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Abstract

Peer-to-peer Web caching has attracted a great attention from the research community recently,
who believes it as a potential killer application for peer-to-peer networking. However, the observed
results from several previous efforts are not consistent, even controversial.

In this paper, we systematically examine the design space of peer-to-peer Web caching systems
in three orthogonal dimensions: thecaching algorithm, thedocument lookup algorithm, and thepeer
granularity. Based on the observation that traditionalURL-basedcaching algorithm suffers consider-
ably from the fact of cacheability decrease caused by the fast growing of dynamic and personalized
Web content, we propose to use thedigest-basedcaching algorithm. In addition to compare two ex-
isting document lookup algorithms, we propose a simple and effectivegeographic-baseddocument
lookup algorithm. Four different peer granularities, i.e.,host level, organization level, building level,
andcentralized, are studied and evaluated using a seven-day Web trace collected at a medium-size
education institution.

Using a trace-driven simulation, we compared and evaluated all design choices in terms of two
performance metrics:hit ratio andlatency reduction. The experimental results suggest that: (1) ideally,
thedigest-basedcaching algorithm could improve the cacheability of Web objects substantially, from
6.9% (URL-based) to 62.0% (digest-based); (2) the document sharing among peers is very effective,
from 22.0% (building level) to 34.2% (host level); (3) the average user-perceived latency is reduced
three to six times compared with the measured latency at all peer granularities using the hierarchical
index-based (home1in our jargon) document lookup algorithm; (4) the proposedgeographic-based
document lookup algorithm has comparablehit ratio and significantlatency reduction. Finally, several
implications derived from these observations are also listed.
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1 Introduction

Peer-to-peer networking has become a hot research topic recently [13, 16, 21, 25]. Peer-to-peer Web
caching is thought as one of the potential applications that could be benefited from these underlying peer-
to-peer substrates, and has been exploited by several projects [9, 24]. In [24], Xiaoet al. proposed a
browser-aware proxy server model and evaluated using BU-95 trace [6] collected from Boston University
(1995) and NLANR-uc trace [8] (2000). In Squirrel [9], Iyeret al. presented a peer-to-peer Web caching
system built on top of the PASTRY [16], and evaluated using the traces of Microsoft Research Redmond



campus [23] (1999) and Cambridge campus (2001) respectively. Although these two studies showed opti-
mistic results for peer-to-peer Web caching, the study of Wolmanet al.[23] indicated a relative pessimistic
results using the traces from Microsoft Corporation (1999) and University of Washington’s (1999).

The possible reasons for the controversial observation of above studies are: (1) those studies worked
with different traces; (2) the peer granularity of these studies was different. Squirrel and Xiaoet al.’s
studies were athost level, while Wolmanet al.’s study was at theorganization level. Furthermore, from
the perspective of users, thelatency reductionresulted from those cooperative caching is more important
thanhit ratio. But those studies did not quantitatively evaluate the latency improvement.

On the other hand, recent studies [3, 17] show the fast growing of the dynamic and personalized Web
content. This trend will reduce the cacheability of cooperative Web caching significantly underURL-
basedcaching algorithm. Fortunately, recent study [10, 26] shows that the dynamic objects have a large
portion of repeatness based on their content digest. This repeatness provides an opportunity to improve the
cacheability, and motivates us to propose adigest-basedcaching algorithm for peer-to-peer Web caching.

In this paper, we intend to answer the following question:Is peer-to-peer Web caching a hype or a
reality? We first systematically examine the design space of a peer-to-peer Web caching system in three
orthogonal dimensions: thecaching algorithm, thedocument lookup algorithm, and thepeer granularity.
Based on the observation that traditionalURL-basedcaching algorithm suffers considerably from the fact
of cacheability decrease caused by the fast growing of dynamic and personalized Web content, we propose
to use adigest-basedcaching algorithm which exploits the fact of the large repeatness of Web objects
even though their URLs are different. In addition to compare two existing document lookup algorithms,
we propose a simple and effectivegeographic-baseddocument lookup algorithm. Four different peer
granularities, i.e.,host level, organization level, building level, andcentralized, are studied and evaluated
using a seven-day Web trace collected from a medium-size university. Using a trace-driven simulation, we
compared and evaluated all the design choices in terms of two performance metrics:hit ratio andlatency
reduction. The reasons that we collected the trace by ourselves instead of using existing public traces are:
(1) most available traces are lack of the latency information which is one of performance metrics in our
study; (2) the entire Web object is required in order to calculate the content digest, which is not available
in any present trace.

The experimental results suggest that: (1) ideally, thedigest-basedcaching algorithm could improve
the cacheability of Web objects substantially, increasing from 6.9% (URL-based) to 62.0% (digest-based);
(2) the document sharing among peers is very effective, ranging from 22.0% (building level) to 34.2%
(host level); (3) the average user-perceived latency is reduced three to six times compared with the mea-
sured latency at all peer granularities usinghome1routing algorithm; (4) the proposedgeographic-based
document lookup algorithm has comparablehit ratio and significantlatency reduction.

Based on these observations, we derive several implications for peer-to-peer Web caching: (1) there is
a need to deploy thedigest-basedWeb caching mechanism; (2) Theorganizationor building level peer-to-
peer Web caching using the hierarchical index-server is the most appropriate choice; (3) thegeographic-
basedlookup algorithm should be exploited further to benefit from its superiorlatency reductionand easy
implementation; (4) dynamictype2 (DynGen) andtype7 (ZeroTTL) are most promising to benefit from
thedigest-basedcaching algorithm.

Our contributions of this study include: (1) systematically examining the design space of peer-to-peer
Web caching; (2) validating the great potential of thedigest-basedcaching algorithm. To our knowledge,
this work is the first performance evaluation using real Web trace with content digest; (3) comprehen-
sive evaluating the performance of Web caching in terms of two performance metrics; (4) proposing a
geographic-baseddocument lookup algorithm.
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Algorithm Description
Home1 A hierarchical index server is used to maintain web content in peer’s cache [24]
Home2 A decentralized index (using hash value) is used to locate web content in each peer [9]
Geo Only hosts located in the same subnet are considered

Table 1: Explain of document lookup algorithms

The rest of the paper is organized as follows. Section 2 examines the design space of peer-to-peer
Web caching systems. Section 3 describes the trace data collection, and classification of multiple dynamic
content. A comprehensive comparison of different algorithms in terms of two performance metrics is
reported in Section 4. Several implications derived from the analysis are listed in Section 5. Related work
and conclusion remarks are listed in Section 6 and Section 7 respectively.

2 Design Space of Peer-to-Peer Web Caching

As illustrated in Figure 1, there are three orthogonal dimensions in designing a peer-to-peer Web caching
system: thecaching algorithm, the lookup algorithm, and thepeer granularity. Note that, the notion of
peer, or peer cache, in this paper is quite flexible. Unlike traditional P2P network [13, 16, 21] where
the notion of peer refers to a physical end host, each peer cache is defined as the one which performs
the caching function on behalf of host(s) inside its scope and cooperates with other counterparts at the
same level. For example, an end host itself is ahost levelpeer cache. It performs the caching function
for itself and cooperates with otherhost levelpeer caches. Napster, Gnutella, and KaZaA follow this
concept.Organization/building levelpeer caches perform the caching function for hosts inside their scope
and cooperate with otherorganization/building levelpeer caches. Centralized cache performs the caching
function for all hosts behind it and does not have any same level peer cache to cooperate with.

2.1 Caching Algorithm

Two caching algorithms, theURL-basedand thedigest-based, are evaluated in this paper. TheURL-based
caching algorithm is based on the URL of static Web object and its related freshness time, and has been
widely used in Web caching. Thedigest-basedcaching algorithm is inspired by our recent study [26],
where we found that the static Web content only occupied 10.2% of total Web requests, and there were
59.1 % Web requests, which are repeated based on their hash-based digests, are traditionally perceived
uncacheable. This implies that these uncacheable Web content could be cached if certain protocol could
be designed based on the digest value. The basic idea of thedigest-basedcaching algorithm is the content
digest is exchanged apriori to decide whether or not the requested object should be fetched.

2.2 Document Lookup Algorithm

As in any P2P networking system, the document lookup algorithm is the core of the whole design. Three
lookup algorithms are evaluated in this paper, namelyhome1, home2andgeographic-based(Geoin short)
as listed in Table 1. The basic idea of thehome1algorithm is that a high level index server maintains an
index file of all Web objects stored in hosts within its peer scope. This protocol is used in Xiaoet al.’s
work [24]. When a host requests a Web document, it first checks its local cache. If the request misses, the
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Figure 1: A three dimension design space of peer-to-peer Web caching.

host will send the request to the index server to search the index file. If the request hits at the hosti, the
index server will inform the hosti to send the Web object to the request host. If the request misses, the
request host will go to the original server directly.
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Figure 2: Peer granularity and the simple latency estimation model.

In thehome2algorithm, each requested document is associated with a certain host as its logical home
(based on its hash value of URL or digest). When a host requests a document, it will check its local cache
first. If missing happens, it will use P2P routing algorithm to forward the request to the corresponding
home. The home will send the requested document back to the client if the request is hit. If missing
happens again, the home will send the request to the original server and forward the Web object to the
request host.

TheGeoalgorithm comes from our intuition, that people will have similar Web-browsing interests at
same geographic location. Currently, only hosts located in the same subnet are considered geographically
closed and contacted to query for the missing document. It can be easily implemented using IP level
multicast (if available). Otherwise, application-level multicast can be used here too [5]. When a local
cache missing happens, the client first multicast its request within the subnet. If the request hits at a host’s
local cache, that host will send the Web object back. If there is no reply, the request host will send the
request to the original server.
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Granularity a b
LAN 0.0001 0.0042
Subnet 0.0009 0.0066
Organization 0.0028 0.0671
Building 0.0029 0.0920

Table 2: The coefficients of the simple latency estimation models using linear regression.

2.3 Peer Granularity

Figure 2 shows four possible peer granularities for a medium-size institution, which has tens of building,
multiple logical organizations, and thousands of computers. Each building could have more than one
organization. In each organization, there also possibly exist multiple subnets. The P2P model could be
applied at any of those levels. In our simulation, we implementhost, organization, building level peer-to-
peer Web caching, and acentralizedWeb caching.

2.4 A Simple Latency Estimation Model

To estimate the possiblelatency reductionof different design options, we use a simple latency model to
compute the latency between any two hosts. According to Figure 2 (a), there are four possible host-to-host
latency models: hosts within the same LAN (in the reach of the same switch); hosts not in the same LAN
but within the same subnet; hosts between different organizations but within the same building and hosts
between different buildings. To measure these latencies, we ran a client program to fetch different Web
objects, with size ranging from 1KB to 256KB, against an Apache Web server [1] inside campus. We
calculated the latency between the request and the last-byte of response as in Figure 2 (b). Since these
latency values include not only the delay of network, but also the overhead of the application, we call this
application level latency. Using the minimum square linear programming approach, we found all latencies
follow a linear model, i.e.,f(x) = ax + b, wherex is a variable of the file size in KByte,f(x) represents
the latency in second, the corresponding parametersa andb are listed in Table 2.

3 Trace Generation

By examining many existing traces, we find that they are either (1) lack of the user-perceived latency which
is one of performance metrics in our study; or (2) absence of the entire Web object which is required to
calculate the content digest. We decide to collect the trace on our own. We collected all inbound Web
traffic and rebuilt the trace. The inbound Web traffic means those Web sessions originated by the inside-
campus clients and served by outside-campus Web servers.

3.1 Trace Collection

Tcpdump[22] was used to collect TCP packets at the network entrance of a middle-size education insti-
tution, while all Web traffic through port 80 is sniffed. To extract the complete HTTP information, in-
cluding both header and content, we have developed WebTACT, aWebTraffic Analysis andCharacterize
Tool [26]. The output of WebTACT includes the hash digest values for requested Web content, and the
user-perceived latency, which is measured as the difference between the capture time of last packet of
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response and that of first packet of request. The TTL (time-to-live) value associated with each Web docu-
ment is calculated using Squid’s [19] implementation.

From the viewpoint of Web caching, generally Web content could be categorized as uncacheable Web
object or cacheable Web object. The cacheable Web content refers to those infrequently changed Web
objects (also known as static Web content). The uncacheable Web content could be further subcategorized
into seven uncacheable types, depends on the following rules:

• Type 1 - NonGet : If the HTTP method, appeared in the HTTP request header, is not aGET
method, then the corresponding HTTP object would be classified asNonGet subtype;

• Type 2 - DynGen : If the method isGET, and the request URL contains keywords (like “cgi”,
“asp”, “=”, and “?”, ...etc.), which implies the HTTP response object is probably generated dynam-
ically, then that object would be classified asDynGen subtype;

• Type 3 - Pragma : In the cases that HTTP request/response header part contains “Pragma: no
cache” control information header, this object could be considered asPragma subtype;

• Type 4 - CacheCtl : In the case that HTTP request/response “Cache Control” header contains
information indicating this is a dynamic, uncacheable HTTP object, this HTTP object is classified
asCacheCtl subtype;

• Type 5 - Personalized : If the HTTP request header containsCookie or Authorization-
related headers,or the HTTP response containsSet-Cookie header, the corresponding HTTP
content is defined aspersonalized subtype;

• Type 6 - AbnormalStatus : If the return status code, from server, does not belong to 2XX or
3XX, we think the response object is not a cacheable response and treat it as ofAbnormalStatus
subtype;

• Type 7 - ZeroTTL : Except above six subtypes, we are also interested in the HTTP objects whose
TTL (time-to-live) value equals to zero. This sort of objects is classified asZeroTTL subtype.

3.2 Host Traffic Clustering

To cluster the inbound traffic at different peer granularities, we obtained the network topology information
from Computing& Information Technology (C&IT) division of the education institution . Based on this,
we could identify the relationship between any two internal IP addresses (two clients), and calculate the
simulation latency using the latency estimation model as described above. Note that if two users use the
same machine, we have to consider them as one peer inhost-levelcaching.

4 Analysis Results

We adopt the trace-driven approach to examine the different design choices of peer-to-peer Web caching,
implementing two caching algorithms, and three document lookup methods at four peer granulairties. We
collected seven-day period (Aug 25, 2003 — Aug 31, 2003) Web traffic.

Totally, there are 8,889 unique hosts observed from the trace based on their IP addresses. These hosts
belong to 110 subnets, disperse in 77 organizations that are located in 60 buildings. In order to emulate

6



the behavior of real deployed Web caches, we set the size limit for the caches at centralized, building,
organization and host levels to 1GB, 300MB, 100MB and 10MB, respectively. We also limit the maximum
size of cacheable objects to 20% of the corresponding cache capacity. Although in the real life the cache
size could be set much bigger, we are interested in the relative relationship (relative size ratio) among
caches at different levels. A least-recent used (LRU) replacement algorithm is used in our simulation.

4.1 Performance Metrics

Although most previous studies chose performance metrics likehit ratio andbyte hit ratioto evaluate Web
caching, from the perspective of clients, the user-perceived latency is the most crucial. In this study, we
focus not only onhit ratio andbyte hit ratio, but also on thelatency reduction, which is the improvement
of the estimated latency compared with the measured latency. In addition, we also introduce a notion of
peer sharing gainto indicate the resource share degree between those peers. Thepeer sharing gainis
defined as the ratio of the number of remote hits and the number of total hits. Regarding to thelatency
reduction, it could be improved (positive) or deteriorated (negative). We useLimprove andLdeteriorate to
depict these two cases respectively.

4.2 Hit Ratio

In terms of thehit ratio, including both requesthit ratio and byte hit ratio, we examine the different
design choices. Figure 3 shows that thehit ratio andbyte hit ratioof URL-basedanddigest-basedcaching
algorithms at four peer granularities respectively. Each item in theX axis represents a combination of
peer granularity and document lookup algorithm. For example, host-geo means thegeographic-based
document lookup algorithm is applied athost level. TheY axis of Figure 3 (a) and (c) indicates thehit
ratio in percentage. TheY axis of Figure 3 (b) and (d) shows thebyte hit ratioin percentage. In Figure 3,
each bar consists of two parts, thelocal hit (lower part) andremote hit(upper part). Thelocal hit refers to
the hit happened at the default cache (for example, athost levelthe default cache is the local cache of host
itself), and theremote hitrefers to the hit happened at the requested document’s home cache (home1and
home2), or neighbor with in the same subnet (Geo). For the centralized cache, the remote hit is zero.

Note that, for thedigest-basedcaching algorithm, we only simulate the uncacheable Web content,
while this algorithm works for the static Web content as well. Thus, the totalhit ratio or byte hit ratio
of the digest-basedcaching algorithm is the sum of that fromdigest-basedand that fromURL-based
correspondingly. TheURL-basedcaching algorithm, as illustrated in Figure 3 (a) and (b) has the lower
cache hits in terms of thehit ratio andbyte hit ratiocompared withdigest-basedcaching algorithm as
showed in Figure 3 (c) and (d). From those figures, we observe that the local hit ratio decreases from
centralized levelto host levelcaused by the total cache size decreasing at each level; and the remote hit
ratio increases respectively for bothURL-basedanddigest-basedcaching algorithms due to the sum of
peers cache size increasing. In general,home1has a big hit ratio thanhome2. The reason ishome2
algorithm will store the web object at request host and also request home, this will cause the disk space
redundancy to decrease the hit ratio. We will discuss thehit ratio andbyte hit ratiobased on caching
algorithms, document lookup algorithms and peer granularities separately.
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Figure 3: The hit ratio and byte hit ratio of different algorithms.

4.2.1 Caching Algorithm

In our study, we are interested in which caching algorithm could achieve higherhit ratio andbyte hit ratio.
From Figure 3 (a) and (c), we find that thehit ratio of URL-basedalgorithm has the value from 5.04%
to 6.94%, whiledigest-basedalgorithm gains an order of magnitude additionalhit ratio, ranging from
47.44% to 59.08%, depending on different P2P granularities. The reason for the lower hit ratio ofURL-
basedcaching algorithm is that there are 49.6% requests whose TTL’s values are zero, probably caused by
the cache busting [11] technique, and therefore those requests are uncachable for the traditional caching
algorithm. These results indicate that thedigest-basedalgorithm has the great potential to increase the
hit ratio. Figure 3 (b) and (d) report that thebyte hit ratioof the URL-basedcaching algorithm is from
3.11% to 6.84%, whiledynamic-basedalgorithm gains additionalbyte hit ratiofrom 23.55% to 30.22%,
depending on different peer granularities. Surprisingly, it can be seen from the figure that thebyte hit ratio
does not gain as much ashit ratio usingdigest-basedcaching algorithms. The possible reasons are: (1)
the cache busting [11] technique tends to apply on small object, like advertisedgif or jpeg images; (2)
some very small HTTP response heads (for example,404 for “document not found” in HTTP protocol)
happen a lot of times, and they have the same digest.
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URL-based Digest-based
Granularity Peer share gain Peer share gain (byte hit)Peer share gain Peer share gain (byte hit)
Building-home1 25.2% 33.9% 19.1% 20.1%
Building-home2 24.9% 33.4% 22.0% 22.0%
Org-home1 31.2% 42.5% 21.5% 21.4%
Org-home2 32.1% 42.4% 24.1% 23.9%
Host-home1 57.0% 55.1% 32.4% 34.4%
Host-home2 55.2% 57.1% 34.2% 36.5%
Host-Geo 38.6% 37.2% 17.4% 17.6%

Table 3: The peer share gain of two caching algorithms at three peer granularities.

4.2.2 Document Lookup Algorithm

Logically, thehit ratio resulting from a document lookup algorithm is determined by the scope of lookup,
independent of the specific document lookup algorithms. The difference ofhit ratio for home1, home2
lookup algorithm, as shown in Figure 3, is caused by two possible reasons: (1) the space limitation of
cache size; (2) the disk redundancy ofhome2algorithm. Compare withhome1, home2will store the web
objects at two locations, one is at the request host, one is at the request logic home. This will cause some
disk space redundancy to decrease the hit ratio. However, it can be seen from the Figure that thehit ratio
of geographic-basedalgorithm is lower than that of two other algorithms. This is caused by the limited
host number in each subnet searched byGeoalgorithm. Although theGeoalgorithm only has two third
of thehit ratio compared with thehome1and thehome2, we still think it as a very promising document
lookup algorithm because it uses only one percent of host population on average compared to thehome1
and thehome2algorithms. As such, theGeoalgorithm can scale very well.

4.2.3 Peer Granularity

In this paper, we are interested in which peer granularity level the peer-to-peer Web caching should be
deployed. An analytic result indicates that thehit ratio should increase with the peer granularity changing
from centralized levelto host level. The increment ofhit ratio is caused by the cache capacity increasing
with the changing of peer granularity. Figure 3 shows that thehit ratio andbyte hit ratio increases with
peer granularity changing fromcentralized levelto host level. But there are some exceptions forURL-
basedalgorithm at theorganization levelP2P caching. The possible culprits are: (1) the total cacheable
Web objects number is small, and their total bytes are less than the sum of cooperative cache capacity;
(2) the object size limitation atorganization levelandhost levelis 20MB and 2MB respectively, and there
exist some files that are too large to be cached. For the exception of thedigest-basedlookup algorithm
at theorganization levelwhosehit ratio andbyte hit ratioare less than those ofbuilding levelcache, the
possible reason is that the capacity sum oforganization levelcache is 7,700MB, which is less than the
capacity sum ofbuilding levelcache, 18,000MB. Another exception is the relative low remote hit ratio
in host-Geo scenario, which is caused by the limitation of its neighbor population (limited by the size of
subnet). Despite this, it still achieves a very impressivehit ratio.
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Dynamic type NonGet DynGen Pragma CacheCtl Personalized AbnormalStatus ZeroTTL

Hit ratio Centralized 0.17% 11.94% 0.33% 1.36% 0.06% 4.93% 24.66%
Building 0.21% 12.48% 0.35% 1.65% 0.07% 5.11% 30.63%
Organization 0.20% 12.28% 0.33% 1.57% 0.06% 5.05% 28.94%
Host 0.23% 13.44% 0.54% 1.65% 0.07% 4.56% 31.42%
Host-Geo 0.21% 12.12% 0.37% 1.39% 0.06% 3.96% 23.09%

Byte hit Centralized 0.11% 4.35% 1.83% 0.78% 0.22% 0.61% 16.35%
ratio Building 0.12% 4.91% 1.92% 0.91% 0.23% 0.62% 19.52%

Organization 0.11% 4.73% 1.87% 0.86% 0.23% 0.63% 18.47%
Host 0.11% 5.06% 1.94% 0.92% 0.10% 0.58% 19.17%
Host-Geo 0.11% 4.23% 1.70% 0.76% 0.10% 0.54% 14.49%

Table 4: The dynamic types hit ratio and byte hit ratio of four peer granularities.

4.2.4 Peer Share Gain

The motivation of peer-to-peer Web caching is to share Web objects among a group of clients. We define
a notion ofpeer sharing gainto indicate the resource share degree between those peers. Thepeer sharing
gain is defined as the ratio of the number of remote hits and the number of total hits. Table 3 shows the
peer share gainin terms of both request hit and byte hit based on different peer granularities and two
caching algorithms. From Table 3, we can find thathost levelcaching has the highestpeer share gainfor
both hit ratio andbyte hit ratio, for two caching algorithms,URL-basedanddigest-based. Table 3 also
shows thatbuildingandorganization levelhave around 20% sharing gain forhit ratio, and 20% forbyte hit
ratio when applyingdigest-basedcaching algorithm. This observation implies peer-to-peer Web caching
can efficiently share Web objects in terms of bothhit ratio andbyte hit ratioat different peer granularities.
Note that, thedigest-basedcaching algorithm actually reduce the peer share gain in terms of both number
of requests and number of bytes. The reason is thedigest-basedcaching algorithm will caused more cache
replacement due to the cache size limit.

4.2.5 Dynamic Type

Although thedigest-basedalgorithm has the great potential for content reusing, we are more interested
in where this benefit comes from. Therefore, we analyze thehit ratio for dynamic types in detail and
exploit which type of dynamic content could be efficiently cached or has higherhit ratio in our simulation.
Table 4 shows thehit ratio for seven dynamic types at different peer granularities. Table 4 indicates
that there is no significant difference ofhit ratio andbyte hit ratio for the four level peer granularities.
ZeroTLL contributes about 50%hit ratio of total digest hit.DynGen contributes about 15%hit ratio of
total digest hit. These results imply that fordigest-basedcaching algorithm we need to focus onDynGen
andZeroTTL types. We also evaluate the correspondinglatency reductionfor these two types, and we
found that the latency improvement forDynGen is 93%, forZeroTTL is about 84%. We think these
improvements are acceptable.
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Figure 4: The average latency of simulation and measurement.

4.3 Latency Reduction

Now we are in the position to examine the correspondinglatency reductionresulting from peer-to-peer
Web caching. We use the user-perceived last-byte latency as a performance metric to examine all possible
caching design space. Figure 4 illustrates the average latency obtained from simulation and measurement
for different caching algorithms at all possible peer granularities. In the Figure, the average simulation
latency is the average of all simulated latencies (calculated from the simple latency model) resulted from
hit requests during the simulation. On the other hand, the average measurement latency is the average of
all measured latencies (calculated from the trace data) corresponding tothesehit requests. The average
simulation latency reduces from three to four times for theURL-basedcaching algorithm and from four
to eight times for thedigest-basedcaching algorithm compared to the average measurement latency. The
host-home1 scenario has the bestlatency reductionexcept forGeowhich has a lesshit ratio, but host-
home1 is difficult to implement in the real situation due to the concern of scalability.

Table 5 shows the latency improvement represented byLimprove and the latency deterioration repre-
sented byLdeteriorate for all hit requests in different peer-to-peer Web caching design options.Limprove

represents the number of hit requests where the simulation latency is less than the measurement latency.
Ldeteriorate represents the difference between total number of hits andLimprove. From the Table, we ob-
serve that although the average simulation latency is reduced greatly compared to the average measure-
ment latency, theLimprove is almost equal to or less thanLdeteriorate except for host-Geo scenario. This
abnormality indicates that we need examineLimprove andLdeteriorate in more detail. Figure 5 shows the
cumulative distribution function (CDF) ofLimprove andLdeteriorate in building level.1 This figure could be
used to explain the significant improvement shown in Figure 4, that the average latency reduces signifi-
cantly while the difference ofLimprove andLdeteriorate is very low. For example, in Figure 5(a) theLimprove

is uniformly distributed, while in the Figure 5(b)Ldeteriorate is likely exponentially distributed. Further-
more, inbuilding levelapplying theURL-basedcaching algorithm using thehome1lookup algorithm, the
average improved time ofLimprove is 1.412 second while the average deteriorated time ofLdeteriorate is
0.058 second. This indicates a fact that if a hit request latency is improved, it will improve greatly. On the
other hand, if a hit request latency is deteriorated, it will deteriorate very limited.

1We also examined the CDFs ofLimprove andLdeteriorate in host level, organization levelandcentralized level, and got
the same patterns.
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Caching algorithm URL-based Digest-based
Granularity Limprove Ldeteriorate Limprove Ldeteriorate

Centralized 373,754 (57.5%) 276,463 (42.5%) 2,972,846 (56.3%) 2,311,386 (43.7%)
Building-home1 626,884 (84.0%) 119,081 (16.0%) 5,102,580 (83.9%) 976,728 (16.1%)
Building-home2 250,873 (33.6%) 496,014 (66.4%) 3,084,401 (50.7%) 3,000,871 (49.3%)
Org-home1 622,764 (84.8%) 111,570 (15.2%) 5,176,172 (88.6%) 667,359 (11.4%)
Org-home2 251,161 (34.1%) 485,337 (65.9%) 2,993,966 (51.5%) 2,817,516 (48.5%)
Host-home1 577,786 (77.6%) 167,176 (22.4%) 5,278,443 (84.5%) 967,573 (15.5%)
Host-home2 434,263 (58.4%) 309,775 (41.6%) 3,195,313 (50.4%) 3,150,430 (49.6%)
Host-Geo 533,895 (98.7%) 7,065 (1.3%) 5,034,302(98.8%) 62,223 (1.2%)

Table 5: The latency improvement and deterioration of two caching algorithms at four peer granularities.
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Figure 5: The latency improvement and deterioration of different algorithms inbuilding levelpeer-to-peer
Web caching.

Next, we will discuss thelatency reductionin terms of document lookup algorithms, P2P granularities
and caching algorithms.

4.3.1 Documents Lookup Algorithm

The Geo has the most significantlatency reductionin both average simulation latency andLimprove

(98.7%). The reasons are: (1) it does not need routing to locate the Web document; (2) the latency
within a LAN or subnet is minimal. From Figure 4, thehome1is observed to be superior to thehome2
in both average simulation latency andLimprove. This can be explained logically ashome2needs more
routing steps to locate the Web object’s home as compared tohome1.

4.3.2 Peer Granularity

Thecentralized levelcaching has a comparablelatency reductioncompared withbuilding level, organi-
zation levelandhost level. But it will suffer scaling problem in a real implementation with a large client
population. Thebuilding levelhas very similar results in terms of average latency andLimprove compared
with organization levelcache. Althoughhost levelcaches have similarlatency reductioncompared with
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building levelandorganization levelrespectively, they have a betterLimprove( e.g., 84.5% forhome1and
50.4% forhome2) thanbuilding level(e.g., 83.9% forhome1and 50.7% forhome2) under thedigest-based
caching algorithm.

4.3.3 Caching Algorithm

Figure 4 (a) and (b) also show that thedigest-basedcaching algorithm has a betterlatency reductionthan
theURL-basedcaching algorithm. The reasons are: (1) in our simulation,we assume that a client, which
sends a request, knows the digest of the request Web content in prior. This is impractical in the real
implementation. Thus, if adigest-basedcaching algorithm was implemented, a possible latency overhead
for thedigest-basedcaching algorithm is expected; (2) the average size of dynamic Web objects is smaller
than static Web objects. The gain from thedigest-basedalgorithm is mostly come from the reuse of
dynamic Web content, as such, the advertised gif or jpeg images; (3) the dynamic Web objects tend to
have longer measured latencies caused by dynamic generation. When these objects are hit during the
simulation, these dynamic generated latency will be reduced.

5 Implications

Based on the analysis results in the last section, several implications could be derived as follows:

• Need protocol support for deploying thedigest-basedWeb caching mechanism: The results of
the experiment show that thedigest-basedcaching algorithm improves thehit ratio tremendously.
For example, in Figure 3, thehit ratio increased from 6.9% for theURL-basedcaching algorithm to
62.0% for thedigest-basedcaching algorithm atbuilding levelgranularity. However, in our current
simulation, we assume that a client, which sends a request, knows the digest of the request Web
content in prior. This is impractical in the real situation. Thus, to exploit the benefit of thedigest-
basedcaching algorithm, an efficient mechanism is required to obtain the content digest. DTD [10]
and VBWC [15] are two recent effort to exploit this.

• Tradeoff betweenlatency reductionand scalability: The latency reductionis a key performance
metric in our study. Figure 4 shows that thehome1document lookup algorithm is always superior
thanhome2algorithm. In the real implementation, thehome1algorithm needs a centralized index
server, which is a big obstacle of scalability for a large client population. Although thehome2
algorithm is exempted from the scalability problem, it has a lesslatency reductionthan thehome1
counterpart, because of the extra overhead of P2P routing. Therefore, we argue that peer-to-peer
Web caching at organization orbuilding levelusing thehome1lookup algorithm is a good choice.
In the real deployment of thehome2algorithm, the P2P routing is implemented at the application
level which is not good for thelatency reduction. Intuitively, we think if some geographically-aware
clustering technologies [11, 14] were applied on thehome2algorithm, thelatency reductioncould
be improved, but further study is required.

• Exploiting the geographic-basedlookup algorithm : We propose a simple and effectivegeographic-
baseddocument lookup algorithm. The results show that it has an acceptablehit ratio and a sig-
nificant latency reduction. The reason of the relative lowerhit ratio compared with the other two
algorithms is due to the limited host population participating in thegeographic-basedcluster. We
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believe that if some geographically-aware clustering technologies, such as network clustering [11],
or landmark based binning algorithm [14], are integrated with thegeographic-basedlookup algo-
rithm to increase the client population, thehit ratio will increase greatly, while the advantage of the
latency reductionstill remains good.

• Potential of caching dynamic types: We examine thehit ratio of dynamic content based on dy-
namic types. The purpose of exploiting dynamic types is to examine the cacheability of different
dynamic types according to our classification technique. In our simulation, we assume that all those
seven types of dynamic content could be cached based on their content digest. Intriguingly, ex-
periment results in Table 4 show that onlyDynGen, AbnormalStatus andZeroTTL dynamic
content have an acceptablehit ratio. AbnormalStatus represents abnormal response status, def-
initely not suitable for caching. (DynGen) and (ZeroTTL ) contribute about 75% of thehit ratio
in thedigest-basedcaching algorithm. Caching those two dynamic types will significantly improve
the Web caching performance and save tremendous network bandwidth.

• Which peer granularity is the best?: From the perspective ofpeer share gain, the experiments
suggest the lower the peer granularity the larger thepeer share gain, which advocates thehost level
peer-to-peer Web caching. But from the perspective of thelatency reduction, which is the most
crucial consideration for clients, theorganization levelor building levelpeer-to-peer Web caching
using thehome1algorithm is the best one. If there are some improvements at lookup algorithm to
reduce the latency caused by P2P routing, thehost levelP2P Web caching using thehome2algorithm
will be a good choice too.

6 Related Work and Discussions

Peer-to-peer Web caching (also known as cooperative Web caching) has been extensively studied in recent
years [9, 24, 23, 18, 20]. The work presented in this paper is inspired by the controversial observations
drawn from these earlier efforts. To the best of our knowledge, our effort is the first try to systematically
examine the design space of peer-to-peer Web caching in three dimensions, and quantitatively evaluate
their performance in terms of two performance metrics:hit ratio andlatency reduction.

Cooperative caching was first proposed by Dahlinet al. in the context of memory caching sharing in
file system [7], which examined and compared four different cooperative caching algorithms using a trace-
driven simulation. However, we focus on Web content sharing, and evaluate different peer granularities,
caching algorithms, and document lookup algorithms in this paper.

The pioneer work in cooperative caching was conducted by Wolmanet al. in 1999, using the traces
from University of Washington and Microsoft Research Redmond [23]. This is the closest work to our
analysis. There are three differences exist. First, the peer grains examined in our paper is wider than their
work, which focus on theorganization levelonly. Second, the qualitative latency improvement analysis in
[23] was done by an analytical model, while we perform a quantitatively study. Finally, a newdigest-based
caching algorithm is proposed in this paper, distinguishing our work from their URL-based analysis.

Recently, Iyeret al. proposed Squirrel [9], a peer-to-peer Web caching system built on the PASTRY
peer-to-peer routing substrate [16]. Xiaoet al. studied the reliability and scalability of a browser-aware
proxy server by using a centralized index server for multiple hosts. Our work was partially inspired by
these two previous efforts, and we implemented both of their algorithms in this paper for comparison
purposes. In addition to hit ratio and cooperative hit ratio, this paper compares the likelylatency reduction
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as well. Furthermore, the traces used in our analysis was collected on March 2003, which is more up-
to-date than the traces used in [9, 24]. Our recent work on Tuxedo [18] proposed another object lookup
protocol, called adaptive neighbor table, which compliments to this work. Backslash [20] is a content
distribution system based on peer-to-peer overlay and used for those who do not expect consistently heavy
traffic (flash crowds) to their sites. Although it is also a peer-to-peer Web caching system, the goal is
totally different from ours.

The digest-basedcaching algorithm proposed in this paper is motivated by the fact that there exist
a large amount of content repeatness in Web traffic, i.e., the content of two Web documents are same
even though their URLs are different. This phenomenon was observed in our recent traffic analysis [26]
and [10]. The recent proposed value-based Web caching (VBWC) by Rheaet al. [15] shares the similar
idea as ours, but we come out this idea independently. Moreover, the focus of VBWC is implementation
details (block-level) in the last mile, while our work is examining the potential benefits by using digest as
a general Web caching approach. Their implementation compliments to our effort. The work of Bahnet
al. [2] focuses on reducing the repeatness of web object on disk by using content digest, we are interested
in peer-to-peer sharing of Web content.

Peer lookup algorithm is a very hot research topic in recent years, Chord [21], CAN [13], Pastry [16]
are three representatives. In this paper, the average latency of thehome2protocol is based on Pastry. Due
to the similarity of these protocols (less thanO(log(n)) hops), we argue that our analysis can be easily
extended to other algorithms. The simplegeographic-basedlookup algorithm proposed in this paper pro-
duces a reasonable performance in terms of hit ratio, and reduce the latency significantly. Theoretically, we
believe that our work will definitely benefit from several recent work on geographically-aware clustering
technologies, such as network clustering [11], and landmark based binning algorithm [14], global network
positioning (GNP) service [12]. However, it is still an open problem to understand how much benefits can
be obtained by employing these complicated algorithms. This will be our future work. Recently, Canali
et al. evaluated the performance of two lookup algorithms, hierarchical and flat, in terms of transcoded
version among cooperative caching [4]. Different from their effort, we examine the whole design space of
the peer-to-peer Web caching in the paper.

7 Summary

In this paper, we have systematically examined the design space of peer-to-peer Web caching, in terms of
three design dimensions:the caching algorithm, the lookup algorithm, andthe peer granularity. Our study
shows that thedigest-basedcaching algorithm could greatly improve the Web objects cacheability; peer-
to-peer Web cache at different granularities can share Web documents efficiently, ranging from 22.0% (at
building level) to 34.2% (athost level); the simulated latency could be reduced three to six times compared
with the measured latency; and thegeographic-baseddocument lookup algorithm has comparablehit ratio
and a significantlatency reduction. Based on these observations, we argue that the organization/building
level peer-to-peer Web caching using thehome1algorithm is the most appropriate choice. Our trace is
available for research purpose athttp://mist.cs.wayne.edu .
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