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Abstract

The rapid growth of heterogeneous devices and diverse
networks in our daily life, makes it is very difficult, if not im-
possible, to build a one-size-fits-all application or protocol,
which can run well in such a dynamic environment. Adapta-
tion has been considered as a general approach to address
the mismatch problem between clients and servers; how-
ever, we envision that the missing part, which is also a big
challenge, is how to inject and deploy adaptation function-
ality into the environment. In this paper we propose a novel
application level protocol adaptation framework, Fractal,
which uses the mobile code technology for protocol adap-
tation and leverages existing content distribution networks
(CDN) for protocol adaptors (mobile codes) deployment. To
the best of our knowledge, Fractal is the first application
level protocol adaptation framework that considers the real
deployment problem using mobile code and content distri-
bution networks. To evaluate the proposed framework, we
implement an adaptive communication optimization pro-
tocol by dynamically selecting four communication proto-
cols, includingDirect sending, Gzip, Bitmap,
and Vary-sized blocking . In the comparison with
the static and centralized protocol adaptation approaches,
evaluation shows good results on both the client side and
server side. For some clients, the total communication over-
head reduces 41% compared with no protocol adaptation
mechanism, and 14% compared with the static protocol
adaptation approach.

1. Introduction

With the development of computer and communication
technologies, more and more heterogeneous devices, like
desktops, laptops, PDAs, and cellular phones are connected
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to the Internet using diverse networks, like Ethernet, Wi-Fi,
Bluetooth, 3G/4G wireless technology. On one hand, differ-
ent technologies have different characteristics. On the other
hand, a heterogeneous environment makes it possible to dy-
namically change between different devices and network
environments. For instance, a person uses a laptop with a
cable modem at home, a cell phone with 3G/4G or Blue-
tooth on the way to the office, a desktop with Ethernet LAN
in the office and a PDA with Wi-Fi in the meeting room. Di-
verse network connections and heterogeneous devices de-
mand the adaptation functionality in a distributed fashion
because no one-size-fits-all single function or protocol can
perform well over all these networks and devices.

It is difficult, if not impossible, to build a one-size-fit-all
application or protocol which can run well in the dynamic
environment. Adaptation has been considered as a general
approach to address the mismatch problem between clients
and servers [14, 24, 36, 51]. From the perspective of adapta-
tion locations, some of them propose the in-network adapta-
tion, such as CANS [14], Active Names [51], Odyssey [36],
and Rover [24], which focus on how to do the adaptation
step by step across an overlay path. Although the functional-
ities are well designed, they have not considered the deploy-
ment of chosen components (drivers in CANS [14]) across
multiple nodes in the path. This is an obstacle for the wide
acceptance of these approaches. Other proposals try to per-
form the end to end adaptation, like the static content based
adaptation [33, 38], which does not take the mobility of
users and dynamically changing environment into consider-
ation. From the network OSI model’s point of view, some
of them work in the network layer [41], which adapts the
TCP/IP protocol dynamically according to the changing sit-
uations on both ends. Although the results are promising, it
is not able to handle the application level protocol adapta-
tion which makes more sense for many overlay distributed
applications, e.g., streaming multicast on the Internet.

In this paper we propose Fractal, a dynamic applica-
tion level protocol adaptation approach, which uses the mo-
bile code technology for protocol adaptation and leverages
existing content distribution networks (CDN) for protocol



adaptors (mobile codes) deployment. The idea of protocol
adaptation is based on the assumption that an application
protocol is composed of a series of components, also called
protocol adaptors (PAD) in the Fractal framework. When a
protocol needs to be adapted, the application simply needs
to add or remove some PADs into or from it. Before a mo-
bile client starts an application session with the application
server, it uses the proposed interactive negotiation proto-
col to negotiate with the adaptation proxy deployed close to
the application server. The negotiation manager inside the
adaptation proxy uses the proposed adaptation path search
algorithm to find one or more appropriate PADs that should
be used in the following communication between the client
and the application server. Metadata about these PADs will
be sent to the client by the adaptation proxy. The client is
then able to retrieve the PADs, which are packaged into mo-
bile code modules, from the CDN and starts the new pro-
tocol. Although a large amount of research on mobile code
and CDN has been done, few studies have combined the ad-
vantage of both of them for the protocol adaptation purpose.
Specifically our contributions of this paper include:

1. Proposing a general framework for dynamic application
level protocol adaptation—To the best of our knowledge,
Fractal is the first approach on utilization of mobile code
in application level protocol adaptation. With the appear-
ance of more and more application level protocols, such as
SOAP [52], LDAP [28], and Plugins, holding all the protocol
implementations locally is too expensive for some network
enabled mobile devices. Dynamically retrieving the neces-
sary protocol module in an on-demand manner is applicable
for mobile hosts.

2. Dynamically adapting at the application protocol level—
Most of proposed protocol adaptation methods [3, 22, 37, 41,
46] lie in the network layer. Such systems can cope with lo-
calized changes in network conditions but cannot adapt to
variations above the network layer. Moreover, their trans-
parency hinders composability of multiple adaptations. Frac-
tal works in the application level so it has the overall system
level view to overcome this shortcoming and can maximally
adapt application level protocols which have no way to be
implemented in the network layer.

3. Leveraging CDN edgeservers for protocol adaptor delivery
— CDN has already been widely deployed on the Internet
to deliver Web content. Fractal extends the utilization of the
content distribution network into the field of protocol adapta-
tion. Considering PAD as a Web object, many algorithms and
approaches designed for content distribution on CDN can be
seamlessly transplanted to the mobile code distribution sce-
nario. Leveraging existing CDN platforms to deliver PADs
for application servers makes our approach more compati-
ble, applicable, and extensible.

4. Implementing an adaptive communication optimization pro-
tocol in the context of the Fractal framework— Many com-
munication optimization techniques are proposed in different
contexts. In our previous work [30], we systematically evalu-
ated four algorithms and found that no single algorithm out-

performed others in all cases. Different approaches have dif-
ferent performance in terms of different network types, doc-
ument types, and device configurations. Considering these
communication optimization techniques as application level
protocols, we implement Fractal in a real system that dynam-
ically chooses different communication optimization proto-
cols and generates the application content for different client
devices and network connections. Results show that using
framework greatly improves both the client side and server
side performance, e.g., the system capacity, client total de-
lay, and bandwidth requirements.

The rest of the paper is organized as follows. After a
brief introduction of background in Section 2, Fractal de-
sign is depicted in Section 3. A case study that builds an
adaptive communication optimization protocol is presented
and evaluated in Section 4. Finally, related work and con-
clusions are listed in Section 5 and Section 6 respectively.

2. Background

Our work is inspired by three types of previous work:
mobile code [15, 21], content distribution network [1, 27],
and protocol adaptation [31, 41, 45]. In this section, we ex-
plain the general background of each related research field.

2.1. Mobile Code

Mobile code [21] is defined as the data that can be exe-
cuted as a program. The code can be pre-compiled for im-
mediate execution on the recipient’s processor, compiled
upon receipt for subsequent execution or interpreted. The
mobile code system has been used to build a distributed
processing environment that is flexible in the communica-
tion abstractions it provides to applications and to enhance
existing distributed applications. For the benefit of mobile
code [15], a major asset provided by code mobility is that
it enables service customization. The ability to request the
remote execution of code helps increase application server
flexibility without permanently affecting the size or com-
plexity of the server. In Fractal we implement each protocol
adaptor as a mobile code module, which is sent and exe-
cuted remotely on the client side to build a new protocol al-
lowing the client to talk with the application server.

2.2. Content Distribution Network

Content Distribution Networks (CDN) [27] is an inter-
mediate layer of infrastructure between origin servers and
clients. CDN can achieve scalable content delivery by dis-
tributing load among its edgeservers, by serving client re-
quests from edgeservers that are close to requests, and by
bypassing congested network paths. Currently CDNs are
only used to deliver Web-based content. In Fractal frame-
work, CDN is used to deliver protocol adaptor (PAD). If we



consider the PAD as a Web-based object, most of the current
techniques in CDN can be leveraged to the delivery of PAD.
Fractal framework extends the utilization of CDNs from tra-
ditional Web-based content to Web-based objects like mo-
bile code and mobile agent.

2.3. Protocol Adaptation

Changing protocols to adapt link condition and network
environment is not the new idea, e.g., Reno and Vegas con-
gestion control in TCP/IP protocol [18] is a kind of adap-
tation. More sophisticated protocol adaptation approaches,
such as STP proposed in [41], but most of them are in the
network layer which makes them hard to have a general
view of the whole system status. The problem of adapting to
a changing network environment is further complicated be-
cause changes in network conditions are usually transpar-
ent to higher layers of the protocol stack. When higher lay-
ers, e.g., application layer, are aware of network variation,
protocol adaptation can be done more adaptively and intelli-
gently. Based on these observations, Fractal works entirely
in the application layer to adapt the application protocol ac-
cording to heterogeneous client environments.

3. Fractal Design – An Application Protocol
Adaptation Framework

In this section we present the design of Fractal, an
application protocol adaptation framework using mobile
code and content distribution network edgeservers. After
an overview of the Fractal framework, we in turn cover the
adaptation proxy, the interactive negotiation protocol, the
application protocol adaptation approach, and finally, the
mobile code security mechanism.

3.1. System Overview

Fractal works entirely at the application level and has
no specific requirements about underlying network topolo-
gies, connection media types, network protocols, and client
hardware configurations. As an general adaptation frame-
work, it focuses on the protocol adaptation method which
uses protocol adaptors (PADs) to describe the application
protocol structure and distributes the PADs to the client by
CDNs for protocol the adaptation purpose. Fractal consists
of five components:application servers, adaptation prox-
ies, CDN edgeservers, Protocol adaptors (PADs), andclient
hosts(e.g., desktop, laptop, PDA, and so on), as shown in
Figure 1. The application server is the application service
provider. In order to provide the functionality to heteroge-
neous clients in diverse environments, the application server
usually communicates with clients through different appli-
cation protocols. For the same application, different con-

tent (required) generated by different protocols is called
adaptive content. For example, the content in a Web page
can be transmitted or adapted using either HTTP protocol
or HTTPS protocol, which is a more secure mechanism.
The HTTP and HTTPS content are calledadaptive content,
as defined earlier. In Fractal,adaptive contentcan be gen-
erated either reactively or proactively. The former is suit-
able for the case in which content keeps changing, e.g. a
stock price web site. In this scenario, memory or hard disk
space requirements are small, but the price of computing
the dynamicadaptive contentmaybe high. On the contrary,
the latter, whereadaptive contentis precalculated in ad-
vance and saved in memory or disk consumes less CPU
and has large memory or disk space requirements. The re-
sults in Section 4 show the difference between these two ap-
proaches in terms of total time.
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Figure 1. Architecture of application protocol
adaptation using mobile code.

Although the application server can talk in many lan-
guages, i.e., protocols, the client may not have the neces-
sary protocol to talk with the application server. To help the
client talk with the application server, in Fractal we pro-
pose the notion of PAD, which is a protocol adaptor imple-
mented in a mobile code module and deployed across the
CDN edgeservers. By downloading and deploying one or
more PADs, the client is then capable of starting commu-
nication with the application server using required proto-
cols. On the server side, we assume the application server
has already deployed all PADs in advance. An important is-
sue for the client is which PADs should be used and where
to find them. In the Fractal framework, close to the ap-
plication server, an adaptation proxy is set up to handle
the issues about PAD negotiations. Before the initializa-
tion of communication between the client and the applica-
tion server, the client has to negotiate with the adaptation
proxy to find proper PADs. The client will be asked to pro-



vide some metadata about his environments, such as com-
puting ability, memory space, and network configurations
to the adaptation proxy. Having these metadata, the adap-
tation proxy will generate the metadata of the proper PADs
for the client and send the metadata of PADs back to the
client. Inside these metadata is enough information for the
client to download the PADs from the closest edgeserver of
CDNs with which the application server is associated. We
will give more details about how the adaptation proxy works
in the next section. Fractal leverages the wide deployment
of CDNs to distribute the PADs for application servers, as
illustrated in Figure 1. We envision that using CDN edge-
servers for application server-specific PADs is a natural ex-
tension to the well-known Web content delivery. Note that
in this paper we focus on the client/server model; however,
it is straightforward to support the peer-to-peer model.

3.2. Adaptation Proxy

Adaptation proxy plays an important role in the func-
tionalities of the Fractal framework. Usually it is deployed
in the same administration domain as the application server
and is responsible for negotiation with the client. A gen-
eral structure of the adaptation proxy is shown in Figure 2,
which includes anegotiation managermodule and adistri-
bution managermodule. Each module is running as a dae-
mon on the adaptation proxy. Next we will explain the struc-
ture and functionality of each module respectively.

Adaptation Proxy

AppMeta

Application
Server

DevMeta

NtwkMeta Protocol Cache

McMeta

Negotiation Manager

Distribution Manager

Client

Adaptation Cache

PAT

Figure 2. Structure of the adaptation proxy.

Negotiation Manager As shown in Figure 2, the negotia-
tion manager is the key in the adaptation proxy which ne-
gotiates with the client. Some application level metadata is
needed to be transmitted between the adaptation proxy and
the application server, and between the adaptation proxy
and the client to support the negotiation function. We de-
fine these metadata formats in Figure 3. In the rest of the

paper, we will use the acronyms in the parentheses to re-
fer to them.

DevMetaandNtwkMeta, provided by clients, contain the
hardware information and the network environment of the
client. The application server suppliesPADMetato the ne-
gotiation manager, who holds the general information of
each PAD.PAD ID is a unique identification generated by
the application server.PAD overheadconsists of the com-
puting overhead at both the client side and server side, and
corresponding traffic overhead, which is happened in the
network.Message digestis computed using the SHA-1 [10]
function and used by clients to verify the integrity of the
PAD. URL is the link to download the PAD. Note that it
is the CDN’s responsibility to find the closest edgeserver
which holds the PAD, and to redirect the request to that
edgeserver.Parent link and Child link are used to build
the protocol adaptation topology in the negotiation man-
ager.AppMetais comprised ofApplication ID, which marks
different applications, and somePADMeta, which forms a
protocol adaptation topology. The application server pushes
newAppMetato the negotiation manager when the protocol
adaptation topology is first created or changed later. Usually
the protocol adaptation topology is represented by a proto-
col adaptation tree (PAT) structure as shown in Figure 2 in
the upper box located in the negotiation manager in . We
will give more details about why a tree is needed and how
to build and use the PAT tree in Section 3.4.1.

When the negotiation manager receives a request from
a client, it first checks its adaptation cache, located in the
distribution manager. The cache has entries mapping client
side information to an array ofPADMeta that the client
needs. Each mapping entry is structured as follows:

{ DevMeta, Application ID, NtwkMeta} ⇒
{ PADMeta1, ... ,PADMetan }

If the adaptation cache does not have the entry correspond-
ing to the client side metadata, the negotiation manager then
will use the algorithm described in Section 3.4.2 to form a
new entry and transfer it to the distribution manager.
Distribution Manager The distribution manager is
in charge of further processing of thesePADMeta re-
ceived from the negotiation manager, updating the adap-
tation cache, and finally sendingPADMeta back to the
client. When the distribution manager receives thePAD-
Metagenerated by the negotiation manager, it inserts mes-
sage digest and URL data into thePADMetaand hides the
parent and child links since the exposure to the client is un-
necessary. After the negotiation procedure, which will be
discussed in the following section, the distribution man-
ager will update the adaptation cache so that the nego-
tiation result can be directly retrieved from the cache if
the same client configuration occurs later. Finally the dis-
tribution manager will handle the network communica-
tion details and send thesePADMeta back to the client.



Device Metadata (DevMeta) = { Operating system type, CPU type, CPU speed, memory size }

Network Metadata (NtwkMeta) = { Network type, Network bandwidth }

PAD Metadata (PADMeta) = { PAD ID, PAD size, PAD overhead, Message digest, URL, Parent link, Child link, ... , Child link }

Application Metadata (AppMeta) = { Application ID, PADMeta 1, ... , PADMeta n}

Figure 3. Definitions of metadata.

Next we will explain the interactive negotiation proto-
col.

3.3. Interactive Negotiation Protocol

In Fractal, an interactive negotiation protocol is proposed
for the interactions among these components, as shown in
Figure 4. We assume both the client side and server side
understand the protocol definitions. The application server
has pre-deployed PADs in the application context and al-
ready pushed theAppMetato the adaptation proxy, which
has built a PAT inside the negotiation manager. The PADs
have been distributed across the CDNs edgeservers.

At the beginning of the negotiation, a client first checks
its own protocol cache, which contains somePADMeta
saved for previous requests. If there is an entry of the proto-
col cache which matches the current request, the client will
directly start the application communication with the ap-
plication server. If not, the client sendsINIT REQ, which
contains application request in payload, to the adaptation
proxy 1 to initialize the protocol negotiation. Each packet
has anINP headersegment, which is used to maintain
the interactive negotiation protocol integrity, and we will
omit the details in theINP header. The adaptation proxy
then sendsINIT REPas well asCli METAREQ, having
emptyDevMetaandNtwkMetato be filled by the client, to
acknowledge the request and ask some information about
the client. After getting the reply, the client gets the con-
tent ofDevMetaandNtwkMetalocally by probing the sys-
tem using system calls and sends out theCli METAREP.
Based on theCli METAREP, PADMetais computed and
sent back to the client inPADMETAREP by the adap-
tation proxy. Next, the client updates his protocol cache
and sendsPADDOWNLOADREQcontaining PAD ID to the
URL of the PAD. The CDN will automatically choose a
close CDN edgeserver and send back the PAD code in
PADDOWNLOADREP. If multiple PADs are required, it is
not necessary that those PADs downloaded from the same
edgeserver. It is up to the CDN to manage the delivery of
PADs. After the security check and PAD(s) deployment, the

1 Note that the client does not have to realize the existence of the adap-
tation proxy. The application server will automatically redirect the re-
quest to its corresponding adaptation proxy.

client sends out theAPP REQto the application server. The
APP REQcontains the application request as well as the ne-
gotiated protocol identifications, which notify the applica-
tion server to choose the proper PADs to talk with the client.
From now on the client and the application server continue
the application session using the negotiated protocol. The
formats of all message types used in INP are listed on the
bottom of Figure 4.
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Figure 4. The Interactive Negotiation Proto-
col.

3.4. Application Protocol Adaptation

Application protocol adaptation is the major function of
Fractal. After introducing the structure and components of
Fractal, we will show how the application protocol adap-
tation works. First, we will explain the protocol adaptation
topology, the protocol adaptation tree (PAT), which is the
main data structure in the procedure of adaptation. Then we
will clarify the adaptation path search algorithm.



3.4.1. Protocol Adaptation Tree Figure 5 shows an ex-
ample of the protocol adaptation tree (PAT), which is built
by the negotiation manager based onAppMeta received
from the application server. Each node of PAT is a proto-
col adaptor. The child PAD is an auxiliary component of the
parent PAD. In order to run the parent PAD, one and only
one of the children PADs must work together with the par-
ent PAD. For example, in Figure 5, if PAD2 is the FTP pro-
tocol, PAD7 is the TCP protocol, and PAD8 is the UDP pro-
tocol, the PAD2 can choose either PAD7 or PAD8, but not
both. In the real application, it is possible that one PAD is
needed by multiple PADs, like TCP protocol is needed by
both FTP and HTTP protocols. For the purpose of maintain-
ing the tree structure, we use a symbolic copy of the child
PAD if it is required by more than one parent PAD. For in-
stance, in Figure 5, PAD6 is a symbolic link of PAD7, which
is needed by both PAD1 and PAD2. So in order to satisfy an
application protocol, a path should be found from the root
application to one leaf, e.g., the path composed of PAD2 and
PAD7 in the dotted line in Figure 5. Tree structure makes it
flexible enough to extend adaptation protocols by adding
new PAD nodes later. For example, if a new PAD, which
supports PAD3, is needed later, we just add this new PAD
as the first child of PAD3. Adding a new PAD in the middle,
instead of the leaf of the tree, can also be done in reasonable
time. From the knowledge of data structure and graph the-
ory, we know that the number of possible paths equals the
number of leaves in the tree. Next, we propose an adapta-
tion path search algorithm to find the path.

PAD2PAD1 PAD3

PAD5PAD4 PAD6 PAD7 PAD8

Negotiation Tree in Negotiation Manager

Application

8

8 5 7

46

8

5
Figure 5. The protocol adaptation tree.

3.4.2. Adaptation Path Search Algorithm The goal of
the adaptation path search algorithm is to find some PADs
from PAT to form an adaptation path for a client. Intro-
ducing a new protocol into an existing application will in-
evitably have two effects. First is the traffic overhead, which

is either increasing or reducing. Second is the extra comput-
ing overhead on both the server side and client side.

Before we choose the proper PADs for a client, the total
overhead including traffic and computing overhead of each
PAD is the metrics we should quantify. Running each PAD
on each client configuration and each network environment
to get the overhead is not a wise solution. Instead, we use a
linear model and a normalized ratio to estimate these over-
heads. Our linear model comes from the observation that the
computing overhead of each PAD is roughly proportional
to the processor speed, and the traffic overhead is propor-
tional to the network bandwidth. If the computing overhead
of a PAD on one processor speed is known, the comput-
ing overhead on another processor can be deducted from
the linear ratio of the speed of these two processors. Simi-
larly we can get the traffic overhead of a PAD based on the
value of another PAD and the ratio of the bandwidth of two
networks. However, this linear model is not so accurate be-
cause other parameters of the processor and networks intro-
duce error into the linear model. For example, a scientific
computing module is awkward for a no floating instructor
processor. A media stream application runs fluently in LAN
but not in Dialup. Furthermore, an operating system is also
an influential issue that we have to consider besides the lin-
ear model. For example, Microsoft DCOM can run on Win-
dows platforms but not Unix environment. In this paper we
abstract normalized ratio parameters about three key prop-
erties:processor types, operating system, andnetwork types
as shown in the normalized ratio matrix in the following
context. Note that it is easy to introduce more parameters if
necessary, e.g., the screen resolution.

As shown in Equation 1, each application server main-
tains the following information.PADtraffic is the traffic
overhead of the PAD based on a standard network band-
width, Stdbandwidth, 1Mbps, and a fixed size of traffic,
1MB in our implementation.PADsize is the size vector of
each PAD.PADclient

comp is the computing overhead of PAD
on a standard processor speed,Stdcpu, 500MHz Pentium
IV in our implementation, on the client side.PADserver

comp

is the computing overhead of the PAD on the server side,
which is supposed to be available in advance. All these met-
rics can be computed in advance. Later we will compute the
estimated overhead of each PAD (PADtotal) for a client
with specific processor speed and network bandwidth using
the linear model plus the normalized ratio matrix. Specifi-
cally, we use normalized ratio matrixA,B, andR, as shown
in Equation 2, to measure the performance ratios ofn num-
ber of PADs ona kinds of processor types, onb number of
operation system types, and inr types of network environ-
ments. For example,

WinCE PalmOS

WinMedia
Kinoma

(
1 ∞
∞ 1

)



the above matrix shows the impacts of two operating sys-
tems (the top line) on two multimedia players (the left most
column). The values in the matrix mean the Windows Media
works fine in the WinCE operating system (WinCE) [55] but
not in PalmOS, while Kinoma player [26] runs well in Pal-
mOS instead of WinCE. The value of ratios does not have
to be an integer. Suppose now we are about to find the bet-
ter one in terms of the computing time from these two play-
ers on WinCE platform. We get the time value using the lin-
ear method as, for instance, 5 sec for WinMedia and 2 sec
for Kinoma. Without the normalized matrix, Kinoma will
be chosen as the better player; however, the fact is that Ki-
noma can not run on WinCE at all. To get the correct result,
we can use the first column of this normalized matrix to ad-
just the linear results by multiplying 2 sec with ratio 1 for
WinMedia and multiplying 5 sec with ratio∞ for Kinoma.
Then the computing time of Kinoma becomes∞, which im-
mediately disqualifies itself.
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We abstract Equation 3 to describe the total overhead for
each PAD in one client environment,PADtotal, in Equa-
tion 1. Clicpu is the device CPU speed in MHz,Climem

is the device memory size in MB, andClibandwidth is
the client network bandwidth in Kbps. They come from
the DevMetafrom the client. On the right side of Equa-
tion 3, the first part is the overhead of downloading the
PAD. The parameterρ is used to capture the available ap-
plication level bandwidth in a real network deployment. It
is usually between 0.6 to 0.8, depending on different net-
work types. Based on our observation, we approximateρ as
0.8 in our design. The second part is the computing over-
head on the server side. This matrix can be achieved by
pre-testing each PAD on the application server. The third
part is the computing overhead of running PAD on the
client side. Suppose one client uses processor typei, oper-
ating system typej, and network typek, the algorithm finds
the corresponding ratio vector

(
α0i α1i . . . αni

)T
,(

β0j β1j . . . βnj

)T , and
(

γ0k γ1k . . . γnk

)T

from A, B, andR based on its processor, operating sys-
tem and network types. Given that we have only a limited
number of consumer-used processors, OSes, and net-
work types, the vector will be found with high probability.
Otherwise a similar type with close parameters will be cho-
sen instead. Then these vectors are extended to diagonal
matrices, which are plugged into the Equation 3 to ad-
just the linear estimation. The last part of the equation is
the transmission overhead of running the PAD.

After we define the approach to calculate the total over-
head of the PAD, the adaptation path search algorithm starts
the first step by marking each node in the PAT with the total
overhead computed by Equation 3. An example is shown in
Figure 5. The number beside each node is the estimated to-
tal overhead. Infinity means that the PAD is not suitable for
this client environment. Then the algorithm uses the Depth-
First-Search-like algorithm to traverse each path from root
to leaves and finds the path with the least sum of each PAD’s
total overhead. The PADs on this path are the negotiated
protocol result for this client. The pseudo code of the algo-
rithm is shown in Figure 6. Take Figure 5 as an example,
after line 3 in the pseudo code in Figure 6, the algorithm
finishes marking each node with the total overhead shown
as the number beside each node, the first path it examines
is PAD1 and PAD4 and gets theLeastTotoal overheadas
14 in code line 17, which is the selected shortest path so
far, but when the algorithm searches along PAD2 and PAD7
with theLeastTotoal overheadas 9, this new path becomes
the shortest path and remains until the end of the search. Fi-



nally PAD2 and PAD7 form the final output path of the al-
gorithm.

1 APSA ( IN: DevMeta, NtwkMeta, PADMeta ... PADMeta
2 OUT: PADMeta stack  )
3 { Use DFS to mark each node with its total overhead;
4 Least_Total_overhead = ∞;
5 path_total_overhead = 0;
6 v = root;
7 Create stack s;
8 s.push (v);
9 path_total_overhead += v.overhead;
10 mark v as visited;
11 while ( ! s.isEmpty() )
12 {
13 if (no unvisited nodes are adjacent to the node on
14     the top of the stack )
15 { if ( node on top of the stack is leaf
16      && Total_overhead < Least_Total_overhead )
17 { Least_Total_overhead = Total_overhead;
18 PADMeta stack = s;
19 }
20 s.pop ();
21 path_total_overhead -= node on the top.overhead;
22 }
23 else
24 { select an unvisited node u adjacent to the node
25 on the top of the stack;
26 s.push (u);
27 path_total_overhead += u.overhead;
28 mark u as visited;
29 } // end if
30 } // end while
31 }

Figure 6. The pseudo code of the adaptation
path search algorithm.

3.5. Mobile Code Security

PAD, the protocol adaptor, is the key element of the Frac-
tal framework, and is implemented using mobile code. Se-
curity is a serious concern when deploying and running the
PADs across heterogeneous environments, because the ex-
ecutable mobile code could possibly be written by a mali-
cious user and allow an attacker to run native code that is
subject to neither restrictions nor access control on the exe-
cuting machine. In Fractal there are two techniques for se-
curing PADs. First, sandbox [16], also known as virtual ma-
chine monitor techniques (VMM) [47], is needed to limit
the privileges of PADs. The second technique used in Frac-
tal is to assure that the source of the PAD is trustworthy us-
ing code-signing [35], in which the client manages a list of
entities that it trusts. When a PAD is received, the client
verifies that it was signed by an entity on this list. More ad-
vanced security techniques can be applied here, but it be-
yond the scope of this paper.

4. Case Study: Adaptive Communication Op-
timization Protocol

To evaluate the effectiveness and efficiency of the pro-
posed Fractal framework, we implement an adaptive com-
munication optimization protocol prototype as a case study.
The basic idea of the adaptive communication optimiza-
tion is to dynamically select different communication proto-
cols, includingDirect sending , Gzip , Vary-sized
blocking [34], Bitmap [29], to adapt to different net-
work conditions. This application is motivated by our recent
analysis of four different communication optimization algo-
rithms [30], in which we found that different communica-
tion optimization techniques exhibit different performance
in different network environments as well as for different
document types. These techniques are good examples of
protocols that reduce the overall communication overhead,
and inspire us to use this case to test Fractal. In the follow-
ing context, we first briefly introduce each communication
optimization protocol, followed by experiment platforms,
the specific protocol adaptation model, and result analysis.

4.1. Four Communication Optimization Protocols

Several application-specific optimization techniques
have been proposed in different contexts. Generally,
they work in two fashions to reduce bandwidth require-
ment. One is to compress content at the server side and de-
compress at the client side. The other is to calculate the
difference between old and new versions of the con-
tent on the server side, send difference to the client
and rebuild the new version based on the difference re-
ceived by the client and the old version that the client
already had. In the section, we examine the four communi-
cation optimization protocols used in our case study.

1. Direct sendingIn this protocol, strictly speaking, there is
no communication optimization technique, client and Web
server just directly send content to each other. In this sim-
ple case, the client still needs to negotiate with the adapta-
tion proxy at the beginning.

2. GzipIn this algorithm, we use gzip to compress the Web page
at the Web server and decompress it at the client side. Gzip
is a popular data compression program [20] which uses the
LZ77 algorithm.

3. Vary-sized blockingProposed in LBFS [34] for reducing traf-
fic further, the idea of LBFS is that of content-based chunk
identification. Files are divided into chunks, demarcated by
points where the Rabin fingerprint [42] of the previous 48
bytes matches a specific polynomial value. This tends to
identify portions even after insertions and deletions have
changed its position in the file. The boundary regions are
called breakpoints. The server generates the difference be-
tween two versions of a file by comparing the digest of each
chunks and saves the different chunks. It is powerful to re-
duce the size of the difference but with expensive comput-



ing overhead on both sides.Vary-sized blockinghas been
adopted by several projects as well [7, 9, 32, 49].

4. BitmapProposed in [29], the idea behindBitmapis that files
are updated by dividing both files into fix-sized chunks. The
client sends digests of each chunk to the server, and the
server responds only with new data chunks. Based on the old
version and the differencing, the new version can be rebuilt.
It has outperforming results compared with other differenc-
ing algorithms for some image formats like DICOM [8],
BMP, and so forth.

Basically, our evaluation results in [30] show that no
single algorithm outperforms others in all cases. Different
approaches have different performance in terms of differ-
ent metrics. A completely different result can be achieved
by the same algorithm when it is applied against different
types of documents. Network bandwidth affects the perfor-
mance of algorithms substantially as well. The performance
can also be influenced by different parameter settings of the
same algorithm. More details can be found in [30].

4.2. Experimental Platform

In our experiments platform, as shown in Figure 7, three
kinds of client hosts,desktop, laptop and Pocket PC, use
three types of network connections,LAN, Wireless LANand
Bluetooth, to connect to an application server and an adap-
tation proxy. The hardware and software configurations of
the servers and clients are also shown in Figure 7. The ap-
plication server holds a set of 75 Web pages with the aver-
age size of about 135KB consisting of 5KB text and four
images totalling about 130KB, which is inspired by a typi-
cal example of a medical application server that holds four
images of different 3D views [29]. We use Java to imple-
ment four communication optimization techniques as four
protocol adaptors. The summary of function and implemen-
tation of each PAD is shown in Table 1. We also imple-
ment an adaptation proxy connected with the application
server in the same LAN domain. To emulate the behavior
of the real content distribution network and edgeservers, we
utilize some nodes from PlanetLab [40] as the distributed
PAD servers. PlanetLab has been accepted as a good plat-
form to deploy academic-oriented CDNs platforms, such as
CoDeeN [53] and Coral [13]. We set up a centralized PAD
server which holds all the PADs for the purpose of per-
formance comparisons between centralized and distributed
PAD servers.

4.3. Experimental Adaptation Model

Following the Fractal framework, we first define the
PADs used in this application and construct the PAT for
this case study, as shown in Figure 8. The PAT in this case
study is a one-level tree. Each leaf is a communication op-
timization PAD that can be used on a specific client envi-
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Figure 7. Configurations of experimental plat-
form.

ronment to reduce the total communication time between
the client and the application server. Then we follow Equa-
tion 3 to generate the specific Equation 7 for this case study.
We usepadtotal

direct, padsize
direct, padsvr−comp

direct , padcli−comp
direct , and

padtraffic
direct to represent five parameters ofDirect sending

PAD: the total time overhead defined as the time from the
start of downloading the PAD to the end of the applica-
tion session, the size of the PAD, the server side comput-
ing overhead, the client side computing overhead, and the
traffic overhead generated by the PAD. For other PADs the
definitions are similar. Note that protocols likeVary-sized
blockingandBitmaphave to compute the difference on the
server side and rebuild a new version on the client side to re-
duce the bandwidth requirement. For this case study we use
the normalized ratio matrixA, B, andR in Equation 4, 5,
and 6. In Equation 4,P , D , andL represent the Intel PXA
255 processor in Pocket PC, Pentium IV 2.0GHz proces-
sor in Desktop, and Pentium IV 3.06GHz processor in Lap-
top respectively. Some of the data come from the test, oth-
ers we set as 1 to follow the linear model.

GzipDirect Vary-
sized Bitmap

Web Page

Figure 8. Protocol adaptation tree in experi-
mental platform.



PAD name Function Implementation
Direct null null
Gzip Compression Java class object

Vary-sized blocking Differencing files using Fingerprint Java class object
Bitmap Differencing files bit by bit Java class object

Table 1. The functions and implementations of PADs used in the experiments.

For a newcoming client, Fractal will find its processor
type, OS type, and network type, such as,i, j, andk. Then
the normalized ratio matrix can be formed by collecting cor-
responding columns atA(i), B(j), andR(k). Finally with
other available client side metadata, the total time overhead
of each PAD for this new client can be computed using
Equation 7.

A =

P D L

direct
gzip
vary

bitmap

(
1 1 1

1.1 1 1
1.1 1 1
1.1 1 1

)
(4)

B =

WinCE4.2 FedoraCore2

direct
gzip
vary

bitmap

(
1 1
1 1
1 1
1 1

)
(5)

R =

LAN WLAN Bluetooth

direct
gzip
vary

bitmap

(
1 1 1
1 1 1
1 1 1
1 1 1

)
(6)


padtotal

direct

padtotal
gzip

padtotal
vary

padtotal
bitmap

 =
1

Clibandwidth ∗ α
∗
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padsize
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padsize
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

+
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svr−comp
gzip

pad
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vary
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bitmap
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+

cpu

Clicpu

∗

(
αdirect(i) 0

αgzip(i)
αvary(i)

0 αbitmap(i)

)

∗

(
βdirect(j) 0

βgzip(j)
βvary(j)

0 βbitmap(j)

)

∗


pad
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direct

pad
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gzip

pad
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vary

pad
cli−comp
bitmap


+

bandwidth

Clibandwidth

∗

(
γdirect(k) 0

γgzip(k)
γvary(k)

0 γbitmap(k)

)

∗


pad

traffic
direct

pad
traffic
gzip

pad
traffic
vary

pad
traffic
bitmap

 (7)

4.4. Results Analysis

In this section, we first show the comparison of the
system capacity performance between a centralized PAD
server and the distributed CDN edgeserver, then show the
performance of protocol adaptation.

4.4.1. System Capacity PerformanceIn Equation 3, the
negotiation time, which is the time betweenINIT REQand
PADMETAREPin Figure 4 for each client, is not included
because the negotiation time is not only related to PAD it-
self but also to the protocol adaptation topology as well as
the workload of the adaptation proxy. Figure 9(a) shows
the average negotiation time,y axis, versus the number of
clients,x axis, up to 300 using one adaptation proxy. Al-
though some fluctuations occur, the overall negotiation time
remains in a relatively stable range for two reasons. First is
the efficiency of the adaptation path search algorithm. Sec-
ond is that each client only needs one time negotiation in
the same environment and the application session. In or-
der to show the benefit of deploying PADs into CDN edge-
servers, we compare average PAD retrieval time in two sce-
narios: centralized case, in which up to 300 clients connect
to the centralized PAD server simultaneously to download
the PAD, and distributed case, where request traffic from
same number of clients is balanced to the distributed PAD
servers on the PlanetLab to simulate the CDNs and edge-
servers. Figure 9(b) shows the curve of average retrieval
time to the number of clients in two scenarios. We can see
that the average PAD retrieval time rapidly goes up with the
increasing number of clients in centralized PAD server sce-
nario, but it steadily keeps in a small fluctuating range to
give the client a roughly same retrieval time using distrib-
uted PAD servers.

4.4.2. Protocol Adaptation PerformanceWe test each
client configuration in three adaptation scenarios:No
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Figure 9. (a) Average negotiation time, (b) Average PAD retrieve time.

protocol adaptation : There is no communica-
tion optimization protocol, the client connects to the
Web server and directly receives the original Web page;
Fixed protocol adaptation : All clients always
use one protocol,Vary-sized blocking, to talk with the Web
server without the negotiation procedure with the adapta-
tion proxy;Adaptive protocol adaptation : The
full function of Fractal is utilized to do the protocol adapta-
tion.

Figure 10 shows the computing overhead in three adap-
tation scenarios for different client configurations. The hor-
izontal line shows three adaptation scenarios with the se-
lected protocol in the parentheses and the vertical line, rep-
resenting the computing overhead, consists of several com-
ponents respectively. Figure 11(a) illustrates the bandwidth
requirement in KBytes on they axis for each client envi-
ronment as shown in thex axis. We assume different clients
perform identical application requests. The same protocol
should generate the same number of bytes transferred, no
matter the kind of client environment. First let us look at
Figure 10(a), (b), and (c), which include both server side
and client side computing overheads. The server side com-
puting is used by the application server to dynamically en-
code the application content, e.g., compute the difference
between two versions of Web pages. The client side com-
puting overhead is used to decode the application content,
e.g., rebuilding new version based on the difference and old
version.Vary-sized blockinghas huge server side comput-
ing time, which disqualifies it as the adaptive protocol for
any of the client environment even if it generates the least
transfer bytes as shown in Figure 11(a). Different client con-
figurations result in different negotiated protocols, such as
Direct sendingfor desktop in LAN,Gzipfor laptop in Wire-
less LAN, andBitmapfor PDA in Bluetooth.

We can see thatGzip in Figure 10(b) andBitmapin Fig-
ure 10(c) have more or less unbalanced server and client

side computing time. Since the overweighed server side
computing time plays an important role in the total over-
head for some protocols, e.g.,Vary-sized blocking, differ-
ent adaptation results may be observed if getting rid of the
server side computing time from the total overhead. We
pre-compute the server side computing tasks for each pro-
tocol on each Web page to exclude the server side com-
puting overhead from the total computing time. We found
that although the negotiated adaptation protocols for Desk-
top in LAN and Laptop in Wireless LAN remain the same,
the adaptive protocol for PDA in Bluetooth changes from
Bitmap to Vary-sized blockingas shown in Figure 10(d).
Note that the scale of (c) and (d) are one order of magni-
tude different. The difference in negotiation results again
shows that our approach can adapt the protocol according
to different application strategies as well as the client envi-
ronments.

In Figure 11(a),Direct sendinggenerates the most traf-
fic bytes whileVary-sized blockinghas the least bytes trans-
ferred.GzipandBitmapare in the middle in terms of bytes
transferred. Computing time and bytes transferred are two
components of the total overhead. In fast networks the bytes
can be transferred in small time slots so that the transmis-
sion time has a smaller effect on the total overhead than
the computing time. But in slow networks, bytes trans-
ferred will result into a transmission time that outweighs
the computing time and dominates the total overhead. So
the comprehensive influence from these two factors forms
the different total overhead time performance shown in Fig-
ure 11(b) and (c). For each client configuration the adaptive
protocol achieves the least total time, likeGzipfor laptop in
wireless,Bitmapfor PDA in Figure 11(b). In the same client
configuration, adaptive protocol may vary according to dif-
ferent server strategies, for exampleVary-sized blockingbe-
comes the best choice for PDA in Bluetooth without server
side computing as shown in Figure 11(c). The adaptive pro-
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Figure 10. A comparison of computing over-
head in different environments.

tocols pointed by the oval in Figure 11 are the best choices
in different scenarios, which comply exactly with the nego-
tiation results from Fractal.

5. Related Work and Discussions

Fractal shares its goals with some recent efforts that are
aimed at injecting functionality into application for adapta-
tion. We categorize related research into four groups asdis-
tributed adaptation, protocol adaptation, mobile code and
mobile agent, andcommunication optimization.

Distributed adaptation From the Internet topology’s
point of view, adaptation functionality can be introduced ei-
ther at the end-points or distributed on intermediate nodes.
Odyssey [36], Rover [24] and InfoPyramid [33] are exam-
ples of systems that support end point adaptation. Conduc-
tor [56] and CANS [14] provide an application transparent
adaptation framework that permits the introduction of ar-
bitrary adaptors in the data path between applications and
end services. While these approaches provide an extremely
general adaptation mechanism, significant change to exist-
ing infrastructure is required for their deployment. How-
ever, Fractal solves the deployment problem by leveraging
the existing CDNs technology to distributed protocol adap-
tors, which are implemented using mobile code.

From the network structure’s perspective, there are two
issues: whether adaptation functionality is introduced at
network layer with application-transparency or at the ap-
plication level with application-awareness. Systems such
as transformer tunnels [45] and protocol boosters [31] are
examples of application-transparent adaptation efforts that
work at the network level. Such systems can cope with
localized changes in network conditions but cannot adapt
to behaviors that differ widely from the norm. Moreover,
their transparency hinders composability of multiple adap-
tations. More general are programmable network infrastruc-
tures, such as COMET [5], which supports flow-based adap-
tation, and Active Networks [48, 54], which permit spe-
cial code to be executed for each packet at each visited
network element. While these approaches provide an ex-
tremely general adaptation mechanism, significant change
to existing infrastructure is required for their deployment.
Fractal overcomes this shortcoming because it works en-
tirely on the application level. Similar efforts also work at
the application level. The cluster-based proxies in BAR-
WAN/ Daedalus [11], TACC [12], and MultiSpace [17] are
examples of systems where application-transparent adapta-
tion happens in intermediate nodes (typically a small num-
ber) in the network. Active Services [2] extends these sys-
tems to a distributed setting by permitting a client applica-
tion to explicitly start one or more services on its behalf that
can transform the data it receives from an end service. Frac-
tal is different from other application level frameworks in
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Figure 11. Comparison of three different sce-
narios: (a) Bytes transferred, (b) total time
with server side difference computing, (c) to-
tal time without server side difference com-
puting

the following ways: first, it is not using intermediate nodes
which may occur with deployment problems. Second it does
not rely on any specific data stream or client conditions. On
the contrary, it is designed to cope with any applications
and client environments as long as one has the proper pro-
tocol adaptor.

Protocol adaptation There are some research work
about the protocol adaptation. In network level systems
such as [41], in which communicating end hosts use un-
trusted mobile code to remotely upgrade each other with
the transport protocols that they use to communicate. Trans-
former tunnels [45] and protocol boosters [31] are doing
application-transparent adaptation by tuning the net-
work protocol according to the change of network situa-
tions. Such systems can deal with localized changes in net-
work conditions but cannot react to changing environments
outside the network layer. Since Fractal works at the ap-
plication layer, it can maximally adapt application level
protocols which have no way to be completed in the net-
work layer. Fractal is also different from the Web browser
plugins, e.g., Realplay, Flash, and so on. Plugin is an ap-
plication component which completes part of the function-
ality, incapable of doing protocol adaptation. Although to-
day some Web sites provide multiple choices of plugins to
do the similar function, they still need the client to manu-
ally select one, but maybe not the best. Fractal is a general
framework to adapting the functionality by means of pro-
tocol adaptation which has transparency to the client and
other characteristics, such as flexibility and extendibil-
ity, which plugins do not have.

Mobile code and mobile agentMobile code is a good
candidate for carrying a protocol module since it has long
been known as a mechanism for providing a late binding
of function to systems [4, 23, 25]. Mobile code and re-
lated technologies also have been proposed and studied as
effective means of implementing content adaptation, pro-
tocol update, and program migration in distributed applica-
tions. In [39, 41] they propose a system in which communi-
cating end hosts use untrusted mobile code to remotely up-
grade each other with the transport protocols that are used
to communicate. Our work is complimentary to their work
because our proposal works in the application level. A new
lightweight, component-based mobile agent system that can
adapt to diverse devices and features resource saving is pro-
posed in [6]. In this system, mobile code is brought in and
associated execution states of an application dynamically
after migration. NWSLite [19] provides a sophisticated pre-
dicting tools for the remote code execution offloaded from
mobile client to the close server. To our best knowledge,
Fractal is the first framework to use mobile code to do pro-
tocol adaptation that extends the utilization of mobile code
technology.

Communication Optimization As far as the communi-



cation optimization techniques go,Fix-sized blockingwas
used in the Rsync [50] software to synchronize different
versions of the same data. In this approach, files are up-
dated by dividing both files into fix-sized chunks. The client
sends digests of each chunk to the server, and the server
responds only with new data chunks.Vary-sized blocking
was proposed in LBFS [34] for further reducing traffic. Re-
cently, several projects such as CASPER wide-area file sys-
tem [49], Pond prototype [43], and Pastiche backup sys-
tem [7], adopt vary-sized blocking to either improve the sys-
tem performance or reduce the storage requirements. Our
work compliments these efforts, and the result of this paper
can be applied in their work directly. Spring and Wetherall
have proposed a protocol independent technique for elimi-
nating redundant network traffic [44]. When one end wants
to send data that already exists at other end, it instead sends
a token specifying where to find the data at the other end.

We believe that our work makes an initial step towards
using mobile code to support the application-level protocol
adaptation, in which the protocol is composed of a series of
protocol adaptors. These are packaged as mobile code mod-
ules and distributed by existing CDNs. Furthermore, Frac-
tal provides a general framework for other adaptation func-
tionality as well by extending the PAD into other adaptation
functions, e.g. content adaptation.

6. Conclusions and Future Work

In this paper, Fractal, a dynamic protocol adapta-
tion framework, is proposed to benefit the application
from choosing appropriate protocols according to dy-
namic client devices and network environments. To the
best of our knowledge, this is the first effort on pro-
tocol adaptation by means of mobile code and CDNs
edgeservers. An adaptive communication optimization pro-
tocol has been built in the context of this framework.
Performance comparison with other protocol adapta-
tion approaches shows that Fractal has lightweight sys-
tem overhead, small resource footprint, and noticeable
client performance improvement. Our next step includes in-
tegrating Fractal with end to end service differentiation
and access control in a real pervasive computing environ-
ment, distributed computer-assisted surgery [29].
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