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Abstract

In this paper, we systematically examine the design space
of peer-to-peer Web caching systems in three orthogonal di-
mensions: thecaching algorithm, thedocument lookup algo-
rithm, and thepeer granularity. Based on the observation that
the traditionalURL-basedcaching algorithm suffers consid-
erably from the fact of cacheability decrease caused by the
fast growing of dynamic and personalized Web content, we
propose to use thecontent-basedcaching algorithm. In addi-
tion to compare two existing document lookup algorithms, we
propose a simple and effectivegeographic-baseddocument
lookup algorithm. Four different peer granularities, i.e.,host
level, organization level, building level, andcentralized, are
studied and evaluated using a seven-day Web trace collected
at a medium-size education institution. Using a trace-driven
simulation, we compared and evaluated all design choices in
terms of two performance metrics:hit ratio and latency re-
duction. Finally, several implications derived from the anal-
ysis are also discussed.

1. Introduction

Peer-to-peer networking has become a hot research topic
recently [12, 18]. Peer-to-peer Web caching is thought as
one of the potential applications that could be benefited from
these underlying peer-to-peer substrates, and has been ex-
ploited by several projects [6, 17]. In [17], Xiaoet al. pro-
posed a browser-aware proxy server model and evaluated us-
ing BU-95 trace [3] collected from Boston University (1995)
and NLANR-uc trace [5] (2000). In Squirrel [6], Iyeret al.
presented a peer-to-peer Web caching system built on top of
the Pastry [12], and evaluated using the traces of Microsoft
Research Redmond campus [16] (1999) and Cambridge cam-
pus (2001) respectively. Although these two studies showed
optimistic results for peer-to-peer Web caching, the study of
Wolmanet al. [16] indicated a relative pessimistic results us-
ing the traces from Microsoft Corporation (1999) and Uni-
versity of Washington’s (1999).

The possible reasons for the controversial observation of
above studies are: (1) those studies worked with different

traces; (2) the peer granularity of these studies was differ-
ent. Squirrel and Xiaoet al.’s studies were at thehost level,
while Wolmanet al.’s study was at theorganization level.
Furthermore, from the perspective of users, thelatency re-
ductionresulted from cooperative caching is more important
thanhit ratio, those previous efforts, however, did not quan-
titatively evaluate the latency improvement.

On the other hand, recent study [13] shows the fast grow-
ing of the dynamic and personalized Web content. This trend
will reduce the cacheability of cooperative Web caching sig-
nificantly under the conventionalURL-basedcaching algo-
rithm. Fortunately, recent study [7, 19] shows that dynamic
objects have a large portion of repeatness based on their con-
tent digests. This repeatness provides an opportunity to im-
prove the cacheability, and motivates us to propose acontent-
basedcaching algorithm for peer-to-peer Web caching.

In this paper, we intend to answer the following ques-
tion: Is peer-to-peer Web caching a hype or a reality?We
first systematically examine the design space of a peer-to-
peer Web caching system in three orthogonal dimensions:
thecaching algorithm, thedocument lookup algorithm, and
the peer granularity. Based on the observation that the tra-
ditional URL-basedcaching algorithm suffers considerably
from the fact of cacheability decrease caused by the fast
growing of dynamic and personalized Web content, we pro-
pose to use thecontent-basedcaching algorithm which ex-
ploits the fact of the large repeatness of Web objects even
though their URLs are different. In addition to compare two
existing document lookup algorithms, we propose a sim-
ple and effectivegeographic-baseddocument lookup algo-
rithm. Four different peer granularities, i.e.,host level, or-
ganization level, building level, andcentralized, are studied
and evaluated using a seven-day Web trace collected from
a medium-size university. Using a trace-driven simulation,
we compared and evaluated all the design choices in terms
of two performance metrics:hit ratio andlatency reduction.
The reasons that we collected the trace by ourselves instead
of using existing public traces are: (1) most available traces
are lack of the latency information which is one of perfor-
mance metrics in our study; (2) the entire Web object is re-
quired to calculate the content digest, which is not available



in any present trace.
The experimental results suggest that: (1) ideally,

the content-basedcaching algorithm could improve the
cacheability of Web objects substantially, increasing from
6.9% (URL-based) to 62.0% (content-based); (2) the doc-
ument sharing among peers is very effective, ranging from
22.0% (building level) to 34.2% (host level); (3) the av-
erage user-perceived latency is reduced three to six times
compared with the measured latency at all peer granular-
ities using the hierarchical index-server algorithm [17];
(4) the proposedgeographic-baseddocument lookup al-
gorithm has a comparablehit ratio and significantlatency
reduction.

Based on these observations, we derive several implica-
tions for peer-to-peer Web caching: (1) there is a need to de-
ploy thecontent-basedWeb caching mechanism; (2) theor-
ganizationor building level peer-to-peer Web caching using
the hierarchical index-server is the most appropriate choice;
(3) the geographic-basedlookup algorithm should be ex-
ploited further to benefit from its superiorlatency reduction
and easy implementation.

Our contributions of this study include: (1) systematically
examining the design space of peer-to-peer Web caching; (2)
validating the great potential of thecontent-basedcaching
algorithm. To our knowledge, this work is the first per-
formance evaluation using real Web trace with content di-
gests; (3) comprehensive evaluating the performance of Web
caching in terms of two performance metrics; (4) proposing
ageographic-baseddocument lookup algorithm.

The rest of the paper is organized as follows. Section 2
examines the design space of peer-to-peer Web caching sys-
tems. A comprehensive comparison of different algorithms
in terms of two performance metrics is reported in Section 3.
Several implications derived from the analysis are listed in
Section 4. Related work and concluding remarks are listed in
Section 5 and Section 6 respectively.

2. Design Space of Peer-to-Peer Web Caching

As illustrated in Figure 1, there are three orthogonal di-
mensions in designing a peer-to-peer Web caching system:
the caching algorithm, the lookup algorithm, and thepeer
granularity. Note that, the notion of peer, or peer cache,
in this paper is quite flexible. Unlike traditional P2P net-
work [12, 15] where the notion of peer refers to a physical
end host, each peer cache is defined as the one which per-
forms the caching function on behalf of host(s) inside its
scope and cooperates with other counterparts at the same
level. For example, an end host itself is ahost levelpeer
cache. It performs the caching function for itself and cooper-
ates with otherhost levelpeer caches. Napster, Gnutella, and
KaZaA follow this concept.Organization/building levelpeer
caches perform the caching function for hosts inside their
scope and cooperate with otherorganization/building level
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Figure 1. A three dimension design space of
peer-to-peer Web caching.

peer caches. Centralized cache performs the caching func-
tion for all hosts behind it and does not have any same level
peer cache to cooperate with.

2.1. Caching Algorithm

Two caching algorithms, theURL-basedand thecontent-
based, are evaluated in this paper. TheURL-basedcaching
algorithm is based on the URL of static Web object and its
related freshness time, and has been widely used in Web
caching. Thecontent-basedcaching algorithm is inspired by
our recent study [19], where we found that the static Web
content only occupied 10.2% of total Web requests, and there
were 59.1 % Web requests, which are repeated based on their
hash-based digests, are traditionally perceived uncacheable.
This implies that these uncacheable Web content could be
cached if certain protocol could be designed based on the di-
gest value. The basic idea of thecontent-basedcaching al-
gorithm is the content digest is exchanged apriori to decide
whether or not the requested object should be fetched.

2.2. Document Lookup Algorithm

As in any P2P networking system, the document lookup
algorithm is the core of the whole design. Three lookup al-
gorithms are evaluated in this paper, namelyhome1, home2
andgeographic-based(Geo in short). The basic idea of the
home1algorithm is that a high level index server maintains
an index file of all Web objects stored in hosts within its
peer scope. This protocol is used in Xiaoet al.’s work [17].
When a host requests a Web document, it first checks its lo-
cal cache. If the request misses, the host will send the request
to the index server to search the index file. If the request hits
at the hosti, the index server will inform the hosti to send the
Web object to the request host. If the request misses, the re-
quest host will go to the original server directly.

In the home2algorithm, each requested document is as-
sociated with a certain host as its logical home (based on its
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Figure 2. Peer granularity and the simple latency estimation model.

hash value of URL or digest). When a host requests a docu-
ment, it will check its local cache first. If missing happens, it
will use P2P routing algorithm to forward the request to the
corresponding home. The home will send the requested doc-
ument back to the client if the request is hit. If missing hap-
pens again, the home will send the request to the original
server and forward the Web object to the request host.

TheGeoalgorithm comes from our intuition, that people
will have similar Web-browsing interests at same geographic
location. Currently, only hosts located in the same subnet are
considered geographically closed and contacted to query for
the missing document. It can be easily implemented using
IP level multicast (if available). Otherwise, application-level
multicast can be used here too [2]. When a local cache miss-
ing happens, the client first multicast its request within the
subnet. If the request hits at a host’s local cache, that host
will send the Web object back. If there is no reply, the re-
quest host will send the request to the original server.

2.3. Peer Granularity

Figure 2 shows four possible peer granularities for a
medium-size institution, which has tens of building, multi-
ple logical organizations, and thousands of computers. Each
building could have more than one organization. In each or-
ganization, there also possibly exist multiple subnets. The
P2P model could be applied at any of those levels. In our
simulation, we implementhost, organization, building level
peer-to-peer Web caching, and acentralizedWeb caching.

2.4. A Simple Latency Estimation Model

To estimate the possiblelatency reductionof different de-
sign options, we use a simple latency model to compute the
latency between any two hosts. According to Figure 2 (a),
there are four possible host-to-host latency models: hosts
within the same LAN (in the reach of the same switch); hosts
not in the same LAN but within the same subnet; hosts be-
tween different organizations but within the same building

and hosts between different buildings. To measure these la-
tencies, we ran a client program to fetch different Web ob-
jects, with size ranging from 1KB to 256KB, against an
Apache Web server inside campus. We calculated the latency
between the request and the last-byte of response as in Fig-
ure 2(b). Since these latency values include not only the delay
of network, but also the overhead of the application, we call
thisapplication level latency. Using the minimum square lin-
ear programming approach, we found all latencies follow a
linear model, i.e.,f(x) = ax+b, wherex is a variable of the
file size in KByte,f(x) represents the latency in second, de-
tails of the parametera andb are available in the technical
report version [8].

3. Analysis Results

We adopt the trace-driven approach to examine the dif-
ferent design choices of peer-to-peer Web caching, imple-
menting two caching algorithms, and three document lookup
methods at four peer granularities. We collected seven-day
period (Aug 25, 2003 — Aug 31, 2003) Web traffic from a
middle-size education institution via the WebTACT tool de-
veloped at Wayne State University [19].

Totally, there are 8,889 unique hosts observed from the
trace based on their IP addresses. These hosts belong to 110
subnets, disperse in 77 organizations that are located in 60
buildings. In order to emulate the behavior of real deployed
Web caches, we set the size limit for the caches at central-
ized, building, organization and host levels to 1GB, 300MB,
100MB and 10MB, respectively. We also limit the maximum
size of cacheable objects to 20% of the corresponding cache
capacity. Although in the real life the cache size could be
set much bigger, we are interested in the relative relation-
ship (relative size ratio) among caches at different levels. A
least-recent used (LRU) replacement algorithm is used in our
simulation. We also exploit the cacheability of seven differ-
ent dynamic content types in the technical report version of
this paper [8].



3.1. Performance Metrics

Although most previous studies chose performance met-
rics like thehit ratio and thebyte hit ratio to evaluate Web
caching, from the perspective of clients, the user-perceived
latency is also crucial. In this study, we focus not only on
thehit ratio and thebyte hit ratio, but also on thelatency re-
duction, which is the improvement of the estimated latency
compared with the measured latency. In addition, we also
introduce a notion ofpeer sharing gainto indicate the re-
source share degree between those peers. Thepeer sharing
gain is defined as the ratio of the number of remote hits and
the number of total hits. Regarding to thelatency reduction,
it could be improved (positive) or deteriorated (negative). We
useLimprove andLdeteriorate to depict these two cases re-
spectively.

3.2. Hit Ratio

In terms of thehit ratio, including both requesthit ratio
andbyte hit ratio, we examine the different design choices.
Figure 3 shows that thehit ratio andbyte hit ratioof theURL-
basedand thecontent-basedcaching algorithms at four peer
granularities respectively. Each item in theX axis represents
a combination of peer granularity and document lookup al-
gorithm. For example, host-geo means thegeographic-based
document lookup algorithm is applied athost level. The Y
axis of Figure 3 (a) and (c) indicates thehit ratio in percent-
age. TheY axis of Figure 3 (b) and (d) shows thebyte hit ra-
tio in percentage. In Figure 3, each bar consists of two parts,
the local hit (lower part) andremote hit(upper part). Thelo-
cal hit refers to the hit happened at the default cache (for ex-
ample, athost levelthe default cache is the local cache of
host itself), and theremote hitrefers to the hit happened at
the requested document’s home cache (home1andhome2),
or neighbor with in the same subnet (Geo). For the central-
ized cache, the remote hit is zero.

Note that, for thecontent-basedcaching algorithm, we
only simulate the uncacheable (dynamic) Web content, while
this algorithm works for the static Web content as well.
Thus, the totalhit ratio or byte hit ratioof thecontent-based
caching algorithm is the sum of that fromcontent-based
and that fromURL-basedcorrespondingly. TheURL-based
caching algorithm, as illustrated in Figure 3 (a) and (b) has
the lower cache hits in terms of thehit ratio andbyte hit ra-
tio compared with thecontent-basedcaching algorithm as
showed in Figure 3 (c) and (d). From those figures, we ob-
serve that the local hit ratio decreases fromcentralized level
to host levelcaused by the total cache size decreasing at each
level; and the remote hit ratio increases respectively for both
URL-basedandcontent-basedcaching algorithms due to the
sum of peers cache size increasing. In general,home1has a
higher hit ratio thanhome2. The reason is thehome2algo-
rithm will store the requested web object at both the request-
ing host and the home of the requested object, which causes

the disk space redundancy to decrease the hit ratio. We will
discuss thehit ratio and thebyte hit ratiobased on caching
algorithms, document lookup algorithms and peer granulari-
ties separately.

3.2.1. Caching Algorithm In our study, we are interested
in which caching algorithm could achieve higherhit ratio and
byte hit ratio. From Figure 3(a) and (c), we find that thehit
ratio of theURL-basedalgorithm has the value from 5.04%
to 6.94%, while thecontent-basedalgorithm gains an order
of magnitude additionalhit ratio, ranging from 47.44% to
59.08%, depending on different P2P granularities. The rea-
son for the lower hit ratio of theURL-basedcaching algo-
rithm is that there are 49.6% requests whose TTL’s values are
zero, probably caused by the cache busting technique [7], and
therefore those requests are uncacheable for the traditional
caching algorithm. These results indicate that thecontent-
basedalgorithm has the great potential to increase thehit ra-
tio. Figure 3(b) and (d) report that thebyte hit ratioof the
URL-basedcaching algorithm is from 3.11% to 6.84%, while
the content-basedalgorithm gains additionalbyte hit ratio
from 23.55% to 30.22%, depending on different peer granu-
larities. Surprisingly, it can be seen from the figure that the
byte hit ratio does not gain as much as thehit ratio using
the content-basedcaching algorithm. The possible reasons
are: (1) the cache busting technique tends to apply on small
object, like advertisedgif or jpeg images; (2) some very
small HTTP response heads (for example,404 for “docu-
ment not found” in HTTP protocol) happen a lot of times,
and they have the same digest.

3.2.2. Document Lookup Algorithm Logically, thehit ra-
tio resulting from a document lookup algorithm is deter-
mined by the scope of lookup, independent of the specific
document lookup algorithms. Thehit ratio difference be-
tweenhome1andhome2, as shown in Figure 3, is caused by
two possible reasons: (1) the space limitation of cache size;
(2) the disk redundancy of thehome2algorithm. Compare
with home1, home2stores each requested web object at two
locations, one is at the requesting host, and the other is at the
logic home of the requested object. This will cause some disk
space redundancy to decrease the hit ratio. However, it can be
seen from the Figure that thehit ratio of geographic-based
algorithm is lower than that of two other algorithms. This is
caused by the limited host number in each subnet searched
by theGeoalgorithm. Although theGeoalgorithm only has
two third of thehit ratio compared withhome1andhome2,
we still think it as a very promising document lookup algo-
rithm because it uses only one percent of host population on
average compared to thehome1and thehome2algorithms.
As such, theGeoalgorithm can scale very well.

3.2.3. Peer Granularity In this paper, we are interested in
which peer granularity level the peer-to-peer Web caching
should be deployed. An analytic result indicates that thehit
ratio should increase with the peer granularity changing from
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Figure 3. The hit ratio and byte hit ratio of different algorithms.

URL-based Content-based
Granularity Peer share gain Peer share gain (byte hit) Peer share gain Peer share gain (byte hit)
Building-home1 25.2% 33.9% 19.1% 20.1%
Building-home2 24.9% 33.4% 22.0% 22.0%
Org-home1 31.2% 42.5% 21.5% 21.4%
Org-home2 32.1% 42.4% 24.1% 23.9%
Host-home1 57.0% 55.1% 32.4% 34.4%
Host-home2 55.2% 57.1% 34.2% 36.5%
Host-Geo 38.6% 37.2% 17.4% 17.6%

Table 1. The peer share gain of two caching algorithms at three peer granularities.

the centralized levelto thehost level. The increment of the
hit ratio is caused by the cache capacity increasing with the
changing of peer granularity. Figure 3 shows that thehit ra-
tio and thebyte hit ratioincrease with peer granularity chang-
ing from thecentralized levelto thehost level, but there are
some exceptions for theURL-basedalgorithm at theorgani-
zation levelP2P caching. The possible culprits are: (1) the
total cacheable Web objects number is small, and their to-
tal bytes are less than the sum of cooperative cache capac-
ity; (2) the object size limitation at theorganization leveland
thehost levelis 20MB and 2MB respectively, and there exist
some files that are too large to be cached. For the exception of
thecontent-basedlookup algorithm at theorganization level
whosehit ratio andbyte hit ratioare less than those ofbuild-
ing levelcache, the possible reason is that the capacity sum of

theorganization levelcache is 7,700MB, which is less than
the capacity sum of thebuilding levelcache, 18,000MB. An-
other exception is the relative low remote hit ratio in host-
Geo scenario, which is caused by the limitation of its neigh-
bor population (limited by the size of subnet). Despite this, it
still achieves a very impressivehit ratio.

3.2.4. Peer Share GainThe motivation of peer-to-peer
Web caching is to share Web objects among a group of
clients. We define a notion ofpeer sharing gainto indi-
cate the resource share degree between those peers. The
peer sharing gainis defined as the ratio of the number of re-
mote hits and the number of total hits. Table 1 shows the
peer share gainin terms of both request hit and byte hit
based on different peer granularities and two caching algo-
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Figure 4. The average latency of simulation and measurement.

rithms. From Table 1, we can see thathost levelcaching has
the highestpeer share gainin terms of bothhit ratio and
byte hit ratio, for two caching algorithms,URL-basedand
content-based. Table 1 also shows thatbuilding andorgani-
zation levels have around 20% sharing gain for thehit ra-
tio, and 20% for thebyte hit ratio when applying the
content-basedcaching algorithm. This observation implies
that peer-to-peer Web caching can efficiently share Web ob-
jects in terms of bothhit ratio andbyte hit ratioat different
peer granularities. Note that, thecontent-basedcaching al-
gorithm actually reduces the peer share gain in terms of both
the number of requests and the number of bytes. The rea-
son is thecontent-basedcaching algorithm will cause more
cache replacement due to the cache size limit in our simula-
tion.

3.3. Latency Reduction

Now we are in the position to examine the corresponding
latency reductionresulting from peer-to-peer Web caching.
We use the user-perceived last-byte latency as a performance
metric to examine all possible caching design space. Fig-
ure 4 illustrates the average latency obtained from simula-
tion and measurement for different caching algorithms at all
possible peer granularities. In the Figure, the average simu-
lation latency is the average of all simulated latencies (cal-
culated from the simple latency model) resulted from hit re-
quests during the simulation. On the other hand, the average
measurement latency is the average of all measured laten-
cies (calculated from the trace data) corresponding tothese
hit requests. The average simulation latency reduces from
three to four times for theURL-basedcaching algorithm and
from four to eight times for thecontent-basedcaching al-
gorithm compared to the average measurement latency. The
host-home1 scenario has the bestlatency reductionexcept
for Geowhich has a lesshit ratio, but host-home1 is diffi-
cult to implement in the real situation due to the concern of
scalability.

Table 2 shows the percentage of latency improvement rep-

resented byLimprove and the latency deterioration repre-
sented byLdeteriorate for all hit requests in different peer-
to-peer Web caching design options.Limprove represents
the number of hit requests where the simulation latency is
less than the measurement latency.Ldeteriorate represents
the difference between total number of hits andLimprove.
From the Table, we observe that although the average sim-
ulation latency is reduced greatly compared to the average
measurement latency, theLimprove is almost equal to or
less thanLdeteriorate except for the host-Geo scenario. This
abnormality indicates that we need examineLimprove and
Ldeteriorate in more detail. The cumulative distribution func-
tions (CDFs) ofLimprove and Ldeteriorate show that the
Limprove is uniformly distributed, while in theLdeteriorate

is likely exponentially distributed, which explain the signifi-
cant improvement shown in Figure 4.1 Furthermore, the CDF
figures also show that in thebuilding levelapplying theURL-
basedcaching algorithm using thehome1lookup algorithm,
the average improved time ofLimprove is 1.412 seconds
while the average deteriorated time ofLdeteriorate is 0.058
second. This indicates a fact that if a hit request latency is im-
proved, it will improve greatly. On the other hand, if a hit re-
quest latency is deteriorated, it will deteriorate very limited.
Next, we will discuss thelatency reductionin terms of docu-
ment lookup algorithms, P2P granularities and caching algo-
rithms.

3.3.1. Documents Lookup Algorithm The Geo has the
most significantlatency reductionin both average simulation
latency andLimprove (98.7%). The reasons are: (1) it does
not need routing to locate the Web document; (2) the latency
within a LAN or subnet is minimal. From Figure 4,home1
is observed to be superior tohome2in terms of both average
simulation latency andLimprove. This can be explained log-
ically ashome2needs more routing steps to locate Web ob-
jects’ home as compared tohome1.

1 Due to space limit, we did not show the figures here, but they are avail-
able in technical report version [8].



Caching algorithm URL-based Content-based
Granularity Limprove Ldeteriorate Limprove Ldeteriorate

Centralized 373,754 (57.5%) 276,463 (42.5%) 2,972,846 (56.3%) 2,311,386 (43.7%)
Building-home1 626,884 (84.0%) 119,081 (16.0%) 5,102,580 (83.9%) 976,728 (16.1%)
Building-home2 250,873 (33.6%) 496,014 (66.4%) 3,084,401 (50.7%) 3,000,871 (49.3%)
Org-home1 622,764 (84.8%) 111,570 (15.2%) 5,176,172 (88.6%) 667,359 (11.4%)
Org-home2 251,161 (34.1%) 485,337 (65.9%) 2,993,966 (51.5%) 2,817,516 (48.5%)
Host-home1 577,786 (77.6%) 167,176 (22.4%) 5,278,443 (84.5%) 967,573 (15.5%)
Host-home2 434,263 (58.4%) 309,775 (41.6%) 3,195,313 (50.4%) 3,150,430 (49.6%)
Host-Geo 533,895 (98.7%) 7,065 (1.3%) 5,034,302(98.8%) 62,223 (1.2%)

Table 2. The latency improvement and deterioration of two caching algorithms at four peer granulari-
ties.

3.3.2. Peer Granularity Thecentralized levelcaching has
a comparablelatency reductioncompared withbuilding
level, organization levelandhost level. But it will suffer scal-
ing problem in a real implementation with a large client pop-
ulation. Thebuilding levelhas very similar results in terms
of average latency andLimprove compared withorganiza-
tion level cache. Althoughhost levelcaches have similar
latency reductioncompared withbuilding level and orga-
nization level respectively, they have a betterLimprove(
e.g., 84.5% forhome1and 50.4% forhome2) than build-
ing level(e.g., 83.9% forhome1and 50.7% forhome2) using
thecontent-basedcaching algorithm.

3.3.3. Caching Algorithm Figure 4(a) and (b) also show
that thecontent-basedcaching algorithm has a betterlatency
reductionthan that of theURL-basedcaching algorithm. The
possible reasons are: (1) in our simulation, we assume that a
client, which sends a request, knows the digest of the request
Web content in prior. This is impractical in the real imple-
mentation. Thus, a possible latency overhead for thecontent-
basedcaching algorithm is expected in a real deployment;
(2) dynamic Web objects usually tend to have longer mea-
sured latencies caused by dynamic generation [19]. When
these objects are cached and hit, these dynamic generating
latency will be reduced.

4. Implications

Based on the analysis results in the last section, several
implications could be derived as follows:

• Need protocol support for deploying the content-
basedWeb caching mechanism: The results of the ex-
periment show that thecontent-basedcaching algorithm
improves thehit ratio and latency tremendously.

• Tradeoff between latency reductionand scalability:
The results show that thehome1document lookup al-
gorithm has a goodlatency reduction, but it has a scal-
ability problem. Although thehome2algorithm is ex-
empted from the scalability problem, it has a lessla-

tency reductionthan thehome1counterpart. Therefore,
we argue that peer-to-peer Web caching atorganization
levelorbuilding levelusing thehome1lookup algorithm
is a good choice. Our recent work on Tuxedo is an alter-
native to solve this problem [14].

• Exploiting the geographic-basedlookup algorithm :
The results show that thegeographic-basedlookup al-
gorithm has an acceptablehit ratio and a significantla-
tency reduction.

5. Related Work and Discussions

Peer-to-peer Web caching (also known as cooperative
Web caching) has been extensively studied in recent years [6,
17, 16, 14, 1]. To the best of our knowledge, our effort is the
first try to systematically examine the design space of peer-
to-peer Web caching in three dimensions, and quantitatively
evaluate their performance in terms of two performance met-
rics:hit ratio andlatency reduction.

Cooperative caching was first proposed by Dahlinet
al. [4] in the context of memory caching sharing in file sys-
tem. However, we focus on Web content sharing, and eval-
uate different peer granularities, caching algorithms, and
document lookup algorithms in this paper.

The pioneer work in cooperative caching was conducted
by Wolmanet al. in 1999 [16]. This is the closest work to
our analysis. There are three differences exist. First, the peer
grains examined in our paper is wider than their work. Sec-
ond, the qualitative latency improvement analysis in [16] was
done by an analytical model, while we perform a quantita-
tively study. Finally, a newcontent-basedcaching algorithm
is proposed in this paper.

Recently, Iyeret al. proposed Squirrel [6], a peer-to-peer
Web caching system built on the Pastry [12]. Xiaoet al.stud-
ied the reliability and scalability of a browser-aware proxy
server. We implemented both of their algorithms in this pa-
per for comparison purposes. In addition to hit ratio and co-
operative hit ratio, this paper compares the likelylatency re-



ductionas well. Furthermore, the traces used in our analysis
is more up-to-date than the traces used in [6, 17].

Thecontent-basedcaching algorithm proposed in this pa-
per is motivated by the fact that there exist a large amount
of content repeatness in Web traffic. This phenomenon was
observed in our recent traffic analysis [19] and [7]. The re-
cent proposed value-based Web caching (VBWC) by Rheaet
al. [11] shares the similar idea as ours, but we come out this
idea independently.

Peer lookup algorithms are a very hot research topic in
recent years,i.e., Pastry [12]. In this paper, the average la-
tency of thehome2protocol is based on Pastry. Due to the
similarity of these protocols (less thanO(log(n)) hops), we
argue that our analysis can be easily extended to other al-
gorithms. The simplegeographic-basedlookup algorithm
proposed in this paper produces a reasonable performance.
Theoretically, we believe that our work will definitely ben-
efit from several recent work on geographically-aware clus-
tering technologies, such as landmark based binning algo-
rithm [10], global network positioning (GNP) service [9].

6. Summary

In this paper, we have systematically examined the de-
sign space of peer-to-peer Web caching, in terms of three
design dimensions:the caching algorithm, the lookup algo-
rithm, and the peer granularity. Our study shows that the
content-basedcaching algorithm could greatly improve the
Web objects cacheability; peer-to-peer Web cache at differ-
ent granularities can share Web documents efficiently, rang-
ing from 22.0% (atbuilding level) to 34.2% (athost level);
the simulated latency could be reduced three to six times
compared with the measured latency; and thegeographic-
baseddocument lookup algorithm has comparablehit ratio
and a significantlatency reduction. Based on these observa-
tions, we argue that the organization/building level peer-to-
peer Web caching using a hierarchical index-server (home1)
is the most appropriate choice. Our trace is available for re-
search purpose athttp://mist.cs.wayne.edu .
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