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ABSTRACT
The battery life of mobile devices is one of their most im-
portant resources. Much of the literature focuses on accu-
rately profiling the power consumption of device components
or enabling application developers to develop energy-efficient
applications through fine-grained power profiling. However,
there is a lack of tools to enable users to extend battery life on
demand. What can users do if they need their device to last for
a specific duration in order to perform a specific task? To this
extent, we developed BatteryExtender, a user-guided power
management tool that enables the reconfiguration of the de-
vice’s resources based on the workload requirement, similar
to the principle of creating virtual machines in the cloud. It
predicts the battery life savings based on the new configura-
tion, in addition to predicting the impact of running applica-
tions on the battery life. Through our experimental analysis,
BatteryExtender decreased the energy consumption between
10.03% and 20.21%, and in rare cases by up to 72.83%. The
accuracy rate ranged between 92.37% and 99.72%.

INTRODUCTION
The battery life of mobile devices is one of their most impor-
tant resources. However, due to battery size constraints, the
amount of energy stored in these devices is limited. Many
factors can impact battery life. Resource utilization by appli-
cations running on the platform and the number of powered-
on device components the platform can greatly impact battery
life. As a result, the platform’s power management layer can
change the processor frequency or suspend the hard disk in
response to utilization. In addition, it can change the device
components’ power states to an idle sleep state in an attempt
to reduce the power consumption.

There is much research on power profiling of device compo-
nents or energy profiling of applications in order to enable
application developers to debug their applications from an
energy-efficiency perspective. However, there is a lack of fo-
cus on the end user. What if a user needs the platform to last
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for a specific duration until a particular task is performed, but
the battery life is not enough? Can we guide users by giv-
ing them options to reach their goal? Will users be willing
to completely sacrifice some options in order to achieve their
goals? By considering the mobile device as a provider of a
collection of resources—similar to a cloud resource provider,
which enables users to reconfigure the platform in order to in-
clude only the needed resources in order to achieve their goals
and completely shut off everything else—then, yes, extending
the overall battery life of a mobile device in order to complete
a specific task will be possible. As a result, we developed
BatteryExtender, a user-guided tool for power management
of mobile devices. It can predict the impact of applications
and device components on a platform’s overall battery life
through minimal energy profiling thus minimizing the power
consumption overhead of the tool.

To this extent, we discuss related work and our motivation.
Then, we present background information followed by Bat-
teryExtender design and implementation. Then, we present
our evaluating followed by our conclusion and Future Work.

RELATED WORK
Increasing the battery life of mobile devices has been heav-
ily investigated by researchers. In order to reach this goal,
researchers have taken four different approaches.

Power-profiling models of hardware components of mobile
devices. Using external power-measurement tools, Carroll
and Heiser [4] analyzed the power consumption of smart-
phone components using a Data Acquisition system (DAQ).
Based on their analysis, the display, GSM module, graph-
ics accelerator/driver, and backlight were the most power-
consuming components. Dong et al. [6] also relied on ex-
ternal measurement tools in order to power profile the graph-
ical user interface on OLED displays. By only relying on
software-based techniques, both Maker et al. [12] and Jung
et al. profiled the power consumption of smartphone compo-
nents using the battery management unit (BMU).

Estimating energy consumption of applications to enable
developers develop energy-efficient applications. WattsOn
[14] allows developers to focus on the energy efficiency of
their code by mimicking the Windows Phone platform and
estimating the app’s energy consumption on the basis of em-
pirically derived power models made available by the smart-
phone manufacturer or OS platform developers. Likewise,
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Eprof’s [17] captures and accounts for the power usage of
the program entity in order to find the source code of energy
bugs. In addition, Pathak et al. [18] provide fine-grained
power modeling for smartphones using system call tracing
which account for components’ power based on their state
and their tail power, and then associate the values with the
application responsible for the power consumption.

Providing APIs for developers to either increase their ap-
plications energy efficiency or power profile it. Senergy was
developed by Kansal et al. [10]. It includes an API that can be
used by developers of context-aware applications in order to
enter latency, accuracy, and battery (LAB) requirements inde-
pendent of sensors and inference algorithms. Then, Senergy
attempts to meet developers’ LAB requirements. Another
framework example is SystemSens [7], developed with the
goal of monitoring usage of smartphones’ research deploy-
ment. It has a client-server model where the apps on smart-
phones (clients) send periodical information to the server.
Application developers can use the interface as a virtual sen-
sor of the framework and thus collect context and power uti-
lization data related to the application.

Providing users with power-profiling tools that highlight the
impact of running applications on the platform. Most of the
tools in this category rely on collective information to build
the energy consumption models. For instance, Carat [16] is
a tool that sends coarse-grained statistics to servers residing
in the cloud. Based on the data collected from the pool of
users, the tool can profile the application’s impact on battery
life and send notifications to users such as the best configura-
tion properties of their specific platform in order to increase
battery life while running a specific application. Carat also
notifies users about power-hungry apps and energy bugs.

Our research differs from the listed related work because we
don’t simply power profile the devices’ components; we also
use the information to enable the user to extend the battery
life by reconfiguring their device on the basis of our energy-
consumption prediction of each component, in addition to the
resources needed in order to satisfy the application require-
ment of resources. We also energy profile an application on
the basis of the platform’s energy and utilization counters.

MOTIVATION
Our motivation stems from two facts: The first is the lack
of research/tools that enable users to extend battery life on
demand as we have shown in related work section. In addi-
tion, we didn’t limit our related work research to academic
research, but we also surveyed current commercial applica-
tions related to battery life that target users. We found an
extensive amount of apps (free and paid) on Android and iOS
devices, such as Battery Booster, Battery Defender, Battery
Dr. Saver, Battery Extender, Battery Indicator, Battery Info,
Battery Monitor Pro, Top Battery, Battery Doctor, Battery Ex-
pert, Battery Life Pro, Battery Magic Elite, Battery Watch,
and Sys Lite. All these apps displayed the current battery level
and either gave an estimate of battery life based on general
use, such as “Audio Playback” or “Web Surfing” duration,
or displayed CPU and/or memory usage of apps and enabled
users to terminate them. Others showed battery drainage or

device temperature over time. However, none enabled the
user to precisely extend battery life for a specific time. Even
though they show battery duration during the execution of a
specific task such as “Video Playback time,” however, their
recommendations are general and not specific for a given app.
As a result, because apps of the same category can each con-
sume vastly different amounts of energy, the apps’ recom-
mendations can be completely off and not very useful in many
cases. Finally, to the best of our knowledge, we did not find a
tool that can answer “what can users do if they need to ex-
tend battery life in order to accomplish a specific task?”

The second fact is the lack of power-management techniques
in response to current and future trends of mobile device evo-
lution. In particular, mobile devices are becoming sophis-
ticated because of the addition of many sensors and device
components enabling them to accomplish a variety of goals
beyond computation and communication such as user experi-
ence enhancements, health care improvements, environmen-
tal monitoring, and tailored advertising. For instance, they
can be used to simply enhance the user experience by chang-
ing the display brightness based on the device’s surrounding
light exposure. Another example is their usability as a mean
for collaborative diagnostics, such as the case of Carat [16],
which collects information from its user base to perform en-
ergy diagnostics of applications. Another example is UbiFit
Garden [5], which uses mobile sensors to capture physical
activities of its users and associate the information with their
physical goals. PEIR [15] is another project that uses sensors
in mobile devices to alert users about their carbon footprint.
Lane et al. [11] provide a comprehensive survey of current
mobile phone sensing projects. Based on this survey, it is
clear that this field of research is gaining traction to become
the next hot topic, which can elevate the utilization of mobile
devices from “enablers of data access” to “providers of data.”
As a result, we predict many new sophisticated sensors will
be introduced causing an increase in power consumption of
the platform, resulting in shorter battery life.

From these two facts, we can deduce a correlation between
the cloud concept and mobile trends. More specifically, in
a cloud environment, users configure on-demand resources
in order to accomplish a specific task. Similarly, if we treat
mobile devices as an abstraction of a collection of resources
(camera, Wi-Fi, battery, sensors, etc) , then we can enable
users to reconfigure the device on demand in order to accom-
plish a specific task. In particular, we consider battery life as
a component, and in order to configure a greater amount of
battery life, users will need to sacrifice some resources.

BACKGROUND: ENERGY OVERHEAD ANALYSIS
A mobile platform architecture contains three layers: an ap-
plication layer, power-management layer, and hardware layer.
Each layer can impact the overall battery consumption on the
basis of the following factors:

Application Layer: Applications running on a platform in-
crease the power consumption based on their resource utiliza-
tion. Rivoire et al. [19] evaluated the relationship between
resource utilization and system-level power consumption on
multiple platforms ranging from laptops to a server. They
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showed that models based on OS utilization metrics and CPU
performance counters are in most cases the most accurate.

Management Layer: The management layer manages the
power consumption of numerous hardware components. For
instance, it can increase the energy efficiency of a platform
by suspending the hard disk based on its utilization. It
changes the platform’s device power states, known as D-
States, following the Advanced Configuration and Power In-
terface (ACPI) specifications. The device D-States enable
power management of the platform to change the device’s
power consumption state. There are multiple idle states,
which can range from D1 to Dx. The deeper the idle state, the
lower the power consumption of the device and the greater the
latency to go to an active state, and vice versa. Even when a
device is in idle state (i.e., not used) it still consumes various
amounts of power depending on the device type.

Hardware Layer: The number of components in the hard-
ware layer depends on the platform itself. We can broadly cat-
egorize them into the following categories: processor, mem-
ory, storage, network devices, sensors, utility devices, and
display. In this paper, we are interested in a detailed discus-
sion of network devices, sensors, utility devices, and display.

Network devices: Wireless network (Wi-Fi), Bluetooth, and
Near Field Communication (NFC) are under the network de-
vices umbrella, where Wi-Fi is proved by various literature
(for example by Carroll and Heiser [4]) as the most power-
consuming device in this category. It is worth noting that
the network adapter may be actively utilized by users when
surfing the web, downloading material, or actively stream-
ing videos, but it can also be triggered by background ap-
plications as well. In our previous work [13], we provided
case studies on Android and iOS where we showed that when
Wi-Fi was on, background applications periodically triggered
data fetch, leading to an increase of battery consumption.

Sensors: Mobile devices are built with extensive number of
sensors. For instance, Microsoft requires for all its 8.1 Ultra-
books and tablets a set of integrated physical sensors with
object-oriented abstractions. The required sensors are ac-
celerometers, gyroscopes, ambient light, compass, and GPS
[8]. Developers can modify the update frequency of these
sensors. As a result, an energy-inefficient application can
keep theses sensors in active state for an extended duration
by changing the frequency update interval to a low number.

Utility devices: Utility devices have specific functionality and
can be turned on/off on demand. Cameras, microphones, and
speakers can fall into this category. A recent patent for Sam-
sung Electronics Co. LT [9] transformed the usability of a
camera from a utility device, which strictly records videos or
takes snapshots, to a sensing device. The patent states that the
technology allows to use the camera to acquire images, divide
them into regions, and determine if the image corresponds to
a command, and if so, carry out an action that changes the
user interface (UI) without the need to touch the screen.

Display: Display is one component that can significantly
drain the battery. The two telemetries that can impact display
power usage are the display brightness and display refresh

rate. The refresh rate, which can be measured in hertz, is the
number of times per second by which the display hardware
updates its buffer. The higher the refresh rate, the lower the
flickering of images, and the greater the power consumption.
Finally, both brightness and refresh rate need to be considered
when evaluating the power consumption of displays.

Case Study: Windows Device Power-Management Analy-
sis
Starting with Windows 8, Microsoft requires that the device
components of their platform support five different D-States
[2]. The first state is D0, which is the active state, followed
by D1, the highest-powered sleep state, where the device pre-
serves it hardware context. Then, D2 where most context is
lost by the hardware. The fourth state is D3-Hot, where the
device draw very low current but can be detected by the bus.
The last state is D3-Cold, the lowest possible sleep state. Af-
ter a device enters D3-Cold for a period of time, it gets turned
off. In order to validate our approach we performed prelim-
inary study to determine the actual device power sleep states
during two scenarios. The first scenario is the platform de-
fault state, and the second scenario is when we disable the
following 10 devices: the Wi-Fi adapter, Bluetooth adapter,
HID sensor collection, Visual Studio (VS) location simula-
tion, pen and touchscreen sensors, audio adapter, camera rear
and front, and printer queue. We collected the device D-States
using Event Tracing for Windows (ETW) for 5 minutes while
the platform was idle with the screen on for both scenarios.
We compared the list of devices collected between default
settings and reconfigured settings. We noted that greater than
50 devices were detected using the default scenario compared
to the disabled one as shown in Table 1. The first set of D-
States labeled “Idle” represents the actual extra devices that
appeared in the report when the platform was in default set-
tings compared to when we disabled 10 devices. Many de-
vices were in D0 state 100% of the time, and just a few were
in D0 for 96.9% of the time before they entered D2 for the re-
maining duration of 3.10%. As a result, it is evident that many
unused devices were in active state with high power consump-
tion, translating into consuming unnecessary battery life. For
further observation, we performed another experiment, where
we kept the default settings and ran a local movie for 1 hour.
The purpose is to determine, over a long duration, how the
device states change if the devices are not been actively used.
The results are displayed in Table 1 in the video playback sec-
tion. Again, many devices remained in active state 100% of
the time even though the workload did not require it. How-
ever, there were some devices that switched to the D2 state
for 99.95% of the time. In addition, by comparing Idle and
Video playback scenarios, we noticed that microphone and
speakers were the only devices that were shut off during Idle
scenario. Finally, this experiment demonstrated that a better
power-management mechanism was needed.

BATTERYEXTENDER DESIGN
The BatteryExtender (BE) tool major goal is to enable ex-
tending battery life on demand in the event that battery life
resource has high importance. As a result, we set the follow-
ing conditions:
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Device Idle Video Playback

D0 D1 D2 D3-Hot D3-Cold D0 D1 D2 D3-Hot D3-Cold
Microsoft Bluetooth Enumerator 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Microsoft Bluetooth LE Enumerator 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
BthLEEnum 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
USB Input Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
USB Input Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
USB Input Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
USB Input Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
MMDEVAPI\AudioEndpoint 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
MMDEVAPI\AudioEndpoint 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
mshidumdf 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
MTConfig 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
SensorsServiceDriver 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
UmPass 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
UmPass 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
UmPass 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
USB Composite Device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
WUDFRd 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID Compliant Touch Screen 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%
HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID Component 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%
HID Component 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%
HID Component 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID Sensor Collection 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID-compliant consumer control device 96.90% 0% 3.10% 0% 0% 0.05% 0% 99.95% 0% 0%
HID-compliant Pen 0% 0% 100% 0% 0% 0% 0% 100% 0% 0%
HP Laser Jet 200 color M251 PCL6 Class 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
HP Laser Jet 200 color M251nw 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
HP Laser Jet 200 color M251nw 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
HP Laser Jet 200 color M251nw 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
HP Laser Jet 200 color M251nw 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Intel HD Graphics Family 4.63% 0% 0% 95.37% 0% 100% 0% 0% 0% 0%
IP Tunnel Device Root 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Lightweight Sensors Root Enumerator 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Mar. AVA. Bluetooth Radio Adapter 98.98% 0% 1.02% 0% 0% 98.98% 0% 1.02% 0% 0%
Mar. AVA. 350N Wireless Net. Controller 100% 0% 0% 0% 0% 98.98% 0% 1.02% 0% 0%
Microsoft LifeCam Rear 0% 0% 0% 100% N/A 0% 0% 0% 100% N/A
Microsoft LifeCam Front 0% 0% 0% 100% N/A 0% 0% 0% 100% N/A
Microsoft VS Location Simulator Sensor 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Microsoft Wi-Fi Direct Virtual Adapter 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Printer Queue 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Realtek High Definition Audio 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Microphone (Realtek High Definition) N/A N/A N/A N/A N/A 99.99% 0% 0% 0.01% 0.%
Speakers (Realtek High Definition) N/A N/A N/A N/A N/A 99.99% 0% 0% 0.01% 0%
Surface Cover Audio 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
SWD\PRINTENUM 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
SWD\PRINTENUM 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
SWD\PRINTENUM 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%
Teredo Tunneling Pseudo-Interface 100% 0% 0% 0% 0% 100% 0% 0% 0% 0%

Table 1. Extra device D-States during idle and video playback on Windows Surface 2 Pro compared to the scenario where we disable 10 devices. We
highlight in green the devices that switched from active to low device power state when comparing idle to video playback and we highlight in red the
devices that should have switched from active to low device power state when comparing idle to video playback due to the long inactive duration.

• Software Only: External power-measurement tools are
expensive and inconvenient for users. In addition, we don’t
want to feed the tool predefined device component power-
consumption values in order to maximize the number of
platforms it supports. As a result, we strictly decided to
develop the tool using software-only techniques through
the utilization of power-consumption metrics provided by
the platform.

• The Tool’s Audience: The tool is not aimed at software
developers but everyday users. As a result, it does not re-
quire accurate power profiling of platform devices and ap-
plications. Its main purpose is to simply enable users to
extend the battery life of their mobile devices for a specific
duration.

• Accuracy vs. Overhead: Continuous power profiling will
undoubtedly provide accurate estimations. However, it will
also pose some extra overhead. Since the tool is used when
the users need to conserve battery life the most, we can
sacrifice accuracy in order to reduce power-consumption
overhead.

• User Interactive: We want the tool to inform users about
the impact of platform devices and applications on battery

life and enable them to choose the best combination of con-
figurations that satisfy their needs.

Extending Battery Life Feature Design
Based on our goals, we define extending battery life design
as shown in Figure 1. It consists of five components: calibra-
tion, user interactive (user command selection and user inter-
face), energy profiling, power management, and monitoring
modules. The calibration module aims to profile the power
consumption of platform device components and save it to a
configuration file. Using the user interactive module, users
can enter the duration by which they want to extend battery
life. The selection triggers the energy profiling module that
determines the list of applications running on the platform
and calculates the estimate of their minimal energy consump-
tion over the battery life and ranks the top 5 most energy-
consuming applications. It also determines each device com-
ponent power state (on or off) and active state (e.g, Bluetooth
is actively connected to a device and transmitting or receiving
data). Then, it estimates the impact of changing the device
component power state on the platform’s battery life. Upon
completion, the energy profiling module updates the user in-
terface with the top 5 power-consuming applications and dis-
plays the current active state of the device components in ad-
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Figure 1. Extending battery life design.

dition to displaying the amount of battery life saved/gained
by changing their power state. At this point, the user can
select the options to change. Upon option selection confirma-
tion, the power management module re-configures the device
components in order to satisfy the user’s choices and termi-
nate the check-marked applications. Upon completion, the
monitoring module periodically checks the remaining battery
life. The goal is to ensure that the remaining battery life sat-
isfies the minimum between battery life extension duration
requested by the user and the sum of estimated battery ex-
tension duration based on the user’s selection. Since the re-
maining life duration is not accurate, the monitoring module
allows few unsatisfactory estimate readings. However, upon
reaching a threshold, the energy profiling module is triggered
again. Then, it is up to the user to either reconfigure the plat-
form or accept the new expected battery life.

Additional Feature: Live Monitoring
Even though BatteryExtender tool main feature is extending
battery life on demand, we created another useful feature for
live monitoring. We created this feature because power con-
sumption of a platform is not consistent. Therefore, if users
want to simply monitor the changes in platform power con-
sumption, they can use this feature. There are two types of
live monitoring as follows:

Battery Usage Interface: It enables users to collect a log
of battery metrics, including timestamp, capacity, discharge
rate, voltage, and expected battery life. Users can save the
collected log to a csv file or delete the data and start over.

Application Usage Interface: It continuously profiles running
applications (similar to energy profiling technique for extend-
ing battery life with the exception that profiling in this case
is continuous) and provides the following metrics per appli-
cation: the minimum power consumption, and the average
minimum power consumption since profiling began.

Discussion: BatteryExtender Usability by Novice Users
BatteryExtender concept is receiving significant interest from
mobile users. Since the tool main audience target is end-users
from all levels of expertise, therefore, its sucess is definitely
based on its ease of usability and intuitive design.

In order to achieve this goal, we adopted few techniques
which we predict to enable novice users to adopt our tool.

First of all, all the device components which may be dis-
abled/enabled by users were selected carefully to avoid un-
predictable/disabling impact on the platform itself. For in-
stance, disabling HD is not included as one of the possible
device components to disable/enable by users even though its
implementation is straight forward. Second, when the users
are given the impact of disabling/enabling device compo-
nents, they are given the status of the device (active/inactive).
We hope this feature may be used as an indicator to users
about whether the component is actively needed or not. This
solution is not a guarantee that the ‘disabled’ component may
not be needed in the duration of the battery extension; how-
ever, from our experience with popular apps, if a component
was needed but disabled/unavailable, the apps tend to no-
tify the users about it. Nonetheless, we added an option for
users to “reset the device configuration” to the configuration
prior to extending battery life. As a result, if the user dis-
abled a needed component which hindered an app usability—
and lacked the technical knowledge—the user can easily reset
the platform. Third, upon battery extension expiration, Bat-
teryExtender “resets the device configuration” even if battery
was drained prior to completing the task (it resets the platform
upon the next device power on.)

Finally, we hope the measures we adopted ensure the usabil-
ity of the tool even by novice users but we expect to evolve
and improve the usability as we get feedback from future field
studies.

BATTERYEXTENDER IMPLEMENTATION
BatteryExtender’s architectural design can be implemented
to any mobile device operating system (OS). However, our
target OS is Microsoft platforms starting with Windows 8.
The main purpose is because Microsoft, starting with Win-
dows 8, is trying to attract the largest possible market share
through appealing to users by providing the same user expe-
rience across all its mobile device types, such as laptops and
tablets. That means that users get the full system capabilities
of a desktop in addition to the tablet experience (similar to
Android and iOS) through their Metro Style App model and
a full fledged desktop. As a result, a platform contains an ex-
tensive number of components, and our power-management
approach can significantly impact the battery life. During our
experiments, we used two different Windows platforms. The
first platform is a Dell XPS 12 Ultrabook Convertible, as de-
scribed in Table 2, is a full laptop and can be converted to a
tablet as well. In the remainder of this paper, we will refer to
this platform as “Dell.” The second platform is the Microsoft
Surface 2 Pro Tablet, as described in Table 3. In the remain-
der of this paper, we will refer to this platform as “Surface.”

Preliminary Experiments: Analysis of Collection Granu-
larity of Battery Life
The best and most accurate way to determine a platform’s
power consumption is by using hardware metering equip-
ment. However, since our goal is to strictly use software
techniques for our tool, we must translate how the power
consumption (discharge rate) translates to the changes in bat-
tery capacity and remaining battery life. We are interested in
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Specification Description
Platform Dell Ultrabook Convertible, Windows 8 Pro
Processor Intel(R) Core(TM) i7-4650U

Code Name: HASWELL-ULT
Hard Disk 256 GB Solid State
Memory 8.0 GB
Display 12.5” Full HD, refresh rate 59 and 60 Hz
Bluetooth Intel(R) Centrino(R) Wireless Bluetooth(R)

+ High Speed Virtual Adapter
Wi-Fi Intel(R) Dual Band Wireless-AC 7260
NFC NXP NearFieldProximity Provider
Speaker & Microphone Realtek High Definition Audio
Touch 10 Touch Points
Camera Front WebCam
Sensors HID Sensor Collection

Simple Device Orientation Sensor
Microsoft VS Location Simulation Sensor

Table 2. Dell Ultrabook Convertible specifications.

Specification Description
Platform Microsoft Surface 2 Pro, Windows 8.1 Pro
Processor Intel(R) Core(TM) i5-4200U

Code Name: HASWELL-ULT
Hard Disk 64 GB Solid State
Memory 4.0 GB
Display 10.6” HD, refresh rate 60 Hz
Bluetooth Marvell AVASTAR Bluetooth Radio Adapter
Wi-Fi Marvell AVASTAR 350N
Speaker & Microphone Realtek High Definition Audio
Touch 10 Touch Points and Pen
Camera Microsoft LifeCam Front and Rear
Sensors HID Sensor Collection

Simple Device Orientation Sensor
Microsoft VS Location Simulation Sensor

Table 3. Microsoft Surface 2 Pro Tablet specifications.

collecting the following battery metrics. Battery capacity re-
ported in milliwatts per hour (mW/h) and denoted as BCap. It
is the amount of energy stored in the battery. Rate reported
in milliwatts (mW) and denoted as BRate. It is the amount
of power drawn from the battery. Battery life remaining, de-
noted as BLife is the fraction of BCap over BRate.

Collecting battery metrics at a very low time interval, such
as every 1 ms, will give an accurate timeline of changes in
power consumption. However, this method requires frequent
polling of information, which incurs high overhead. As a re-
sult, we conducted preliminary studies in order to find an opti-
mal coarse grained interval of battery information collection.
Profiling the battery life behavior consists of the following
steps. First, we disabled all power-management functionality
of the platform power plan and all network adapters in order
to maintain consistent power consumption of the platform.
Then, we disconnected the power cable of a fully charged
battery. Then, we kept the platform in idle mode with the
screen on. Finally, we let the battery drain while collecting,
at a time interval T, the remaining capacity and battery life re-
maining in seconds. Figure 2 represents the data collected on
a Surface at a 3-second interval, and Figure 3 represents the
data collected on Dell at a 2-minute interval. By comparing
the two figures, it becomes obvious that with a 3-seconds in-
terval, there is higher fluctuation in the remaining battery life
estimation graph compared to 2-minutes interval granularity.
As result, we determined that a medium interval (3-second

Figure 2. Relationship between battery capacity and remaining battery
life over time at a 3-second interval on Surface 2 Pro tablet.

Figure 3. Relationship between battery capacity and remaining battery
life over time at a 2-minute interval on Dell convertible.

interval), resulted in an unclear picture because of high vari-
ance. On the other hand, collecting at a relatively high gran-
ularity (a 2-minute interval), let us collect the data with low
variance, which let us be more accurate.

Implementation
The implementation of the five components of extending bat-
tery life feature are as follows:

Calibration Module
Power consumption of a platform is highly dependent on the
component collection it contains. Since components vary
from one platform to another, and even components from dif-
ferent vendors can vary their power consumption, it becomes
important to estimate the their power consumption through
a self-modeling approach. Once BatteryExtender is installed,
users are required to run calibration at least once but they may
choose to run it periodically in order to improve accuracy of
BatteryExtender due to the fact that the battery’s resistance
changes over time.

Most platforms support a power-management policy that sus-
pends the hard disk when not in use and changes the proces-
sor frequency on the basis of the processor’s load. We disable
both prior to calibration in order to keep the platform’s power
consumption constant during the calibration phase. Then,
the calibration module automatically performs the following
steps:

1. Terminate all running applications with the exception of
BatteryExtender.

2. Get the list of all Plug and Play devices and disable all de-
vices which a user can sacrifice when battery life is needed.

3. Set the display brightness to 75% because we noticed when
platforms are on battery, the power-management module
changes the display brightness to 75.

4. Get the current display refresh rate.

5. Sleep for 120 seconds to avoid overhead from our changes.
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6. Determine idle battery capacity consumption for 10 min-
utes by getting battery capacity at t0, sleeping for 10 min-
utes, and then getting battery capacity at t1. Then, we cal-
culate the difference as shown in Equation 1.

7. Select a device from the list of PnP devices and enable it.
8. Sleep for 120 seconds.
9. Determine device battery capacity consumption for 10

minutes as described for the idle case.
10. Repeat the previous three steps for all devices.
11. Change the display brightness to 25, 50, and 100% (one at

a time) and then repeat steps 8 and 9.
12. If the display supports multiple refresh rates, change the

refresh rate and then repeat steps 8 and 9.
13. Enable all devices.
14. Save the calibration values to an XML file.

(Note: the sleep parameter chosen were based after conduct-
ing extensive testing where we found the minimum sleep value
by which all subsequent collection resulted in the same cali-
bration values. We rounded up the value in order to account
for possible error rates among different platforms.)

Finally, we can determine the power consumption of each de-
vice. Since our battery capacity is in milliwatts per hour, we
can convert it to joules as shown in Equation 2. Then, we
can determine the platform’s average power consumption by
applying Equation 3, where d is the duration in seconds. We
conclude by calculating the power savings (gain) PSaving of
the platform device by applying Equation 4, where PIdle is
the power consumed during idle scenario, and PDevice is the
power consumed when the device was enabled or the display
was set at a specific setting.

∆CX = CXt0 − CXt1 (1)

E(j) = ∆C(mWh) ×
1

1000︸ ︷︷ ︸
Convert to Watt

× 3600︸︷︷︸
Convert to Seconds

(2)

P =
E(j)

d(s)
(3)

PSaving = PDevice − PIdle (4)

∆EMSR = {Et0 − Et1} ∗ U (5)

EX = EAll ∗ UX (6)

RateAvg =
∆C

∆t
(7)

LifeSaving =
C

RateAvg − PApp
− C

RateAvg
(8)

Energy Profiling Module
The energy profiling module consists of energy profiling the
running applications, and the platform devices.

Energy Profiling of Applications: In order to determine
the energy consumption of applications, we relied on the
Machine Specific Registers (MSRs), which the processor
uses to control and report processor performance. In or-
der to be able to read them, the application must run at
the kernel level (Ring0). In our implementation, we rely
on the MSRs provided by Intel processors. We chose
Intel processor’s because it currently dominates the mar-
ket share for Windows platforms. Intel processors support
four MSRs for Running Average Power Limit (RAPL) [3].
MSR RAPL POWER UNIT contains power units, energy sta-
tus units, and time units, and MSR PKG ENERGY STATUS
and MSR PP1 ENERGY STATUS, report package and graph-
ics actual energy. The MSRs are updated at approximately
1-ms intervals and the register wraparound time is about 60
seconds when power consumption is high. In order to energy
profile the applications, we initialize the driver and read the
power unit MSR. At 1-second intervals, we collected the bat-
tery capacity, energy MSRs, and running processes. In order
to get the list of processes, we got a snapshot of the processes
handler. Using GetProcessTimes, we retrieved the processes’
creation time, exit time, kernel time, and user time. In ad-
dition, using NtQuerySystemInformation, we collect System-
ProcessorPerformanceInformation. Based on this informa-
tion, we determined the percentage of active time of the pro-
cessor and each process. In order to calculate the energy used
by package and graphics, we calculated the ∆EMSR based on
Equation 5 for each energy MSR and where U is the energy
unit retrieved from MSR RAPL POWER UNIT.

Package MSR energy contains the energy consumed by the
cores, graphics, and system agents. As a result, we subtract
the energy consumption of graphics from package and assign
it to total CPU energy EAll. Finally, we allocate the energy
consumption of application X as EX as shown in Equation
6, where UX is the percentage of CPU usage of application
X. We saved this information for each application in addi-
tion to the average Rate (power consumption) of the entire
platform during that period of time which can be calculated
using Equation 7. We repeat this profiling technique for 50
iterations because CPU utilization of applications varies with
time. One reading will not be enough to determine long-term
effect on the overall battery life. However, with 50 iterations,
we can have a better overview without posing extensive over-
head of continuous polling of data. Upon completion, we got
the minimum average energy consumption of each applica-
tion. We also calculated the average discharge rate. Then, to
determine the battery life savings upon termination of the ap-
plication LifeSaving, we used Equation 8, where we estimated
the current battery life based on average discharge rate and
we determine the savings by recalculating battery life based
on average discharge rate minus the application’s power con-
sumption. Finally, we rank the top 5 most power-consuming
applications.

Energy Profiling of Platform Devices. In order to energy
profile platform components, we use the XML file gener-
ated by the calibration module. Then, we iterate through all
available devices in order to determine their state (active or
disabled) in addition to checking the display brightness and
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refresh rate. Then, using Equation 9, we can calculate the
life savings (or lost) LifeSaving, where PSaving is calculated
based on Equation 4 and where RateAvg is the same number
as the one calculated during energy profiling of applications.

LifeSaving =
C

RateAvg − PSaving
− C

RateAvg
(9)

User-Interactive Module and Power-Management Module
Upon completion of the energy-profiling module, the user-
interface gets updated with all the devices that can be con-
trolled by users and their estimated battery life savings, in ad-
dition to the top 5 battery-consuming applications with their
estimated battery life saving. Using a checkbox, users can
select the devices they want to control and the applications
they want to terminate. Then, the power-management mod-
ule is triggered to change the device’s state. Using the pro-
cess’s ID, we can issue terminate process. Finally, the power-
management module calculates the estimated battery life sav-
ings by adding up all the life savings values based on the
user’s selection. Then, it calculates the minimum life savings
duration between original duration selected by the user and
the expected life savings calculated. Using this information,
the tool can calculate the required battery duration LifeReq ,
as shown in Equation 10, where LifeCurrent is the battery
life prior to platform reconfiguration and LifeMin is the cal-
culated minimum life savings. Finally, it passes the value of
LifeReq to the monitoring module.

LifeReq = LifeCurrent + LifeMin (10)

Monitoring Module
In order to monitor battery life, a new thread is created. At
a 2-minute interval, it collects the expected battery life. It
subtracts interval time i from LifeReq as shown in Equation
11 and then compares the value to the expected battery life
collected. If after five iterations, LifeReq is less than expected
battery life, the Energy Profiling Module is triggered again
where the previously described steps are repeated. If there are
not five consecutive errors, the monitoring module continues
until the LifeReq reaches 2 minutes.

LifeReq = LifeReq − i (11)

EXPERIMENTAL ANALYSIS
Validating BatteryExtender consists of validating the tool in
terms of reconfiguration of the hardware device components,
and in terms of energy profiling of applications in our lab. For
the first part, we ran scenarios using the two platforms as de-
scribed in Tables 2 and 3. Prior to running our experiments,
we set the power-management policy to default settings and
terminated all (foreground and background) applications with
the exception of BatteryExtender. For each scenario, we ran
two test cases. The first test case is the default case (DF),
where we use the default platform settings. The second test
case is the BatteryExtender case (BE), where users’ com-
mands are set to extend the battery life for “10 minutes” and
changed the configuration based on scenario (For example,
when Wi-Fi is not needed, we disabled it.) We chose “10 min-
utes” as opposed to a different duration because our goal was
to determine: (1) whether we can save battery by examining

the amount of battery capacity saved, and (2) the accuracy of
our tool by comparing expected and actual capacity savings.

During our experiments, we collected the battery metrics us-
ing our “Battery Usage”. We started the collection at the start
of the test scenario, and stopped upon completion. We calcu-
lated actual total capacity used (energy used) by test case X
denoted as ∆CX as shown in Equation 1 where CXt0 is the
capacity at beginning of test case X and CXt1 is the capacity
at the end of the same test case. In addition, we calculated the
actual total capacity savings (total saved energy) for sce-
nario X denoted as ATsavX

as shown in Equation 12 where
we get the difference between total capacity used by DF test
case and the one used by BE test case. We also calculated the
expected capacity savings for scenario X denoted as EsavX as
shown in Equation 13 where n is the total number of disabled
or modified devices and EsavD is expected capacity savings for
device D for duration dbase in minutes. We calculated the total
expected capacity savings for scenario X denoted as ETsavX

as shown in Equation 14 where dX is the total test duration in
minutes.

AT savX = ∆CDF −∆CBE (12)

EsavX =

n∑
D=1

EsavD , dbase = 10 (13)

ETsavX =
EsavX × dX

dbase
(14)

In order to validate BatteryExtender in terms of energy pro-
filing of applications, we profiled the energy used by the ap-
plications using BatteryExtender and then terminated the ap-
plications. Next, we observed the impact on the platform’s
overall energy consumption.

Calibration Results
Table 4 represents the data collected for Dell and Surface. All
devices in the table are self-explanatory with the exception of
“USB Root Device (xHCI)”. By disabling this device, we
disable USB input, HID Sensor Collection, the camera, and
the Bluetooth adapter. We noticed the same components, on
different platforms, can consume different battery capacity.

Download Scenario
During the download scenario, we used Amazon Unbox
Video Player [1] to download a movie of size 1.91 GB. For the
Default (DF) case, we started BatteryExtender. Then, using
the “battery usage” UI, we collected battery capacity remain-
ing at a 30-second interval. Next, we started Amazon Player,
selected the movie, and pressed on download. Upon comple-
tion, we stopped collecting “battery usage” and saved the log.
For the BatteryExtender (BE) test case, we started BE and set
10 minutes for extension duration. We disabled components
(change in the case of display) as shown in Table 5. Then, we
collected the metrics as described for the DF case.
The results comparing DF versus BE for Dell are displayed
in Figure 4. A major issue was observed in this scenario. The
download duration during default settings took 3750 seconds
(1 hour, 2 minutes, and 30 seconds), whereas the download
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Device Components Dell Convertible Surface 2 Pro
Wi-Fi 120 52
Bluetooth 29 29
NFC 5 N/A
HID Sensor Collection 10 8
VS Location Simulator 10 8
Touchscreen Sensor 10 7
Pen Sensor N/A 7
Audio 10 12
Front Camera 20 5
Rear Camera N/A 5
Printer Queue 10 10
USB Root Device xHCI 80 N/A
Refresh @ 59 Hz 20 N/A
Brightness @ 25 190 136
Brightness @ 50 80 70
Brightness @ 100 -(110) -(207)

Table 4. Calibration results: Capacity saved in mWh during 10 minutes
duration using idle at 75% brightness as the base.

Figure 4. Battery capacity over time during download scenario for Dell
Convertible.

duration during BE scenario took 1080 seconds (18 minutes),
71.2 % faster than default test case. In addition, the ∆CDF is
8980, whereas the ∆CBE is 2440. The ATsav is 6540, for a
total of 72.83% savings. These results far exceeded our ex-
pectation and at first glance appeared to be abnormal. In or-
der to determine the cause of this huge savings, we conducted
further analysis. We determined that by enabling “USB Root
Device (xHCI),” the download speed as shown by the appli-
cation drops from an average of 17.4 Mbps to 4528 Kbps. In
addition, the CPU and memory utilization jumps from an av-
erage of 10% and 32% to 18% and 55%, respectively. More-
over, the average cache of 558 MB to gradually reaching 1.6
GB. The cause of this change is due to the “Network Security
Service,” which we managed to disable when disabling “USB
Root Device (xHCI).” Network security is definitely an im-
portant feature, but increasing the download time by 71.2% is
unacceptable to most mobile device users. So, it is definitely
an issue to be examined.
The results comparing DF versus BE for Surface are dis-
played in Figure 5. The ∆CDF is 2211, whereas the ∆CBE is
1865. The test duration was 16.5 minutes for both test cases.
The ATsav is 346, for a total of 15.65% savings. Our ETsav is
374.55, which results in a 92.37% accuracy rate.

Video Playback Scenario
The video playback scenario consists of watching a movie
using Amazon Unbox Video Player. We played “Despica-
ble Me” in HD. The movie duration is 95 minutes. We ran
both test cases DF and BE and collected the battery metrics
as described in the previous scenario. We disabled compo-
nents (changed in the case of display), as shown in Table 6.
The results comparing DF versus BE for Dell are displayed

Figure 5. Battery capacity over time during download scenario for Sur-
face 2 Pro.

Figure 6. Battery capacity over time during video playback scenario for
Dell Convertible.

Figure 7. Battery capacity over time during video playback scenario for
Surface 2 Pro.

in Figure 6. Energy consumed during DF ∆CDF is 15,450,
whereas the ∆CBE is 12,327. The ATsav is 3,123, for a total
of 20.21% savings, whereas the ETsav is 3,087.5. Based on
these results, the accuracy rate is 98.86 %. In this case, de-
spite the fact that we disable “USB Root Device (xHCI),” our
accuracy rate remained high because Wi-Fi was disabled.
The results comparing DF versus BE for Surface are dis-
played in Figure 7. The ∆CDF is 9,435, whereas the ∆CBE
is 8,194. The ATsav is 1,241, for a total of 13.15% savings.
Our ETsav is 1,244.5, which results in a 99.72% accuracy rate.

Video Streaming Scenario
The video streaming scenario consists of streaming a 10 min-
utes video using YouTube. We ran both cases DF and BE and
collected the battery metrics as described in the previous sce-
nario and disabled/changed devices as shown in Table 7. The
results comparing DF versus BE for Dell are displayed in Fig-
ure 8. Energy consumed during DF ∆CDF is 3080, whereas
the ∆CBE is 2,170. The ATsav is 910, for a total of 29.54%
in energy savings, whereas the ETsav is 225.5. In this case,
even though “USB Root Device (xHCI)” was disabled, we
were able to watch the movie without any time waiting for
buffering. CPU and memory activities spiked due to the se-
curity service. As a result, the energy savings far exceeded
our expectations.
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Disabled Devices Dell Convertible Surface 2 Pro
NFC 5 N/A
Bluetooth N/A 29
VS Location Simulator 10 8
HID Sensor Collection N/A 8
Pen Sensor N/A 7
Rear and Front Cameras N/A 10
Touchscreen Sensor 10 7
Audio 10 12
Printer Queue 10 10
USB Root Device (xHCI) 80 N/A
Refresh @ 59 Hz 20 N/A
Brightness @ 25 190 136
Expected Savings in 10 minutes 335 227

Table 5. Disabled devices and display settings associated with expected
capacity savings in mWh during download scenario.

Disabled Devices Dell Convertible Surface 2 Pro
WiFi 120 52
Bluetooth N/A 29
NFC 5 N/A
HID Sensor Collection N/A 8
VS Location Simulator N/A 8
Pen Sensor N/A 7
Touchscreen Sensor 10 7
Printer Queue 10 10
USB Root Device (xHCI) 80 N/A
Refresh @ 59 Hz 20 N/A
Brightness @ 50 80 N/A
Read and Front Camera Rear N/A 10
Expected Savings in 10 minutes 325 131

Table 6. Disabled devices and display settings associated with expected
capacity savings in mWh during video playback scenario.

Disabled Devices Dell Convertible Surface 2 Pro
NFC 5 N/A
Bluetooth N/A 29
HID Sensor Collection N/A 8
VS Location Sensor N/A 8
Pen Sensor N/A 7
Touchscreen Sensor 10 7
Printer Queue 10 10
USB Root Device (xHCI) 80 N/A
Refresh @ 59 Hz 20 N/A
Brightness @ 50 80 70
Rear and Front Camera N/A 10
Expected Savings in 10 minutes 205 149

Table 7. Disabled devices and display settings associated with expected
capacity savings in mWh during video streaming scenario.

The results comparing DF versus BE for Surface are dis-
played in Figure 9. The ∆CDF is 1,694, whereas the ∆CBE
is 1,524. The ATsav is 170, for a total of 10.03% savings.
Our ETsav is 163.9, which results in a 96.41% accuracy.

Validating Energy Profiling of Applications
In order to validate BatteryExtender in terms of energy pro-
filing of applications, we used Surface. We chose to extend
battery life for “10 minutes.” BatteryExtender was able to de-
tect “Symantec Antivirus” running in the background with
22.14% CPU utilization and an estimated 2,331 mW of power
usage. Using battery usage interface, we collected the bat-
tery discharge rate (power) prior to terminating the app and
the collected it again after 30 seconds after terminating the
application. We noticed that the discharge rate dropped by
2,562 mW after terminating the application. As a result, the

Figure 8. Battery capacity over time during video streaming scenario
for Dell Convertible.

Figure 9. Battery capacity over time during video streaming scenario
for Surface 2 Pro.

accuracy rate was 90.98%. Similarly, we repeated the vali-
dation steps, but we selected a different application to termi-
nate. The application selected was Google Chrome, which
was video streaming a YouTube video. Based on BatteryEx-
tender, YouTube was utilizing 2.28% of CPU usage consum-
ing 555 mW. Upon termination, we noticed that the discharge
rate dropped by 608 mW. As a result, the accuracy rate was
90.46%. Finally, it is clear that, using the current implemen-
tation of BatteryExtender we can power profile applications
with relatively high accuracy rate. Since we are not consid-
ering memory or disk power consumption, our estimation of
battery savings can be conservative. However, this technique
still satisfies BatteryExtender’s goals.

CONCLUSION AND FUTURE WORK
We presented BatteryExtender, a tool to extend battery life on
demand. It enables the reconfiguration of mobile devices in
order to utilize only the resources required for specific tasks.
It also provides an estimate of the impact of applications on
the overall battery life. Our lab results showed a reduction of
energy consumption between 10.03% and 20.21%, depending
on the workload. The accuracy rate ranged between 92.37%
and 99.72%. In addition, in some rare cases, we were able to
reduce energy consumption by 72.83% due to the platform’s
inefficient security service. In the future, we are planning to
include field testing with multiple users with various techno-
logical skills in order to improve the tool’s usability. We are
also planning on improving our resource power-consumption
estimation by continuously profiling the platform when bat-
tery life is not limited. Finally, we are planning on adding the
dependency between hardware modules and between appli-
cations.
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