
J. Parallel Distrib. Comput. () –

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Wukong: A cloud-oriented file service for mobile Internet devices✩

Huajian Mao a, Nong Xiao a,∗, Weisong Shi b,c, Yutong Lu a

a Department of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China
b Department of Computer Science, Wayne State University, Suite. 14102, 5057 Woodward Ave, Detroit, MI 48202, USA
c Tongji University, Shanghai, China

a r t i c l e i n f o

Article history:
Received 11 February 2011
Received in revised form
23 July 2011
Accepted 31 October 2011
Available online xxxx

Keywords:
Cloud computing
File services
Mobile devices
Plugins

a b s t r a c t

Along with the rapid growth of heterogeneous cloud services and network technologies, an increasing
number of mobile devices use cloud storage services to enlarge their capacity and share data in our
daily lives. We commonly use cloud service client-side software in a straightforward fashion. However,
when more devices and users participate in heterogeneous services, the difficulty of managing these
services efficiently and conveniently increases. In this paper, we report a novel cloud-oriented file service,
Wukong, which provides a user-friendly and highly available facilitative data access method for mobile
devices in cloud settings. Wukong supports mobile applications, which may access local files only,
transparently accessing cloud services with a relatively high performance. To the best of our knowledge,
Wukong is the first file service that supports heterogeneous cloud services for mobile devices by using
the innovative storage abstraction layer. We have implemented a prototype with several plugins and
evaluated it in a systematic way. We find that this easily operable file service has a high usability and
extensibility. It costs about 50 to 150 lines of code to implement a new backend service support plugin.
Wukong achieves an acceptable throughput of 179.11 kB/s in an ADSL environment and 80.68 kB/s under
a countryside EVDO 3G network with negligible overhead.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Both the use and the demands of mobile devices such as smart
phones, Netbooks, iPads, and mobile Internet devices (MIDs) [36]
are growing steadily in our daily life. People commonly work
on multiple devices, such as capturing pictures with a mobile
phone, modifying these pictures with a laptop, showing them
in a digital picture frames, and so on. However, these devices
are often constrained by limited storage capacity and complex
synchronization steps. One commonly used method to overcome
this problem is storing the data in a backup device or service
(e.g., Amazon S3 [4], Google Docs [14], Dropbox [12]). When
changes aremade to the data, users synchronize their data on each
device, one by one. Thus, manual migration and synchronization
of data between different places happens frequently. Meanwhile,
mobile device users also commonly exchange information to
collaborate and share data. The demands of our daily actions, such

✩ Wukong, known as the Monkey King, is the main character in the classical
Chinese epic novel Journey to the West. He can travel on a cloud using a technique
called a Jindouyun (cloud-somersault), and he has the ability of transforming
himself or other objects into other shapes. We use it as the name of our file service.
∗ Corresponding author.

E-mail addresses: huajianmao@nudt.edu.cn (H. Mao), nongxiao@nudt.edu.cn
(N. Xiao), weisong@wayne.edu (W. Shi), ytlu@nudt.edu.cn (Y. Lu).

as data copying and sharing across multiple users, are increasing
steadily.

Also, we commonly share information and collaborate [8,30,
21]. Computer users can upload audio, video, and other media
into storage services and share it with their friends, and they cans
acquire information published by others. For example, a mobile
device user may capture a beautiful view, and upload the picture
onto the Internet to share it with friends.

With the development of cloud computing [10,32,3] and
network technologies [43,40,31], we have found potential feasible
methods for large storage capacity and convenience of sharing.
Mobile devices carry services such as Google Docs, Amazon S3,
and MobileMe [28], as the storage backend in order to enlarge
the capacity of storage, and achieve resource sharing via mobile
network ubiquitously. However, the difficulty increases when
more devices and users participate, and more applications need
to use the heterogeneous resources in cloud storage to keep
their world in sync, conveniently, and in a secure manner. Three
challenging issues arise in using such systems for mobile devices.

1. Most of the mobile applications prefer or only support local file
system interfaces, so a mobile user has to download files from
the service before using them locally. But for mobile devices,
especially for thosewith poor user interfaces [26,9], finishing an
action with complex operations creates a terrible experience.

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.10.017

http://dx.doi.org/10.1016/j.jpdc.2011.10.017
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:huajianmao@nudt.edu.cn
mailto:nongxiao@nudt.edu.cn
mailto:weisong@wayne.edu
mailto:ytlu@nudt.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2011.10.017

2 H. Mao et al. / J. Parallel Distrib. Comput. () –

2. Users always use multiple types of service in order to satisfy
their common requirements. They may use Google Docs to
backup documents and slides, use Picasa to save their pictures,
and use Amazon S3 to store some other files. A system that
supports only a special service would not enable users to
access resources conveniently. Since different service providers
always offer different public APIs, users should pay attention
to the service that they are using but not transparently use the
services.

3. With many types of network, the network latency, bandwidth,
and security vary with network type. Also such networks are
sometimes not very stable, which may lead to poor usability. In
order to overcome these challenges, the system should consider
additional optimization (e.g., cache, compression) in the design.

So, not only dowe need tomake data sharing available, but we also
need to do it in a user-friendly and effective way. We envision that
a file system interface would be better for most of the applications
already working on such devices.

1.1. Our approach

In this paper, we present Wukong, a file service providing a
user-friendly, highly available and facilitative data access method
for many types of mobile devices in cloud settings. Deploying
Wukong on mobile devices will ease access for the users to share
data with others on the Internet, transparently treating the remote
storage services as local resources. Wukong is originally designed
for mobile devices; however, it works well on PCs, laptops, etc.
The contribution of this work includes many of the elements listed
below.

• A storage abstraction layer (SAL) and its plugin mechanism
abstract the remote services APIs into uniform interface, while
the plugins play the interaction with these special services.
Using the SAL and its plugin mechanism, Wukong is able to
support multiple heterogeneous storage services. It can be
easily extended to support other new storage services, since
we only need to implement the interface-well-defined plugin,
which only needs about 50–150 lines of code.
• Wukong introduces the capability of service mashup for users.

Wukong based applications can be developed to support
different services, e.g., Google Docs, Google Storage, Amazon S3,
at the same time. Applications also can be designed to support
network sharing, integrated with Facebook, Twitter, and other
social network services. Besides, with this property, Wukong
can also be extended to implement other applications.
• Wukong contains a file service, designed to be POSIX compliant,

so thatmost of the existing applications, which access local files
only, can use the data in a cloud environment with network
connections (e.g., 3G/WiFi) transparently. It solves the capacity
deficiency problem of the devices.
• Wukong includes an optimization stack, and optimization

functions are implemented as elements of it. This stackable
framework gives Wukong flexibility and extensibility. Wukong
uses a set of strategies to make service operations with a high
performance and low latency.
• We have implemented an extensible prototype system along

with plugins for several services, including Amazon S3, Google
Docs, Google Picasa, FTP, and Email Service, and then evaluated
the prototype in a systematic way in regard to aspects of
interface support, system performance, and resource cost. The
result shows that the performance and usability of this file
service are acceptable, and that the overhead is negligible.

The rest of this paper is organized as follows. Section 2 describes
the overview of the service architecture design, followed by the
implementation details in Section 3. Section 4 gives the evaluation

Table 1
Component interfaces of Wukong.

Interface Parameters Description

init child, Priv Initialize this module
getattr path Get file attribution by path
readdir path Read the list of a directory
create path, mode, dev Create a file
trash path, type Delete a file
open path, flags, mode Open file
read path, length, offset Read content from the file
write path, buf, offset Write content to the file
close path Close file

of our work based on the prototype system. Section 5 proposes
several potentialWukong based applications. Section 6 talks about
prior related work. We conclude our paper and present the future
directions in Section 7.

2. Wukong design

2.1. Assumptions and overview

In designing a file service for our needs, we have been guided
by some assumptions.

• Most of the files are operated in the one-write–many-read
schema. The case in which many write operations happen
concurrently is rare.
• One device is used by one person at a time, which means that

the case in which more than one user logs in to use a device is
not possible.
• The size of a single file operated on the device is always smaller

than the local storage capacity.

Based on these assumptions, Wukong supports heteroge-
neous backend services, allowing ubiquitous and safe data access.
Through its design and implementation, Wukong surmounts the
storage capacity defects of mobile devices and the difficulty of data
management.With a storage abstraction layer and its pluginmech-
anism, the POSIX compliant interfaces make the local traditional
applications transparently access the services without any modi-
fication. A fake service based offline mode makes the system have
a high availability. Wukong introduces a cache management strat-
egy to implement the operations with a high performance and low
latency. By implementing a relaxed-lock cache coherence proto-
col, it assures the correctness of the service. According to the prop-
erties of the mobile network, we design a modular optimization
framework in order to improve the performance and data security.
Furthermore, we use an encryption module to deal with the data
security and a compression module to limit the network traffic.

Two major parts in a system using Wukong are the client
device deployedwithWukong and the services used as the storage
backends. By deploying Wukong on the devices connected to the
Internet, users conveniently share and manage the data resource
on heterogeneous services. Fig. 1 is an overview of Wukong. It
shows the relationship of the clients, the backend services, and the
network connection.

2.2. File service components

Wukong uses a layered file service component design to do
the data processing. These layers include the interface layer, the
cachemanager, and the data processing layer. They share the same
interfaces, similar to the POSIX compliant file system calls. Table 1
shows part of these interfaces. The designs of these components
are given in the following sections.

POSIX compliant file service interface layer. The interface layer,
the top layer of Wukongs components, implements most of the

H. Mao et al. / J. Parallel Distrib. Comput. () – 3

Fig. 1. An overview of Wukong.

POSIX interfaces, standard UNIX group, owner, and permission
semantics with the Filesystem in userspace, FUSE [39]. When an
application accesses a file, a virtual file system (VFS) determines
which file system to access with the path information. If the file
exists in a Wukong file service, Wukong will send the request
to this interface layer by the VFS. Wukong interacts with the file
system requests from applications, and manages, locates, stores,
fetches, and queries data which may scatter anywhere on the
services. As we often use standard interfaces to access the file
system, we may run many interesting and useful applications on
this system and transparently access the remote backend services
without any modification. Wukong can treat the remote resources
as if they are local.

Cache manager. We use the cache in Wukong to reduce the
number of requests transmitted to the remote service. Wukong
caches data and metadata, and does not commit the changes
to remote services immediately. First, we apply it locally in
the local storage medium, such as flash memory or hard disk.
Then Wukong encodes the changes into proper objects, lazily
distributed over remote storage services on the Internet. Besides,
we apply a data prefetching algorithm and a lease lock file based
consistency protocol in Wukong to make sure that Wukong works
properly with low network traffic and high performance. With
this consistency protocol, Wukong assures correctness even if the
service does not support the relative operations (such as lock)
directly. In order to simplify the implementation, we borrow the
whole file caching strategy from Coda [33], and assume that a
single file is always smaller than the local storagemediumcapacity.

Data processing layer. According to the properties of the mobile
network, we design a modular optimization stack framework,
the data processing layer (DPL), in order to improve the system
performance and data security. The DPL mainly handles the
additional data processing for Wukong, such as data compression,
data encryption, and so on. We implement the functions of the
data processing layer as modules in a function stack framework.
In order to make sure that the introduction of a function module
or deletion will not affect the correctness of the system, every
function module has the same interfaces as those in Table 1.
This design of the DPL gives Wukong high configuration, and

improves its functional flexibility. For example, users can configure
the system to compress data first and then encrypt; or users can
also configure the system to encrypt data first then compress the
encrypted data. Details of the optimization will be introduced in
Section 3.

2.3. Storage abstraction layer

The storage abstraction layer (SAL), a key component of
Wukong, makes Wukong support heterogeneous services cooper-
ating with its plugin mechanism. There are twomain functionality
of the SAL: heterogeneous service operation abstraction and differ-
ent service mashup.

Cloud storage service clients and platforms. As a proxy imple-
mented at the bottom of theWukong framework, the SAL abstracts
all the operations (e.g., store, retrieve, trash, identify objects) sup-
ported by the backend services to the uniform interface of this
layer. In order to support most of the online storage service, we set
a specification on the interfaces the services should apply, which
limit to put, get, delete and query operations; thus the system does
not demand the other APIs. Actually, Wukong implements these
necessary file system interfaces on the client side. In these, put
stores data objects, including data andmetadata, get grabs data ob-
jects with a unique identifier, delete trashes the objects either not
available anymore or deleted, and query searches and gets infor-
mation from remote services with a certain keyword. This specifi-
cation makes Wukong much easier to be extended to support an
unforeseen backend service.

The SAL implements a plugin mechanism to support the het-
erogeneous services. Every plugin implements uniform interfaces
specified by the SAL so that the details of the services canbehidden.
In our prototype system, we require plugin developers to imple-
ment the four interfaces (put, get, delete and query) for each plu-
gin. And the plugin interacts with its backend service directly to
implement the function logic with the service APIs. The SAL uses a
plugin pool to manage the plugins, which are loaded into the stack
at mount time with one plugin for one type of backend service.

Wukong implements the POSIX compliant file system calls with
SAL interfaces. In order tomake theupper layers loose coupling, the

4 H. Mao et al. / J. Parallel Distrib. Comput. () –

Fig. 2. The interface conversion between SAL interfaces and plugin APIs. Parts of the interface conversions are shown in this figure.

SAL shares the same interfaces as the DPL. The SAL uses the plugin
APIs to implement these interfaces. Fig. 2 shows the transform
between SAL interfaces and the plugin APIs. We will give a sample
plugin implementation sketch in Section 3.5.

Service mashup. This is the other of the two most important
properties of the SAL. It is motivated by the observation that
users always use multiple types of service in order to satisfy their
common requirements. They may use Google Docs to backup the
documents and slides, use Picasa to save their pictures, and use
Amazon S3 to store some other files. A system that supports
only a special service would not enable our users to access
resources conveniently. Since different service providers always
offer different public APIs, users should pay attention to the service
that they are using but not transparently use the services.

With this servicemashup property,Wukong based applications
can be developed to support different services, e.g., Google Docs,
Google Storage, Amazon S3, at the same time. Applications also can
be designed to support sharing integrated with Facebook, Twitter,
and other services.With this property,Wukong even can be used in
multi-mode annotation applications.Wewill give several potential
applications based on Wukong in Section 5.

2.4. Backend services

For public remote services, having a programmable interface to
them is important, so that users can write client software by using
this interface to manage the service. However, different service
providers have published their proprietary APIs, which always
have differences. Fortunately, the REST interface is supported by
most of the services. So, Wukong runs with a thin-server model,
which means that a minimal interface set of the backend service
(put, get, delete, and query) trivially portable to virtually any
online storage service is required. However, it is easy for Wukong
to change to use the other interfaces such as SOAP, filesystem
interfaces, and so on. The modification work is just to modify the
SAL. Also, it is convenient for the plugins to convert these types of
interface into REST interfaces.

Besides, as the SAL abstracts the backend service as a local
resource, most of existing applications can be used without any
modification. With this design, Wukong supports more than one
backend service while keeping most applications working, and
developers may easily extend its function. The SAL implements
the plugin mechanism to support heterogeneous storage. Every
plugin gives uniform interfaces defined by the SAL, so wemay hide
the details of the services. The plugin interacts with its service
directly. They implement these interfaces and operate with the
special service. The SAL with the use of plugin mechanism makes
it possible to easily integrate new storage services inWAN, LAN, or
local environments.

So, we can usemost of the popular storage services forWukong.
Even if the services do not provide these four operations, a

possibility for those services to work with Wukong exists. For
example, suppose the situation that a user has access to a read-only
FTP service. In this schema,Wukong cannot execute put and delete
operations. But we may still use this interface-insufficient service,
which publishes content that can be used as the storage backend
by Wukong, rendering Wukong as a read-only file service. These
properties of Wukong make it much easier for extension.

With the broad deployment of wireless networks, devices and
storage services can always be connected. Users may possibly
access data in the services ubiquitously. Besides, we can deploy
our system in a LAN environment too. By connecting the client
and the backend service in a LAN environment, the deployed
devices can use the resource in a local network conveniently with
a high performance. However, we commonly deploy our system
on mobile devices, and connect the devices to the Internet with a
network connection, and use online services, such as cloud service,
Email service, and FTP, as its backends.

2.5. Security

Several assessments and surveys [22,18,37] have reported that
it is important to improve the security of cloud computing services.
[6,13] also researched the security of file systems. In a threatening
environment, we should keep data safe from corruption and under
suitable control and access. That means that the system must use
data security to ensure privacy and protect personal data in an
insecure environment.

The major security concern of a distributed file system is
client request authentication and authorization. Wukong supports
standard UNIX file access controlmechanisms for users and groups
in data security and privacy by plugin operationswhich can use the
ACL APIs offered by the backend services. The security connection
is created at the initialization certification phase. Meanwhile, we
may deploy the system in an open environment and it may fall
prey to attacks in the transmission or on servers; thus, we should
encrypt the data.We implement a configurablemodule inWukong
to do the encryption. Before storing data to servers, we encrypt
it first and then deliver it to the servers. But as encryption costs
time, it may reduce the system performance, so we design it to
be optional and configurable; users may configure it according to
their usage schema. In our future work, wemay improve this layer
to support self-adaptive or hint-direct selection, with or without
encryption.

3. Implementation and optimization

Wukong includes a set of optimization strategies, such as using
a cache and compression.Wukong uses thesemethods tomake the
operationswith a high performance and low latency, and to ensure
the correctness of the system. In this section, we discuss the details
of the implementation and optimization of these technologies.

H. Mao et al. / J. Parallel Distrib. Comput. () – 5

Fig. 3. The interaction of the lease lock file based consistency protocol. The left part shows the process of read operation while the right is for write. Cache validation is
implemented in the open phase.

3.1. Lease lock file based consistency protocol

Consistency protocol is an important part of a file system with
a cache. File systems such as Coda [24], Ceph [42], GFS [15], and
PNUTS [11] use their designed consistency model to ensure the
correctness of the system. However, Wukong is different from
these file systems for the reason that the servers of these systems
have the direct ability to support their consistency protocol, while
the service used by Wukong can only do the put, get, query,
and delete operations. So we have designed a relaxed consistency
protocol with the name lease lock file based consistency protocol.
Relaxed consistency has been researched for a long period in DSM
systems; see, for example, [2,23,34].

With the principle of improving the performance of common
operational functions, and ensuring all operations with correct-
ness, we simplify the design. We use a relaxed lock, lease lock
file based consistency protocol, to make sure that the cache sys-
tem works correctly. Fig. 3 shows the details of the interactions
of our protocol. The basic idea of the proposed approach is moti-
vated by the observation that the conflict operations do not happen
frequently. In this protocol, lock is implemented by creating a file,
which acts as a lock, tagged with the lease time on the backend
service.

Each time we request the open operation forwrite, it will check
if any other has locked the object, which means if there is an
according lock file. Only if the object returns free, whichmeans not
locked by other clients, will the write operation continue. This will
first lock the file by creating a lock file on the remote service in
order to avoid writing competition. If the write operation applies
the lock successfully, the system then writes data to the remote
service. However, thewrite operation needs to periodically re-lock
the file as the lease filemay expire. The lease time t is configurable.
On the other hand, if the system has failed to get the lock, it will
stop its following actions. Algorithms 1 and 2 show the lock and
unlock processes of our lease lock file based consistency protocol.
When write is done, Wukong will close the file and update the
modified data onto the service. The modified time of this file will
be recorded in the remote service by the close operation.

In the read operation, Wukong tracks two timestamps for each
entry in the cache: the last validated time Tc and the last modified
time Tm. Tc records the last checking time in this client, while Tm
represents the time when the file is modified by the clients. So
Tm is gotten from the remote service every checking time, and it
changes when there is any committed modification to the file by
another client.With these two timestamps, a cache entry is valid at
time T if the interval between T and Tc is less than the configured
freshness interval ti, or that the Tm recorded at the client is the
same as the Tm1 gotten from the service at the checking time. The

Algorithm 1 Lock algorithm
Require: Convert path to Tag first by

Tag=md5sum(path)
Require: LOCK_PREFIX is set, /.lock/ by default
Ensure: Tag is unique
1: lockpath ← LOCK_PREFIX + Tag
2: lockexists ← child.getattr(lockpath)
3: if lockexists then
4: raise OSError
5: else
6: // create a lock file in the remote service
7: child.create(lockfile, 0644, ’f’)
8: end if

Algorithm 2 Unlock algorithm
Require: Get the lockpath used by lock first
1: child.trash(lockpath, ’f’)

cache entry is validated at the open phase. If a cache entry is invalid,
we should trash it in order to keep the system in approximate
consistency. As the client and server side timestamps do not need
to be compared with each other, although the clients and the
remote service share different clocks, the lease lock file based
protocol can work correctly. The reason is that the comparison
between timestamps only happens between the client timestamps
or between the server timestamps. For example, when checking if
T − Tc < ti, both T and Tc are the timestamps from the client, and
they share the same clock, while when checking if Tm = Tm1, both
Tm and Tm1 are the timestamps generated by the remote service,
and they also share the same clock. So although the client and the
server do not share the same clock, our protocol can work.

For Wukong, we need to consider the selection of the interval
time ti. Actually, the selection of the interval time ti is a compro-
mise between consistency and efficiency.Wukong achieves a close
approximation to one copywith a very short interval ti at the sacri-
fice of the performance. In contrast, the performance ofWukong is
higher when the interval ti is longer, but the consistency becomes
weaker. It is therefore a tradeoff to select the interval ti between
the consistency and the performance. If the user does not often ac-
cess data in conflict ways, a relative longer interval ti is preferred.
For example, if the user is sure that no conflict will occur, such as
the situation in which only one client is active, the user can disable
the lock to achieve a relatively high performance. Otherwise, if the
user wants to achieve a better consistency, the interval should be
set to small.

6 H. Mao et al. / J. Parallel Distrib. Comput. () –

3.2. File type based adaptive compression

The network and storage service providers always charge
according to the storage size and network traffic, so smaller data
size and traffic would better suit Wukong.

On the one hand, we can rely on compression for reducing
the object size, which means smaller data will transfer on the
Internet and we will use less storage space in the storage service.
As we require less data for transfers, the performance of the
system will improve, especially for low bandwidth networks. On
the other hand, the processing of compression increases the system
resource cost, and not all files have a high compression ratio.
Different files have different compression ratios, which relate to
the content and type. In the common case, text files always have
a higher compression ratio, so we will experience more benefits
for the file service if we compress data before transfer. For binary
files, the compression ratio always remains extremely low, and
compressing always costs a lot of computational resource; we
should not consider this deficient option for our system when we
compress the data.

In this system, we use the file type specific adaptive com-
pression method, which decides to use compression based on the
file type adaptively. Algorithm 3 shows the adaptive compres-
sion algorithm. The file types which will be compressed are speci-
fied by the configuration. These files always have extensions such
as.log,.txt,.tex,.c,.py, which are always text files. Wukong checks the
file types when the user requests to open them, and then we test
the file type to see if this file type exists in the compression candi-
date set. If so, the compression module will record the path infor-
mation. And in the following steps, it will be necessary to compress
for write and to decompress for read.

Algorithm 3 Adaptive compression algorithm
1: comptype ← candidate types in configuration
2: if typ == ’f’ then
3: ext ← extension of path
4: if ext in comptype then
5: add path into candidate set
6: end if
7: end if

When Wukong compresses the file because of the match of its
type, let us suppose that the size of the original file is S. Meanwhile,
suppose that the extra cost size of delivering data to the storage
services is D. So the total quantity that needs to be transferred
without compression is Tsum = S + D. But with the compression
module, the data transferred will come to Tcsum = r ∗ S +
D + Dδ , where Dδ represents the changed quantity of D which
caused by compression which is always small, and r represents
the compression ratio, which is always less than 1. We can use
compression to reduce the data transfer amount especially for data
that has a high compression ratio. Accordingly, the performance
of Wukong is improved. In the prototype of Wukong, we can
configure the compression method; by default, it uses gzip.

Compared with the strategy without compression, our method
significantly reduces the transfer size, especially for data with
a high compression ratio, while compared with the compress-
everything method, our strategy keeps the overhead minimum,
especially for data with low compression ratio.

3.3. Data prefetching

With the purpose of using the gap between open and read
operations to improve the sequential operation performance, we
use data prefetching in Wukong.

Data prefetching happens when Wukong receives an open
request. The cache component is checked first to see if we
have cached the file. If so, the open operation returns successful
immediately; otherwise, Wukong will do a prefetching in the
backend. The configuration during the initial mount determines
the prefetching size. For example, if the configuration sets the
size to 0, this means the system will not prefetch anything, while
if the configuration sets it to −1, this means that the system
will prefetch the whole file when opened. Algorithm 4 gives the
pseudocode of the prefetch algorithm. When the prefetched size
in memory comes to a predefined value MAXLEN, which is also
specified by the configuration, Wukong will store the data in
memory to a persistent medium, and then go on prefetching. With
the assumption given before, data prefetching can work correctly.

Algorithm 4 Prefetch algorithm
1: rfile ← child.open(path, ’r’)
2: left ← size
3: while left > 0 do
4: this ← min(left, MAXLEN)
5: content ← rfile.read(size, offset)
6: write content into local cache medium
7: left ← left - this
8: offset ← offset + this
9: end while

10: rfile.close()
11: change cache status

Data prefetching always improves the sequential read opera-
tion performance, whereas, in the random schema, this method
may increase the performance not as much as that of sequen-
tial read. So in our future work, we will pay attention to the data
prefetch and also the cache replacement strategy for Wukong.

3.4. Fake service based offline mode

Because nodes may be disconnected for a long period, the
system is designed to be runable in an offline mode. As data on the
servers may be inaccessible for users in offline mode, only a subset
of operations is usable. It is permitted to create new files or delete
an accessible file (e.g., a file created in offline mode). But in an
offline mode it may be impossible to access data which stays only
on servers, so modification to those data is forbidden in this mode.
In this paper, we introduce a fake-service based offline mode.

Fig. 4 gives the examples of this offline mode. In (1), the system
is online, and the requests reached at SAL objects will be answered
regularly by the proper plugin, which interactswith the designated
service. The system loses the connection with the service and it is
in an offline mode in (2). In this situation, the requests reached at
SAL objects cannot be processed immediately by the plugins, so the
plugin will return an error code to the SAL object. In order to keep
the systemworking,Wukong creates a fake service for each plugin,
which records all the logs, and returns a successful code to the SAL
object. In this way, the requests seem to be processed normally,
but actually they are not. (3) shows that the system successfully
reconnects to the service. When the connection is created, the fake
service object will redo the operations recorded when the system
is in offline mode.

Wukong silently records all modifications made during the
offline period, and propagates them to servers as soon as the
system becomes online again. If the file system is modified
on multiple clients in no-conflict ways (e.g., creating files with
different names or modifying different files) when they are
disconnected, Wukong will replay the requests in sequence. But
conflicts may occur when operations are made at different nodes

H. Mao et al. / J. Parallel Distrib. Comput. () – 7

Fig. 4. The offline mode of Wukong.

in offline mode, resulting in inconsistency in namespace. For
example, suppose that two clients create two files with the same
file name in offline mode, then when they connect to servers,
a conflict occurs. A common policy to manage these conflicts is
to append each conflicting mapping name with.#X, where X is
the identity of the node that generated the conflicting mapping.
In Wukong, conflicts can be solved manually or automatically
similarly. For example, suppose that there are two clients C1 and
C2, and that both of them created a file named A in offline mode.
Suppose that C1 commits to the server first with the file name A;
when C2wants to commit the record, then conflict occurs.Wukong
will store the data with file name A.#C2 by default, and all requests
to A from C2 will be redirected to A.#C2 until the file system is
remounted or manually synchronized. The usage of offline mode
gives the system high availability.

Besides, extra benefits can be achieved within the offline mode.
In the normal mode, Wukong synchronizes the modification as
soon as possible when the file is modified and closed. In this way,
there is a potentialwaste of bandwidth asWukong synchronizes all
of the temporal data on the remote service, which may be deleted
soon. If the offline mode is activated, Wukong can hide those
modifications for the remote service, and minimize the transfer
data size. So, offlinemode not only ensures the availability, but also
reduces the transferred data size and the time of interactions.

3.5. Plugin implementation example

With the use of the SAL and its plugin mechanism, Wukong
supports multiple heterogeneous storage services. Wukong can be
easily extended to support other new storage services, since we
only need to implement the interface-well-defined plugin, which
only needs about 50 to 150 lines of code. In the prototype system,
we have implemented several plugins for the services including
Amazon S3, Google Docs, Google Picasa, FTP, Email Service, and
local disk.

We give a sketch view of the plugin implementation and show
a plugin example with Amazon S3 as its backend service to explain
the plugin implementation process. Briefly, Amazon Web Services
provides Amazon S3 as an online storage web service. It stores
arbitrary objects up to 5 gigabytes in size, each accompanied by up
to 2 kilobytes of metadata. Those objects owned by Amazon Web
Services (AWS) accounts are organized into buckets. Each bucket
is identified by a unique, user-assigned key. Buckets and objects
can be created, deleted, listed, and retrievedusing either a REST-style
HTTP interface or a SOAP interface. In the REST API of AS3 [5], there
are different operations on the service, buckets, and the objects. In
these operations, the PUT Operation adds an object to a bucket, the
DELETE Object removes the null version (if there is one) of an object
and inserts a delete marker which becomes the latest version of
the object, the GET Bucket (List Objects) returns some or all (up to
1000) of the objects in a bucket and can be used with the request
parameters as selection criteria to return a subset of the objects in
a bucket, and the GET Object retrieves objects from Amazon S3.

The put, delete, query, and get operations of the Wukong plugin
are implemented with the REST APIs of Amazon S3. The details of
the conversion from the service APIs to the plugin interfaces are
shown in Fig. 5. It is quite similar to the plugins for other services.
For example, in a plugin for a disk, put can be implemented
with the file operations open, write, close, or mkdir, and get can
be implemented with open, read, and close, while query can be
implementedwithGet_Object_List which uses readdir and stat, and
delete can be implemented with rmdir and unlink. Whatever the
case, the plugins can be implemented with such a code sketch.

In summary, as the sketch of the plugin shows, what the plugin
developer needs to do is just design and fill the detail logic of
the service-specified part with the usable interfaces published by
the services. So it is easy for the developer to make a new service
available for Wukong, and this gives Wukong high extensibility.

3.6. A walk through

This section gives a walk through all these components of
Wukong with a scenario in which the user wants to use Amazon
S3 as a local file system. Wukong is always used in the steps
as follows: config, mount, use, and then umount. When a user
wants to make Amazon S3 Wukong’s backend service, he/she
will first specify the configuration of Wukong in a specification
file, which tells our service about which plugin should be used.
The specification also gives how the service is composed by the
components. Fig. 6 gives this scenario, including the configuration,
system layout, and all of the other important elements inWukong.

With the specification set, the user will then mount the remote
service to local disk, for example, suppose that the file service is
mounted on the directory of /tmp/wukong. All of the access to the
backend service can be done by accessing this directory. When the
mount command is called, Wukong parses the parameters of the
mount command and starts to read the specification file, which we
set to be.wukong.conf, and then constructs the service according to
the user configuration. The plugin is initialized in this phase. The
plugin will get the parameters from the user specification file, and
do the authentication with the remote service. The authentication
of the plugin may also happen when the connection to the remote
service is lost and the plugin wants to reconnect to the remote
service. After all of these steps are finished correctly, the Wukong
service will start serving. With configuring the service properly,
users will start to use the remote Amazon S3 service as a local file
system, which means that all of the applications can use the files
stored in Amazon S3 as they are in local. When Wukong finishes
playing this role, it can be stopped by the umount operation, which
will release all of the resources used.

In the serving time, Wukong serves the applications with the
POSIX compliant interfaces through the VFS [7]. When a system
call is requested, the VFS layer will first check according to
the parameter of the operation. If the accessed file is located
in a normal file system, for example the /home/me/foo in a
local ext3 file system in the directory /home/me/, then the VFS
will process the file operation request locally by the ext3 file
system module in the kernel. Otherwise, if the accessed file is
in Wukong file service, the VFS will send the request to FUSE,
and then FUSE will forward the request to Wukong, which will
call the proper operation of the interface layer. For example,
suppose an application needs to read the content of the file
/tmp/wukong/bar. In this situation, the application will first
open this file by calling f = open(‘/tmp/wukng/bar’, ‘r’),
and then read the content. In the open phase, Wukong may
prefetch some content from the remote service. After reading the
content, the application will close this file by calling close(f).
In this process, all the operations will be forwarded to Wukong
in the step (1) as shown in Fig. 6, and will be handled layer by

8 H. Mao et al. / J. Parallel Distrib. Comput. () –

Fig. 5. Plugin implementation example with AS3 asWukong’s backend service. Get_Object_List is implemented in this version with the GET Bucket (List Objects) of AS3 REST
API. The authentication may happen in the plugin initialization phase and the time when the plugin detects the connection failure and tries to reconnect.

Fig. 6. The steps of Wukong walking through all these components with a scenario in which Amazon S3 is used as the remote service.

layer in the function stack as steps (2) and (3). When this process
reaches the bottom of the function stack, the plugin will be in a
position to communicate with Amazon S3 in step (4). When the
file is opened and the read operation is executed, Wukong starts
reading the content from cache or from the remote servicewith the
pas3 plugin. The write operation of Wukong acts in a similar way
as read except as follows. First, in the open operation for the write
purpose, Wukong needs to do the consistency checking by the
lock file based consistency protocol. Second, the write operation
in Wukong caches all the changes in the local medium, so in the
close operation, Wukong should update the modifications into the
remote service; otherwise, all the modifications will be lost.

4. Performance evaluation

This section evaluatesWukong with several experiments. Fig. 7
shows the experimental platform, where two kinds of client host,
laptop and MID, use two types of network connection, ADSL and
3G (EVDO), provided by China TeleCom, to connect to services,
including Google Docs, Amazon S3, Google Picasa amongst others.
Fig. 7 also shows the hardware and software configurations of the
clients. In the testing, we intentionally choose a rural site, which

Table 2
Files of workload for evaluating Wukong service.

File type File number Total size Source

Binary 9 3.3 MB /usr/bin
Doc 6 108 kB Google Docs
Image 14 3.6 MB Flickr
Log 3 23 MB /var/log
Pdf 5 2.7 MB 5 papers of SCC09
Music 6 9.9 MB Google.cn music
Misc 43 43 MB Merge of them

means that the 3G network is not very stable and may downgrade
occasionally. Although the ideal bandwidth is 3.1 Mbps, the real
bandwidth is always much smaller than this value.

We synthesize theworkloadwith files of different types: binary
files (binary), word documents (doc), images (image), system log
(log), printable document files (pdf), music (music). The input to
the operations consists of 43 files, about 43 Mbytes in total, and
the details of the workload files are shown in Table 2.

With this workload, we evaluate Wukong as follows. First,
we examine the function of Wukong with applications, and state
the convenience and flexibility of the Wukong plugin with the

H. Mao et al. / J. Parallel Distrib. Comput. () – 9

Fig. 7. Configuration of the experimental platform. All the client hosts are deployed with Wukong.

statistics of the numbers of lines of code (LoCs) of the plugins. Next,
we evaluate the effects of the cache strategies and compression.
Finally, we measure the throughput and the system resource
consumption with the workloads presented previously under the
environment shown in Fig. 7.

4.1. Functions

In this section, we present two experiments focusing on
checking the service interfaces. First, we use several benchmarks,
which call common file system interfaces, including open, creat,
close, read, write, lseek, mkdir, unlink, and so on, in our deployed
client hosts. We find that they pass as expected, which means
that Wukong supports most of the standard POSIX compliant
file system interfaces. However, Wukong still does not support
interfaces such as statfs/symlink in this prototype version.

Besides, Wukong supports applications that involve a set of file
system calls, including metadata operations and data operations.
We chose several typical upper layer applications to check if they
can get along well with Wukong. We use several media players,
including mplayer, to play the audio and video files stored in
Wukong, and we also edit the files in the service by editors such as
emacs and vi. We have proved that Wukong supports applications
which involve that set of file system calls.

4.2. LoCs of Wukong plugins

As discussed, Wukong uses the SAL and a plugin mechanism
to support transparently accessing the heterogeneous services. In
the prototype system, we implemented several plugins in Python,
including pgdocs, which interacts with Google Docs service, pgpic,
which manages the photos stored in Google Picasa service, pas3,
which processes the documents saved in Amazon S3, pftp, which
makesWukong use the FTP service as the storage backend, pimap4,
which uses IMAP4 enabled Email service, and pdisk, which uses a
local storage medium.

What a plugin developer needs to do is to implement the get,
put, query, and delete interfaces aswe discussed before. So thework
needed to do for implementing a new plugin would be easy. We
examined the statistics of the number of LoCs of these plugins,
and the result is shown in Table 3. As shown, the numbers of
LoCs are always small, about 50–150. This is mainly a benefit from
the specification of the interfaces. So the main advantages of a
Wukong plugin include its simplicity and extensibility. Wukong

Table 3
Number of LoCs of the Wukong plugins.

Plugin pgdocs pgpic pas3 pftp pimap4 pdisk

LoCs 77 95 108 63 137 44

may easily add a new backend service support by implementing
a new plugin. For example, suppose that the work efficiency of a
graduate student is 50 lines per day, then he/she can write a new
plugin in 1–3 days. And if the student has a little higher efficiency,
he/she can implement a new backend service support even in one
day.

As the result shows, the plugin mechanism brings Wukong
several advantages. First, the plugin is separated from the overall
architecture, andwhat the plugin developer cares about is the logic
of the plugin while avoiding the complex management logic of
the file system. Second, only a small amount of work, such as the
numbers of LoCs of the plugins shown in Table 3, needs to be done
for a new service support. Besides, the plugin mechanism gives
Wukong high function extensibility.

4.3. Evaluation on cache

We present two experiments based on the Amazon S3 service
to see how the cache layer affects Wukong. We run several file
system related commands, such as cp, ls, and rm, in the deployed
Wukong without any other optimization and record the latencies
of those commands. The cp commands copy files shown in Table 2
to/from the remote Amazon S3 service. We execute all of these
commands twice with cache, one in a warm cache and the other
one in a cool cache.With the purpose of comparison,we also record
the latencies of the commands in the condition of no cache. Fig. 8
shows the comparison of latencies of different commands.

From the result shown in this figure, we can find that the
latencies of no cache are always smaller than those of a cool cache.
The reason is that the cache manager introduces an overhead not
only to store the data in the cache but also to maintain the cache
consistency. But the cachemanager does take in advantages which
we observed from the comparison between the latencies of the
cool cache and the warm one. The warm cache costs only a little
to finish most commands which are far smaller than those of the
cool cache. However, for ‘cp all to remote’ and ‘rm’, the warm cache
costs a little more. This is because the cache manager cannot hide
the network interaction for these commands as they have to write
or delete data on the remote service.

10 H. Mao et al. / J. Parallel Distrib. Comput. () –

Fig. 8. Comparison of latencies of different commands.

Table 4
Comparison of different compression strategies.

Type Bin Doc Image Music Log Pdf Misc

None 3.3 0.4 3.6 9.9 23 2.7 44
Full 1.9 0.15 3.5 9.8 4.2 2.2 22
Adapt. 3.3 0.15 3.6 9.9 4.2 2.2 24

Also, we take an experiment focusing on data prefetching, by
opening a file and then reading its content after several intervals,
to see how long it takes to read the whole file. We present here the
second experiment evaluating the prefetch of Wukong.

In this experiment, we first open several files in the deployed
Wukong, then wait for an interval whose values are chosen to be
0, 1, 2, 4, 8, 16, 32 and 64 s, and after that, time the latencies of
reading thewhole opened file. The files are onemusic file (5.5MB),
one binary file (1.12 MB) and one log file (1.16 MB). As the result
shows, the latencies to read the whole files are 55.7 s for the music
file, 11.9 s for the binary file, and 11.4 s for the log file. Besides,
we find that the sum of the interval time and the latency of the
read operation almost remain the same for all these three files. This
means that Wukong can use the interval between open and read
operations to prefetch data, and keep the read latency low. When
the whole file is prefetched by the open operation and stored in
cache, it costs 1.43 s for the music file, 1.26 s for the binary file,
and 1.25 s for the log file to read the content from the cache. With
this characteristic, Wukong will be good in those situations where
there is a large time gap between the open and read operations.

4.4. Compression

First, we evaluate the efficiency of our file type based adaptive
compress with the files in Table 2. In this experiment, we choose
those with extensions such as doc, log, and pdf as our compression
candidate files. With this purpose, we transfer all the data to
the remote service by Wukong with adaptive compression, and
then calculate the data size in the server. For comparison, Table 4
contains the values of none and full compression strategies as well.
The unit of the values isMBytes.

In addition to the efficiency evaluation, we also monitor the
overhead of the file type based adaptive compression method. We
log the timestamps when the compression start and end, then
calculate the delta of the values, and sum up all the delta values
to see how long Wukong spends on compressing. Fig. 9 shows the
overhead of file type based adaptive compression compared with
the none and full ones.

As shown in Table 4, we find that adaptive compression costs
time, but it keeps the consumption as small as possible. We find

Fig. 9. Computation time of the compression overhead.

Table 5
Latencies of copying 1.5 GB files locally with and without Wukong.

With Wukong Without Wukong

Laptop 145.4 s 102.9 s
MID 2259.6 s 993.0 s

that the above two experiment results confirm the benefits of
the file type based compression method, not only that the time
consumption costs of adaptive compression are similar to those
for the method without any compression, but also that the size
reduction by adaptive compression remains only a little smaller
than that of full compression. However, as shown in Table 4, pdf
files may not have a high compression ratio, and if we choose
the wrong type to be in the compression candidate set, it costs
time to compress but reduces the data size only a little. We must
certainly choose a good candidate set for file type based adaptive
compression layer, so that the adaptive compression method can
reduce the transfer size, while keeping the overhead minimum.

4.5. Wukong overhead analysis

In this section, we evaluate the overhead of using Wukong in
a local copy. We compare the latencies of the situations copying
files both with and without Wukong locally. In both these two
situations, the ext3 file system is used as the backend file system.

As the memory size of the laptop is 1.5 GB, we use the file set
by multiplying the files 36 times as Table 2. So the data set in this
experiment is about 43MB∗36 = 1548MB, which is a little bigger
than the laptop’s memory size.

Table 5 shows the result of this experiment. As shown in this
table, the latency and the resource cost is a little higher in the
environment with Wukong than without it. In the laptop, the
latency with Wukong is about 1.4 times that without Wukong,
while in MID this value comes to 2.3 times. This is mainly for the
following reasons. First, the disk plugin of Wukong uses ext3 as its
storage backend. So the time cost of the plugin would be almost
the same as that of the copy time in the no-Wukong situation.
Second, Wukong introduces several layers, which also increases
the latencies. Third, some strategies, such as compression and
some other ones, are designed for low bandwidth situations. In a
local copy, these may slow down the copying operations. Adding
these overheads up, the additional latency ofWukongwould come
to 0–2 times that without Wukong. However, as the bandwidth
to the Internet is always far smaller than that of the local disk,
the additional latency will become negligible when the backend
service is changed from a local disk to some service on the Internet.
For example, in our experiments, the total overhead caused by
Wukong in the laptop is about 42 s. It costs about 42 s/36 ≈ 1.2 s
for each 43 MB dataset. This is a negligible overhead.

H. Mao et al. / J. Parallel Distrib. Comput. () – 11

Table 6
Throughput and average resource consumption of Wukong.

Copy from remote service Copy to remote service
Environment Laptop Laptop MID Laptop Laptop MID

ADSL 3G 3G ADSL 3G 3G

Throughput (kB/s) 179.11 48.93 80.68 66.82 16.92 17.99
Average CPU (%) 0.38 0.01 3.5 0.24 0.036 2.06
Average memory (kB) 6761 5412 6712 12700 6711 11066

Fig. 10. Computation time of the compression overhead.

4.6. Throughput and resource cost

In this section, we will evaluate the throughput and the system
resource (cpu and memory) consumption in the environment
shown in Fig. 7.

Wukong easily transfers files from one remote service to
another; it copies files one by one from one remote service to local
disk and then copies them to the other service. In order to see
this process clearly, we perform the experiments by evaluating
the processes of copying files from a remote service to local disk
(download) and copying files to a remote service from local disk
(upload) separately. The system resource consumption is captured
by the Linux command top. We averagely sampled 200 points
for each process of the experiments in three environments laptop
+ adsl, laptop + 3g, and MID + 3g. Both the CPU and memory
consumption information are recorded.

We evaluate the throughput and resource consumption with
the files shown in Table 2. Table 6 shows the throughput and the
average consumption in our experiment platform. From the result,
Wukong achieves an acceptable throughput of 179.11 kB/s (35% of
the ideal bandwidth) in an ADSL environment and 80.68 kB/s (20%
of the ideal bandwidth) under a countryside EVDO 3G network.
As the upload link bandwidth is much smaller than the download
link bandwidth, the performance of copying to a remote service
is smaller compared to the performance of download. The reason
why the throughput of Laptop + 3G and MID + 3G is only about
20% of the ideal bandwidth is that our 3G network is a countryside
EVDO, and the signal is always weak and unstable. Meanwhile, as
the total transfer size stays the same, as the throughput increases,
the system takes shorter amounts of time to transfer the data.

In addition, we monitored the system resource consumption
at the same time as recording the throughput. Fig. 10(a) shows
the CPU ratio that Wukong uses at the sampled timestamps. The
memory consumption is shown in Fig. 10(b).

As Fig. 10(a) shows, the CPU consumption of MID+3G is always
higher than those of the other two. This is mainly because the
CPU frequency of MID is 667 MHz, while that of the laptop is
2.33 GHz. Although the tasks are the same and they do the same
computation for compression and other actions, the MID needs
a relative higher CPU consumption ratio than that of the laptop.
However, as the average value of CPU ratio in Table 6 shows, the
average consumption of the MID is only about 3.5% for download
and 2.06% for upload. This resource consumption is negligible.

In Fig. 10(a) and (b), there are several peak points whose values
aremuch larger than the other points. In order to seewhat happens
with these timestamps, we look into the details of the data transfer
process, and we find that the peak points of the CPU ratio reside in
the times when the system needs a lot of compression, and those
of the memory consumption reside in the times when the system
is processing the big files.

From the results of our experiments, we can find that the pro-
totype systemhas acceptable performance and resource consump-
tion. It isworth noting thatWukong improves the usability of cloud
services significantly, although a (negligible) overhead is intro-
duced.

4.7. Performance comparison

In this section, we evaluate Wukong by comparing with S3FS,
which is also a user space file system. S3FS is used to treat the
remote Amazon S3 service as a local resource and operate on
the files in AS3 as local files. We also compare Wukong and
S3FS with a method without Wukong, namely a method which
downloads/uploads files from/to the Amazon S3 service with the
http connection using the python library offered by Amazon. First,
we compare them by putting files from a client to the Amazon
S3 service, copying files from local disk to remote service both
with Wukong and S3FS, and also directly uploading the files with
the AS3 uploading APIs. Second, we evaluate the performance of
getting files from the Amazon S3 service to local disk by copying
files both with Wukong and S3FS, and also downloading the files
with the API that Amazon S3 provides. To fairly compare the
performance,we do not use the strategies such as compression and
encryption in these experiments.

The experiments were done with the same dataset shown in
Table 2. To demonstrate the adaptivity under different network
environments, we conducted our experiments in two different
network environments: ADSL with 2 Mbps and the EVDO 3G
connection.We found that the performance underMID and Laptop
share a similar performance trend. Thus we mainly focus our
experiments on the environment of a laptop under 3G and ADSL
connections.

Table 7 shows the results of the comparison between Wukong,
S3FS, and without Wukong. As the results show, the direct
download and upload throughput are about 105.54 and 59.35 kB/s

12 H. Mao et al. / J. Parallel Distrib. Comput. () –

Table 7
Comparison between Wukong, S3FS, and without Wukong (w/o for short).

ADSL 2M EVDO 3G
Wukong S3FS w/o Wukong S3FS w/o

Up (kB/s) 51.81 39.88 59.35 27.53 37.63 42.90
Down (kB/s) 102.04 85.29 105.54 67.57 51.28 75.09

under the ADSL, and about 75.09 and 42.90 kB/s under the EVDO
3G environment. They are smaller than the ideal download and
upload bandwidth due to the disturbing of the environment. Also,
as shown in the table, the download throughput of Wukong under
the 2 Mbps ADSL is about 102.04 kB/s, and it comes to about 67.57
and 27.53 kB/s under the EVDO 3G environment. The download
throughput of S3FS is about 85.29 kB/s and the upload throughput
is about 39.88 kB/s under the ADSL environment, and comes to
about 51.28 kB/s under the EVDO 3G.

From the results, we can see that Wukong achieves a per-
formance of near the direct download and upload speeds. And
compared to the S3FS, Wukong outperforms it by about 20% for
downloading, and by about 10% for uploading under the ADSL en-
vironment. By comparison, we found that Wukong has several ad-
vantages over S3FS. First it has a better performance than S3FS in
terms of throughput. Second, it provides more interesting func-
tions, such as service integration, participatory sharing, and het-
erogeneous service support. Compared to the without-Wukong
method, we can find that the overhead of Wukong is proved to be
negligible.

5. Potential Wukong based applications

With the SAL’s mashup, Wukong can be used as a platform
to develop different applications for multiple purposes. In this
section, we present two potential Wukong based applications,
service integration, and participatory sharing, to show the potentials
of Wukong.

Service integration. Users always use multiple types of services
in order to satisfy their common requirements. They may use
Google Docs to backup the documents and slides, use Picasa to
save the pictures, and use Amazon S3 to store some files. A system
that supports only one special service would not enable our users
to access resources conveniently. Since different service providers
always offer different public APIs, users have to pay attention to
the access method of the services.

Wukong can be used to integrate different services, mash them
up, and present a uniform interface with high usability to the users
who operate on these services. To implement such a service, first,
users should assign the plugins for the services on the deployed
device, so that, the application can interact with the special service
fluently. We have implemented several plugins in our prototype
system, e.g., Google Docs, Picasa, and Amazon S3. Then, Wukong
use its configuration file to set the map between special service
and its plugin. After the mapping is assigned, Wukong can present
a uniform, POSIX compliant file system interface for the integrated
services to the users.

Participatory sharing. Social networking has gradually outpaced
emails as the major communication tool for human beings, and
its use is still growing [44,25]. Services such as Facebook, Twitter,
and Google Plus, are increasingly popular. There is more than one
place for Internet users to post their current status, to express their
feeling, and so on. They always have to manage several clients to
make all the friends both on Facebook and Twitter be notified,
but not only their friends on Facebook or only those following on
Twitter. Besides, in some situations, it is not very easy for the social
network user to describe what happened: words cannot express
the surrounding feelings. But if we can record the voice or sound at

thatmoment, and picture the situation,more information is shared
than if only words are used. For example, when we participate
in a party, we usually do not have much time to type the words
to express our happiness, but if we can record the sounds and
picture the scenario, it will not cost much time, and much more
information is included. Nowadays, cameras and voice recorders
are de facto part of the configuration of many smartphones, so we
canuse the camera application and the voice recorder on the device
to snapshot the exciting moment, and save them inWukong; then
Wukong uses a plugin to publish thesemultimedia files onto social
networks (e.g., share a short URL on Twitter, a thumb on Facebook,
with a voice control icon to play the sound recorded).

For such application, the social network service API, e.g., Face-
book API, Twitter API, is needed for implementing the plugin. As
described in Section 3.5, the put, delete, query, and get opera-
tions are recommended to be implemented. For example, when
a user wants to post a new sharing, Wukong uses put to interact
with the social network service, and posts content on the service.
After the plugins are implemented, Wukong knows how to com-
municatewith the social network service. Then the followingwork
is to tell Wukong which directory should be managed. As soon as
the user creates a file in the managed directory, Wukong automat-
ically posts the content to the remote service. This can be done by
mounting the Wukong service at a local directory. When the local
directory is assigned, it becomes the Wukong managed directory.
After all of these are done, what the user needs to do is just taking
a snapshot of the moment, and stores them in the Wukong man-
aged directory. In this way, Wukong calls the proper plugin, and
the plugin will automatically post a new thread on the social net-
work service according to the content of the file in the managed
directory.

6. Related work

Wukong shares its goals with several recent efforts aimed
at simplifying the data management for cloud service [1]. We
categorize related research into two groups as cloud storage
service clients and platforms, and Network and distributed file
systems.

Cloud storage service clients and platforms. Using a cloud storage
service client is quite a straightforward and common way for data
management on the services, since most of the clients can be
easily obtained from the service providers. Dropbox [12] is a cross-
platform cloud based storage application and service. The service
enables users to store and sync files online and between computers
and share files and folders with others. Syncplicity [38] is a similar
service provided by Syncplicity Inc. Besides, Google gives Internet
users the ability to store any type of data on their Google Docs
service, and Memeo publishes Memeo Connect, which is a client
to manage the Google Docs. Also, there are several cloud service
platforms which are very usable and well known. MobileMe [28]
is a collection of online services and software offered by Apple Inc.
Actually it is a service platformwhich allows users tomanage their
data, mail, calendar, address book, and other aspects ubiquitously.
Similar to MobileMe, Live Mesh [27], a data synchronization
system from Microsoft, allows data sharing and synchronization
across multiple devices. The service clients and platforms provide
the users a great way to manage the services and make their
world in sync. However, they are not very suitable for situations
which involve complex operations. Wukong implements POSIX
compliant file system interfaces, so that the applications on the
client deployed with Wukong can transparently use the resources
on the service. This would be preferred for most users, especially
for those whose devices are poor in terms of user interface.

Network and distributed file systems. These have been exten-
sively studied in the past. The Andrew file system (AFS) [19] is

H. Mao et al. / J. Parallel Distrib. Comput. () – 13

a distributed networked file system which uses a set of trusted
servers to present a homogeneous, location-transparent file name
space to all the client workstations. Coda [33] descends from AFS.
It has many great features. It keeps working even when the net-
work disconnects or has aweak connection [20]. It has high perfor-
mance through client-side persistent caching, and so on. LBFS [29]
is a network file system designed for low bandwidth networks.
It exploits similarities between files or versions of the same file
to save bandwidth. Cegor [35] proposes building an adaptive dis-
tributed file system which provides the ClosE and Go, Open, and
Resume (Cegor) semantics across heterogeneous network connec-
tions, ranging from high bandwidth local area networks to low
bandwidth dial-up connections. It provides lots great ideas on the
key techniques. Several other works in this area, such as Zebra
[17], GmailFS [16], Cumulus [41], and S3FS, cover similar regions.
Although these works on diverse aspects, including network chal-
lenges, cache management, offline operations, and so on, have
proposed and studied the system performance, usability and avail-
ability,most of the file systems are based on a special server. For ex-
ample, Coda needs the support of Coda Server, and S3FS or Cumu-
lus need the Amazon S3 service, but if only the ftp service is avail-
able, Coda and Cumulus will not be usable. Wukong is a file service
supporting heterogeneous backend services by using a storage ab-
straction layer. Even if the backend service is new, it is easy for
Wukong to implement a new plugin for this service, and make it
support the new service.

7. Conclusions

We have presented the Wukong, a cloud-oriented file service
for mobile devices. Wukong characterizes itself with several
unique features.

• It provides a standard POSIX compliant interface so that existing
applications can be deployed on this service directly orwith few
modifications.
• It supports multiple heterogeneous storage services, and has a

capability to support new or unforeseen services.
• It introduces negligible overhead while providing an easy way

to access cloud services in mobile devices.

With these features, we envision that Wukong will definitely
facilitate the wide deployment of services on mobile devices.
It is worth noting that Wukong is just an initial step; several
interesting directions might be pursued for cloud-oriented file
services onmobile devices: first, enhancing the storage abstraction
layer to support more rich services; second, reducing the extra
overhead, e.g., latency and throughput; finally, detailed workload
characterization and analysis of mobile cloud services.

Acknowledgments

The authors would like to thank the anonymous reviewers for
their comments and kindly suggestions. This work is supported
by the National Natural Science Foundation of China under Grant
No. 60736013, Grant No. 61025009, and Grant No. 60903040.

References

[1] D. Abadi, Data management in the cloud: limitations and opportunities, Data
Engineering (2009) 3.

[2] S. Adve, K. Gharachorloo, Shared memory consistency models: a tutorial,
Computer 29 (12) (1996) 66–76.

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, et al., Above the clouds: a Berkeley view of cloud
computing, EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-28.

[4] Amazon S3, http://status.aws.amazon.com/s3-20080720.html.

[5] Using the REST API, http://docs.amazonwebservices.com/AmazonS3/latest/
index.html?RESTAPI.html.

[6] M. Blaze, A cryptographic file system for Unix.
[7] D. Bovet, M. Cesati, A. Oram, Understanding the Linux Kernel, O’Reilly &

Associates, Inc. Sebastopol, CA, USA, 2002.
[8] D. Boyd, N. Ellison, Social network sites: definition, history, and scholarship,

Journal of Computer Mediated Communication—Electronic Edition 13 (1)
(2007) 210.

[9] Q. Brown, F. Lee, D. Salvucci, V. Aleven, Interface challenges formobile tutoring
systems, in: Intelligent Tutoring Systems, Springer, pp. 693–695.

[10] D. Chappell, A short introduction to cloud platforms, Microsoft.
[11] B. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.

Jacobsen, N. Puz, D. Weaver, R. Yerneni, PNUTS: Yahoo!’s hosted data serving
platform, Proceedings of the VLDB Endowment 1 (2) (2008) 1277–1288.

[12] Dropbox, http://www.dropbox.com.
[13] P. Eaton, S. Weis, Examining the security of a file system interface to

oceanstore.
[14] Google Docs, http://docs.google.com.
[15] S. Ghemawat, H. Gobioff, S. Leung, The Google file system, ACM SIGOPS

Operating Systems Review 37 (5) (2003) 43.
[16] GmailFS: GMail virtual file system, http://richard.jones.name/googlehacks/

gmail-filesystem/gmail-filesystem.html.
[17] J. Hartman, J. Ousterhout, The Zebra striped network file system, ACM

Transactions on Computer Systems (TOCS) 13 (3) (1995) 274–310.
[18] J. Heiser, M. Nicolett, Assessing the security risks of cloud computing, Gartner

Report.
[19] J. Howard, et al., An overview of the andrew file system, in: Proceedings of the

USENIX Winter Technical Conference, Citeseer, 1988, pp. 23–26.
[20] L. Huston, P. Honeyman, Disconnected operation for AFS, in: Mobile

& Location-Independent Computing Symposium on Mobile & Location-
Independent Computing Symposium, USENIX Association, 1993, p. 1.

[21] T. Hu, B. Thai, A. Seneviratne, Supporting mobile devices in Gnutella file
sharing network with mobile agents, in: ISCC03: Proceedings of the Eighth
IEEE International Symposium on Computers and Communications, Citeseer,
p. 1035.

[22] M. Jensen, J. Schwenk, N. Gruschka, L. Iacono, On technical security issues in
cloud computing, in: Proceedings of the 2009 IEEE International Conference
on Cloud Computing, IEEE Computer Society, 2009, pp. 109–116.

[23] P. Keleher, A. Cox, W. Zwaenepoel, Lazy release consistency for software
distributed shared memory, in: Proceedings of the 19th Annual International
Symposium on Computer Architecture, ACM, 1992, pp. 13–21.

[24] J. Kistler, M. Satyanarayanan, Disconnected operation in the Coda file system,
ACM Transactions on Computer Systems (TOCS) 10 (1) (1992) 3–25.

[25] H. Kwak, C. Lee, H. Park, S. Moon, What is twitter, a social network or a news
media? in: Proceedings of the 19th International Conference on World Wide
Web, WWW’10, ACM, 2010, pp. 591–600.

[26] J. Landay, T. Kaufmann, User interface issues in mobile computing, in:
Workstation Operating Systems, 1993. Proceedings, Fourth Workshop on,
1993, pp. 40–47.

[27] Live Mesh, http://en.wikipedia.org/wiki/Live_Mesh.
[28] MobileMe, http://en.wikipedia.org/wiki/MobileMe.
[29] A. Muthitacharoen, B. Chen, D. Mazieres, A low-bandwidth network file

system, in: Proceedings of the eighteenth ACM symposium on Operating
systems principles, ACM, 2001, pp. 174–187.

[30] A. Pasick, File-sharing network thrives beneath the radar, London Reuters.
[31] G. Perrucci, F. Fitzek, G. Sasso, W. Kellerer, J. Widmer, On the impact of 2G and

3G network usage for mobile phones battery life, European Wireless, 2009.
[32] T. Raman, Cloud computing and equal access for all, in: Proceedings of the 2008

International Cross-disciplinary Conference onWebAccessibility (W4A), ACM,
2008, pp. 1–4.

[33] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, D. Steere, Coda:
a highly available file system for a distributed workstation environment, IEEE
Transactions on Computers 39 (4) (1990) 447–459.

[34] W. Shi, Performance optimization of software distributed shared memory
systems.

[35] W. Shi, H. Lufei, S. Santhosh, Cegor: an adaptive, distributed file system
for heterogeneous network environments, in: Proceedings of the tenth
International Conferences on Parallel and Distributed Systems.

[36] Smart Q5, http://www.smartdevices.com.cn/index.html.
[37] L. Sotto, B. Treacy, M. McLellan, Privacy and data security risks in cloud

computing, Electronic Commerce & Law Report.
[38] Syncplicity, http://syncplicity.com.
[39] M. Szeredi, et al. FUSE: Filesystem in userspace, Accessed on.
[40] W. Tan, F. Lam, W. Lau, An empirical study on 3G network capacity and

performance, in: IEEE INFOCOM 2007. 26th IEEE International Conference on
Computer Communications, 2007, pp. 1514–1522.

[41] M. Vrable, S. Savage, G. Voelker, Cumulus: filesystembackup to the cloud, ACM
Transactions on Storage (TOS) 5 (4) (2009) 1–28.

[42] S. Weil, S. Brandt, E. Miller, D. Long, C. Maltzahn, Ceph: a scalable, high-
performance distributed file system, in: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI), 2006.

[43] K. Wu, H. Tan, Y. Liu, J. Zhang, Q. Zhang, L. Ni, Side channel: bits over
interference, in: Proceedings of the Sixteenth Annual International Conference
on Mobile Computing and Networking, ACM, 2010, pp. 13–24.

[44] M. Zuckerberg, 500 Million stories, http://blog.facebook.com/blog.php?post=
409753352130.

http://status.aws.amazon.com/s3-20080720.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://docs.amazonwebservices.com/AmazonS3/latest/index.html?RESTAPI.html
http://www.dropbox.com
http://docs.google.com
http://richard.jones.name/googlehacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/googlehacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/googlehacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/googlehacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/googlehacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/googlehacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/googlehacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/googlehacks/gmail-filesystem/gmail-filesystem.html
http://en.wikipedia.org/wiki/Live_Mesh
http://en.wikipedia.org/wiki/MobileMe
http://www.smartdevices.com.cn/index.html
http://syncplicity.com
http://blog.facebook.com/blog.php?post=409753352130
http://blog.facebook.com/blog.php?post=409753352130
http://blog.facebook.com/blog.php?post=409753352130
http://blog.facebook.com/blog.php?post=409753352130
http://blog.facebook.com/blog.php?post=409753352130
http://blog.facebook.com/blog.php?post=409753352130
http://blog.facebook.com/blog.php?post=409753352130
http://blog.facebook.com/blog.php?post=409753352130
http://blog.facebook.com/blog.php?post=409753352130

14 H. Mao et al. / J. Parallel Distrib. Comput. () –

Huajian Mao is currently a Ph.D. student at the School
of Computer Science and Technology of the National
University of Defense Technology. His current research
focuses on distributed file systems, and mobile and
cloud storage. He received his B.S. degree in 2007 from
Zhejiang University and his M.S. degree in 2010 from the
National University of Defense Technology in China, both
in Computer Science.

Nong Xiao is a Professor of Computer Science at the
National University of Defense Technology. He received
his B.S. and Ph.D. degrees from the National University of
Defense Technology. His recent research focuses on grid
and cloud computing, storage systems, and architecture.
He has chaired several conferences and workshops, and
served on technical program committees of numerous
international conferences.

Weisong Shi is an Associate Professor of Computer
Science at Wayne State University. He received his B.E.
from Xidian University in 1995, and his Ph.D. degree
from the Chinese Academy of Sciences in 2000, both in
Computer Engineering. He has authored two books, and
published over 100 publications, cited more than 1000
times. He is currently serving on the editorial board of the
Journal of Computer Science and Technology (JCST) and
International Journal of Sensor Networks. He has served
as a guest co-editor of several top journals, including IEEE
Internet Computing Magazine and Journal of Parallel and

Distributed Computing.

Yutong Lu is a Professor of Computer Science at the
National University of Defense Technology. She received
her B.S. and Ph.D. degrees from the National University
of Defense Technology. Her research focuses on high-
performance computing, parallel file systems, and parallel
system software.

	Wukong: A cloud-oriented file service for mobile Internet devices
	Introduction
	Our approach

	Wukong design
	Assumptions and overview
	File service components
	Storage abstraction layer
	Backend services
	Security

	Implementation and optimization
	Lease lock file based consistency protocol
	File type based adaptive compression
	Data prefetching
	Fake service based offline mode
	Plugin implementation example
	A walk through

	Performance evaluation
	Functions
	LoCs of Wukong plugins
	Evaluation on cache
	Compression
	Wukong overhead analysis
	Throughput and resource cost
	Performance comparison

	Potential Wukong based applications
	Related work
	Conclusions
	Acknowledgments
	References

