single DNN model on a
resource-constrained vehicle device. Besides, running mul-
tiple DNNs at the same time usually leads to high memory
and CPU Utilization. Application developers are struggling
with the limited memory bandwidth of CAVs that have to be
used to store the huge amounts of weights and activations in
DNNs, and high CPU usage might damage the processor or
other components of CAV computation unit.

Avoid unnecessary execution of DNNs: On the other
hand, it is not necessary to always execute DNNs for a spe-
cific application since traditional ML models can have equal
performance or beat DNNs under a specific application sce-
nario (Lu et al. 2020). Following these insights, EdgeWare
focuses on building the event-driven service, which involves
a trigger followed by a series of DNNs. Only when the trig-
ger was invoked, the later DNNs will be executed. There-
fore, developing event-driven services can be used to avoid

unnecessary execution of DNNs so that the workload could
be reduced.

2.4 Task change requires dynamic workflow
customization

The need to extend workflow functionality: In the real-
world applications, the service scenarios are often changed
and therefore the categories of the corresponding tasks
are usually changed or accumulated over time. One such
example is the drone. The detection tasks of a drone might
change from face detection only to both the vehicle and face
detection when it flys from the high foot traffic regions to
a highway area. Besides, since these service requests are
sometimes unpredictable, it is hard for developers to design
a fixed workflow for the first time. Hence, it is necessary
to enable customizing workflow to extend functionality for
vehicle services.

3 EdgeWare architecture

In this section, we introduce EdgeWare’s architecture and
describe how to develop the main techniques that help Edge-
Ware achieve its goals. Specifically, EdgeWare has been spe-
cifically conceived with the following goals in mind:

 (i) On-demand model switch and upgrade, to deal with
the life-cycle management of intelligent vehicle ser-
vices;

 (ii) Function consolidation and deduplicaton, to encap-
sulate each service into a function module so that it is
easy to ship the output of a single service for further
analysis and reduce the redundant calculations;

 (iii) Event-driven applications, to invoke DNNs in
response to external events and reduce unnecessary
computation.

 (iv) Dynamic workflow customization, to allow custom-
izing workflow and extend service functionality.

3.1 Function consolidation and deduplication

Observations and basic idea: One of the key advantages
of Edge Computing is less data movement over the network,
which can also be regarded as moving functions (calcula-
tions) to the proximity of the data source. In this paper, we
push this idea further by introducing “function consolida-
tion and deduplication” for the vehicle service manage-
ment, which is motivated by the fact that when a variety of
analysis services are running on CAVs, many of them share
the same sub-tasks that are independent to other parts of
services. Take the video analysis as an example, both face
recognition and people behavior detection require person

EdgeWare: toward extensible and flexible middleware for connected vehicle services

1 3

detection. In this case, we can conduct person detection only
once, then save and feed the result to the other two services.
Therefore, to maximize the reusability of vehicle services
and use the computing resources of the CAVs more effec-
tively, we encapsulate each service into a function module
that can plug and play on CAVs. In this way, we can save
and directly ship the redundant output of a function for the
fast after-the-fact analysis and further computation without
redundant calculations. The idea of “function consolidation
and deduplication” originated from the “data cache” (Nesbit
and Smith 2004; Jiang et al. 2019) that has been widely used
in different levels of computer design. By putting frequently
used data in a higher speed storage medium for faster reuse,
data cache speeds up the overall computing performance.
With the same principle, we consolidate function to achieve
function deduplication and faster reuse, so as to accelerate
the whole process. We call this process as function consoli-
dation and deduplication, and we list three advantages as
follows.

• Maximize the reusability of vehicle services: When
multiple services are running on CAVs, many of them
share the same sub-tasks that are independent of other
parts of services, e.g., both face recognition and people
behavior detection require person detection. In this case,
we can conduct person detection only once and feed the
detection results to these two services. Figure 1 presents
an example of function consolidation and deduplication
and illustrates the basic idea. In the silo approach, sup-
pose module X and Y contains two functions respec-
tively. Since module X and module Y share function b,
we can implement function module a, b, and c so that
module b only need to execute once and other modules
can also leverage the results of module b as well.

• Enable faster vehicle services: Second, when a ser-
vice is triggered by a user, function consolidation will
search for results in the cache and directly return avail-
able results to the proper module for the fast analytics,
without waiting for the results of redundant services. For
example, the police officer may do people detection as
a routing service and cache the detection results accord-
ingly since many services are based on it, such as person
recognition and person tracking. It is not necessary to
conduct face recognition all the time, but if the defined
events happen, they can easily search in the cache to find
out all people appeared quickly and only do face match-
ing for these people. Therefore, by eliminating the redun-
dancy of in-vehicle models, the overall performance of
the CAV computation unit will definitely be improved if
such overlap exists, and more vehicle services running
on the same platform creates a larger possibility to dedu-
plicate function executions.

• Facilitate collaborative analysis: Besides, the function
consolidation and deduplication makes it easy to do col-
laborative analysis. On the same device, any module can
conduct analysis base on previous results from either the
same module or other modules. When multiple and even
heterogeneous CAVs are involved, any module on CAVs
can query information from other devices. In this case,
the advantages of function consolidation and deduplica-
tion becomes more obvious.

3.2 EdgeWare design

Flogo Framework: EdgeWare is built on top of the open-
source project—Flow-based process engine written in Go
(Flogo) Project Flogo (2016) from TIBCO Software Inc.
Flogo is a Go-powered and lightweight Edge Computing
ecosystem for building event-driven applications, i.e., lev-
eraging triggers and actions to process incoming events. It is
implemented in Go programming language and therefore it
is 20~50× more lightweight than similar Java or JavaScript
frameworks.

Definition of flow: The EdgeWare application is com-
posed of one or more Flows, and each Flow is composed
of a trigger and multiple activities. The activities can be
connected in series or combined into multiple branches, as
shown in Fig. 2. The concept and pattern of Flow in Flogo
perfectly fit our original intention of designing EdgeWare,
so we chose to develop EdgeWare on the basis of Flogo.

Application architecture: The application architecture
of EdgeWare is shown in Fig. 3. Here, we describe Fig. 3
from bottom to top.

– Flogo core is the application kernel, which provides
developers the necessary components to build event-
driven services.

Fig. 1 An example of function consolidation and deduplication. We
encapsulate each service into a function module and consolidate
functions for faster reuse

 S. Lu et al.

1 3

– Flow provides application integration capabilities, allow-
ing developers to connect incoming events with applica-
tions, databases, and APIs.

– Rules simplify the complexity of real-time contextual
decision making. Due to the large number of events gen-
erated from various sources, it can be very valuable to
understand these events in a given context, so that devel-
opers could use a series of rules to detect patterns and
trends in order to take appropriate actions.

– Streams: developers could adopt, aggregate, and pre-
process the event stream to generate a single derived
event, in which measures can be taken to provide a clean
and simple way to process the data stream.

– Gateway: gateway patterns could be implemented flex-
ibly, and developers are able to enforce policies, restrict
or route traffic conditionally, and use data from another
endpoint to enrich requests.

– Flogo web UI: to develop a EdgeWare application, the
Flogo web user interface (Web UI) is a good choice.
Developers can also directly define the components of
a program and the corresponding connection and com-
munication through a JSON file.

Limitations of flogo: As an open-source ecosystem,
Flogo allows developing ultra-lightweight vehicle applica-
tions and also provides many basic activities and triggers,
such as MQTT, WebSockets, CoaP, and REST Showcase
of awesome activities (2016). Flogo platform claimed that
it can provide zero-coding web user interface since the
application development methods are like building blocks
where activities are triggers are like blocks; however, such
application development has two obvious limitations as
follows.

• In order to develop applications suitable for specific sce-
narios and specific needs, developers are required to use
Go programming language to implement triggers and
activities to achieve specific goals,

• Flogo supports the TensorFlow model inference but does
not support TensorFlow model training.

• Flogo currently only supports the ML framework of Ten-
sorFlow 1.X, and it does not contain any TensorFlow-
related libraries.

3.3 EdgeWare implementation

Environment configuration of EdgeWare: As a prerequi-
site for the development of EdgeWare, Flogo currently only
supports the ML framework of TensorFlow 1.X. Besides,
as a Go-based ultra-lightweight open source ecosystem,
Flogo is mainly used to build event-driven applications,
and it does not contain any TensorFlow-related libraries.
So in EdgeWare, the TensorFlow dynamic library must
be installed on both the developer’s device and the user’s
device, and the dynamic library must be built specifically
for the platform architecture, such as Linux Arm, x86, x64,
Darwin, etc. After successfully setting the library path or
related environment variables, the EdgeWare development
environment is ready. Besides, considering the real-world
application, most of EdgeWare’s modules should be DNN-
based, but Flogo is not very friendly to DNN support. For
example, Flogo supports the TensorFlow model inference,
but it does not support model training. As to EdgeWare,
we should use Python to train the model first, and export
the model in the SavedModel format for running and infer-
ence in Flogo.

Activity1 Activity2

Activity1 Activity2 Activity3

Activity1

Activity4

Activity2

Activity1 Activity3

Activity1 Activity2

Activity2

Flow1

Flow2

Trigger1

Trigger2

Fig. 2 The examples of flows defined in this work

Fig. 3 Application architecture of EdgeWare

EdgeWare: toward extensible and flexible middleware for connected vehicle services

1 3

Code 1 Common Interface
1: function init()
2: //Create an activity register.
3: end function
4:

5: function New(ctx activity.InitContext)
6: //New optional factory method, should be used if one
7: //activity instance per configuration is desired.
8: end function
9:

10: function Metadata(*activity.Metadata)
11: // Returns the metadata of the activity.
12: end function
13:

14: function Eval(ctx activity.Context)
15: //Eval is called when an Activity is being evaluated.
16: //Returning true indicates that the task is done.
17: end function

Build EdgeWare services: Flogo provides a common
interface enabling developers to build a trigger or activity.
More specifically, taking the implementation of an activ-
ity as an example, developers need to implement these
functions as shown in Code 1 when building an activity.
In addition to implementing the functions defined by the
common interface, the received and passed data of the
activity should also be specified by defining variable’s type
and name. In Code 1, the Eval function is the main body
of activity, and the inference of DNN is done by calling
this function. To conduct DNN’s inference, in addition to
converting the DNN model to the SavedModel format, it is
also necessary to obtain the input tensor name and output
tensor name of the DNN model. In this way, the Edge-
Ware application can input data into TensorFlow Graph
and obtain the result after the inference is completed. In
addition, the image data must be resized to the input size
of the model and converted to the tensor format.

Goals achieved: Here, we describe our solutions to the
four goals presented at the beginning of Sect. 3.

• Solution to on-demand model switch and upgrade:
EdgeWare can achieve easily model switch and upgrade
without compiling. Specifically, it uses the REST (REp-
resentational State Transfer) Battle and Benson (2008)
trigger allowing users to pass parameters to the Edge-
Ware runtime through HTTP (HyperText Transfer Pro-
tocol) requests. The parameters will be used to update
the variable values during EdgeWare runtime, and the
variables will be passed to every related module through
Flows. The update of the variable value will cause the
DNN model to be reloaded. If a highly accurate model
is available, it can be loaded into the EdgeWare during
runtime, i.e., users can switch and upgrade models with-
out stopping the current EdgeWare service.

• Solution to function consolidation and deduplica-
tion: As has been mentioned, a Flow is composed of

multiple activities, which can be connected in series or
combined into branches. An activity will transmit the
same data to all activities connected behind it. In Edge-
Ware, when a piece of data needs to be used in multiple
activities, the data is only cached once and shared by
other associated activities. To save the storage space,
there is no backup in the cache, and data will not be
frequently transmitted multiple times, thus saving
bandwidth. In addition, take the Flow1 in Fig. 2 as an
example, the yellow Activity1 is connected to the yel-
low Activity2 and the purple Activity1, which means
that a function in the yellow Activity1 is executed only
once and will be passed to these two branches behind
it. On the contrary, if the yellow and purple branches
are split into two Flows, all functions in Activity1 are
duplicated. Therefore, the structure of Flows in Fig. 2
realizes function consolidation and deduplication.

• Solution to build event-driven services: Event-driven
refers to a strategy for making decisions in the continu-
ous activity management, i.e., based on the events that
occur at the certain time point, to mobilize available
resources and perform related tasks so that emerging
problems can be resolved. The event-driven architec-
ture usually uses loose coupling, because the event
initiator does not know which user is listening to the
current event, and it does not know the subsequent
results. Since event-driven architecture can minimize
the degree of coupling, it is an ideal choice for modern
distributed application architecture. EdgeWare is devel-
oped based on Flogo, and event-driven is one of the
core concepts of Flogo. Take the Flow as an example.
It consists of a trigger and multiple activities. Once the
trigger is invoked, all activities in the entire Flow will
execute their Eval function (shown in Code 1).

• Solution to dynamic flow customization: The cou-
pling between different Flows of EdgeWare is very low
or even without coupling, which makes dynamic Flow
customization easy to achieve. We also use the HTTP
requests to pass a value of a parameter to the EdgeWare
runtime. When the transmitted value is equal to the
trigger condition of a certain flow, the later activities
will be invoked. Assuming that EdgeWare contains n
Flows, and they are divided into two groups (Group A
Flows and Group B Flows). All triggers of Group A
Flows are controlled via the same parameter value, so
does Group B Flows but its parameter value is different.
As such, we can achieve dynamic Flow customization
by controlling the execution of different groups’ Flows
for diverse application scenarios.

 S. Lu et al.

1 3

4 Raspberry Pi based video analysis: a case
study

In this section, we will show how EdgeWare could be used
in vehicle video analysis. We trained and deployed five
ML models including motion detection, face detection,
gender classification, age estimation, and emotion detec-
tion on the Raspberry Pi, and treat it as the case study
to evaluate the performance of EdgeWare compared with
the silo approach. Note that although both our design and
implementation are exclusively for video analysis, our idea
can be easily adapt to any stream data analysis like audio
or any digital sensor data.

4.1 Five involved ML models

Go-based motion detection: Motion detection is a very
essential task for many computer vision tasks especially
in video surveillance systems analysis. Motion detection
refers to detecting changes in the position of an object
relative to its surrounding environment or changes in the
surrounding environment relative to the object Elharrouss
et al. (2019). In EdgeWare, the motion detection method
is the traditional machine learning methods Motion
Detection (2017), i.e., threshold-based motion detection
algorithms, which computes the pixel-wise difference
between two continuous video frames and output if a kind
of motion is detected. Since traditional ML models could
achieve comparable accuracy and dominates the motion
detection field (Parks and Fels 2008; Kumar and Sureshku-
mar 2013), we do not leverage any computation intensive
DNNs for motion detection.

Go-based face detection: Face detection is a popular
topic in the computer vision area and has received sig-
nificant research progress in terms of detection accuracy
(Viola and Jones 2004; Jiang and Learned-Miller 2017).
However, most of the face detection approaches are pow-
ered by the developer-friendly languages like Python
(Zhang et al. 2016) considering the language community,
the number of available libraries, and the simplicity of the
language, etc., and few of them are written in the Golang
programming language which is usually faster than Python
and consumes less memory. Since the core of EdgeWare is
based on the Go-powered Flogo framework, we implement
a Go-based face detection model called Go-face by using
the face recognition libraries for Golang Face Detection
(2018).

Go-based gender classification: Recognizing human
gender has become very popular recently because intel-
ligent services with this feature can provide a more user-
friendly environment for specific genders and social

interactions (Gupta 2015; Kim et al. 2006; Ahmed and
Kabir 2012). We implement a Go-powered gender clas-
sification model based on the TensorFlow version model
Gender Classification (2017) which first calls dlib library
to detect and align faces in images and then uses a convo-
lutional neural network (CNN) to classify gender based on
the detected human faces.

Go-based age estimation: Automatic estimation of
human age through facial image analysis has many potential
practical applications, such as human-computer interaction
and multimedia communication (Rothe et al. 2015, 2018).
Inspired by the work of Gender Classification (2017), which
uses the FaceNet architecture Schroff et al. (2015) and is
pre-trained on ImageNet for image classification and feature
extraction. Fine-tuning the CNN on training images with
apparent age annotations is a necessary step, so we trained
the age estimation model based on the IMDB-WIKI dataset
which consists of 524,230 face images crawled from IMDB
and Wikipedia websites, and we implemented a Go-based
age estimation model.

Go-based emotion detection: The face is a characteris-
tic feature of human since it contains identity and emotion
information. It is possible to identify a person and her/his
characteristics such as emotion (or expression) according to
her/his face images. Based on Facial detection, recognition
and emotion detection (2019), which are implemented by
TensorFlow and working for facial detection, recognition,
and emotion detection, we implemented a Go version and
use it for the emotion detection which categorizes seven
types of emotion, including angry, sad, neutral, disgust,
surprise, fear, and happy.

4.2 Four public datasets

In order to identify the effectiveness of EdgeWare in terms
of function duplication on the face related applications, we
collect and analysis four public datasets that provides anno-
tations for gender and age classifications.

Adience benchmark of unfiltered faces for gender and
age classification dataset: In order to facilitate the study of
age and gender recognition, the Open University of Israel
provides a dataset and benchmark of face photos (Levi and
Hassner 2015; Eidinger et al. 2014). The images contained
in this dataset is designed to be as realistic as possible to
the real-world imaging challenges. In particular, it tries to
capture all changes in appearance, pose, lighting, etc. that
can be expected of images taken without careful preparation
or posing. The image source of this dataset is assembled by
automatic upload from iPhone5 (or later) smartphones, and
released to the public by their authors under the Creative
Commons (CC) license Hassner et al. (2015).

IMDB-WIKI dataset: The IMDB-WIKI dataset is the
largest publicly available training dataset of face images

EdgeWare: toward extensible and flexible middleware for connected vehicle services

1 3

with gender and age annotations, which is published by
ETH Zurich. Based on the list of the most popular 100,000
celebrities shown on the IMDb website, ETH Zurich crawled
their public information related to the date of birth, name,
gender, and all images (Rothe et al. 2015, 2018). In addition,
ETH Zurich used the same meta-information to retrieve all
profile images from Wikipedia’s people page, and deleted
images without a timestamp (the date the photo was taken).
Assuming that images of a single face are both likely to
show an actor, and the time stamp and the birth date of that
actor are both correct, then they can assign an actual age to
each image. Besides the incorrect timestamps, many images
are still images from movies. In total, they obtained 460,723
facial images from 20,284 celebrities from IMDb and 62,328
celebrities from Wikipedia, resulting in a total of 523,051
images.

UTKFace dataset: The UTKFace dataset Zhang et al.
(2017) is a large-scale face dataset with a large age range
(spanning from 0 to 116 years old). The dataset contains
more than 20,000 facial images with age, gender, and eth-
nicity annotations. The images cover big changes in posture,
facial expressions, lighting, occlusion, resolution, etc. This
dataset can be used for various tasks, such as face detection,
age estimation, age classification, landmark positioning, etc.

AppaReal dataset: The AppaReal dataset Clapés et al.
(2018) released by the University of Barcelona, which con-
tains 7591 images and related real age annotations. The total
number of apparent votes was approximately 250,000. On
average, there are about 38 votes per image, which makes the
average apparent age very stable (0.3 standard errors of the
average). The images are divided into 4113 training images,
1500 validation images and 1978 testing images.

4.3 Model training platform

Based on the above four public datasets, we trained ML
models on the NVIDIA GPU Workstation, which is capable
to deliver the cluster-level performance for even the demand-
ing applications (Spiga and Girotto 2012; Morozov et al.
2011). NVIDIA GPU Workstationis equipped with a pow-
erful Intel Xeon E5-2690 v4 CPU and four GeForce RTX
2080 Ti GPUs. The memory of it is 64 GB and the operating
system installed is Windows 10 containing 14 cores. After-
ing training, we deploy these ML models on the Raspberry
Pi to test the performance of EdgeWare.

4.4 Implementation of the case study

Description of the case study diagramming: Figure 4
shows the diagramming of our case study application,
including six Flows that consists of diverse triggers and
activities. Each Flow is responsible for a specific task
with the corresponding trigger. We mark these Flows as

Flow1~Flow6 from top to bottom of Fig. 4. The Log_Num-
ber (e.g., Log_1) in Fig. 4 represents the corresponding data
or the message in a specific Flow. The usage of Log_Num-
bers does not affect the function of the application but helps
us develop an application.

In Fig. 4, the REST Trigger of Flow1 defines two meth-
ods — Get and Post, which provides the EdgeWare applica-
tion with the ability to start an action via REST over HTTP.
REST refers to a set of constraints that ensure a fault-toler-
ant, scalable, and extendible system. To be concrete, we can
use the following command in the terminal to pass param-
eters to the EdgeWare runtime: curl http://localhost:8020/
demoID/3. Here, both the port and name are configurable.

Flow1 (Pass Data to All Flows): In order to pass the data
obtained by EdgeWare in the REST trigger to all Flows, we
applied the Set method of AppData activity in Flow1 (shown
in Fig. 4). Note that this activity defines the Set and Get
methods that allow users to set and get global App attributes,
which means that Other Flows can obtain the demoID data
originally from the curl command through the Get method of
AppData activity. The Get method of AppData activity is not
called repeatedly in multiple Flows, and We only call this
method in Flow2 (i.e., Get AppData). Note that the output
of Face Found Pub activity in Flow2 (face detection) will be
used as the trigger of Flow3 (age estimation), Flow4 (gender
classification), and Flow5 (emotion detection). We wrap the
demoID data obtained by the Get method of AppData activ-
ity in an event message and pass it to the next three Flows.

Flow2 (Face Detection): In Flow2, Motion Detection
Trigger is used to read the video stream of the USB camera

Get
AppData

Face
Detection

Log_2

Face Found
Pub

Motion
Detection
Trigger

Age
AnalysisAge Pub Age

Trigger

Gender
Analysis

Gender
Pub

Emotion
Analysis

Emotion
Pub

Gender
Trigger

Emotion
Trigger

Log_3

Log_4

Log_5

Result
Trigger

Result
Display
Write to

File

REST Get
Trigger

Set
AppData

Log_1

Flow1

Flow2

Flow3

Flow4

Flow5

Flow6

Fig. 4 Implementation of the case study

 S. Lu et al.

1 3

and conduct a motion detection algorithm to detect the dif-
ference of every two continuous frames. If the difference is
exceeding the threshold, it will trigger the subsequent activi-
ties. On the other hand, Face Detection calls the dlib library
and DNN model to detect if the incoming frame contains
a face or not, if it does, the face area is cropped and saved
into the cache. At the same time, Face Found Pub will post
a message telling that it has detected the face and the cached
location of the face image. The Face Found Pub is a Kafka
publisher. Here, Kafka is a distributed messaging system
for collecting and delivering high volumes of log data with
low latency (Kreps et al. 2011). Specifically, Kafka is in
general publish-subscribe based messaging system, which
consists of the publisher and subscriber. Publisher publishes
messages and subscriber consume or pull that data. In this
work, Kafka publisher and subscriber are the core compo-
nents in the case study. They are the communication hub of
Flow2~Flow6. We use Kafka publisher and subscriber to
solve the communication problem of Flow2~Flow6. Thanks
to the distributed division of Kafka, EdgeWare applications
can be easily deployed in a distributed environment.

Code 2 Invoke DNN Model
1: function Eval(ctx activity.Context)
2: //Image preprocessing to obtain input tensor.
3: result, err := model.Session.Run(
4: map[tf.Output]*tf.Tensor{
5: model.Graph.Operation(”input 1”).Output(0): imgtf ,},
6: []tf.Output{
7: model.Graph.Operation(”dense/Softmax”).Output(0),
8: }, nil,
9:)

10: end function

Flow3 (Age Estimation), Flow4 (Gender Classifica-
tion), and Flow5 (Emotion Detection): Flow3, Flow4,
and Flow5 are very similar. The difference is that different
DNN models are invoked. These DNN models are used to
predict age, gender, and emotions. As has been mentioned

in Sect. 3, in order to invoke the DNN model, the input and
output tensor names of the model need to be explicitly speci-
fied, as shown in Code 2, “input_1” and “dense/Softmax”
are the input and output tensor names respectively. All of the
three Flows here invoke DNN models in this way, which is
the only TensorFlow 1.x calling method currently supported
by Flogo. The triggers of these three Flows are all Kafka
subscribers, they listen to the same event from Flow2. The
last activity of the three Flows is a Kafka Publisher, they
publish event messages to the same Kafka Topic, which are
monitored by the trigger (a Kafka subscriber) of Flow6.

Flow6 (Receive, Integrate, and Display Results): Flow6
has nothing to do with DNN. It just receives results from the
previous Flows, i.e., gender classification, age estimation,
and emotion detection results, then integrate, displays, and
writes them to the file.

Figure 5 presents an output result of our case study. The
left side is the original video frame, and the right side is the
result of the cropping face area and results of gender clas-
sification, age estimation, and emotion detection, i.e., the
result of a frame of picture input from Flow2 and finally
output from Flow6.

5 Evaluation and discussion

In this section, we evaluate the performance of EdgeWare
in the case study of video analysis with diverse ML models,
including face detection, gender classification, age estima-
tion, and emotion detection. Specifically, our evaluation
answers the following questions:

a) Can EdgeWare switch and upgrade machine learning
models? (answered in Sect. 5.3)

b) How well does EdgeWare eliminate duplicate func-
tions and maximize the reusability of vehicle services?
(answered in Sects. 5.2.2 and 5.2.3)

Fig. 5 Case study demo

EdgeWare: toward extensible and flexible middleware for connected vehicle services

1 3

c) How long inference time does EdgeWare can reduce?
(answered in Sect. 5.2.1)

d) How well does EdgeWare’s dynamic Flow customiza-
tion can enable the customizing of Flow to extend the
functionality? (answered in Sect. 5.3)

5.1 Hardware setup

In this case study, we adopt two types of hardware in total to
test the performance of EdgeWare, i.e., a Raspberry Pi 4B
and a USB camera (shown in Fig. 6). The edge node (CAV)
is Raspberry Pi 4B, which is a micro-computer running on a
Linux system. Raspberry Pi 4B is the latest version released
in June 2019 BinMasoud and Cheng (2019), and it can com-
municate with the Internet via an on-board Wi-Fi module.
Besides, it is a Broadcom BCM2711 system-on-chip with a
quad-core Cortex-A72 (ARM v8) 64-bit processor running
at 1.5 GHz, with 4 GB of RAM Danish et al. (2020).

In addition, we use the ELP mini USB Camera to cap-
ture real-world video for the evaluation purpose. The USB
camera can be directly used to connect with any personal
computer and all kinds of OS system machine by USB 2.0’s
Standard-A port for security and computer vision analysis,
with HD resolution up to 1080 × 720P.

5.2 Experimental observation

Next, we test the performance of real-time service using
EdgeWare compared with a silo approach, in terms of infer-
ence time, CPU and memory consumption, and answer
the proposed questions in Sect. 5. In a silo approach, four
flows i.e., face detection, gender classification, age estima-
tion, and emotion detection are executing independently.
Whereas using EdgeWare, face detection is the first module
needed to be executed, then the other three modules receive
the face detection results to conduct corresponding calcula-
tions concurrently.

5.2.1 Execution time comparison

Figure 7 presents the average execution time of each module
for a single frame in the silo approach. It can be seen that

each frame of face detection consumes the longest time on
average, which is reasonable since it needs to conduct inten-
sive pixel-wise calculation, while the other three services,
i.e., gender classification, age estimation, and emotion detec-
tion can be regarded as the classification problems. Suppose
we use Tsilo and TEdgeWare to represent the overall execution
time of silo approach and EdgeWare services, and use Tface ,
Tgen , Tage , and Temo to denote the execution time of each mod-
ule respectively. Therefore, the formulas to calculate Tsilo and
TEdgeWare can be defined as follows.

Based on Eqs. 1 and 2, we have Tsilo = 0.8925(s) and
TEdgeWare = 0.3457(s) , i.e., the overall execution time of silo
approach is around 0.89 s and the inference time of Edge-
Ware service is about 0.35 s, which answers the question of
“how long inference time does EdgeWare can reduce” at the
beginning of Sect. 5.

Observation 1 EdgeWare approach is about 2.6× faster than
the silo approach in this particular scenario.

5.2.2 CPU utilization comparison

Figure 8 presents the comparison results of the EdgeWare
approach and the silo approach in terms of CPU utiliza-
tion. We use blue color and orange color to denote the
sum of work handled by a CPU of EdgeWare and silo
approach, respectively. It can be seen that the CPU utili-
zation of EdgeWare is normally half of the silo approach.
More specifically, on average, EdgeWare services account
for around 95.96% CPU, while the CPU utilization of the
silo method is 193.04%. It proves that using EdgeWare
could reduce the CPU usage for our case study. Since
the CPU utilization can reflect the workload status, we
can infer that EdgeWare could reduce the computation

(1)Tsilo =
(

Tface + Tgen
)

+

(

Tface + Tage
)

+

(

Tface + Temo
)

(2)TEdgeWare =Tface + max
{

Tgen + Tage + Temo
}

Fig. 6 A raspberry Pi 4B and a USB camera

0.1920

0.0849 0.0785

0.1531

0
0.05

0.1
0.15

0.2
0.25

Face
Detection

Gender
noitacifssalC

Age
noitamitsE

Emotion
noitceteD

Ti
m

e/
s

Flows

Average time consumption for each Flow

Fig. 7 Average time consumption of processing an image for each
Flow in the silo approach

 S. Lu et al.

1 3

workload by eliminating the redundant calculations,
which answers the question of “how well does EdgeWare
eliminate duplicate functions and maximize the reusabil-
ity of vehicle services” at the beginning of Sect. 5 from
one aspect.

Observation 2 EdgeWare services can save half of the CPU
utilization compared with silo methods in our case study.

5.2.3 Memory utilization comparison

With the same principle, we also measure the memory uti-
lization of the EdgeWare application and silo approach,
which is shown in Fig. 9. The average memory utilization
of EdgeWare services is about 1890.35 MB, and the value
of the silo approach is around 2276.22 MB. Similarly, it also
answers the question of “how well does EdgeWare eliminate
duplicate functions and maximize the reusability of vehicle
services” at the beginning of Sect. 5 from the memory usage
aspect. The comparison with silo approach is able to reflect
the performance of EdgeWare. We conducted experiments in
Raspberry Pi, and in addition to the execution of these flows,
there is also competition for computing resources from the
associated environment. When flows are distributed and
deployed in different nodes, EdgeWare can support distrib-
uted deployment of multiple models and enable cooperation
among multiple edge devices.

Observation 3 On average, the memory utilization of Edge-
Ware services is lower than the silo approach by 17% in our
case study.

5.3 Evaluation on dynamic flow customization
and model upgrade

Three flows with different accuracy-level models: In order
to answers the two questions of “a) Can EdgeWare switch
and upgrade machine learning models?” and “d) How well
does EdgeWare’s dynamic flow customization can enable the
customizing of flow to extend functionality?”, we evaluate
three Flows, i.e., gender classification, age estimation, and
emotion detection. Besides, as to gender classification, we
have low-accuracy and high-accuracy DNN model. Simi-
larly, we also consider two different accuracy-level DNN
models for age estimation. Figure 10 present an example

0
100
200
300
400
500
600
700

1 10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

C
PU

 U
sa

ge
 (%

)

Time/s

EdgeWare Silo

Fig. 8 CPU usage comparison between EdgeWare and silo approach

0 500 1000 1500 2000 2500

EdgeWare

Silo

Average Memory Utilization (MB)

Fig. 9 Average memory utilization comparison between EdgeWare
and silo approach

Fig. 10 An example of Flow customization and model upgrading

EdgeWare: toward extensible and flexible middleware for connected vehicle services

1 3

of Flow customization (i.e., the capability of adding new
Flows for other intelligent services) and model upgrade
(i.e., switching from the low-accuracy model to the high-
accuracy model).

To be concrete, Fig. 10a represents the gender classifica-
tion Flow with low-accuracy model; Fig. 10b denotes the
gender classification Flow and the age estimation Flow, and
these two Flows both include low-accuracy models; Fig. 10c
shows the results of three Flows, i.e., gender classification,
age estimation, and emotion detection, with high-accuracy
models. Comparing these subfigures, we can see that using
EdgeWare, we can improve the accuracy of gender classifi-
cation by ugrade the low-accurate model to the high-accu-
rate model, i.e., the gender classification result of Fig. 10a
and b are both wrong while we can eliminate this false clas-
sification by using high-accurate model (Fig. 10c) Besides,
we can also add new services in the EdgeWare approach
accordingly.

To better demonstrate the uniqueness and innovation
of EdgeWare, we list below the main differences between
EdgeWare and Flogo.

• To apply a neural network model to Flogo and deploy it
on a Raspberry Pi-like device, we needs to convert the
model format and get the neural network node names,
which EdgeWare provides the tools for.

• Function consolidation and deduplication is the core idea
of EdgeWare, based on the communication mechanism
of ZooKeeper and Kafka, which makes cross-platform
function consolidation and deduplication easy.

• The model update mechanism is designed by ourselves,
combined with Pub/Sub communication mode, passing
configuration information through JSON, synchronizing
the model update status notification to all flows, and real-
izing the adjustment of related activities under the new
model at the same time.

6 Related work

6.1 Standalone service in single‑platform

Previous studies on Edge Computing have created a variety
of video analysis services for applications in the fields of
public safety, autonomous vehicles (AVs), emergency medi-
cal service, etc. Shi et al. (2016). However, running such
services on the resource-constrained edge is very challeng-
ing since video and image processing are both bandwidth-
hungry and computationally intensive. Towards this end,
in vehicular computing, Lu et al. proposed an edge-based
object detection services for autonomous vehicles on the
optical-domain compressed video Lu et al. (2020), with
the primary goal of accelerating accurate video analysis

and decreasing energy consumption. Hossein Badri et al.
proposed a service placement method optimized for edge
services that take edge environment into consideration
Badri et al. (2017). Peng Liu et al. designed a high-level,
task-specific API for the user to apply Deep Neural Net-
works by transforming models trained with popular deep
learning frameworks Liu et al. (2018). Arun Ravindran and
Anjus George designed a key-value edge data store for video
analysis, which monitors run-time conditions to feed data to
latency-critical tasks to improve the overall quality Ravin-
dran and George (2018).

6.2 Cloud/edge service management

Service scheduling. Zhang et al. analyze the bandwidth,
energy, and computing power of using cloud/edge comput-
ing and proposed EVAPS (Edge Video Analysis for Public
Safety) to leverage various computing platforms to achieve
higher efficiency for public safety Zhang et al. (2016).
Chien-Chun Hung et al. presented a system that tries to fig-
ure out the best Video analytics query plan among cameras,
private clusters, and public clouds to achieve a good trade-
off between computation resources and algorithm accuracy
Hung et al. (2018). Similarly, Lee et al. described a meth-
odology for scheduling interactions initiated by vehicular
applications and measured both the computational and net-
work demands of offloading analysis to edge infrastructure
Lee et al. (2017).

Computation offloading. One of the most popular ser-
vice management studies in Edge Computing is computation
offloading. The fundamental idea is to leverage powerful
remote resources by offloading complex computations to
the remote site. Dong et al. developed two offloading algo-
rithms as a resource management framework to determine
which task components should be offloaded to optimize the
response time while minimizing energy consumption Dong
et al. (2017). Yi et al. proposed LAVEA that provides vari-
ous task placement schemes and formulates an optimization
problem for offloading task selection to provide low-latency
video analytics at places closer to the users Yi et al. (2017).
Drolia et al. introduced a prefetching and caching technique
to selectively run part of computation on edge devices so
that it can reduce the need to offload images to the cloud
Drolia et al. (2017). Wang et al. described four real-time
video analytics strategies for drones to reduce total trans-
mission and save bandwidth while minimally impact result
accuracy and latency. Wang et al. (2018). Luo et al. (2021)
conducted a comprehensive review of resource scheduling in
edge computing. Arthurs et al. (2021) surveyed the literature
for connected vehicles and provided taxonomies for their use
cases. Luo et al. (2020) proposed reinforcement learning
based vehicular edge computing.

 S. Lu et al.

1 3

Vehicle services management. Wang et al. (2019) pro-
posed a prototype system for distributed task scheduling on
mobile edge devices, and they aimed to enhance on-board
Vehicle Computing Units for CAVs. Besides, they also pro-
posed three scheduling strategies. Their work focused on
the dynamic management, resource monitoring, and task
offloading of the edge devices for the scheduling platform.
However, this scheduling prototype is based on socket com-
munication and has poor scalability. Zhao and Kim (2020)
argued that in general scenarios where there are multiple
cloud/edge devices and competing resources, it is impor-
tant to consider vehicle trajectories, workloads, and requests
simultaneously to jointly optimize allocations. They inves-
tigated the cost minimization problem in the allocation
and scheduling of interconnected vehicle service requests
on heterogeneous cloud/edge services. However, whether
there is redundancy among multiple tasks and whether these
requests can be optimized are not considered.

Virtual machine migration. In the meanwhile, tech-
niques based on virtual machine migration have been pro-
posed in Kiryong et al. (2015), Satyanarayanan et al. (2009)
to accelerate the service handoff across edge servers. Ma et
al. designed a service handoff system that migrates services
to the nearest edge server by Docker layered storage sys-
tem migration to reduce file system synchronization over-
head Ma et al. (2017). Jang et al. proposed a task offload-
ing mechanism for efficient video analytics processing and
created virtualized Docker containers Merkel (2014) with
a dynamic reconfiguration scheme that allows IoT cameras
to dynamically adjust their configuration to environmental
context changes without degrading application QoS (Jang
et al. 2018).

6.3 Comparison with rocket

Rocket video analytics system: In the end of 2019,
Microsoft has proposed Rocket Microsoft Rocket for Live
Video Analytics (2019), which is a powerful configur-
able platform for live video analytics. The platform works
across geographically distributed CAVs (e.g., Azure Stack

Edge) and large clouds (e.g., Azure Machine Learning and
Cognitive Services), and its ultimate goal is to make it
easy and affordable for real-time, low-cost and accurate
live video analysis.

The need of cloud-agnostic CAV computing plat-
forms: The services of Microsoft Rocket are tightly cou-
pled with their respective cloud platform services. There
is a need for cloud-agnostic, platform-agnostic Edge
Computing platforms that customers can deploy on-prem.
While the project Flogo from TIBCO is a lightweight vehi-
cle computing platform that is not tied to any specific pub-
lic cloud platforms. Inspired by Flogo, we build EdgeWare
toward extensible and flexible middelware, specifically for
the vehicle service management.

Similarity between rocket and EdgeWare: Rocket
and EdgeWare introduce the concept of “pipeline” and
“Flows” respectively, which both includes a cascade of
ML models for a specific service, and the pipline or Flow
can both be customized. Developers can also augment the
above pipelines or Flows with simpler motion detection
filters based on OpenCV background subtraction. Besides,
both Rocket and EdgeWare are able to be configured to
execute over a distributed infrastructure.

Difference between EdgeWare and rocket: In general,
EdgeWare is different from Rocket in terms of six aspects,
which is shown in Table 1. Rocket is a platform for live
video analytics. With perfect integration with Azure cloud
services as its feature, and the powerful computing and
storage capabilities in the cloud make Rocket much more
powerful. Rocket is developed for Windows and is hard to
be deployed on Raspberry Pi, which is not very compatible
with edge devices.

• EdgeWare is an Go-powered and ultra-light platform
while Rocket is built on C# which has robust base class
libraries.

• The Flows of EdgeWare can be easily customized since
the coupling between different Flows is very low or even
without coupling. As to Rocket, although developers can
also customize the pipeline architecture of Rocket, the

Table 1 Comparison between
EdgeWare and rocket

EdgeWare Rocket

Go C#
Flows (Easy to customize) Pipelines (Can be customized, but more difficult)
Flexible model switching Recompile
Support Raspberry Pi Visual Studio Project on Windows Linux: docker

+ NVIDIA driver
Based on Edge platform only Edge + Cloud platform
Provide models and model switch/update services No model switch/update services
Only TensorFlow 1.x is supported Support for different DNN frameworks
Not support query results Support query results

EdgeWare: toward extensible and flexible middleware for connected vehicle services

1 3

customizing process is more difficult due to the high cou-
pling of diverse pipelines.

• EdgeWare can achieve flexible model switching without
recompiling, while Rocked requires recompiling to real-
ize model switching.

• EdgeWare focuses on low-cost edge devices with
machine learning capabilities, such as Raspberry Pi.
Rocket supports Visual Studio projects on the Win-
dows operating system, while in the Linux operating
system, Rocket requires docker and NVIDIA drivers to
run, which makes Rocket not applicable to many edge
devices.

• EdgeWare is a lightweight edge computing platform that
is not tied to any specific public cloud platform, instead,
it only focuses on edge platform so that developers can
deploy on-prem. However, Rocket is tightly coupled with
its cloud platform services e.g., Azure Machine Learning
and Cognitive Services.

• EdgeWare provides ML models and model switch/update
services, while Rocket does not provide this kind of ser-
vices.

• As to EdgeWare, only TensorFlow 1.x is supported,
while Rocket supports different ML model framework,
such as TensorFlow, Darknet or Caffe.

• EdgeWare does not support query results, while Rocket
does.

6.4 Distinctive requirements to design vehicle
service middleware

Although CAVs are the perfect and typical Edge Comput-
ing platforms in the Edge Computing era Lu et al. (2019),
the design of vehicle service middleware should take into
account the distinctive characteristics of vehicle services,
especially considering the communication and collaboration
of vehicle fleets in the real-world application scenario. In
this subsection, we list two unique characteristics of Edge-
Ware for connected vehicle services.

First, EdgeWare is able to kill in-vehicle services with
a time or an event trigger, and this function is necessary
since complete in-vehicle services are not always needed
in the real-world application scenario. Take the intersec-
tion management in a CAV environment as an example,
at each intersection, CAV fleets and several roadside units
(RSUs) are working together to coordinate the movement
of all vehicles. Intelligent RSUs can observe and predict the
trajectories of all moving vehicles based on traffic detec-
tion devices (such as radar or LiDAR-based sensors) and
equipped motion detection algorithms Lin et al. (2017). In
this case, if it is predicted that an approaching vehicle is
going to leave the specific intersection area, EdgeWare can

receive the signal (trigger) and kill in-vehicle services (such
as traffic light detection and front vehicle tracking) even if
these services are not finished. Second, EdgeWare is able to
share/send the intermediate service results (such as pedes-
trian detection and trajectory prediction results) to the sur-
rounding vehicles, and surrounding vehicles could continue
to conduct data analysis based on the received intermediate
results. This ability could save the computation resources
and reduce inference time especially when multiple vehicles
are working together.

7 Conclusion remarks

In this work, we propose a framework, EdgeWare, towards
extensible and flexible middleware for vehicle services,
which has four key features: i) on-demand model switch,
i.e., easily switch and upgrade machine learning models, ii)
function consolidation and deduplication to eliminate dupli-
cate copies of repeating functions and maximize the reusa-
bility of vehicle services, iii) build event-driven applications
to reduce workload, and iv) dynamic workflow customiza-
tion which enables customizing workflow to extend the
functionality. Our experiment results show that EdgeWare
has the capability to accelerate the overall data analysis per-
formance for real-time services, and it allows researchers
and application developers to dynamically add new services
on CAVs or easily switch to the upgraded applications for
the life cycle management of vehicle services. This work is
supported in part by the National Science Foundation (NSF)
grants CNS-2140346.

References

Ahmed, F., Kabir, M.H.: Facial feature representation with directional
ternary pattern (dtp): Application to gender classification. In:
2012 IEEE 13th International conference on information reuse &
integration (IRI), pp. 159–164 (2012). IEEE

Akiba, T., Suzuki, S., Fukuda, K.: Extremely large minibatch sgd:
training resnet-50 on imagenet in 15 minutes. arXiv: 1711. 04325
(2017)

Arthurs, P., Gillam, L., Krause, P., Wang, N., Halder, K., Mouzakitis,
A.: A taxonomy and survey of edge cloud computing for intelli-
gent transportation systems and connected vehicles. IEEE Trans.
Intell. Transp. Syst. (2021)

Badri, H., Bahreini, T., Grosu, D., Yang, K.: Multi-stage stochastic
programming for service placement in edge computing systems:
Poster. In: Proceedings of the Second ACM/IEEE Symposium on
Edge Computing. SEC ’17, pp. 28–1282. ACM, New York, NY,
USA (2017). https:// doi. org/ 10. 1145/ 31322 11. 31324 61

Battle, R., Benson, E.: Bridging the semantic web and web 2.0 with
representational state transfer (rest). J. Web Semant. 6(1), 61–69
(2008)

Beneventi, F., Bartolini, A., Cavazzoni, C., Benini, L.: Continuous
learning of hpc infrastructure models using big data analytics
and in-memory processing tools. In: Design, automation & test in

http://arxiv.org/abs/1711.04325
https://doi.org/10.1145/3132211.3132461

 S. Lu et al.

1 3

Europe Conference & Exhibition (DATE), 2017, pp. 1038–1043
(2017). IEEE

BinMasoud, A., Cheng, Q.: Design of an iot-based vehicle state moni-
toring system using raspberry pi. In: 2019 International Confer-
ence on Electrical Engineering Research & Practice (ICEERP),
pp. 1–6 (2019). IEEE

Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: optimal speed
and accuracy of object detection. arXiv: 2004. 10934 (2020)

Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model com-
pression and acceleration for deep neural networks. arXiv: 1710.
09282 (2017)

Clapés, A., Bilici, O., Temirova, D., Avots, E., Anbarjafari, G.,
Escalera, S.: From apparent to real age: gender, age, ethnic,
makeup, and expression bias analysis in real age estimation. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 2373–2382 (2018)

Danish, M., Brazauskas, J., Bricheno, R., Lewis, I., Mortier, R.: Deep-
dish: multi-object tracking with an off-the-shelf raspberry pi. In:
Proceedings of the Third ACM International Workshop on Edge
Systems, Analytics and Networking, pp. 37–42 (2020)

Dong, Z., Gu, Y., Chen, J., Tang, S., He, T., Liu, C.: Enabling predict-
able wireless data collection in severe energy harvesting environ-
ments. In: 2016 IEEE Real-Time Systems Symposium (RTSS),
pp. 157–166 (2016). IEEE

Dong, Z., Gu, Y., Fu, L., Chen, J., He, T., Liu, C.: Athome: Automatic
tunable wireless charging for smart home. In: Proceedings of the
Second International Conference on Internet-of-Things Design
and Implementation, pp. 133–143 (2017)

Dong, Z., Liu, Y., Zhou, H., Xiao, X., Gu, Y., Zhang, L., Liu, C.: An
energy-efficient offloading framework with predictable temporal
correctness. In: Proceedings of the Second ACM/IEEE Sympo-
sium on Edge Computing. SEC ’17, pp. 19–11912. ACM, New
York, NY, USA (2017). https:// doi. org/ 10. 1145/ 31322 11. 31344 48

Drolia, U., Guo, K., Narasimhan, P.: Precog: Prefetching for image rec-
ognition applications at the edge. In: Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, pp. 1–13 (2017)

Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfil-
tered faces. IEEE Trans. Inf. Forensic. Secur. 9(12), 2170–2179
(2014)

Elharrouss, O., Al-Maadeed, N., Al-Maadeed, S.: Video summariza-
tion based on motion detection for surveillance systems. In: 2019
15th International Wireless Communications & Mobile Comput-
ing Conference (IWCMC), pp. 366–371 (2019). IEEE

Face Detection. https:// github. com/ Kagami/ go- face (2018)
Facial detection, recognition and emotion detection. https:// github.

com/ priya- dwive di/ face_ and_ emoti on_ detec tion/ blob/ master/
Facial% 20Det ection% 2C% 20Rec ognit ion% 20and% 20Emo tion%
20Det ection. md (2019)

Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: Dssd: Deconvolu-
tional single shot detector. arXiv: 1701. 06659 (2017)

Gender Classification. https:// github. com/ Boyua nJiang/ Age- Gender-
Estim ate- TF (2017)

Gibbs, S.: Google sibling waymo launches fully autonomous ride-
hailing service. The Guardian 7, (2017)

Gillmore, S., Tenhundfeld, N.L.: The good, the bad, and the ugly:
Evaluating tesla’s human factors in the wild west of self-driving
cars. In: Human Factors and Ergonomics Society Annual Meet-
ing (2020)

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierar-
chies for accurate object detection and semantic segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 580–587 (2014)

Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE international con-
ference on computer vision, pp. 1440–1448 (2015)

Gupta, S.: Gender detection using machine learning techniques and
delaunay triangulation. Int. J. Comput. Appl. 124(6) (2015)

Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman
coding. arXiv: 1510. 00149 (2015)

Hand, D.J.: Classifier technology and the illusion of progress. Stat.
Sci. 1–14 (2006)

Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontali-
zation in unconstrained images. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
4295–4304 (2015)

He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Pro-
ceedings of the IEEE International Conference on Computer
Vision, pp. 2961–2969 (2017)

Huang, R., Pedoeem, J., Chen, C.: YOLO-LITE: a real-time object
detection algorithm optimized for non-GPU computers. In:
2018 IEEE International Conference on Big Data (Big Data),
pp. 2503–2510 (2018). IEEE

Hung, C., Ananthanarayanan, G., Bodik, P., Golubchik, L., Yu, M.,
Bahl, P., Philipose, M.: VideoEdge: Processing camera streams
using hierarchical clusters. In: 2018 IEEE/ACM Symposium on
Edge Computing (SEC), pp. 115–131 (2018). https:// doi. org/ 10.
1109/ SEC. 2018. 00016

Jang, S.Y., Lee, Y., Shin, B., Lee, D.: Application-aware iot cam-
era virtualization for video analytics edge computing. In: 2018
IEEE/ACM Symposium on Edge Computing (SEC), pp. 132–
144 (2018). https:// doi. org/ 10. 1109/ SEC. 2018. 00017

Jiang, H., Learned-Miller, E.: Face detection with the faster r-cnn.
In: 2017 12th IEEE International Conference on Automatic Face
& Gesture Recognition (FG 2017), pp. 650–657 (2017). IEEE

Jiang, B., Yang, J., Ding, G., Wang, H.: Cyber-physical security
design in multimedia data cache resource allocation for indus-
trial networks. IEEE Trans. Ind. Inf. 15(12), 6472–6480 (2019)

Kim, H.-C., Kim, D., Ghahramani, Z., Bang, S.Y.: Appearance-based
gender classification with gaussian processes. Pattern Recognit.
Lett. 27(6), 618–626 (2006)

Kiryong, H., Yoshihisa, A., Zhuo, C., Wenlu, H., Brandon, A.:
Adaptive vm handoff across cloudlets. technical report cmu-c
s-15–113. Computer Science Department, Carnegie Mellon
University (2015)

Kreps, J., Narkhede, N., Rao, J., et al: Kafka: A distributed messag-
ing system for log processing. In: Proceedings of the NetDB,
vol. 11, pp. 1–7 (2011)

Kukkala, V.K., Tunnell, J., Pasricha, S., Bradley, T.: Advanced
driver-assistance systems: a path toward autonomous vehicles.
IEEE Consumer Electron. Magn. 7(5), 18–25 (2018)

Kumar, A.N., Sureshkumar, C.: Background subtraction based on
threshold detection using modified k-means algorithm. In: 2013
International Conference on Pattern Recognition, Informatics
and Mobile Engineering, pp. 378–382 (2013). IEEE

Lee, K., Flinn, J., Noble, B.D.: Gremlin: Scheduling interactions
in vehicular computing. In: Proceedings of the Second ACM/
IEEE Symposium on Edge Computing. SEC ’17, pp. 4–1413.
ACM, New York, NY (2017). https:// doi. org/ 10. 1145/ 31322 11.
31344 50

Levi, G., Hassner, T.: Age and gender classification using convolu-
tional neural networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp.
34–42 (2015)

Lin, P., Liu, J., Jin, P.J., Ran, B.: Autonomous vehicle-intersection
coordination method in a connected vehicle environment. IEEE
Intell. Transp. Syst. Magz. 9(4), 37–47 (2017)

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y.,
Berg, A.C.: Ssd: Single shot multibox detector. In: European Con-
ference on Computer Vision, pp. 21–37 (2016). Springer

Liu, L., Lu, S., Zhong, R., Wu, B., Yao, Y., Zhang, Q., Shi, W.: Com-
puting systems for autonomous driving: state-of-the-art and chal-
lenges. IEEE Int. Things J. (2020)

http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1710.09282
https://doi.org/10.1145/3132211.3134448
https://github.com/Kagami/go-face
https://github.com/priya-dwivedi/face_and_emotion_detection/blob/master/Facial%20Detection%2C%20Recognition%20and%20Emotion%20Detection.md
https://github.com/priya-dwivedi/face_and_emotion_detection/blob/master/Facial%20Detection%2C%20Recognition%20and%20Emotion%20Detection.md
https://github.com/priya-dwivedi/face_and_emotion_detection/blob/master/Facial%20Detection%2C%20Recognition%20and%20Emotion%20Detection.md
https://github.com/priya-dwivedi/face_and_emotion_detection/blob/master/Facial%20Detection%2C%20Recognition%20and%20Emotion%20Detection.md
http://arxiv.org/abs/1701.06659
https://github.com/BoyuanJiang/Age-Gender-Estimate-TF
https://github.com/BoyuanJiang/Age-Gender-Estimate-TF
http://arxiv.org/abs/1510.00149
https://doi.org/10.1109/SEC.2018.00016
https://doi.org/10.1109/SEC.2018.00016
https://doi.org/10.1109/SEC.2018.00017
https://doi.org/10.1145/3132211.3134450
https://doi.org/10.1145/3132211.3134450

EdgeWare: toward extensible and flexible middleware for connected vehicle services

1 3

Liu, P., Qi, B., Banerjee, S.: Edgeeye: An edge service framework for
real-time intelligent video analytics. In: Proceedings of the 1st
International Workshop on Edge Systems, Analytics and Network-
ing. EdgeSys’18, pp. 1–6. ACM, New York, NY, USA (2018).
https:// doi. org/ 10. 1145/ 32133 44. 32133 45

Liu, L., Qiao, X.Z.M., Shi, W.: Safeshareride: Edge-based attack detec-
tion in ridesharing services. In: USENIX Workshop on Hot Topics
in Edge Computing (HotEdge 18). USENIX Association, Boston,
MA (2018). https:// www. usenix. org/ confe rence/ hoted ge18/ prese
ntati on/ liu

Liu, B.: Lifelong machine learning: a paradigm for continuous learning.
Front. Comput. Sci. 11(3), 359–361 (2017)

Lu, S., Luo, B., Patel, T., Yao, Y., Tiwari, D., Shi, W.: Making disk
failure predictions smarter! In: 18th USENIX conference on file
and storage technologies (FAST’ 20), pp. 151–167 (2020)

Lu, S., Yao, Y., Shi, W.: Collaborative learning on the edges: A case
study on connected vehicles. In: 2nd USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 19) (2019)

Lu, S., Yuan, X., Shi, W.: An integrated framework for compressive
imaging processing on cavs. In: the Fifth ACM/IEEE Symposium
on Edge Computing (SEC ’20). IEEE, Virtual (2020)

Luo, Q., Hu, S., Li, C., Li, G., Shi, W.: Resource scheduling in edge
computing: A survey. IEEE Commun. Surv. Tutor. (2021)

Luo, Q., Li, C., Luan, T.H., Shi, W.: Collaborative data scheduling for
vehicular edge computing via deep reinforcement learning. IEEE
Int. Things J. 7(10), 9637–9650 (2020)

Ma, L., Yi, S., Li, Q.: Efficient service handoff across edge servers via
docker container migration. In: Proceedings of the Second ACM/
IEEE Symposium on Edge Computing. SEC ’17, pp. 11–11113.
ACM, New York, NY, USA (2017). https:// doi. org/ 10. 1145/ 31322
11. 31344 60

Merkel, D.: Docker: lightweight linux containers for consistent devel-
opment and deployment. Linux J. 2014(239), 2 (2014)

Microsoft Rocket for Live Video Analytics. https:// www. micro soft.
com/ en- us/ resea rch/ proje ct/ live- video- analy tics/ (2019)

Morozov, I.V., Kazennov, A., Bystryi, R., Norman, G.E., Pisarev, V.,
Stegailov, V.V.: Molecular dynamics simulations of the relaxation
processes in the condensed matter on gpus. Comput. Phys. Com-
mun. 182(9), 1974–1978 (2011)

Motion Detection. https:// github. com/ hybri dgroup/ gocv/ blob/ relea se/
cmd/ motion- detect/ main. go (2017)

Nesbit, K.J., Smith, J.E.: Data cache prefetching using a global history
buffer. In: 10th International symposium on high performance
computer architecture (HPCA’04), pp. 96–96 (2004). IEEE

Norris, W.R., Allard, J., Filippov, M.O., Haun, R.D., Turner, C.D.G.,
Gilbertson, S., Norby, A.J.: Systems and methods for switching
between autonomous and manual operation of a vehicle. Google
Patents. US Patent 7,894,951 (2011)

Orf, S., Zofka, M.R., Zöllner, J.M.: From level four to five: Getting rid
of the safety driver with diagnostics in autonomous driving. In:
2020 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI), pp. 19–25 (2020). IEEE

Parks, D.H., Fels, S.S.: Evaluation of background subtraction algo-
rithms with post-processing. In: 2008 IEEE Fifth International
Conference on Advanced Video and Signal Based Surveillance,
pp. 192–199 (2008). IEEE

Project Flogo. https:// github. com/ TIBCO Softw are/ flogo (2016)
Ravindran, A., George, A.: An edge datastore architecture for latency-

critical distributed machine vision applications. In: USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 18).
USENIX Association, Boston, MA (2018). https:// www. usenix.
org/ confe rence/ hoted ge18/ prese ntati on/ ravin dran

Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once:
Unified, real-time object detection. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
779–788 (2016)

Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 7263–7271 (2017)

Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement.
arXiv: 1804. 02767 (2018)

Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time
object detection with region proposal networks. In: Advances
in Neural Information Processing Systems, pp. 91–99 (2015)

Rothe, R., Timofte, R., Van Gool, L.: DEX: Deep expectation of
apparent age from a single image. In: Proceedings of the IEEE
International Conference on Computer Vision Workshops, pp.
10–15 (2015)

Rothe, R., Timofte, R., Van Gool, L.: Deep expectation of real and
apparent age from a single image without facial landmarks. Int.
J. Comput. Vis. 126(2–4), 144–157 (2018)

Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for
VM-based cloudlets in mobile computing. IEEE Pervas Comput
8(4), 14–23 (2009)

Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embed-
ding for face recognition and clustering. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 815–823 (2015)

Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision
and challenges. IEEE Int. Things J. 3(5), 637–646 (2016)

Showcase of awesome activities, triggers and apps for Flogo. https://
tibco softw are. github. io/ flogo/ showc ases/ (2016)

Sidi, L., Weisong, S.: The emergence of vehicle computing. IEEE
Int. Comput. (2021)

Spiga, F., Girotto, I.: phigemm: a cpu-gpu library for porting quan-
tum espresso on hybrid systems. In: 2012 20th Euromicro Inter-
national Conference on Parallel, Distributed and Network-based
Processing, pp. 368–375 (2012). IEEE

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4,
inception-resnet and the impact of residual connections on
learning. In: Thirty-first AAAI Conference on Artificial Intel-
ligence (2017)

Tsymbal, A.: The problem of concept drift: definitions and related
work. Comput. Sci. Dept Trinity Coll. Dublin 106(2), 58 (2004)

Vanini, Z.S., Khorasani, K., Meskin, N.: Fault detection and isola-
tion of a dual spool gas turbine engine using dynamic neural
networks and multiple model approach. Inf. Sci. 259, 234–251
(2014)

Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput.
Vis. 57(2), 137–154 (2004)

Wang, J., Feng, Z., Chen, Z., George, S., Bala, M., Pillai, P., Yang,
S.-W., Satyanarayanan, M.: Bandwidth-efficient live video ana-
lytics for drones via edge computing. In: 2018 IEEE/ACM Sym-
posium on Edge Computing (SEC), pp. 159–173 (2018). IEEE

Wang, L., Zhang, Q., Li, Y., Zhong, H., Shi, W.: Mobileedge: Enhanc-
ing on-board vehicle computing units using mobile edges for cavs.
In: 2019 IEEE 25th International Conference on Parallel and Dis-
tributed Systems (ICPADS), pp. 470–479 (2019). IEEE

Wu, C.-J., Brooks, D., Chen, K., Chen, D., Choudhury, S., Dukhan,
M., Hazelwood, K., Isaac, E., Jia, Y., Jia, B., et al: Machine learn-
ing at Facebook: Understanding inference at the edge. In: 2019
IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 331–344 (2019). IEEE

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda,
P., Jia, Y., Keutzer, K.: Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In: Proceed-
ings of the IEEE conference on computer vision and pattern rec-
ognition, pp. 10734–10742 (2019)

Xu, K., Xiao, X., Miao, J., Luo, Q.: Data driven prediction architecture
for autonomous driving and its application on apollo platform. In:
2020 IEEE Intelligent Vehicles Symposium (IV), pp. 175–181
(2020). IEEE

https://doi.org/10.1145/3213344.3213345
https://www.usenix.org/conference/hotedge18/presentation/liu
https://www.usenix.org/conference/hotedge18/presentation/liu
https://doi.org/10.1145/3132211.3134460
https://doi.org/10.1145/3132211.3134460
https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://www.microsoft.com/en-us/research/project/live-video-analytics/
https://github.com/hybridgroup/gocv/blob/release/cmd/motion-detect/main.go
https://github.com/hybridgroup/gocv/blob/release/cmd/motion-detect/main.go
https://github.com/TIBCOSoftware/flogo
https://www.usenix.org/conference/hotedge18/presentation/ravindran
https://www.usenix.org/conference/hotedge18/presentation/ravindran
http://arxiv.org/abs/1804.02767
https://tibcosoftware.github.io/flogo/showcases/
https://tibcosoftware.github.io/flogo/showcases/

 S. Lu et al.

1 3

Yi, S., Hao, Z., Zhang, Q., Zhang, Q., Shi, W., Li, Q.: Lavea: Latency-
aware video analytics on edge computing platform. In: Proceed-
ings of the Second ACM/IEEE Symposium on Edge Comput-
ing. SEC ’17, pp. 15–11513. ACM, New York, NY, USA (2017).
https:// doi. org/ 10. 1145/ 31322 11. 31344 59

Zhang, Z., Song, Y., Qi, H.: Age progression/regression by condi-
tional adversarial autoencoder. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017). IEEE

Zhang, Q., Yu, Z., Shi, W., Zhong, H.: EVAPS: Edge video analy-
sis for public safety. In: 2016 IEEE/ACM Symposium on Edge
Computing (SEC), pp. 121–122 (2016). https:// doi. org/ 10. 1109/
SEC. 2016. 30

Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and align-
ment using multitask cascaded convolutional networks. IEEE
Signal Process. Lett. 23(10), 1499–1503 (2016)

Zhao, Y., Kim, B.: Optimizing allocation and scheduling of connected
vehicle service requests in cloud/edge computing. In: 2020 IEEE
13th International Conference on Cloud Computing (CLOUD),
pp. 361–369 (2020). https:// doi. org/ 10. 1109/ CLOUD 49709. 2020.
00057

Zhou, P., Dai, L., Jiang, H.: Sequence training of multiple deep neu-
ral networks for better performance and faster training speed. In:
2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5627–5631 (2014). IEEE

Zhou, P., Jiang, H., Dai, L.-R., Hu, Y., Liu, Q.-F.: State-clustering
based multiple deep neural networks modeling approach for
speech recognition. IEEE/ACM Trans. Audio Speech Lang. Pro-
cess. 23(4), 631–642 (2015)

Žliobaitė, I.: Learning under concept drift: an overview. arXiv: 1010.
4784 (2010)

https://doi.org/10.1145/3132211.3134459
https://doi.org/10.1109/SEC.2016.30
https://doi.org/10.1109/SEC.2016.30
https://doi.org/10.1109/CLOUD49709.2020.00057
https://doi.org/10.1109/CLOUD49709.2020.00057
http://arxiv.org/abs/1010.4784
http://arxiv.org/abs/1010.4784

	EdgeWare: toward extensible and flexible middleware for connected vehicle services
	Abstract
	1 Introduction
	2 Motivation
	2.1 Life-cycle management calls for continuous model upgrade
	2.2 Maximizing services’ reusability needs function deduplication
	2.3 Workload reduction calls for event-driven applications
	2.4 Task change requires dynamic workflow customization

	3 EdgeWare architecture
	3.1 Function consolidation and deduplication
	3.2 EdgeWare design
	3.3 EdgeWare implementation

	4 Raspberry Pi based video analysis: a case study
	4.1 Five involved ML models
	4.2 Four public datasets
	4.3 Model training platform
	4.4 Implementation of the case study

	5 Evaluation and discussion
	5.1 Hardware setup
	5.2 Experimental observation
	5.2.1 Execution time comparison
	5.2.2 CPU utilization comparison
	5.2.3 Memory utilization comparison

	5.3 Evaluation on dynamic flow customization and model upgrade

	6 Related work
	6.1 Standalone service in single-platform
	6.2 Cloudedge service management
	6.3 Comparison with rocket
	6.4 Distinctive requirements to design vehicle service middleware

	7 Conclusion remarks
	References

