
SEE: A Service Execution Environment for Edge Services

Vikrant Mastoli, Valmik Desai, and Weisong Shi

Mobile and Internet System Group
Department of Computer Science

Wayne State University
{vikrant,valmik,weisong}@wayne.edu

Abstract

The increasing mismatch between the low-bandwidth, re-
source characteristics of wireless mobile devices and the
high-bandwidth expectations of many content-rich services
drives the demand for deploying content-oriented services
along the data path between the end users and the content
servers. In this paper, we argue that the idea of extending ex-
isting caching proxies to support these services is promising.
This suggests extending the proxy caches for more than just
their original intended purpose, that is the creation of an ex-
ecution environment within them, which allows the execution
of services locally and remotely.

In this paper we describe the design, implementation and
evaluation of a Service Execution Environment (SEE) in the
context of the CONCA proxy cache. We also compare the
performance of Simple Object Access Protocol (SOAP) and
Internet Content Adaptation Protocol (ICAP) by using them
as call-out protocols between SEE and the service providers.

1 Introduction

The role of the Internet has undergone a transition from
simply being a data repository to one providing access
to a plethora of sophisticated content-oriented network-
accessible services. These services could include access con-
trol to block inappropriate sites, virus scanning, anonymiza-
tion services to protect privacy, language translation, addition
of region-specific information, image resizing and image fil-
tering to reduce the quality of images and thereby shorten
download time. Additionally, these services are increasingly
being accessed by mobile consumers using end devices such
as PDAs, Pocket/Handheld PCs, cellular phones and two-
way pagers. The combination of these two trends holds out
the possibility of providing a user with seamless, ubiquitous
access to a service irrespective of the user’s end device and
location.

Although several infrastructures have been proposed [5,

6, 7, 15] to do this, there has not been a widespread use of
them due to the concerns about their deployability, perfor-
mance, and scalability. Central to each of these concerns are
the questions such as where to deploy these services, how
to integrate them within the existing data flows, and who
would select the services. Most of the previous works ne-
glect these questions and focus on the infrastructure support-
ing these services. Our argument that the idea of extending
existing caching proxies to support these services is promis-
ing comes from the fact that this not only allows the end-
user to enable services that allow personalization, guarantee
privacy and security for all communication but also at the
same time, it presents a business opportunity for ISP’s and
content provider’s to provide these value-added services to
their clients. Also in the infrastructure the service selection
should be separated from the execution of services, and most
importantly, it should be able to use different protocols to ex-
ecute the services remotely. Based on these arguments, we
designed, implemented, and evaluated a Java-based service
execution environment to support service execution both lo-
cally and remotely. The major contributions of this paper
include:

• A novel design of a Service Execution Environment
(SEE), having three unique features: (1) a secure web
interface for service registration, (2) separation of ser-
vice selection and rule generation, and (3) support for
multiple call out protocols.

• Comparison of the call-out protocols: Internet Content
Adaptation Protocol (ICAP) [8] and Simple Object Ac-
cess Protocol (SOAP) [13] from the perspective of their
performance, codeability, and scalability.

• To the best of our knowledge, our work is the first public
experimental platform which supports multiple protocol
bindings.

The rest of the paper is structured as follows: Section 2
explains CONCA cache. Section 3 provides the objectives

of SEE and a description of the design of SEE. Section 4 de-
scribes the implementation of SEE. Section 5 presents the re-
sults of the performance evaluation. Related Work and con-
cluding remarks are listed in Section 6 and Section 7 respec-
tively.

2 CONCA Proxy Cache
CONCA is a proposed edge architecture for the efficient

caching and delivery of dynamic and personalized content to
users who access this content by using diverse devices and
connection technologies [10]. CONCA attempts to exploit
reuse at the granularity of individual objects making up a
document, improving user experience by combining caching,
prefetching, and transcoding operations as appropriate.

To achieve its goals, CONCA relies on additional infor-
mation from both servers and users. All content supplied
by servers in CONCA architecture is assumed to be associ-
ated with a “document template” which can be expressed by
formatting languages such as XSL-FO [14] or Edge Side In-
cludes (ESI) [12]. Given this information, CONCA node can
efficiently cache dynamic and personalized content by stor-
ing quasi-static document templates and using the sharable
objects among multiple users. Moreover, based on the pref-
erence information provided by users, a CONCA cache node
delivers the same content to different users in a variety of for-
mats using transcoding and reformating. The work on SEE
is a part of the ongoing work on CONCA project.

3 Service Execution Environment
3.1 Objectives

Our service execution environment is designed with
the following features in mind: secure, scalable, high-
performance and ease-of-use. We demonstrate these require-
ments by describing how existing architectures [3, 11] do not
prove to be as efficient as intended. First, Open Pluggable
Edge Service (OPES) [11] framework requires both content
providers and content consumers to use IRML [4] to specify
the rules for service execution on some content. Although it
provides a standard interface, it is unrealistic to ask content
providers or end users to write such sort of complex rules to
employ some personalized services. Furthermore, because of
the prevalence of web services, it is impossible to ask service
providers to support only one protocol.

Our approach to address the above problems depends on
the following four components: (1) a secured web interface
for service registration, (2) a simple Web interface that al-
lows the authorized parties to select the services they desire
as well as choose the providers for the selected services, (3)
supporting multiple protocol bindings to make the execution
environment more flexible, (4) providing a feedback-based
content integrity mechanism to allow both clients and content
providers to check the correctness of content after applying
the content-oriented services. In this paper we discuss the
former three points. Figure 1 shows the logical design of the

service execution environment.

Cache
Rule

Engine

Client

SEE
Content

Management

CONCA Node

Web Server

Request
Handler

Service
Manager

Code
Repository

Request
Dispatcher

(ICAP/SOAP)

ClassLoader

Third-party Service Providers
(ICAP, SOAP)

Register Remote
Service Call 1 4

32

Service Execution Environment

P
ro

te
ct

ed
 R

un
-T

im
e

E
nv

iro
nm

en
t

Figure 1. The architecture of service execution
environment.

3.2 User Interface
The most important feature of our design is its simplic-

ity. We create a web login for user’s that would authenticate
them and then present a webpage outlining the current ser-
vices available and the names of all service providers. We
ensure that this webpage accurately reflects the most recent
list of active services by creating it dynamically when the
user logs in. The user can specify the rules for a service on
the web interface by using regular expressions.

3.3 Service Manager
To handle different services with differing parameters it

is important that the task of managing services be assigned
to a dedicated module. This is done by theService Manager
shown in Figure 1. It is used to handle the details of all the
services that are currently deployed. It ensures that the back
end always accurately reflects the services that are currently
active. TheServiceRegistryhandles the registration of ser-
vices by the service provider through Java RMI. The entire
service registration is done securely using SSL.

4 Implementation

Our prototype implementation of SEE is based on the
architecture in Figure 1. We have deployed three services
on the proposed architecture and used a basic proxy server
that has no caching capability. We support two protocols
that serve as call-out protocols, ICAP and SOAP. The proxy
server and the architectural modules have been implemented
in the Java programming language. A detail explanation of
the implementation of the modules in SEE can be found in

Image ProviderA,www.a.com , ICAP, Remote
Resizer ProviderB, localhost:8080 , SOAP, Local, ImageResizer

ProviderC, www.c.net , ICAP, Remote
Virus ProviderA, www.a.com , ICAP, Remote, arguments(optional)

Scanning ProviderC, www.c.net , ICAP, Remote
ProviderD, www.d.com , SOAP, Remote, checkandremove()

Table 1. An example structure of service management in SEE.

the technical report version of this paper [9].
We implemented the ICAP and SOAP clients in Java and

placed them in theRequest Handlermodule of SEE. The
ICAP client creates ICAP requests for one of the two modes:
REQMOD (Request Modication) and RESPMOD (Response
Modification) and sends it to the ICAP server for processing.
We implemented an ICAP server in Java for each service.
The SOAP client has been implemented by using the Apache
AXIS Java API [1]. We used Apache Axis implementation
of SOAP as our SOAP server and placed the Java files of the
services into the Axis webapp directory, giving them the.jws
extension.

5 Performance Evaluation
5.1 Environment Setup

The performance evaluation was done by setting up an
emulated environment consisting of three machines, which
includes a web server, on a Ultra-Sparc2 200MHz with
512MB memory; The SEE, on a Pentium-4 (2.2GHz) desk-
top with 512MB memory; The service providers, on a differ-
ent Pentium-4 (2.2GHz) desktop with 512MB memory. All
these machines are in a local area network connected with a
100Mbps switched Ethernet. This is to avoid the effects of
the external traffic and network congestion. Also to avoid
the effects like local caching of a Web browser and the In-
ternet traffic, all requests to SEE were generated by a client
program. The client program creates requests for a fixed web
page, present in the web server and consisting of one html file
(30KBytes), and five images (34KBytes each). Each value is
the mean of 20 runs.

Figure 2 lists the detailed timeline of a request and
reply between a client, SEE, origin web server and service
provider. Based on this figure, the overhead that we are
interested in are defined as follows:

T(Response) = T16 - T1

T(Rule Engine) = (T15 - T14)+(T5 - T4)+(T3 - T2)
T(Origin Server) = T4 - T3

T(ICAP/SOAP Client) = (T7 - T6)+(T13 - T12)
T(ICAP/SOAP Server) = (T9 - T8)+(T11 - T10)
T(Service) = T10 - T9

T(Network) = (T8 - T7)+(T12 - T11)

5.2 Three Services
We used three services,Image Resizer (IR), Language

Translation (LT)and Virus Scanning (VS). The IR service

Client

Proxy with SEE

Server

Service Provider

Rule
Processing

ICAP/SOAP

ICAP/SOAP

Service

T1

T16

T2

T5

T3

T4T15

T6

T7

T8

T9T10

T11

T12

T13

T14

Figure 2. The detailed timeline of a request and
reply.

processes the image bytes and reduces the image size by scal-
ing its height and width. It has been implemented in Java. It
is aimed at the users having limited bandwidth and to shorten
the download time for large JPEG images. TheLT service
has been implemented by a wrapper, which uses the language
translation service provided by [2]. TheVSservice has been
implemented using the virus scanning service available on
www.openantivirus.com . The reason we choose these
three services is the diversity of their input/output ratio. The
input of LT is a URL but its response is almost of the same
size as that of the original content, the input ofVSis the orig-
inal content but its response is either ‘yes’ or ‘no’, and the
input of IR is the original image but its response is a scaled
form of the original image. The execution times obtained for
these three services on the fixed web page are IR: 345ms, VS
(text): 177ms, VS (image): 133ms and LT: 7858ms.

5.3 Overhead of SEE
We first evaluated the overhead of SEE. Figure 3 com-

pares the overhead of SEE in five different cases. The read-
ings are independent of the call-out protocol being used to
send the request to the services. In the figure,SEE-Disabled
represents the case when SEE is not enabled,SEE-0repre-
sents the case when there are no services in the user’s prop-
erties file, i.e., the properties file of the user is empty,SEE-
IR represents the case when IR service is invoked on the re-
quest,SEE-VSrepresents the case when VS is invoked on
the request, andSEE-IR-VSrepresents the case when IR and
VS services are invoked on the request. In comparison to the

overhead ofSEE-Disabled, the overhead ofSEE-0is more by
136%. We ascribe this to the inherent overhead of rule pro-
cessing (which includes reading a file from disk), and should
be optimized in the future. From the same figure, we can see
that the average processing overhead of each rule is around
30ms.

93.6

71.273.6

66.8

28.8

0

10

20

30

40

50

60

70

80

90

100

SEE-Disabled SEE-0 SEE-IR SEE-VS SEE-IR-VS

S
E

E
 O

ve
rh

ea
d

 (m
s)

Figure 3. The execution overhead of service
execution environment.

0

200

400

600

800

1000

1200

1400

1600

1800

IR
ICAP

IR
SOAP

LT
ICAP

LT
SOAP

VS
ICAP

VS
SOAP

O
ve

rh
ea

d
B

re
ak

do
w

n
(m

s) Tr Ts Tp Tn

Figure 4. Breakdown of overhead of ICAP (left)
and SOAP (right).

5.4 Overhead of ICAP and SOAP Protocols
The bars of each group (based on the three services) in

Figure 4 show the breakdown of the overhead of processing
and communication, whereTr is the processing overhead of
the Rule Engine,Ts is the request and reply time between the
proxy cache and origin server,Tp represents the ICAP/SOAP
Client overhead, andTn is the ICAP/SOAP server overhead.
We found that the overhead of the Rule Engine is indepen-
dent of the call-out protocol and the service, which reflects
that the design of SEE is stable. However we found a large
overhead due to the ICAP/SOAP client and also a large vari-
ation in their overhead for different services. On comparing

the overheads of ICAP and SOAP clients, we found that in
most cases ICAP client outperforms the SOAP client.
Table 5.3 provides the user-perceived latency when single
and combination of services are invoked over ICAP and
SOAP. The latency is defined as the difference betweenT16

andT1 in Figure 2.SEE-0depicts the case when the proper-
ties file of the user is empty. We compared the latencies ob-
tained for each service and combination of services with the
SEE-0case, and made the following observations: (1) third
party services may not always be good for us; (2) if the ser-
vice is running far away from the data flow, the performance
may become 7 times slower. Here our experiment supports
the view that to obtain a good performance the service run-
ning on a remote machine should be as near as possible to
the service execution environment.

After comparing the latencies obtained for ICAP and
SOAP we found that there is not much difference in their
performance but deploying a service over SOAP is more eas-
ier than doing it over ICAP, this is true especially in case of
the legacy services. Based on the performance of ICAP and
SOAP we believe that a service should be invoked remotely
only if its a proprietary of someone or computing intensive.

5.5 Scalability Analysis

Our last concern of the service execution environment is
its scalability. We used a multithreaded client in Java, to em-
ulate 1, 2, 4 and 8 clients and send requests to the SEE. The
results of our evaluation are shown in Figure 5. Our obser-
vations from the figure are: (1) the user-perceived latency is
dominated by the service implementation, and on it being ex-
ecuted locally or remotely (as can be seen from the graph for
LT); (2) the overhead of SEE is almost independent of the
number of clients.

6 Related Work and Discussion

Our work was motivated by two related research works:
Open Pluggable Edge Services (OPES) [11] and distributed
content adaptation [6, 15].

In [11], IETF’s Open Pluggable Edge Service working
group proposes an environment to provide value-added ser-
vices to the end-users, which motivates our work. Our work
is an implementation of a service execution environment and
the performance evaluation of ICAP and SOAP. Beck and
Hofmann in [4] proposed a rule specification language for
intermediary services. But in this paper we argue that the
service execution environment should provide a simple web
interface that allows authorized parties to select the services
they desire based on the name of the services. In [3], Beck
et al proposed a service execution environment prototype in
which the rule engine processes all the rules for each web
transaction, which is different from our implementation.

There is a large amount of prior work on content adapta-
tion architectures, which allow the construction ofnetwork-
aware access pathsfrom application-specific component

Protocol SEE-0 IR VS (html) VS (image) IR+VS LT LT + VS
ICAP 387.7 990.2 665.6 772.2 1362.9 8180.8 8321.6
SOAP 387.8 1220.1 942.2 1046.6 1311.2 11062.2 7802.4

Table 2. Benefit of ICAP and SOAP protocol (in milliseconds).

0

5000

10000

15000

20000

25000

30000

35000

1 2 4 8

of clients

R
es

p
o

n
se

 T
im

e
(m

s) IR LT VS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 4 8
of clients

R
es

p
o

n
se

 T
im

e
(m

s)

IR LT VS

(a) (b)

Figure 5. Scalability analysis of SEE: (a) ICAP, (b) SOAP.

and the adaptation functionalities are conducted in multiple
places along the data path between content providers and
clients. In this paper, we believe that computing intensive or
proprietary Internet services should be executed in specific
places. Therefore, our work focus on the execution environ-
ment that support different remote call-out protocols, which
complements the previous work on content adaptation.

7 Conclusions and Future Work

This paper proposes a novel design and implementation of
a service execution environment, which distinguishes itself
from other work by its ability to support multiple protocol
bindings and the ease of rule specification. Further it allows
secure registration of services, as well as provides a simple
web interface to allow authorized clients to configure prefer-
ences. After comparing the latencies obtained for ICAP and
SOAP we find that there is not much difference in their per-
formance but deploying a service over SOAP is more easier
than doing it over ICAP, this is true especially in case of the
legacy services.

Our future work includes integrating SEE into the
CONCA proxy cache, optimizing the execution of multi-
ple services within one execution environment, providing
support for distributed service composition among multiple
SEEs. The code of SEE will be public available soon at
http://mist.cs.wayne.edu .

References
[1] Apache AXIS Group. Axis,http://ws.apache.org/

axis .

[2] Babel Fish Translation, http://www.
freetranslation.com .

[3] A. Beck and M. Hofmann. Enabling the internet to deliver
content-oriented services.Proc. of the WCW’01, June 2001.

[4] A. Beck and M. Hofmann. IRML: A rule specification lan-
guage for intermediary services, work in progress, Nov. 2001.

[5] A. Fox and et al. Adapting to Network and Client Varia-
tion Using Infrastructural Proxies: Lessons and Prespectives.
IEEE Personal Communication, Aug. 1998.

[6] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:
Composable, Adaptive Network Services Infrastructure.Proc.
of the USITS’01, pp. 135-146, Mar. 2001.

[7] S. D. Gribble and et al. The Ninja Architecture for Robust
Internet-Scale Systems and Services.Journal of Computer
Networks35(4), Mar. 2001.

[8] ICAP Protocol Group. ICAP: the internet content adaptation
protocol, work in progress, Feb. 2001.

[9] V. Mastoli, V. Desai, and W. Shi. SEE: a service execution en-
vironment for edge services. Tech. Rep. CS-MIST-TR-2003-
002, Department of Computer Science, Wayne State Univer-
sity, Feb. 2003.

[10] W. Shi and V. Karamcheti. CONCA: An architecture for con-
sistent nomadic content access.Workshop on Cache, Coher-
ence, and Consistency (WC3’01), June 2001.

[11] G. Tomlinson, R. Chen, and M. Hofmann. A model for open
pluggable edge services, work in progress, Nov. 2001.

[12] M. Tsimelzon, B. Weihl, and L. Jacobs. ESI language sepci-
fication 1.0, 2000,http://www.esi.org .

[13] W3C Consortium. Simple object access protocol (SOAP) 1.1,
2000,http://www.w3.org/TR/SOAP/ .

[14] W3C XSL Working Group, http://www.w3.org/
Style/XSL/ .

[15] M. Yavis and et al. Conductor: Distributed Adaptation for
complex Networks.Proc. of the HotOS VII, Mar. 1999.

