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Abstract traces; (2) the peer granularity of these studies was differ-
ent. Squirrel and Xiaet al’s studies were at thikost level
In this paper, we systematically examine the design spacewhile Wolmanet al’s study was at the@rganization level
of peer-to-peer Web caching systems in three orthogonal di-Furthermore, from the perspective of users, lttency re-
mensions: theaching algorithmthedocument lookup algo-  ductionresulted from cooperative caching is more important
rithm, and thepeer granularityBased on the observationthat  thanhit ratio, those previous efforts, however, did not quan-
the traditionalURL-basectaching algorithm suffers consid- titatively evaluate the latency improvement.
erably from the fact of cacheability decrease caused by the
fast gyrowing of dynamic and pers)(/)nalized Web conten)t/, we, On the other hand, recent stu_dy [13] shows the fas_t grow-
propose to use theontent-basedaching algorithm. In addi- Ing of the dynamic and p(_ersonallzed W(_ab content. Th|s trgnd
tion to compare two existing document lookup algorithms, we will reduce the cacheability of cooperative Web caching sig-

propose a simple and effectigeographic-basedocument qificantly under the convention&lRL-basedcaching algo- .
lookup algorithm. Four different peer granularities, i.agst rithm. Fortunately, recent study [7, 19] shows that dynamic

level, organization levelbuilding leve| andcentralized are objects have a large portion of repeatness based on their con-

studied and evaluated using a seven-day Web trace collectede d'%eStS‘ Emsbr_le_peatr:jess prowdes an opportunity to im-
at a medium-size education institution. Using a trace-driven prove the cacheability, and motivates us to prop nt-

simulation, we compared and evaluated all design choices inbasedcachmg algorithm for peer-to-peer Web caching.

terms of two performance metrickit ratio and latency re- In this paper, we intend to answer the following ques-
duction Finally, several implications derived from the anal- tion: Is peer-to-peer Web caching a hype or a realitje
ysis are also discussed. first systematically examine the design space of a peer-to-

peer Web caching system in three orthogonal dimensions:

the caching algorithm the document lookup algorithyrand
1. Introduction the peer granularity Based on the observation that the tra-

ditional URL-basedcaching algorithm suffers considerably

Peer-to-peer networking has become a hot research topiérom the fact of cacheability decrease caused by the fast
recently [12, 18]. Peer-to-peer Web caching is thought asgrowing of dynamic and personalized Web content, we pro-
one of the potential applications that could be benefited from pose to use theontent-basedaching algorithm which ex-
these underlying peer-to-peer substrates, and has been exloits the fact of the large repeatness of Web objects even
ploited by several projects [6, 17]. In [17], Xiaat al. pro- though their URLs are different. In addition to compare two
posed a browser-aware proxy server model and evaluated usexisting document lookup algorithms, we propose a sim-
ing BU-95 trace [3] collected from Boston University (1995) ple and effectivegeographic-basedocument lookup algo-
and NLANR-uc trace [5] (2000). In Squirrel [6], lyet al. rithm. Four different peer granularities, i.dost level or-
presented a peer-to-peer Web caching system built on top ofyanization levelbuilding leve] andcentralized, are studied
the Pastry [12], and evaluated using the traces of Microsoftand evaluated using a seven-day Web trace collected from
Research Redmond campus [16] (1999) and Cambridge cama medium-size university. Using a trace-driven simulation,
pus (2001) respectively. Although these two studies showedwe compared and evaluated all the design choices in terms
optimistic results for peer-to-peer Web caching, the study of of two performance metricsiit ratio andlatency reduction
Wolmanet al.[16] indicated a relative pessimistic results us- The reasons that we collected the trace by ourselves instead
ing the traces from Microsoft Corporation (1999) and Uni- of using existing public traces are: (1) most available traces
versity of Washington’s (1999). are lack of the latency information which is one of perfor-
The possible reasons for the controversial observation ofmance metrics in our study; (2) the entire Web object is re-

above studies are: (1) those studies worked with differentquired to calculate the content digest, which is not available



in any present trace.

The experimental results suggest that: (1) ideally,
the content-basedcaching algorithm could improve the
cacheability of Web objects substantially, increasing from
6.9% (URL-basellto 62.0% tontent-basex! (2) the doc-
ument sharing among peers is very effective, ranging from
22.0% puilding leve) to 34.2% host leve); (3) the av-
erage user-perceived latency is reduced three to six times
compared with the measured latency at all peer granular-
ities using the hierarchical index-server algorithm [17];

P2P granularity

Centralized-level
Building-level

Organization-level

Host-level

URL-  Content-

Home1 based based Caching algorithm

Home2

Geographic-based

(4) the proposedyeographic-basedlocument lookup al- Lookup algorithm
gorithm has a comparabldt ratio and significantatency
reduction Figure 1. A three dimension design space of

Based on these observations, we derive several implica- peer-to-peer Web caching.
tions for peer-to-peer Web caching: (1) there is a need to de-
ploy thecontent-basediVeb caching mechanism; (2) tioe-
ganizationor building level peer-to-peer Web caching using peer caches. Centralized cache performs the caching func-
the hierarchical index-server is the most appropriate choice;,. ' S

. : tion for all hosts behind it and does not have any same level
(3) the geographic-basedookup algorithm should be ex- cer cache to cooperate with
ploited further to benefit from its superitatency reduction P P '
and easy implementation.

Our contributions of this study include: (1) systematically
examining the design space of peer-to-peer Web caching; (2)  1yyq caching algorithms, theRL-basedand thecontent-
validating the great potential of theontent-basedaching  paseq are evaluated in this paper. ThERL-basedcaching
algorithm. To our knowledge, this work is the first per- 4 orithm is based on the URL of static Web object and its
formance evaluation using real Web trace with content di- o5ted freshness time. and has been widely used in Web
gests; (3) comprehensive evaluating the performance of Wel4ching. Thecontent-basedaching algorithm is inspired by
caching in terms of two performance metrics; (4) pProposing oy recent study [19], where we found that the static Web
ageographic-basedocument lookup algorithm. _ content only occupied 10.2% of total Web requests, and there

The rest of the paper is organized as follows. Section 2 ere 59.1 % Web requests, which are repeated based on their
examines the design space of peer-to-peer Web caching Sysjash-based digests, are traditionally perceived uncacheable.
tems. A comprehensive comparison of different algorithms Thjs implies that these uncacheable Web content could be
in terms of two performance metrics is reported in Section 3. cached if certain protocol could be designed based on the di-
Several implications derived from the analysis are listed in gest value. The basic idea of thentent-basedaching al-
Section 5 and Section 6 respectively. whether or not the requested object should be fetched.

2.1. Caching Algorithm

2. Design Space of Peer-to-Peer Web Caching 2.2. Document Lookup Algorithm

As illustrated in Figure 1, there are three orthogonal di-  As in any P2P networking system, the document lookup
mensions in designing a peer-to-peer Web caching systemalgorithm is the core of the whole design. Three lookup al-
the caching algorithm the lookup algorithm and thepeer gorithms are evaluated in this paper, nanteynel home?2
granularity. Note that, the notion of peer, or peer cache, andgeographic-base§Geoin short). The basic idea of the
in this paper is quite flexible. Unlike traditional P2P net- homelalgorithm is that a high level index server maintains
work [12, 15] where the notion of peer refers to a physical an index file of all Web objects stored in hosts within its
end host, each peer cache is defined as the one which peipeer scope. This protocol is used in Xiabal's work [17].
forms the caching function on behalf of host(s) inside its When a host requests a Web document, it first checks its lo-
scope and cooperates with other counterparts at the sameal cache. If the request misses, the host will send the request
level. For example, an end host itself ishast levelpeer  to the index server to search the index file. If the request hits
cache. It performs the caching function for itself and cooper- at the host, the index server will inform the hosto send the
ates with othehost levepeer caches. Napster, Gnutella, and Web object to the request host. If the request misses, the re-
KazaA follow this conceptOrganizatioribuilding levelpeer quest host will go to the original server directly.
caches perform the caching function for hosts inside their In the homeZ2algorithm, each requested document is as-
scope and cooperate with otherganizatiorbuilding level sociated with a certain host as its logical home (based on its
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Figure 2. Peer granularity and the simple latency estimation model.

hash value of URL or digest). When a host requests a docu-and hosts between different buildings. To measure these la-
ment, it will check its local cache first. If missing happens, it tencies, we ran a client program to fetch different Web ob-
will use P2P routing algorithm to forward the request to the jects, with size ranging from 1KB to 256KB, against an
corresponding home. The home will send the requested docApache Web server inside campus. We calculated the latency
ument back to the client if the request is hit. If missing hap- between the request and the last-byte of response as in Fig-
pens again, the home will send the request to the originalure 2(b). Since these latency values include not only the delay
server and forward the Web object to the request host. of network, but also the overhead of the application, we call
The Geoalgorithm comes from our intuition, that people thisapplication level latencyUsing the minimum square lin-
will have similar Web-browsing interests at same geographic ear programming approach, we found all latencies follow a
location. Currently, only hosts located in the same subnet ardinear model, i.e.f(xz) = ax +b, wherex is a variable of the
considered geographically closed and contacted to query foffile size in KByte, f(z) represents the latency in second, de-
the missing document. It can be easily implemented usingtails of the parametes andb are available in the technical
IP level multicast (if available). Otherwise, application-level report version [8].
multicast can be used here too [2]. When a local cache miss-
ing happens, the client first multicast its request within the 3
subnet. If the request hits at a host’s local cache, that host
will send the Web object back. If there is no reply, the re-
guest host will send the request to the original server.

. Analysis Results

We adopt the trace-driven approach to examine the dif-
ferent design choices of peer-to-peer Web caching, imple-
menting two caching algorithms, and three document lookup
methods at four peer granularities. We collected seven-day

Figure 2 shows four possible peer granularities for a pgriod (Aug 25, 2093 '—Aug'31, .2003) Web traffic from a
medium-size institution, which has tens of building, multi- middle-size education institution via the WebTACT tool de-

ple logical organizations, and thousands of computers. EachVGIOped at Wayne State Unive.rsity [19]-
building could have more than one organization. In each or-  10tally, there are 8,889 unique hosts observed from the
ganization, there also possibly exist multiple subnets. Thelrace based on their IP addresses. These hosts belong to 110

P2P model could be applied at any of those levels. In our Subnets, disperse in 77 organizations that are located in 60

2.3. Peer Granularity

simulation, we implemertiost organization building level buildings. In order to emulgte t_he_ behavior of real deployed
peer-to-peer Web caching, andentralizedWeb caching. Web ca_chgs, we set_ thg size limit for the caches at central-
ized, building, organization and host levels to 1GB, 300MB,
2.4. A Simple Latency Estimation Model 100MB and 10MB, respectively. We also limit the maximum
size of cacheable objects to 20% of the corresponding cache
To estimate the possiblatency reductiorof different de- capacity. Although in the real life the cache size could be

sign options, we use a simple latency model to compute theset much bigger, we are interested in the relative relation-
latency between any two hosts. According to Figure 2 (a), ship (relative size ratio) among caches at different levels. A
there are four possible host-to-host latency models: hostdeast-recent used (LRU) replacement algorithm is used in our
within the same LAN (in the reach of the same switch); hosts simulation. We also exploit the cacheability of seven differ-
not in the same LAN but within the same subnet; hosts be-ent dynamic content types in the technical report version of
tween different organizations but within the same building this paper [8].



3.1. Performance Metrics the disk space redundancy to decrease the hit ratio. We will
discuss thdit ratio and thebyte hit ratiobased on caching

~ Although most previous studies chose performance met-gigorithms, document lookup algorithms and peer granulari-
rics like thehit ratio and thebyte hit ratioto evaluate Web  jaog separately.

caching, from the perspective of clients, the user-perceived ) ) )

latency is also crucial. In this study, we focus not only on 3.2.1. Caching Algorithm In our study, we are interested
thehit ratio and thebyte hit ratiq but also on théatency re-  in which caching algorithm could achieve highmtratio and
duction which is the improvement of the estimated latency PYte hit ratia From Figure 3(a) and (c), we find that tha
compared with the measured latency. In addition, we alsoratio of the URL-basedlgorithm has the value from 5.04%
introduce a notion opeer sharing gairto indicate the re- 0 6.94%, while thecontent-basedlgorithm gains an order
source share degree between those peersp@aesharing ~ ©f magnitude ad_dmonalh@ ratio, ranging from 47.44% to
gainis defined as the ratio of the number of remote hits and 99-08%, depending on different P2P granularities. The rea-
the number of total hits. Regarding to tlagency reduction ~ Son for the lower hit ratio of th&JRL-basedcaching algo-

it could be improved (positive) or deteriorated (negative). We rithm is that there are 49.6% requests Whose TTL’§ values are
USe Limprove @Nd Lycieriorate t0 depict these two cases re- Z€r0, probably caused by the cache busting technique [7], and

spectively. therefore those requests are uncacheable for the traditional
caching algorithm. These results indicate that toatent-
3.2. Hit Ratio basedalgorithm has the great potential to increasehiea-

tio. Figure 3(b) and (d) report that thmyte hit ratio of the

In terms of thehit ratio, including both requedhit ratio URL-basecaching algorithm is from 3.11% to 6.84%, while
andbyte hit ratig we examine the different design choices. the content-basedlgorithm gains additionabyte hit ratio
Figure 3 shows that thdt ratio andbyte hit ratioof the URL- from 23.55% to 30.22%, depending on different peer granu-
basedand thecontent-basedaching algorithms at four peer larities. Surprisingly, it can be seen from the figure that the
granularities respectively. Each item in thexis represents  pyte hit ratio does not gain as much as thi ratio using
a combination of peer granularity and document lookup al- the content-baseaaching algorithm. The possible reasons
gorithm. For example, host-geo meansgeegraphic-based  are: (1) the cache busting technique tends to apply on small
document lookup algorithm is applied host level The Y object, like advertisedif or jpeg images; (2) some very
axis of Figure 3 (a) and (c) indicates thi ratio in percent- small HTTP response heads (for example4 for “docu-
age. They axis of Figure 3 (b) and (d) shows thgte hit ra- ment not found” in HTTP protocol) happen a lot of times,
tio in percentage. In Figure 3, each bar consists of two parts,and they have the same digest.
thelocal hit (lower part) andemote hit(upper part). Théo-
cal hitrefers to the hit happened at the default cache (for ex-
ample, athost levelthe default cache is the local cache of
host itself), and theemote hitrefers to the hit happened at
the requested document’'s home cadhentelandhome2,
or neighbor with in the same subn&edg. For the central-
ized cache, the remote hit is zero.

Note that, for thecontent-baseaaching algorithm, we
only simulate the uncacheable (dynamic) Web content, while
this algorithm works for the static Web content as well.
Thus, the totahit ratio or byte hit ratioof the content-based
caching algorithm is the sum of that frooontent-based
and that fromURL-basedcorrespondingly. Th&JRL-based
caching algorithm, as illustrated in Figure 3 (a) and (b) has
the lower cache hits in terms of tiné ratio andbyte hit ra-
tio compared with theontent-baseaaching algorithm as
showed in Figure 3 (c) and (d). From those figures, we ob-
serve that the local hit ratio decreases froemtralized level
to host levecaused by the total cache size decreasing at eac
level; and the remote hit ratio increases respectively for both
URL-basedndcontent-basedaching algorithms due to the
sum of peers cache size increasing. In gend@helhas a 3.2.3. Peer Granularity In this paper, we are interested in
higher hit ratio tharhome2 The reason is theome2algo- which peer granularity level the peer-to-peer Web caching
rithm will store the requested web object at both the request-should be deployed. An analytic result indicates thathite
ing host and the home of the requested object, which causesatio should increase with the peer granularity changing from

3.2.2. Document Lookup Algorithm Logically, thehit ra-

tio resulting from a document lookup algorithm is deter-
mined by the scope of lookup, independent of the specific
document lookup algorithms. Thiit ratio difference be-
tweenhomelandhome2 as shown in Figure 3, is caused by
two possible reasons: (1) the space limitation of cache size;
(2) the disk redundancy of theome2algorithm. Compare
with homel home2stores each requested web object at two
locations, one is at the requesting host, and the other is at the
logic home of the requested object. This will cause some disk
space redundancy to decrease the hit ratio. However, it can be
seen from the Figure that thwt ratio of geographic-based
algorithm is lower than that of two other algorithms. This is
caused by the limited host number in each subnet searched
by the Geoalgorithm. Although the&seoalgorithm only has

two third of thehit ratio compared witthomelandhome2

we still think it as a very promising document lookup algo-
hrithm because it uses only one percent of host population on
average compared to th®meland thehome2algorithms.

As such, theseoalgorithm can scale very well.
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Figure 3. The hit ratio and byte hit ratio of different algorithms.
URL-based Content-based
Granularity Peer share gain Peer share gain (byte hit) Peer share gain Peer share gain (byte hit)
Building-homel 25.2% 33.9% 19.1% 20.1%
Building-home2 24.9% 33.4% 22.0% 22.0%
Org-homel 31.2% 42.5% 21.5% 21.4%
Org-home2 32.1% 42.4% 24.1% 23.9%
Host-homel 57.0% 55.1% 32.4% 34.4%
Host-home2 55.2% 57.1% 34.2% 36.5%
Host-Geo 38.6% 37.2% 17.4% 17.6%

Table 1. The peer share gain of two caching algorithms at three peer granularities.

the centralized leveto thehost level The increment of the  the organization levetache is 7,700MB, which is less than
hit ratio is caused by the cache capacity increasing with the the capacity sum of thieuilding levelcache, 18,000MB. An-
changing of peer granularity. Figure 3 shows thathiltea- other exception is the relative low remote hit ratio in host-
tio and thebyte hit ratioincrease with peer granularity chang- Geo scenario, which is caused by the limitation of its neigh-
ing from thecentralized leveto thehost level but there are  bor population (limited by the size of subnet). Despite this, it
some exceptions for thdRL-basedalgorithm at theorgani- still achieves a very impressivet ratio.

zation levelP2P caching. The possible culprits are: (1) the

total cacheable Web ObjectS number is Sma”, and their t0'324 Peer Share GainThe motivation of peer-to_peer
tal bytes are less than the sum of cooperative cache capaoyeb caching is to share Web objects among a group of
ity; (2) the object size limitation at therganization leveand  clients. We define a notion gfeer sharing gainto indi-
thehost levels 20MB and 2MB respectively, and there exist cate the resource share degree between those peers. The
some files that are too large to be cached. For the exception oheer sharing gairis defined as the ratio of the number of re-
thecontent-basetbokup algorithm at therganization level  mote hits and the number of total hits. Table 1 shows the
whosehit ratio andbyte hit ratioare less than those bt“ld' peer share gain'n terms Of both request h|t and byte h|t
ing levelcache, the possible reason is that the capacity sum ofyased on different peer granularities and two caching algo-
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Figure 4. The average latency of simulation and measurement.

rithms. From Table 1, we can see tiaist levelcaching has  resented byL;,,,rove and the latency deterioration repre-
the highestpeer share gairin terms of bothhit ratio and sented byLgeeriorate fOr all hit requests in different peer-
byte hit ratiq for two caching algorithmslJRL-basedand to-peer Web caching design options;,,,rove represents
content-basedTlable 1 also shows thauilding andorgani- the number of hit requests where the simulation latency is
zation levels have around 20% sharing gain for thiera- less than the measurement latentye;ciorate represents

tio, and 20% for thebyte hit ratio when applying the the difference between total number of hits abgl,, ove-
content-basedaching algorithm. This observation implies From the Table, we observe that although the average sim-
that peer-to-peer Web caching can efficiently share Web ob-ulation latency is reduced greatly compared to the average
jects in terms of botlhit ratio andbyte hit ratioat different measurement latency, the;,, ... is almost equal to or
peer granularities. Note that, tleentent-baseadaching al- less thanl geieriorate €XCEpL for the host-Geo scenario. This
gorithm actually reduces the peer share gain in terms of bothabnormality indicates that we need examibg, ;... and

the number of requests and the number of bytes. The reaLeicriorate IN More detail. The cumulative distribution func-
son is thecontent-basedaching algorithm will cause more  tions (CDFS) Of Limprove @Nd Lgeteriorate ShOw that the
cache replacement due to the cache size limit in our simula-L;.,prove is uniformly distributed, while in the. geteriorate

tion. is likely exponentially distributed, which explain the signifi-
cantimprovement shown in Figure*4&urthermore, the CDF
3.3. Latency Reduction figures also show that in thruilding levelapplying theURL-

basedcaching algorithm using theomellookup algorithm,

Now we are in the position to examine the corresponding the average improved time df;,;pr00c iS 1.412 seconds
latency reductiorresulting from peer-to-peer Web caching. Wwhile the average deteriorated time Df.:criorate is 0.058
We use the user-perceived last-byte latency as a performancgecond. This indicates a fact that if a hit request latency is im-
metric to examine all possible caching design space. Fig-proved, it willimprove greatly. On the other hand, if a hit re-
ure 4 illustrates the average latency obtained from simula-quest latency is deteriorated, it will deteriorate very limited.
tion and measurement for different caching algorithms at all Next, we will discuss théatency reductiorin terms of docu-
possible peer granularities. In the Figure, the average simu-ment lookup algorithms, P2P granularities and caching algo-
lation latency is the average of all simulated latencies (cal- rithms.
culated from the simple latency model) resulted from hit re- )
quests during the simulation. On the other hand, the average?-3-1. Documents Lookup Algorithm The Geo has the
measurement latency is the average of all measured latenMOSt significantatency reductionn both average simulation
cies (calculated from the trace data) correspondintpese  |at€ncy andLiyprove (98.7%). The reasons are: (1) it does
hit requests. The average simulation latency reduces fromOt need routing to locate the Web document; (2) the latency
three to four times for th/RL-based:aching algorithm and ~ Within @ LAN or subnet is minimal. From Figure Apme1l
from four to eight times for theontent-baseetaching al- IS observed to be superior kmme2n terms of both average
gorithm compared to the average measurement latency. Théimulation latency and.;y;, .. This can be explained log-
host-homel scenario has the bitency reductiorexcept ically ashome2needs more routing steps to locate Web ob-

for Geowhich has a leshit ratio, but host-homel is diffi-  J€Cts” home as compared komel
cult to implement in the real situation due to the concern of
scalability. 1 Due to space limit, we did not show the figures here, but they are avail-

Table 2 shows the percentage of latency improvement rep- ~ able in technical report version [8].



Caching algorithm URL-based Content-based
Granl-”arity Limprove Ldeteriorate Limp’r‘ove Ldeterioratc
Centralized 373,754 (57.5%)| 276,463 (42.5%) 2,972,846 (56.3%) 2,311,386 (43.7%

Building-homel

626,884 (84.0%)

119,081 (16.0%)

5,102,580 (83.9%

976,728 (16.1%)

Building-home2

250,873 (33.6%)

496,014 (66.4%)

3,084,401 (50.7%

3,000,871 (49.3%

Org-homel

622,764 (84.8%)

111,570 (15.2%)

5,176,172 (88.6%

667,359 (11.4%)

Org-home2

251,161 (34.1%)

485,337 (65.9%)

2,993,966 (51.5%

2,817,516 (48.5%

Host-homel

577,786 (77.6%)

167,176 (22.4%)

5,278,443 (84.5%

967,573 (15.5%)

Host-home?2

434,263 (58.4%)

309,775 (41.6%)

3,195,313 (50.4%

3,150,430 (49.6%

Host-Geo

533,895 (98.7%)

7,065 (1.3%)

5,034,302(98.8%)

62,223 (1.2%)

Table 2. The latency improvement and deterioration of two caching algorithms at four peer granulari-
ties.

3.3.2. Peer Granularity Thecentralized levetaching has

a comparablelatency reductioncompared withbuilding
level organization leveandhost level But it will suffer scal-
ing problem in a real implementation with a large client pop-
ulation. Thebuilding levelhas very similar results in terms
of average latency andl;,, ... cOmpared withorganiza-
tion level cache. Althoughhost levelcaches have similar
latency reductioncompared withbuilding leveland orga-
nization levelrespectively, they have a bettér;,,,,ove(
e.g., 84.5% forhomeland 50.4% forhome2 than build-
ing level(e.g., 83.9% fohomeland 50.7% fohome2 using
the content-basedaching algorithm. 5.

tency reductiorthan thehomelcounterpart. Therefore,
we argue that peer-to-peer Web cachingrginization
levelor building levelusing thehomellookup algorithm

is a good choice. Our recent work on Tuxedo is an alter-
native to solve this problem [14].

e Exploiting the geographic-basedookup algorithm:
The results show that thgeographic-basetbokup al-
gorithm has an acceptaltit ratio and a significanka-
tency reduction

Related Work and Discussions
3.3.3. Caching Algorithm Figure 4(a) and (b) also show

that thecontent-basedaching algorithm has a bettatency b caching) has b Vel died i
reductionthan that of th&JRL-basedtaching algorithm. The Web caching) has been extensively studied in recent years [6.
47,16, 14, 1]. To the best of our knowledge, our effort is the

possible reasons are: (1) in our simulation, we assume that & _ . .
client, which sends a request, knows the digest of the requestSt Y t0 systematically examine the design space of peer-

Web content in prior. This is impractical in the real imple- to-peer Web caching in three dimensions, and quantitatively
mentation. Thus, a possible latency overhead foctvgent- evaluate their performance in terms of two performance met-

basedcaching algorithm is expected in a real deployment; rics: hit ratio.andlaten.cy reductign ]
(2) dynamic Web objects usually tend to have longer mea- COoperative caching was first proposed by Datgin
sured latencies caused by dynamic generation [19]. Wher@l- [4] in the context of memory caching sharing in file sys-

these objects are cached and hit, these dynamic generatinffm- However, we focus on Web content sharing, and eval-
latency will be reduced. uate different peer granularities, caching algorithms, and

document lookup algorithms in this paper.

The pioneer work in cooperative caching was conducted
by Wolmanet al. in 1999 [16]. This is the closest work to

Based on the analysis results in the last section, severaPur analysis. There are three differences exist. First, the peer
implications could be derived as follows: grains examined in our paper is wider than their work. Sec-
ond, the qualitative latency improvement analysis in [16] was
done by an analytical model, while we perform a quantita-
tively study. Finally, a neveontent-basedaching algorithm
is proposed in this paper.

Recently, lyeret al. proposed Squirrel [6], a peer-to-peer
Web caching system built on the Pastry [12]. X&t@l. stud-
ied the reliability and scalability of a browser-aware proxy
server. We implemented both of their algorithms in this pa-
per for comparison purposes. In addition to hit ratio and co-
operative hit ratio, this paper compares the likdaliency re-

Peer-to-peer Web caching (also known as cooperative

4. Implications

e Need protocol support for deploying the content-
basedWeb caching mechanismThe results of the ex-
periment show that theontent-basedaching algorithm
improves thehit ratio and latency tremendously.

o Tradeoff betweenlatency reductionand scalability:
The results show that thHeomeldocument lookup al-
gorithm has a goothtency reductionbut it has a scal-
ability problem. Although théhome2algorithm is ex-
empted from the scalability problem, it has a léss



ductionas well. Furthermore, the traces used in our analysis [4] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Coopera-
is more up-to-date than the traces used in [6, 17].
Thecontent-basedaching algorithm proposed in this pa-

per is motivated by the fact that there exist a large amount
of content repeatness in Web traffic. This phenomenon was

observed in our recent traffic analysis [19] and [7]. The re-
cent proposed value-based Web caching (VBWC) by Riftea

al. [11] shares the similar idea as ours, but we come out this

idea independently.

Peer lookup algorithms are a very hot research topic in
recent yearsi.e., Pastry [12]. In this paper, the average la-
tency of thehome2protocol is based on Pastry. Due to the
similarity of these protocols (less th&n(log(n)) hops), we
argue that our analysis can be easily extended to other al- [8]
gorithms. The simplegeographic-basedookup algorithm
proposed in this paper produces a reasonable performance.
Theoretically, we believe that our work will definitely ben-
efit from several recent work on geographically-aware clus-
tering technologies, such as landmark based binning algo-
rithm [10], global network positioning (GNP) service [9].

6. Summary

In this paper, we have systematically examined the de-
sign space of peer-to-peer Web caching, in terms of three

design dimensionghe caching algorithmthe lookup algo-
rithm, andthe peer granularity Our study shows that the
content-basedaching algorithm could greatly improve the

Web objects cacheability; peer-to-peer Web cache at differ-
ent granularities can share Web documents efficiently, rang-

ing from 22.0% (atbuilding leve) to 34.2% (athost leve);

the simulated latency could be reduced three to six tlmes[14] W. Shi, K. Shah, Y. Mao, and V. Chaudhary. Tuxedo: A peer-

compared with the measured latency; and geegraphic-
baseddocument lookup algorithm has comparableratio

and a significantatency reductionBased on these observa-
tions, we argue that the organization/building level peer-to-
peer Web caching using a hierarchical index-serkierne)}

is the most appropriate choice. Our trace is available for re-[16]
search purpose attp://mist.cs.wayne.edu
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