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Abstract

Since the inception of service-oriented computing
paradigm, we have witnessed a plethora of services deployed
across a broad spectrum of applications, ranging from con-
ventional RPC-based services to SOAP-based Web services.
Likewise, the proliferation of mobile devices has enabled the
remote “on the move” access of these services from any-
where at any time. Secure access to these services is chal-
lenging especially in a mobile computing environment with
heterogeneous modalities. Conventional static access con-
trol mechanisms are not able to accommodate complex se-
cure access requirements. In this paper, we propose an adap-
tive secure access mechanism to address this problem. Our
mechanism, which consists of two components: an adap-
tive access control module and an adaptive function invo-
cation module, not only adapts access control policies to
diverse requirements, but also introduces function invoca-
tion adaptation during access. We have successfully ap-
plied the proposed adaptive secure access mechanism to a
computer-assisted surgery application called UbiCAS. Per-
formance evaluation shows that with limited overhead, our
technique enforces secure access to the services provided by
the UbiCAS system in a flexible way.

1 Introduction

Service-oriented computing [3, 4, 22] is one of the main
approach to build distributed applications on the web. With
the growth of heterogeneity in mobile computing environ-
ments, secure access to services is becoming more challeng-
ing in the design of these applications. We abstract the re-
quirements of secure access to remote services as follows:

a) Adaptation: In a heterogeneous environment, like the In-
ternet, it is very difficult, if not impossible, to build a one-
size-fits-all approach that accommodates all diverse require-
ments. Adaptation has been considered as a general ap-
proach to address the mismatch problem between clients and
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servers [15, 21]. For secure access, there are two diverse re-
quirements. On the user side, different configurations, such as
diverse devices and network bandwidths are coexisting. On
the service side, there are different data formats, security re-
quirements, and so on. Hence, we have to adapt access control
policies to such diverse requirements.

b) Efficiency: For some applications, secure access enforcement
incurs negligible system overhead. However, a poorly de-
signed technique will not scale well and perform poorly with
increasing system size. Hence, we need to meticulously de-
sign the enforcement algorithm that introduces minimum per-
formance overhead.

c) Evolvability: System requirements usually keep evolving
over time. A good secure access control framework should
have the capability to extend current access policies. A user
friendly interface should also be defined for administrators
who may need add/update access control policies frequently
to meet the evolved system requirements.

In this paper, we propose an adaptive secure access mech-
anism for remote services. Our approach contains two main
modules: an adaptive secure access control module and an
adaptive secure function invocation module. In the adaptive
access control module, several definitions, such as context
term, context instance, are formalized. An access control
model is proposed to take application related contexts into
consideration in the design of access control policies. The
enforcement algorithm is proven to be more efficient than the
conventional access control enforcement algorithm in terms
of time complexity.

We envision that secure access is a comprehensive pro-
cess for access control and service invocation procedure. For
instance, even if a user is granted the access right to a ser-
vice, she will not be able to access the service if the ser-
vice required encryption mechanism is not currently avail-
able on the user side. To remedy this situation, we introduce
an adaptive function invocation module. We have applied the
proposed adaptive secure access mechanism to a real-world
computer-assisted surgery application called UbiCAS [17].
Compared with existing solutions, this paper has the fol-
lowing three contributions: (1) Adaptive Access Control –
We propose a general model to integrate application-oriented
contexts into the design; (2) Adaptive Function Invocation –



Besides adaptive access control, an adaptive function invoca-
tion module is also proposed. Users’ diverse contexts some-
times mismatch the requirement of functions, and this in turn
degrades the performance of functions or fails to execute the
function at all; and (3) Implement secure access for UbiCAS
system – We have successfully implemented our models in a
distributed computer assisted surgery system called UbiCAS.

The rest of the paper is organized as follows. The sys-
tem structure is introduced in Section 2. Then we present the
adaptive access control module and adaptive function invo-
cation module in Section 3 and Section 4, respectively. Sec-
tion 5 depicts the details of implementation and evaluation.
Finally, related work and concluding remarks are listed in
Section 6 and Section 7, respectively.

2 System Structure

In a typical service-oriented computing, the server defines
some functions including the implementation, the parame-
ters, and the interfaces. If a user wants to use the remote
service, she calls one of the functions by following the func-
tion interface. After the server finishes the task of the func-
tion, the result will be sent back to the user. In the following
context, we use function and service interchangeably. Given
this context, this section presents the system structure of the
proposed adaptive secure access mechanism, which consists
of two major components, an adaptive access control mod-
ule and an adaptive function invocation module, as shown in
Figure 1.

2.1 Adaptive Access Control Module

The adaptive access control module enforces the access
control policy. It constrains what a user can do, as well as
what programs executing on behalf of the users are allowed
to do. In this way the access control module seeks to prevent
the activity that could lead to breach of security.

The adaptive access control module has two parts, the
access control point (ACP) and access policy database, as
shown in Figure 1. When a client wants to access remote
functions, first, he needs to provide his context information,
such as role, time, location, to ACP to acquire the access
right to the desired functions. With the support of access
control policy database, ACP is able to do the access control
enforcement using some algorithms which will be discussed
in Section 3. Access control policies are stored in the access
policy database in the form of an ordered two-dimensional
directed access control policy graph (ACPG), which will be
explained also in Section 3.

2.2 Adaptive Function Invocation Module

After a user request passes the adaptive access control
module, the adaptive function invocation module starts the

procedure to adapt the invocation according to the user’s dy-
namic contextual information. The motivation is that the
same function call could experience totally different perfor-
mances under different scenarios. As an example, calling an
image download function could take intolerably long through
a low bandwidth network, like dial-up, while being fast via a
T1 connection. Therefore, the priority of the adaptive func-
tion invocation module is to select appropriate adaptive com-
ponents to augment the function call in different scenarios.
Furthermore, if the selected components require user side de-
ployment, these components will be delivered to the user side
and be plugged into the running space of the user side pro-
gram.

Adaptive function invocation module includes function
invocation point (FIP), function pool, and adaptive compo-
nent database as shown in the lower part of Figure 1. FIP
receives user context information and acquires the adaptive
function invocation graph, which will be described in Sec-
tion 4, from the function pool. Then FIP interacts with the
user to decide the mandatory components for the function
invocation and delivers the components from the database to
the user if necessary.
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Figure 1. An overview of the adaptive secure
access mechanism.

2.3 Secure Access Procedure

Figure 1 also shows the whole adaptive secure access pro-
cedure. After ACP receives the access request from a user
in step 1, it will request and receive the ACPG from the ac-
cess policy database (steps 2 and 3). Then ACP will enforce
the access control policy based on the user provided con-
text information. Next, the access control result will be for-
warded to FIP and returned to the user by ACP (step 4). If
the access is permitted, FIP will retrieve the adaptive func-
tion invocation graph from the function pool (step 5). In
steps 6 and 7, FIP requests and receives the user metadata
which contains the contextual information of the user envi-
ronment, such as network bandwidth, CPU type, and so on.
In step 8, FIP negotiates security-related components with



the user based on the user metadata and the adaptive func-
tion invocation graph. If the user does not have the compo-
nents, FIP will retrieve them from the database and deliver
to the user side (step 9, 10). Finally the user application can
dynamically deploy the components into the running space
and start the function call (step 11). It is worth noting that
in step 8, the negotiation procedure is general and not lim-
ited to security-related components, and components such
as latency-related components can also be negotiated. Since
the focus of this paper is secure access, we consider only
security-related components.

3 Adaptive Access Control Module

Grimm et al. argue that embracing contextual change is
the key to expose the dynamic changing context [10] to the
application so that the adaptation can be conducted accord-
ingly. Therefore, instead of using static access control poli-
cies, we introduce a general context in the design of the ac-
cess control module. The context data represents all param-
eters related to the access control policy that an application
defines, e.g., roles, locations, time, and so on. This design
has two benefits. First, any context parameter that a real ap-
plication required can be regulated and enforced in the ac-
cess control model. Second, the general context definition
is evolvable to the extended access control requirement in
the future. Next, we introduce the access control policy def-
initions and the policy graph, then present the enforcement
algorithms.

3.1 Access Control Policy Definitions

DEFINITION 1. (Context Term). A Context Term is a
tuple CT = (name, range, order) where name is the name of
the context, range is the value set of the context and order is
the method to order the values in the set.

CT describes one context type from three aspects. First,
CT name is the name of the context, for example, the age of
users. Second, CT range is the range of the context possible
values, for example, from 10 years old to 70 years old, [10,
70]. Third, CT order is the method for ordering the context
values in the range. For instance, the ascending order of age
as [10, 11, 12, ... 68, 69, 70].

DEFINITION 2. (Context Instance). A Context Instance
of Context Term i, CTi, is a couple CI = (name, value)
where name = CT name

i and value ∈ CT range
i .

This definition shows one value of the context term. If
the context term is represented as a vector like the x axis in
two dimension coordinate space, then the context instance is
a dot on the axis.

DEFINITION 3. (Function). A Function in the remote
service is defined as F = (name, (inputi, i ∈ [1, n]),
(outputi, i ∈ [1, m]), (comi, i ∈ [1, k])), where name is the
signature of the function, inputi is the ith input parameter
of the function, outputi is the ith output result of the
function and comi is the ith necessary adaptive component
for the function invocation. The number of inputs, outputs,
and adaptive components are n, m, and k, respectively.

This definition for function is similar as the traditional
function definition except that we add the extra components
which are necessary for the adaptive function invocation.

DEFINITION 4. (Service). A Service is the collection of
related functions. Service =

⋃
Functioni, i ∈ [1, n].

DEFINITION 5. (Context Space). The Context Space is
defined as CS =

⋃
CTi, i ∈ [1, n]. For each function f, a

Context Sub Space (CSS) is CSSf ⊆ CS.

Context Space is the whole space of the sum of all context
terms. For each function, some of the context terms will be
used to do the adaptive access control enforcement. These
context terms form a subset of the context space, the context
sub space (CSS). Later in this section, we will present the
data structure built upon CSS to represent the access control
policies.

DEFINITION 6. (Context Instance Node). A Context
Instance Node is a data structure CIN = struct{CIi;
Ptr(CIj); Ptr(CIk); ...} where CIi is a context instance of
context term i and Ptr(CIj) is a pointer directed to a context
instance of context term j, given i �= j �= k.

DEFINITION 7. (Context Instance Root Node). A
Context Instance Root Node is a CIN. φ denotes NULL.
CIRN = {CIN : φ → CIN}. Therefore, CIRN ⊆ CIN .

Context Instance Node is built upon a context instance. It
has one or more pointers to point to other context instances
of different context terms. For an access control policy, CIN
marks each controlled value of each context term and con-
nects them together to form the policy graph. CIRN is a spe-
cial CIN which is not pointed by any other CIN. For exam-
ple, in Figure 2 the inverted triangle shapes are CIRNs, and
rectangular shapes are CINs. Given these definitions, we can
now present the structure of the access control policy graph
(ACPG).

Figure 2 illustrates the access control policies for a
function. There are n + 1 types of context terms involved,
from CT0 to CTn, which are ordered based on some
defined standard. For example, using alphabet ascendent
order for Role, Time, Location, and Speed context terms,
CT0=Location, CT1=Role, CT2=Speed, and CT3=Time.
In the context space, the ordered context terms will help
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Figure 2. The adaptive access control policy
graph.

us locate a specific context term faster than the sequential
search. The context space consists of not only the ordered
context terms but also the ordered context instances of every
context term. Each dotted horizontal arrow line represents
the ordered context instances for the corresponding context
term. For instance, CI0i , CI0j , and CI0k

are three ordered
context instances of context term CT0. The context instance
and its possible pointers form a context instance node (CIN),
denoted as rectangular (CINs) and inverted triangle (CIRNs)
shapes in the figure. A linked path from a start CIRN to the
function (lower part in the figure) is an access path, formally
defined as follows.

DEFINITION 8. (Access Path). A access path AP is
an ordered sequence of CINs, CINi, i ∈ [1, n]. Symbol
→ means “point to”, φ means “none”. In an access path,
CINn.P tr → Function and φ → CIN1. In other words,
CIN1 is a CIRN, CINi.P tr → CINi+1.

From Definition 8, we know that the access path is defined
as a directed link list of CINs starting from a CIRN. For ex-
ample, CI3−i → CI1−j → CI0−j is an access path, which
means that if a user’s context instances of context terms
CT3, CT1, and CT0 match the values of CI3−i, CI1−j , and
CI0−j respectively, this user is granted the access right to
the function. The set of all the access paths form the access
control policy of the function. For instance, in Figure 2 the
access control policy of the function has six access paths.

In order to support evolvability, we define an abstract pol-
icy class, which acts as an interface to specifying the context
terms required by the application access control policy. For
a specific access control requirement, we need to material-
ize a concrete policy class that inherit the abstract class and
extend the context terms. Based on these policy classes, the
system will build an ACPG. A detailed example is given in
Section 5. This evolvable design enables system administra-
tors to easily and flexibly add/update access control policies.

In the next section, we describe the access control enforce-
ment algorithms.

3.2 Access Control Policy Enforcement

ACPG is predefined and saved in the access policy
database as shown in Figure 1. Several related algorithms are
proposed to perform the access control policy enforcement.
First, when the access control point (ACP) in Figure 1 re-
ceives the context metadata from a user and retrieves ACPG
from the access policy database, the CINs corresponding to
the context instances of the metadata are located by the algo-
rithm FindCIN.

For each input context instance, FindCIN locates the
corresponding context term. Since the terms are sorted, the
computational complexity is O(1). Then FindCINwill find
the input context instance (CI) in this CT’s ordered value
space. It also takes O(1) steps. If the CI has a CIRN or
CIN in it, the CIRN or CIN will be returned. If n is the
total number of context terms and i is the number of input
context instances, then the total complexity of FindCIN
is O(n). Next the ACP will use another algorithm called
AnyAccessPath. This algorithm is used to check if there
is any access path existing among the CINs returned by the
FindCIN algorithm.

For each CIRN found by the FindCIN algorithm,
AnyAccessPath searches if an access path started
from that CIRN exists. If one access path is found,
AnyAccessPath returns with true value, which means the
access permission is granted to the user. Otherwise, the ac-
cess is denied. Note that the core of AnyAccessPath is
HavePath, which calls itself recursively to check the exis-
tence of a path starting from a CIN. Before we present the
computational complexity of the algorithm, several facts are
observed. Let k be the total number of CIRNs returned by
the AnyAccessPath algorithm. Let j be the total num-
ber of other CINs returned by AnyAccessPath. First,
because a user only provides one context instance for each
context term, therefore, k + j = n, where n is the total num-
ber of context terms. Second, making decision whether that
CIN.Ptr is one of the CIN set { CIN1, CIN2, ...CINj } is
O(1) (line 9 of function HavePath) because the set is an
ordered array. Let us assume each CIN has m pointers and
the height of each access path is h. Then the best case of
AnyAccessPath is O(n) while the worst case is O(mn2).

Finally, the algorithm GrantAccess combines
FindCIN and AnyAccessPath to decide the ac-
cess permission. Obviously, the complexity is be-
tween O(n) + O(n) = O(n) and O(n) + O(mn2) =
O(n(1 + mn)).

For comparison purpose, we also give the complexity of
conventional access control method. Usually, conventional
access control methods do not utilize the complex data struc-
ture to organize the contexts. For example, it defines the ac-
cess as:



Permission := Clause1

⋃
Clause2...

⋃
Clausei

Clause := Context1
⋂

Context2...
⋂

Contextj

Here, the Clause is similar to the notion of access path
in our approach. The Context is like the context term. Dur-
ing the access control checking, the algorithm checks each
Clause by comparing the Context value with the value re-
ceived from the user. With the same previous parameters as
what we have in previous analysis, i.e., n CTs, k CIRNs, m
pointers for each CIN, and h steps along an average path, we
can easily see that there are O(kmh) paths, or Clause. The
complexity of the best case is O(n) which happens when
the first clause satisfied. However, on average it requires to
check O(nkmh) steps, which is much worse than the worst
case of our approach O(mn2).

4 Adaptive Function Invocation Module

In most of the previous efforts on access control [5, 8, 24],
the procedure to access the relevant resources on the server
side is not described or neglected after the access right is
granted to a user. In reality, as we have argued in introduc-
tion, the same service could have a variety of user-perceived
behaviors (performance), depending on user-specific con-
texts, such as client hardware/software configurations, net-
work connections, and so on. For example, some applica-
tions require all Windows clients have service pack 2 in-
stalled to access the resource even with valid user name and
password. In this case, the user will either not be able to ac-
cess the service or create some problems on the server side
if her machine does not have the service pack 2 installed. To
rectify this situation, we propose an adaptive function invo-
cation approach that adjusts the function call according to
the user’s context. Combined with the adaptive access con-
trol module, our approach facilitates adaptive and secure ac-
cess to remote services and provides the best possible perfor-
mance/user experience to different users.

Specifically, adaptive components are utilized to adapt the
function invocation. As shown in Figure 1, all the adaptive
components are stored in the database. According to the spe-
cific requirements of a function, the function invocation point
(FIP) will request the metadata from the user. Then FIP will
decide which components are necessary for the function in-
vocation. Finally, FIP retrieves those components from the
database and delivers them to the user. Subsequently, user
application can dynamically link the components into the
running space and start the function invocation. Several tech-
niques, such as mobile code [12] and dynamic class loading,
can be used to plug in components on the fly.

Invocation requirements of a function are described as an
function invocation graph, as shown in Figure 3. Usually a
function has different requirements based on the context of
access launched from a user, for example secure and commu-
nication optimization requirements. Given the requirements,
one or more components are provided to adapt the invocation

according to the diverse user configurations. For instance, if
one function needs content encryption, for each user hard-
ware configuration, a specific encryption algorithm should
be employed, since different encryption algorithms have var-
ious performances on different platforms [19]. The adaptive
function invocation module leverages the adaptive function
invocation graph (AFIG) in Figure 3, which is similar as the
access control graph, to define a directed path that connects
user’s multiple metadata to access control components.

MetaDATA3

MetaDATAn

Component Set a

MetaDATA2

MetaDATA1

MetaDATA0

Component Set b

MD 0-i MD 0-j

MD 1-k MD 1-l

MD 2-m MD 2-n

MD 3-p MD 3-q

MD n-x MD n-y

Figure 3. The adaptive function invocation
graph (AFIG).

In Figure 3, each metadata line represents one kind of user
configuration. Many modalities could influence the func-
tion invocation, such as processor type, network bandwidth,
screen resolution, and so on. For one type, there are multi-
ple values. For instance, if MetaData 0 represents processor
type, then MD 0-i could refer to PocketPC processor and MD
0-j could refer to Pentium Duo Core CPU. One linked list
containing the different MetaData values directs to a set of
components. The graph will guide FIP to find the component
set for a specific user. We can see that the graph has simi-
lar structure as the access control policy graph in Figure 2,
so previously formalized definitions and algorithms can be
easily applied here. Therefore, details about the graph defi-
nitions and search algorithms will not be repeated. Next we
will present an example of adaptive function invocation.

4.1 Adaptive Data Encryption in Function
Invocation

Several functions in UbiCAS [17], such as image load
function, segmentation function, demand content encryp-
tion for patient information security/privacy specified by the
HIPAA standard [13]. Although many symmetric or asym-
metric encryption algorithms have been proposed, it is dif-
ficult, if not impossible, to build one single encryption pro-
tocol which performs well in such dynamic an environment



as Internet. The only way to support effective secure func-
tion invocation is to provide a flexible encryption adaptation
mechanism.

In [18], we found that different encryption algorithms
have different performance on various platforms. Therefore,
we choose AES and RC4 as the candidate encryption algo-
rithms to adapt the function invocation. In the implementa-
tion, FIP will choose one encryption algorithm for a specific
function invocation according to the operation system types,
as shown in Figure 4. Note that usually Windows XP runs
on laptops or desktops which normally has enough comput-
ing power to execute AES. However, for Smartphone- and
PocketPC-like devices running Windows CE operating sys-
tem, previous data confirms that AES algorithm is too heavy
for them. Thus, RC4 might be a good choice for data en-
cryption on this kind of platforms. The adaptation focuses
on how to choose different algorithms in the context of sym-
metric encryption. The procedure to set up the symmetric
key(s) is beyond the scope of this paper. It is very easy to
set up the symmetric keys using the Diffie-Hellman [6] key
exchange or certificate based authentication.

Note that this example is fairly straightforward, however,
we think it is enough to illustrate the idea of adaptive function
invocation. The performance result of encryption adaptation
for function invocation will be presented in the next section.

RC4

OS Windows CE Windows XP

AES

Figure 4. Adaptive encryption function invoca-
tion graph.

Figure 5. A simplified UbiCAS system deploy-
ment and configuration.

5 Implementation and Evaluation

An adaptive secure access system is built in UbiCAS [17],
which is a distributed Computer-Assisted Surgery (CAS)

system. Two parts, the adaptive access control module and
the adaptive function invocation module are implemented us-
ing Java 1.5 SDK platform. In this section, we first present
a brief introduction about the UbiCAS system is presented.
Then we show the implementation of the adaptive access
control and function invocation modules. Finally, perfor-
mance evaluation results are presented.

5.1 The UbiCAS System

Computer-Assisted Surgery has broad applicability to hu-
man health. Traditional CAS systems are isolated solutions
located in the operating room. Therefore, all the surgery data
preparation, registration, segmentation, planning, and related
operations are restricted to one physically fixed machine
which reduces the potential for telepresence and telesurgery
in CAS systems. UbiCAS extends the stand-alone CAS sys-
tem into distributed environments. UbiCAS allows surgeons
to retrieve, review and interpret multimodal medical images,
and to perform some critical neurosurgical procedures on
heterogeneous devices from anywhere at anytime. It has to
handle several typical challenges in the mobile computing
environment, such as security and privacy, multi-modalities
of diverse network connections and data formats, surgery-
related function implementation and conciliation on hetero-
geneous devices, especially on resource-constrained devices
like PocketPCs and smartphones and so on.

The adaptive secure access to the UbiCAS server deals
with the above issues. The adaptive access control mod-
ule provides the controlled access to the functions. Then
the adaptive function invocation module yields secure Ubi-
CAS function invocation. A simplified system deployment
and configuration is shown in Figure 5. The UbiCAS server,
a laptop user and a PocketPC user connect together in one
local area network. The laptop user has two network inter-
faces, Ethernet and 802.11g wireless. The PocketPC user
has 802.11b wireless connection. The access control and
function invocation modules are implemented in the UbiCAS
server. They controls the secure access to two functions, the
DICOM image load function and the image segmentation
function.

5.2 Adaptive Access Control Implementa-
tion

Based on the adaptive access control module design, each
function has its own access control policy graph. The class
Policy is employed to describe the context terms in a policy
as shown in the left side of Figure 6. It defines four context
terms as Role, Location, Time, and OS (Operating System
types). the Policy class provides a template to define pol-
icy for specific roles. An example policy class for doctor is
shown in the right side of Figure 6.

After all policy classes are defined and implemented, the
access control policy graph can be formalized as shown in



class Policy-example extends Policy {

//Context term definitions

Role  Doctor;

Location  Office;

Time  0-24;

OS  Any;

}

class Policy {

//Context term definitions

Role  role;

Location  location;

Time  time;

OS  os;

// methods

....

}

Figure 6. The Policy class and an example.
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Figure 7. Adaptive access control policy graph
in UbiCAS.

Figure 7, which illustrates the overall access control policy
graph for the segmentation function. The figure can be easily
read as follows. For example, a doctor at home can only
access the segmentation function from 0AM to 8AM and
from 6PM to 11PM. Following the graph, the access control
enforcement algorithm can enforce the control based on each
user’s context data.

In the implementation we also instrument the user name
and password authentication mechanism to work together
with the access control module. Context term instances like
role, location, user name, and password are provided by
the user input. Operating system type is acquired by prob-
ing the system API without input from the user. Note that
the location can be easily determined by other approaches,
such as GPS or even 802.11 wireless network. Several at-
tempts [2, 11, 23] address the location discovery for both
indoor and outdoor scenarios. In the prototype implemen-
tation, we assume that the user provides the location auto-
matically, however, it is trivial to leverage existing location
discovery systems in a production system.

5.3 Adaptive Function Invocation Imple-
mentation

As mentioned in Section 4, diverse encryption algorithms
have different performances on various platforms. It in-
spires us to adapt the encryption algorithms in the imple-
mentation of the function invocation module according to
the adaptation policy shown in Figure 4. It is reasonable to

make the assumption that Windows XP is running on desk-
top or laptop with sufficient resource for the AES encryp-
tion algorithm. Windows CE represents the PocketPC- and
smartphone-like devices that have less power to run AES.
Hence, a lightweight encryption algorithm, RC4, should be
chosen instead.

5.4 Performance Evaluation

We have conducted extensive evaluation the access over-
head of two functions, image loading and image segmenta-
tion. Due to the space limit, we show the results of image
load function only.

5.4.1 Image Load Function

In the secure access to the image load function, a user request
will go through the two modules, adaptive access control
and function invocation, before accessing the function. For
demonstration purpose, we reduce the number of DICOM
images to four in one patient case. Each function invocation
will download the four images to the user side and load these
images to the GUI interface running on the client side. Fig-
ure 8(a) shows three different function access scenarios for
laptop users in LAN. In the first case, the image load func-
tion is called without access control and function invocation
modules. In the second case the access control module is
added. Finally, both the access control and adaptive function
invocation modules are called before the image load function
is called. In each case, the same experiment is repeated 150
times.

In Figure 8(a), where a laptop user accesses the function
in a LAN, we can see that the invocation with access con-
trol yields more overhead, an increase of about 200 millisec-
onds, compared with the invocation without the access con-
trol. Since each invocation only triggers the access control
module once, we think the overhead is acceptable. The total
time increment due to encryption adaptation is not significant
as shown in the rightmost bar. In Figure 8(b), where a laptop
user access the function in a wireless 802.11b LAN, we can
see that with the decreasing of the network bandwidth, the
difference between the basic invocation and the invocation
with access control is diminishing. The difference is closer in
Figure 8(c), where a PocketPC user accesses the same func-
tion in 802.11b WLAN. To understand the reason of the di-
minishing difference, we illustrate the total time breakdown
in Figure 8(d). We know that the image load function is a
communication-intensive function. In low bandwidth net-
works, the transmission time dominates the total time, as
shown by the second part of bars (Figure 8(d)). The access
control times are approximately the same in the three sce-
narios. Server side encryption time is too small to be shown
in the figure. The decryption time of the PocketPC user is
larger than that of laptop user due to the limited computing
resource of PocketPCs.
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Figure 8. Performance of adaptive secure access to load function.

Overall, secure access incurs 300%, 84%, and 33% more
overhead compared with the direct image loading in three
different scenarios, laptop in LAN, laptop in WLAN and
PocketPC in WLAN in terms of the total time. The overhead
diminishes as the network bandwidth reduces. In summary,
the two proposed modules do not jeopardize the performance
of secure access to the image load function.

6 Related Work

Our work shares its goal with several recent efforts that
attempt to enforce access control for various objects in dis-
tributed environments and to inject adaptive functionality
into application. We list the most relevant ones here.

In [1], Lampson et al. propose the concepts, proto-
cols, and algorithms for access control in distributed sys-
tems, from a logical perspective. It also provides a log-
ical language for access control lists and theories that de-
cide whether requests should be granted. Sandhu et al. [24]
introduce the role-based access control model, which effi-
ciently associates permissions with roles rather than users
to greatly simplify security management for administrators.
Distributed Role-Based Access Control (dRBAC) [8] is a
scalable, decentralized trust management and access con-
trol mechanism for systems that span multiple administra-
tive domains. Temporal-RBAC (TRBAC) [5] is an exten-

sion of the RBAC model. TRBAC supports periodic role
enabling and disabling and temporal dependencies among
such actions, expressed by means of role triggers, which re-
lated to a different delay time. Generalized role-based ac-
cess control (GRBAC) [20] leverages and extends the power
of traditional RBAC by incorporating subject roles, object
roles, and environment roles into access control decisions.
In [14], a dynamic, context-aware security infrastructure is
proposed to provide flexible, on-demand authentication, ex-
tensible context-aware access control to healthcare applica-
tions. [26] presents a delegation framework that can be used
within the security framework of healthcare applications.
Wilikens et al. discuss how to apply CBAC to healthcare
applications in [25]. C-TMAC [9] extends TMAC by using
general contextual information. Such contextual information
can include the time of access, the location from which ac-
cess is requested, the location where the object to be accessed
resides, transaction-specific values that dictate special access
policies and so on. [16] extends the RBAC by introducing the
notions of role context and context filters to make RBAC sen-
sitive to the context of an attempted operation. Edjlali et al.
propose the history-based access control for mobile code [7].
The key idea is there is to maintain a selective history of the
access requests made by individual programs and to use the
history to improve the security differentiation. This approach
provides a nice means for adaptation, and complements the



proposed adaptive secure access very well.
Our work is different from above mentioned previous ef-

forts in the following ways. First, we do not introduce one
specific context, like location of time into the access control
model. Actually we systematically propose a general secure
access mechanism to integrate any context that the applica-
tion possibly needs. Finally, combining access control and
adaptive function invocation is novel, and it is one of the
early efforts enabling secure access of remote services in the
coming service-oriented computing era.

7 Conclusions

In this paper, we propose an adaptive secure access mech-
anism for accessing remote services. Compared with previ-
ous efforts which handle predefined static contexts for access
control, our approach is able to integrate application-oriented
access control contexts into the system and to dynamically
evolve the access control policy to handle future system re-
quirements. Besides access control we also raise another im-
portant issue of adaptive function invocation which has not
been addressed in any previous work. We have successfully
implemented our models in a distributed computer assisted
surgery system called UbiCAS. The performance evaluation
on different configurations shows that our approach provides
efficient secure access to remote services with an acceptable
overhead In future, we plan to design an access control policy
description language to work with our proposed enforcement
algorithm. Enriching the function invocation module with
more intelligently reactive adaptation is also an interesting
research direction.
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