

Wukong*: A Cloud-Oriented File Service for Mobile Internet Devices

Huajian Mao1, Nong Xiao1, Weisong Shi2, Yutong Lu1
1National University of Defense Technology, Changsha, Hunan 410073, China

2Wayne State University, 420 State Hall, 5143 Cass Ave, Detroit, MI 48202, USA
email: {huajianmao, nongxiao, ytlu}@nudt.edu.cn, weisong@wayne.edu

Abstract—Along with the rapid growth of heterogeneous cloud
services and network technologies, more mobile devices use
cloud storage services to enlarge the capacity and share data in
our daily lives. We commonly use cloud storage service clients
in a straight forward fashion, since we may easily obtain most
client-side software from many services providers. However,
when more devices and users participate in heterogeneous
services, the difficulty increases to manage these services
efficiently and conveniently. In this paper we design and
implement a novel cloud-oriented file service, Wukong, which
provides a user-friendly and highly-available facilitative data
access method for mobile devices in cloud settings. By using the
innovative storage abstraction layer and a set of optimization
strategies, Wukong supports heterogeneous services with a
relatively high performance. By evaluating a prototype in a
systematic way on the aspects of the supporting interface,
system performance, and the system resource cost, we find that
this easily operable file service has a high usability and
extensibility. It costs about 50 to 150 lines of code to implement
a new backend service supporting plugin. Wukong achieves an
acceptable throughput of 179.11 KB/s in an ADSL
environment and 80.68 KB/s under a country EVDO 3G
network with negligible overhead.

Keywords-cloud computing; file service; mobile devices;
heterogeneous; plugin

I. INTRODUCTION

The rising and demanding use of mobile devices like
smart phones, Netbooks, iPads and Mobile Internet Devices
(MID) [1] grows steadily in daily life. Many people
commonly operate several devices at the same time,
including laptops, phones, digital picture frames, music
players, and so on, often constrained by limited storage
capacity. One commonly used method overcomes this
problem by copying the data not used soon by a backup
device or service (i.e., Amazon S3 [2], Google Docs [3],
Dropbox [11]). When we subject changes to the data, then
the user synchronizes their data on each device, one by one.
Thus, manual migration and synchronization of data between
different places happens frequently. Meanwhile, mobile
device users also commonly exchange information to
collaborate and share data. The demands of our daily actions,
like data copying and sharing across multiple users, use
resources ubiquitously. With the development of the cloud

computing [4] and network technologies, we have met
potential feasible methods for large storage capacity and
convenience of sharing. Mobile devices carry services, like
Google Docs, Amazon S3, and MobileMe [5] as the storage
backend in order to enlarge the capacity of storage, and
achieve resource sharing via mobile network ubiquitously.
However, difficulty increases when more devices and users
participate in and more applications need to use the
heterogeneous resources in cloud storage to keep their world
in sync and convenient. Four challenging issues arise in
using such systems for mobile devices.
1) Most of the mobile applications prefer or only support

local file system interfaces, so a mobile user has to
download files from the service before using them
locally. But for mobile devices, especially for those
with poor user interface [6, 19], finishing an action with
complex operations creates a terrible experience.

2) The users always use multiple types of services in order
to satisfy their common need. A system that supports
only a special service would not suit our users to access
resources conveniently. Since different service
providers always offer different public APIs, users
should pay attention to the service that they are using
but not transparently use the services.

3) With many types of network, the latency and the
network bandwidth vary with network types. In order to
overcome these challenges, the system should consider
additional optimization in the design.

1.1. Our Approach

As we live in a world full of networks, we commonly
share information and collaborate. Computer users can
upload audio, video and other media into storage services
and share it with their friends, as well as acquire information
published by the others. For example a mobile device user
may capture a beautiful view, and upload the picture onto the
Internet to share his amazing moment with his friends. So,
not only do we need to make the data sharing available, but
we also need to make it a user-friendly and effective way.
We envision that the file system interface would be better for
most of the applications already working on the devices.

In this paper, we present Wukong, a file service
providing a user-friendly, highly-available and facilitative
data access method for multiple mobile devices in cloud
settings. Deploying Wukong on these devices will ease
access for the users to share data with others on the Internet,
transparently treating the remote storage services as locale
resources. Wukong is originally designed for Mobile Internet
Devices; however, it works well on PCs, Laptops, etc. The
contribution of this work includes many of the elements
listed below.

————————————————

* Wukong, known as the Monkey King, is the main character in the
classical Chinese epic novel Journey to the West. He can travel on cloud
with the technique called the Jīndǒuyún (cloud-somersault), and he
knows 72 transformations, which allows him to transform into various
objects. We use it as the name of our file service..

 A Storage Abstraction Layer (SAL) and its plugin
mechanism abstract the remote services APIs into
uniform interfaces, while the plugins play the
interaction with these special services. With the
using of SAL and its plugin mechanism, Wukong
supports multiple heterogeneous storage services.
Wukong can easily extends to support other new
storage services, since we only need to implement
the interface-well-defined plugin, which only needs
about 50 to 150 lines of code.

 Wukong contains a file service transparently
accessing heterogeneous services designed to be
POSIX compliant so that most of the existing
applications, which access local files only, can use
the data in cloud environment with network
connections (i.e., 3G/WIFI/ADSL) ubiquitously, and
it solves the problem of capacity deficiency of the
devices.

 Wukong includes a stackable optimization
framework with modularizing the functions of file
service optimization as elements of the stack. This
stackable framework gives Wukong the flexibility
and extensibility. Wukong uses a set of strategies to
make the service operations with a high performance
and low latency,

 We have implemented an extensible prototype
system along with plugins for several services
including Amazon S3, Google Docs, Google Picasa,
FTP, and Email Service, and then evaluated the
prototype in a systematic way on the aspects of
interface supporting, system performance and the
resource cost. The result shows that the performance
and usability of this file service is acceptable, and
the overhead is negligible.

The rest of this paper is organized as follows. Section 2
describes the overview of the service architecture design,
followed by the implementation details in Section 3. Section
4 gives the evaluation of our work based on a prototype
system. Section 5 talks about prior related work. We
conclude our paper and present the future work in Section 6.

II. WUKONG DESIGN

In a nutshell, Wukong is a file service supporting
heterogeneous backend services, allows ubiquitous and safe
data access. By designing and implementing Wukong, a file
service using heterogeneous storage services as its backends,
Wukong surmounts the storage capacity defects of mobile
devices and the difficulty of data management. With a
storage abstraction layer and its plugin mechanism, the
POSIX compliant interfaces make the local traditional
applications transparently access the services without any
modification. Wukong introduces a cache management
strategy to implement the operations with a high
performance and low latency. By implementing a relax-lock
cache coherence protocol [7], it assures the correctness of the
service. According to the properties of mobile network, we
design a modular optimization framework in order to
improve the performance and data security. Furthermore, we

use an encryption module to deal with the data security and a
compression module to limit the network traffic. Wukong
provides the mobile user a method to deal with the
challenges mentioned in Section I.

Two major parts in a system using Wukong include the
client device deployed with Wukong and the services used as
the storage backends. By deploying Wukong on the devices
connected to the Internet, users conveniently share and
manage the data resource on heterogeneous services. Figure
1 is an overview of Wukong. It shows the relationship of the
clients, the backend services and the network connection.

Figure 1. An overview of Wukong.

2.1 File service Components

File service components use a layered design to do the
data processing, including the interface layer, the cache
manager and the data processing layer. The designs of these
components are given in the following sections.
2.1.1 POSIX compliant File Service Interface Layer

The interface layer, the top layer of Wukong’s
components, implements most of POSIX interfaces, standard
UNIX group, owner, and permission semantics. When an
application accesses a file, Virtual File System (VFS)
determines which file system to access. If the file exists in a
Wukong file service, Wukong will send the request to this
interface layer by VFS. Wukong interacts with the file
system requests from applications. As data may scatter at
anywhere on the services, Wukong manages, locates, stores,
fetches and queries data with keywords. As we often use
standard interfaces to access file system, we may run many
interesting and useful applications on this system and
transparently access the backend services without any
modification. Wukong can treat the remote resources as they
are in local.
2.1.2 Cache Manager

We use cache in Wukong to reduce the number of
requests transmitted to the remote service. Wukong caches
data and metadata, and does not commit the changes to
remote services immediately. We apply it first locally and
encode it as proper objects, lazily distributed over remote
storage services on the Internet. The Cache Manager

manages the cache. We also apply a data prefetching
algorithm and a consistency protocol in Wukong to make
sure Wukong works properly with low network traffic and a
high performance especially for the sequential operations.
2.1.3 Data Processing Layer

According to the properties of mobile network, we design
a modular optimization stack framework, Data Processing
Layer (DPL), in order to improve the system performance
and data security. DPL mainly handles the additional data
processing for Wukong, such as data compression, data
encryption, and so on. We modularly implement the
functions of data processing layer in a function stack
framework. In order to achieve these modules pluggable,
which means the introduction of a function module or delete
will not affect the correctness of the system, every function
module has the same interfaces. This design of DPL gives it
with more configurability, and improves its functionality
flexibility. For example, users can configure the system to
compress data first and then encrypt them; or users can also
configure the system to encrypt data first then compress.

2.2 Storage Abstraction Layer

The Storage Abstraction Layer (SAL), a key component
of Wukong, makes Wukong support heterogeneous services
cooperating with its plugin mechanism. As a proxy
implemented at the bottom of the Wukong framework, we
abstract all the operations (i.e., store, retrieve, trash, identify
objects) supported by the backend services to the uniform
interface of this layer. In order to support most of the online
storage service, we set a specification on the interfaces the
services should apply, which limit to put, get, delete and
query operations, thus the system does not demand the other
complicate APIs. Actually, Wukong implements these ones,
necessary file system interfaces, on the client side. This
specification makes Wukong much easier to be extended to
support an unforeseen backend service.

SAL implements a plugin mechanism to support the
heterogeneous services. Every plugin implements uniform
interfaces specified by SAL so that the details of the services
can be hidden for the upper layers. In our prototype system,
we require plugin developers the four interfaces (put, get,
delete and query) for each plugin. And the plugin interacts
with its backend service directly to implement the function
logic with the service APIs. SAL uses a plugin pool to
manage the plugins, which are loaded into the stack at mount
time with one plugin for one type of backend service.

Wukong implements the POSIX compliant file system
calls with SAL interfaces, for example, read by the interface
get, write by the interface put, and lock by the interface put
with putting a file representing a lock on the backend service.
And these SAL interfaces will call the proper plugin’s APIs
according to the caller and the user configuration, which is
specified at the initialization phase.

2.3 Backend Services

Wukong runs with a thin-server model, which means a
minimal interface of the backend service (put, get, delete and
query) trivially portable to virtually any online storage
service, are required. As SAL abstracts the backend service

as a local resource, most of the existing applications can use
without any modification. With this design, Wukong
supports more than one backend service while keeping most
applications working, and developers may easily extend its
function. SAL implements the plugin mechanism to support
the heterogeneous storages. Every plugin gives uniform
interfaces defined by storage abstraction layer so that we
may hide the details of services. The plugin interacts with its
service directly. They implement these interfaces and operate
with the special service. SAL with the use of plugin
mechanism makes it possible to easily integrate new storage
services in WAN or LAN or local.

So, we can use most of the popular storage services for
Wukong. Even if the services do not provide these four
operations, a possibility for those services to work with
Wukong exists. For example, suppose the situation that a
user has access to only a read-only FTP service. In this
schema, Wukong cannot execute put and delete operations.
But we may still use this interface insufficient service as the
storage backend by Wukong, rendering Wukong as a read-
only file service. These properties of Wukong make it much
easier for extension.

2.4 Security

With the broad deployment of wireless network, devices
and storage services always stay online. Users may possibly
access data in those services ubiquitously. Besides, we can
deploy our system in LAN environment too. By connecting
the client and the backend service in a LAN environment, the
deployed devices can use the resource in a local network
conveniently with a high performance. However, we
commonly deploy our system on mobile devices, and
connect the devices to the Internet with the network
connection, and use online services, like cloud service, Email
service, FTP, as its backends.

While in a threatening environment, we should keep data
safe from corruption and under suitable control and access.
That means the system shall use data security to ensure
privacy and protect personal data in an insecure environment.
Wukong supports standard UNIX file access control
mechanisms for users and groups in data security and
privacy by plugin operations which can use the ACL APIs
offered by the backend services. The security connection is
created at the initialization certification phase. Meanwhile,
we may deploy the system in an open environment and it
may fall prey to attacks in the transmission or on servers,
thus, we should encrypt the data. We implement a pluggable
module in Wukong to do the encryption. Before storing data
to servers, we encrypt it first and then deliver it to the servers.
But as encryption costs time, it may lowdown the system
performance, so we design it to be optional and configurable,
which the user may configure according to their usage
schema. In our future work, we may improve this layer to
support self-adaptive or hint-direct, with encryption or not.

III. IMPLEMENTATION AND OPTIMIZATION

Wukong includes a set of optimization strategies, like
using cache and compression. Wukong uses these methods to
make the operations with a high performance and low

latency, and assure the correctness of the cache system. In
this section we discuss the details of the implementation and
optimization of these technologies.

3.1 Cache Manager

Wukong uses cache to reduce the interactions to the
remote service and improve the performance. Files are
cached in local storage medium, like flash memory or hard
disk. In order to simplify the implementation, we borrow the
whole file caching strategy from Coda [8] and assume that a
single file is always smaller than the medium capacity. In
this section we discuss two technologies of Cache Manager.
3.1.1 Lease-Lock-File Based Consistency Protocol

We use a relax lock, lease-lock-file based consistency
protocol, to make sure that the cache system works correctly.
This is motivated by the observation that the conflict
operations do not happen frequently.

In this protocol, lock is implemented by creating a file,
which acts as a lock, tagged with lease time on the backend
service. Each time we request the write operation, it will first
check if any other has locked the object, which means if
there is an according lock file. Only if the object returns free
which means not locked by other clients, the write operation
may continue. This will firstly lock the file by creating a lock
file on the remote service in order to avoid writing
competition. If the write operation applies the lock
successfully, the system then writes data to the remote
service, otherwise, the system will stop the following actions.

Wukong tracks with two timestamps for each item in
cache: the last validated time Tc and the last modified time
Tm. Tc will be updated according to the checking time, and Tm
is gotten from the metadata server. Tm will change on the
server when any modification any client commits to the file.
A cache entry is valid at time T if the interval between T and
Tc weighs less than the configurable freshness interval t , or
the Tm recorded at the client, similar to the Tm gotten from
the server at this time. With an invalid cache entry, we
should trash it in order to keep system in approximate
consistency. For example, when A and B open the same file f,
we Wukong will create locks on these two clients with
timestamps included in the lock. The clients will check the
locks every interval t to find if the validity of the cache. If
not, we update the cache. So if A edits the file, then we
would find invalid cache on B, so B updates its cache pool.

The selection of a value for t is a compromise between
consistency and efficiency. We will consistently achieve an
approximation to one copy with a very short interval, but it
weighs down the load. Furthermore, users do not commonly
access data with conflict in our schema, if we stand sure that
no conflict will occur, we can disable lock, so that we will
achieve a relatively high performance and low system load.
3.1.2 Data Prefetching

With the purpose of using the gap of open and read
operation to improve the sequential operation’s performance,
we use data prefetching in Wukong.

Data prefetching happens when Wukong receives the
open request. The cache component firstly checks to see if
we have cached the file. If so, the open operation returns
successful immediately, otherwise, it will do a prefetching in

backend, and return with the proper code at the meantime.
The configuration during the initial mount determines the
prefetching size. For example, if the configuration set the
size to 0, it means the system shall not prefetch anything,
while if the configuration sets it to -1, it means the system
will prefetch the whole file when opened. When the
prefetched size in memory comes to a pre-defined value,
which is also specified by the configuration, Wukong will
stores the data to persistent medium, and then go on
prefetching. With the assumption given before, data
prefetching can work correctly.

Data prefetching always improves the sequential read
operation performance. But in random schema, this method
costs system resource but may not increase the performance.
So, in our future work, we will pay more attention to the data
prefetch and also the cache replacement for Wukong.

3.2 File Type Based Adaptive Compression

The network and storage service providers always charge
according to the storage size and network traffic, so the
smaller data size and traffic would better suit Wukong.

On one hand, we can rely on compression for reducing
the object size, which means smaller data will transfer on the
Internet and we will use less storage space in the storage
service. As we require less data for transfers, the
performance of the system will improve, especially for the
low bandwidth networks. On the other hand, the processing
of compression increases the system resource cost, and not
all files have a high compression ratio. Different files have
different compression ratio, which relates to its content and
type. In the common case, text files always have the higher
compression ratio, so we will experience more benefits for
the file service to compress data before transfer. While for
the binary files, the compression ratio always remains
extremely low, and it always costs a lot of computational
resource, however, we should not consider this deficient
option for our system to compress the data.

In this system, we use the file type specific adaptive
compression method, which decides to use compression or
not on the file type adaptively. The file types which use
compression require configuration by a specification file.
And these files have the extensions like .log, .txt, .tex, .c, .py
which are always text files. Wukong checks the file types
when the user requests to open, and then we test the file type
to see if this file type exists in the compression type set. If so,
the compression module will record the path information.
After this step, the operations we decide if we necessitate to
compress for write and to decompress for read.

When Wukong compresses the file because of the match
of its type, let’s suppose the size of original file as S.
Meanwhile, suppose the extra cost of delivering data to
storage services as D. So the total quantity that needs to be

transferred without compression is DSTsum  . But with
the compression module, the data transferred will come to

DSrTcsum  * , where r represents the compression
ratio which is always less than 1. We can use compression to
reduce the data transfer amount especially for those who
have a high compression ratio. And accordingly, the

performance of Wukong improves. In the prototype of
Wukong, we can configure the compression method, and by
default, it uses gzip.

Compared with the strategy without compression, our
method significantly reduces the transfer size, especially for
those with a high compression ratio, while compared with
the compress-everything method, our strategy keeps the
overhead minimum, especially for those with low
compression ratio.

IV. PERFORMANCE EVALUATION

This section evaluates Wukong with several experiments.
Figure 2 shows the experimental platform, where two kinds
of client hosts, laptop and Mobile Internet Device (MID), use
two types of network connections, ADSL and 3G (EVDO)
provided by China TeleCom, to connect to services,
including Google Docs, Amazon S3, Google Picasa and
others. Figure 2 also shows the hardware and software
configurations of the clients. In the testing, we intentionally
choose a rural site, which means the 3G network is not very
stable and may downgrade automatically. Although the ideal
bandwidth is 3.1Mbps, the real one is always much smaller.

Figure 2. Configuration of the experiental platform. All the client hosts

are deployed with Wukong.

We synthesize the workload with files of different types:
executable binary file (binary), Microsoft Word Document
(doc), images (image), system log (log), Printable Document
File (PDF), music file (music). The input to the operations
consists of 43 files, about 43 Mbytes in total, and the details
of the workload are shown in TABLE I.

TABLE I. WORKLOADS FOR EVALUATING WUKONG SERVICE.

File Type
File

Number
Total Size Source

binary 9 3.3 MB /usr/bin

doc 6 408 KB Google Docs

image 14 3.6 MB Flickr

log 3 23 MB /var/log

PDF 5 2.7 MB 5 papers of SCC09

music 6 9.9 MB Google.cn music

misc 43 43 MB Merge of them

With this workload, we evaluate Wukong as follows:
First, we examine the function of Wukong with applications,
and state the convenience and flexibility of Wukong plugin

with the statistics of the line of code of the plugins. Next, we
evaluate the effects of the cache strategies and compression.
Finally, we measure the throughput and the system resource
consumption with the workloads presented previous under
the environment showed in Figure 2.

4.1 Functions

In this section, we present two experiments focusing on
checking the service interface. First, we write several
benchmarks, which call common file system interfaces
including open, creat, close, read, write, lseek, mkdir, unlink,
and so on, then we run them on our deployed client hosts.
We find that they pass as expected, which means that
Wukong supports most of the standard POSIX compliant file
system interfaces. However, Wukong still does not support
interfaces like statfs/symlink in this prototype version.

Besides, Wukong supports applications that involve a set
of file system calls, including metadata operations and data
operations. We choose several typical upper layer
applications to check if they could get along well with
Wukong. We used several media players, including mplayer,
to play the audio and video files stored in Wukong, and we
also edit the files in the service by editors such as emacs and
vi. We have proved that Wukong supports applications
which involve that set of file system calls.

4.2 LoC of Wukong Plugins

As discussed, Wukong uses SAL and plugin mechanism
to support transparently accessing the heterogeneous services.
In the prototype system, we implement the following plugins
in Python, including pgdocs, which interacts with Google
Docs Service, pgpic, that manages the photos stored in
Google Picasa Service, pas3, which Amazon S3 oriented
manages, pftp, which makes Wukong use the FTP Service as
the storage backend, pimap4, which uses IMAP4 enabled
Email Service, and pdisk, which uses local storage medium.

What a plugin developer needs to do is to implement the
get, put, query, delete interfaces as we discussed before. So
the work needed to do for implementing a new plugin would
be easy. We do a statistics on the Line of Code (LoC) of
these plugins, and the result is showed in TABLE II. As
shown, the LoCs are always small, inhabit about 50 to 150.
This is mainly benefit from the specification of the interfaces.
So the main advantages of Wukong plugin include its
simplicity and extensibility. Wukong may easily add a new
backend service support by implementing a new plugin. For
example, suppose the work efficiency of a graduate student
is 50 lines per day, then he can write a new plugin in 1-3
days. And if he has a little higher efficiency, he can
implement a new backend service supporting even in 1 day.

TABLE II. LOC OF THE WUKONG PLUGINS

Plugin pgdocs pgpic pas3 pftp pimpa4 pdisk

LoC 77 95 108 63 137 44

As the LoCs of Wukong plugins tell, plugin mechanism
takes Wukong lots of advantages. First, plugin is separated
from the overall architecture, and what the plugin developer
cares about is the plugin logic while avoiding the complex
management of the file service. Second, only a small amount

of work, as the LoC of the plugins shown in TABLE II, need
to be done for a new service supporting. Besides, the plugin
mechanism gives Wukong high function extensibility.

4.3 Evaluation on Cache

We present two experiments based on Amazon S3
service to see how the cache affects Wukong. We run several
file system related commands, like ‘cp’, ‘ls’, ‘rm’, in the
deployed Wukong without any other optimization, and
record the latencies of those commands. We execute these
commands twice with cache, one in a warm cache and the
other one in a cool cache. With the purpose of comparison,
we also record the latencies of the conditions of no cache.
Figure 3 shows the comparison of different latencies.

ls
-lls

rm
 (1

 fil
e)

rm
 a

ll f
ile

s

cp
 a

ll t
o

s3
 se

rv
ice

cp
 re

m
ot

e
to

 lo
ca

l

cp
 a

ll t
o

loc
al

no cache
with cool cache
with warm cache

200
300
400
500
600
700

100

800
900

0.013

1.32

0.016

1.44

2.304

2.71

Figure 3. Comparison of latencies of different commands.

From the result shown in the previous figure, we can find
that the latencies of no cache are always smaller than those
of cool cache. The reason is that the cache manager
introduces overhead not only to store the data in cache but
also to maintain the cache consistency. But cache manager
does take in advantages, which we observed from the
comparison between the latencies of the cool cache and the
warm one. The warm cache cost only a little to finish these
commands which are far smaller than that of the cool cache.

Also, we take an experiment focusing on data prefetching,
by opening a file and then reading its content after several
intervals, to see how long does it cost for reading. We
present here the second experiment evaluating the prefetch of
Wukong. In this experiment, we firstly open several files in
the deployed Wukong, then wait for an interval whose values
is are chosen to be 0, 1, 2, 4, 8, 16, 32 and 64 seconds, and
after that, time the latencies of reading the whole opened file.
The files are one music file (5.5 MB), one binary file (1.12
MB) and one log file (1.16 MB). As the result says, the
latencies to read the files wholly are 55.7 seconds for the
music file, 11.9 seconds for the binary file and 11.4 seconds
for the log file. Besides, we find that the sum of interval time
and the latency of read operation almost keep the same for
all these three files. It means Wukong can use the interval
between open and read operations to prefetch data, and keep
the read latency low. When the whole file is prefetched by
the open operation and stored in cache, it cost 1.43s for the
music file, 1.26s for the binary file, 1.25s for the log file to

read the content from cache. With this characteristic,
Wukong will be good at those situations where there is a
large time gap between the open and read operations.

4.4 Compression

First, we evaluated the efficiency of our file type based
adaptive compress with the workloads in TABLE I. In this
experiment, we choose those with the extensions like doc,
log, and pdf as our compression candidate files. With this
purpose, we transfer all the data to the remote service by
Wukong with adaptive compression, and then calculate the
data size in the server. For comparison purposes, TABLE III
contains the values of none and full compression strategies
as well. The unit of the values is MBytes.

TABLE III. COMPARASION OF DIFFERENT COMPRESSION STRATEGIES

Type bin doc image music log pdf misc

none 3.3 0.4 3.6 9.9 23 2.7 44

full 1.9 0.15 3.5 9.8 4.2 2.2 22

adapt. 3.3 0.15 3.6 9.9 4.2 2.2 24

In addition to the efficiency evaluation, we also monitor
the overhead of the file type based adaptive compression
method. We log the timestamps when the compression start
and end, then calculate the delta of the values, and sum up all
the delta values to see how long does Wukong spend on
compressing. Figure 4 shows the overhead of file type based
adaptive compression compared with the none and full ones.

Figure 4. Computation time of the compression overhead.

We find that the above two experiment results confirm
the benefits of file type based compression method, not only
that the time consumption costs by adaptive compression
similar to the method without any compression, but also that
the size reduced by adaptive compression remains only a
little smaller than the full compression. However, as shown
in TABLE III, pdf files may not have a high compression
ratio, and if we choose the wrong type to be in the
compression candidate set, it costs time to compress but
reduces the data size only a little. We must vitally choose a
good candidate set for file type based adaptive compression
layer, so that the adaptive compression method can reduce
the transfer size, while keep the overhead minimum.

4.5 Throughput and Resource Cost

In this section, we will evaluate the throughput and the
system resources (cpu and memory) consumption in the
environment which are shown in Figure 2.

Wukong easily transfers files from one remote service to
another, which copies files one by one from one remote
service to local and then copy them to the other service. In
order to see this process clearly, we separate it into two parts,
evaluating the process of copying files from remote service
to local (download) and copying file to remote service from
local (upload) apart. The system resource consumption is
captured by the Linux command top. We averagely sampled
200 points for each process of the experiments both the CPU
and memory consumption information.

TABLE IV. CONSUMPTIONS UNDER DIFFERENT ENVIRONMENTS

Tasks Copy From Remote Service Copy To Remote Service

Environment Laptop
ADSL

Laptop
3G

MID
3G

Laptop
ADSL

Laptop
3G

MID
3G

Throughput
(Kbyes/s)

179.11 48.93 80.68 66.82 16.92 17.99

Avg. CPU
Ratio (%)

0.38 0.01 3.5 0.24 0.036 2.06

Avg. Mem.
(Kbytes)

6761 5412 6712 12700 6711 11066

TABLE IV shows the throughput and the average
consumption in our experiment platform. The reason why the
throughput of Laptop + 3G and MID + 3G is far smaller
than the ideal bandwidth is that our 3G network is a country-
side EVDO, and the signal is always weak and unstable.
Meanwhile, as the total transfer size stays the same, as the
throughput increases, the system spends shorter amounts of
time to transfer. Besides, we monitored the system resource
consumption at the same time when we are recording the
throughput. Figure 5 shows the CPU ratio that Wukong uses
at the sampled timestamps. And the memory consumption is
showed in Figure 6.

Figure 5. CPU ratio consumption of transferring data. 200 timestamps are

sampled for each experiment, and each point in the figure represents the
sampled consumption value of CPU ratio.

As Figure 5 shown, the CPU consumption of MID+3G is
always higher than those of the other two. This is mainly
because of that the CPU frequency of MID is 667 MHz,
while that of laptop is 2.33 GHz. Although the tasks are the
same and they do the same computation for compression and
other actions, MID needs a relative higher CPU consumption
ratio than that of the Laptop. However, as the average value

of CPU ratio shown in TABLE IV, the average consumption
of MID is only about 3.5% for download and 2.06% for
upload. And this resource consumption is negligible.

Besides, both in Figure 5 and Figure 6, there are several
peak points whose values are much larger than the other
points. In order to see what happen with these timestamps,
we look into the details of the data transfer process, and we
find that the peak points of CPU ratio reside in the times
when the system need a lot of compression, and that of the
memory consumption reside in the times when the system is
processing the big files.

Figure 6. Memory consumption of transferring data. 200 timestamps are
sampled for each experiment, and each point in this figure represents the

sampled consumption value of Memory size.

From the results of our experiments, we can find that the
prototype system contains acceptable performance and
resources consumption.

V. RELATED WORK

Wukong shares its goals with several recent efforts aimed
at simplifying the data management for cloud service [9]. We
categorize related research into two groups as cloud storage
service clients and platforms, and Network and distributed
file systems.

Cloud Storage Service Clients and Platforms. Using a
cloud storage service client is quite a straight and common
way for data management on the services, since most of the
clients can be easily obtained from the service providers.
Dropbox [11] is a cross-platform cloud-based storage
application and service. The service enables users to store
and sync files online and between computers and share files
and folders with others. Syncplicity [12] is a similar service
provided by Syncplicity Inc. Besides, as Google gives the
Internet users the ability to store any type of data on their
Google Docs service, Memeo publishes Memeo Connect
[13], which is a client to manage the Google Docs. Also,
there are several cloud service platforms which are very
usable and famous. MobileMe [5] is a collection of online
services and software offered by Apple Inc. Actually it is a
service platform which allows users to manage their data,
mail, calendar, address book and the others ubiquitously.
Similar to MobileMe, Live Mesh [14], a data

0

15

30

45

60

75

90

1 51 101 151

adsl+laptop

3g+laptop

3g+MID

0

15

30

45

60

75

90

1 51 101 151

adsl+laptop

3g+laptop

3g+MID

download (%CPU)

upload (%CPU)

0 50 100 150 200

0 50 100 150 200

0

8000

16000

24000

32000

40000

1 51 101 151

adsl+laptop

3g+laptop

3g+MID

0

8000

16000

24000

32000

40000

1 51 101 151

adsl+laptop

3g+laptop

3g+MID

download (Kbytes)

upload (Kbytes)

0 50 100 150 200

0 50 100 150 200

synchronization system from Microsoft, allows data sharing
and synchronization across multiple devices. The service
clients and platforms provide the users a great way to
manage the services and make their world in sync. However,
they are not very suitable for the situations which involve
complex operations. Wukong implements POSIX compliant
file system interfaces, so that the applications on the client
deployed with Wukong can transparently use the resources
on the service. This would be preferred for most of the users,
especially for those whose devices are poor in user interface.

Network and distributed file systems. They have been
extensively studied in the past. The Andrew File System
(AFS) [15] is a distributed networked file system which uses
a set of trusted servers to present a homogeneous, location-
transparent file name space to all the client workstations.
Coda [8] descends from AFS. It has many great features. It
keeps working even when the network disconnects or in
weak connection [10]. It has high performance through client
side persistent caching, and so on. LBFS [16] is a network
file system designed for low bandwidth networks. It exploits
similarities between files or versions of the same file to save
bandwidth. Cegor [17] proposes to build an adaptive
distributed file system which provides the “ClosE and Go,
Open and Resume” (Cegor) semantics across heterogeneous
network connections, ranging from high-bandwidth local
area network to low-bandwidth dial-up connection. It
provides lots great ideas on the key techniques. Several other
works in this area, like Zebra [18], GmailFS [20], Cumulus
[21], S3FS cover these similar regions. Although these work
on diverse aspects, including network challenges, cache
management, offline operations and so on, have proposed
and studied for the system performance, usability and
availability, but most of the file systems are based on the
special server. For example, Coda need the supporting of
Coda Server, and S3FS or Cumulus need the Amazon S3
service, but if when only the ftp service is available, Coda
and Cumulus will not be usable. Wukong is a file service
supporting heterogeneous backend services by using a
storage abstraction layer. Even if the backend service is new,
it is easy for Wukong to implement a new plugin for this
service, and make it deployable with the new service.

VI. CONCLUSIONS AND FUTURE WORK

We presented the Wukong, a cloud-oriented file service
for mobile devices in this paper. Wukong characterizes itself
with several unique features:

 Provides a standard POSIX compliant interface so
that the existing applications can be deployed on this
service directly or with few modifications.

 Supports multiple heterogeneous storage services
and has a capability to support new or unforeseen
services.

 Introduces negligible overhead while providing an
easy way to access cloud services in mobile devices.

However, we will address several limitations in our work
in the future. First, in the storage abstraction layer, we
assume that only a few interfaces are offered, but actually
services may offer rich interfaces, which may lead to a high

performance. We would do work more in storage abstraction
layer. Second, we require systematic optimizations for
Wukong to improve its performance, including reducing the
latency and improving the throughput. Besides, we base our
current evaluation on a random selected data set and a fixed
set of programs. While for file system users, the access
pattern to the file system has its special characteristics. We
will do workload characteristics analysis in the future work.

ACKNOLOGYMENT

We would like to thank the anonymous reviewers for
their valuable feedback and suggestions. This work was
supported by the National High Technology Research and
Development Program of China (863 Program) under Grant
No.2006AA01A106 and the National Natural Science
Foundation of China under Grant No.60736013.

REFERENCES
[1] SmartQ5. http://www.smartdevices.com.cn/index.html.

[2] Amazon S3. http://status.aws.amazon.com/s3-20080720.html.

[3] Google Docs. http://docs.google.com.

[4] D. Chappell. A Short Introduction To Cloud. Technical report,
Microsoft Corproration, 2008.

[5] MobileMe. http://en.wikipedia.org/wiki/MobileMe.

[6] Landay, J.A. and Kaufmann, T.R.. User interface issues in mobile
computing. Proceedings of Fourth Workshop on Workstation
Operating Systems, 1993.

[7] Q. Lu and M. Satyanarayanan. Improving data consistency in mobile
computing using isolation-only transactions. Proceedings of the Fifth
IEEE HotOS Topics Workshop, 1995.

[8] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel,
E.H., and Steere. Coda: A highly available file system for a
distributed workstation environment. IEEE Transactions on
computers, 1990, 39(4): 447~459.

[9] Abadi, D.J.. Data management in the cloud: Limitations and
opportunities. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 2009, 32(1): 3~12.

[10] J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda
file system. ACM Transactions on computer Systems, 1992, 10(1).

[11] Dropbox. http://www.dropbox.com.

[12] Syncplicity. http://syncplicity.com

[13] Memeo Connect. http://www.memeoconnect.com.

[14] Live Mesh. http://en.wikipedia.org/wiki/Live_Mesh

[15] J. Howard. An overview of the andrew file system. Proceedings of the
USENIX Winter Technical Conference, 1988: 23~26.

[16] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth
network file system. Proceedings of the Eighteenth ACM symposium
on Operating systems principles, 2001, 5: 174~187.

[17] W. Shi, H. Lufei, and S. Santhosh. Cegor: An adaptive, distributed
file system for heterogeneous network environments. Proceedings of
the Tenth International Conferences on Parallel and Distributed
Systems, 2004, 10: 145-142.

[18] J. Hartman and J. Ousterhout. The Zebra striped network file system.
ACM Transactions on Computer Systems, 1995, 13(3): 274~310.

[19] Brown, Q. and Lee, F.J. and Salvucci, D.D. and Aleven, V.. Interface
Challenges For Mobile Tutoring Systems. Lecture Notes in Computer
Science, 2008.

[20] GmailFS: GMail virtual file system. http://richard.jones.name/google-
hacks/gmail-filesystem/gmail-filesystem.html.

[21] M Vrable, S Savage, GM Voelker. Cumulus: Filesystem Backup to
the Cloud. Proceedings of the Seventh USENIX Conference on File
and Storage Technologies, 2009.

