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Abstract— Extending the lifetime of wireless sensor
networks remains the most challenging and demanding
requirement that impedes large-scale deployments. Studies
show that considerable energy saving can be achieved
only by putting a node’s radio into full sleep mode. In
this paper we present RAT, which is a redundancy-aware
topology management protocol. RAT selects a minimum
set of active nodes that are good enough to maintain
connectivity, and allows others to sleep and save energy.
RAT is designed and implemented with underlying wireless
channel irregularity in mind. Scalability and low overhead
are the other primary design goals of RAT as well. We
implement RAT in the context of Score, which is a cross-
layer framework that provides RAT with the neighbor set
and allows RAT to coordinate its SLEEP and ACTIVE state
changes with the routing layer smoothly. Using TinyOS
and PowerTOSSIM, we implement RAT on top of Score.
Comparing with the all-active scenario, RAT simulation
results show a total energy consumption decrease of 67%
in a one-to-many routing scenario and up to 87% in a
many-to-one routing scenario.

I. INTRODUCTION

Saving energy and extending the lifetime of unat-
tended wireless sensor networks is still one of the
most challenging design requirement of wireless sensor
networks applications and protocols. To save energy
and so extend the lifetime of wireless sensor network,
researchers have considered power consumption at dif-
ferent levels, including the application level [8], routing
layer [8], [12], and MAC layer [9], [21]. As previous
studies showed [6], putting the node’s radio into full
sleep mode is the most efficient technique in saving the
node’s energy. Therefore, topology management proto-
cols have the most potential in extending the network
lifetime. In this paper, we use the term topology man-
agement to describe the distributed in-network process
of selecting a set of active nodes, which together form
a connected dominating set. All other redundant nodes
can go to sleep and save energy.

Several topology management protocols have been

proposed [5], [6], [14], [15], [16], most of these pro-
tocols presents a theoretical analysis of the connected
dominating set problem [15], [16], while a few of them
presents practical implementations of the problem [5],
[6], [14]. Among the few, some suffer a high protocol
overhead [3], which adversely affects the protocol’s en-
ergy efficiency, while other have impractical assumption,
which limits their applicability in real deployments.

In this paper we present RAT (Redundancy-Aware
Topology Management), a novel topology management
protocol to identify node communication redundancy
(the initialization phase), and schedule nodes for sleep
and active modes (the scheduling phase). RAT exhibits
high fidelity to dynamic and irregular underlying wire-
less channels, while maintains low protocol overhead.
Furthermore, RAT scales very well with high node densi-
ties as only active nodes are allowed to produce overhead
traffic. To achieve high fidelity, RAT does not relate
physical location to communication redundancy (e.g.,
fixed communication range), instead, it uses the neighbor
set as the basis to define sensor node communication
redundancy and to define a node’s responsibility in the
multi-hop network. To maintain low overhead, RAT
leverages the neighbor discovery process and the broad-
cast nature of wireless links to establish communication
redundancy knowledge among sensor nodes instead of
asking nodes to simply exchange their neighbor sets.

RAT has two variants: Basic RAT (B-RAT) and
Enhanced RAT (E-RAT). In B-RAT, the scheduling
phase starts at the sink by triggering a scheduling thread,
which after that propagates serially until all the nodes in
the network switch to sleep or active modes. We trade
some uniformity of active nodes distribution in the sensor
field in E-RAT to overcome the potential scheduling
thread deadlocks and to improve B-RAT propagation
time. Instead of a single thread, E-RAT triggers several
scheduling threads which propagate simultaneously in
the network dispatching nodes sleep and active modes.

We implement RAT in the context of Score [1], which



is a cross-layer framework that allows different protocol
layers to collaborate without the need for pair-wise
interfaces. Score provides mechanisms to fill the gap
between topology management and the other network
services and protocols. This gap refers to the lack of
mechanisms to communicate the sleep mode state to
other protocol layers [5]. These mechanisms are im-
portant for the routing layer, e.g., to pro-actively build
alternative routes. Also, Score, along with the proposed
neighbor discovery service, provides an integrated and
transparent neighbor set abstraction. In this abstraction,
Score provides iterator-based interface to navigate, read,
and update the neighbor records, while the neighbor
discovery service uses passive and active listening, when
necessary, to populate the neighbor set with the node’s
neighbors.

Using nesC [7] and PowerTOSSIM [13], we designed,
implemented, and evaluated RAT and the neighbor dis-
covery service using Score libraries and interfaces. For
the evaluation we use two sets of performance met-
rics, low level and high level. We use the former to
demonstrate attractive characteristics of the active nodes
selected by RAT, such as the number of active nodes and
how well these nodes are distributed in the sensor field.
We use the latter to exhibit the advantage of RAT over
the all-active scenario in energy savings using the two
most popular communication patterns in wireless sensor
networks; one-to-many and many-to-one. As we present
in Section IV-B, RAT shows an energy savings of 67%
in a one-to-many routing scenario and up to 87% in a
many-to-one routing scenario for networks of high node
densities.

The rest of the paper is organized as follows, Section II
presents the RAT protocol and algorithm; Section III
discusses implementation details including Score and the
neighbor discovery service; In Section IV, we present our
simulation setup and results. Related work and conclu-
sion are presented in Sections V and VI respectively.

II. RAT ALGORITHM DESIGN

RAT consists of two phases, the initialization phase
and the node scheduling phase. In the initialization
phase, each node becomes aware of its role (responsi-
bility) in the multi-hop network, while in the scheduling
phase, information from the initialization phase is used to
put as many nodes as possible into sleep, while maintain-
ing connectivity. Before delving into the protocol details,
we present and explain key concepts and definitions
which are important for the reader to follow up the
discussion of RAT.

A. Basic Definitions and Notations

The neighbor set (NSi) plays the central role in RAT
and is used to define a node’s responsibility in the multi-
hop network and communication redundancy metric.
Two nodes are considered to have a high communication
redundancy, if they share a high percentage of nodes
in their neighbor sets. A formal definition of Degree of
Communication Redundancy of two nodes denoted as
(DoCRi,j) is presented next

DoCRi,j describes quantitatively how much com-
munication redundancy node j can provide to node i.
Therefore, how much responsibility can node j take
away from node i in the multi-hop network.

DoCRi,j =
|NSi ∩ NSj |
|NSi| − 1

Note that, DoCRi,j is not equal to DoCRj,i (i.e.
asymmetric redundancy).

Based on the notion of the neighbor set, a node
responsibility is defined as the number of nodes in its
neighbor set. The more neighbors in a node’s neighbor
set, the more responsibility the node takes on, and so
the more neighboring nodes are needed to provide the
required communication redundancy if the node wants
to switch to sleep. This intuition is formalized and
quantified as the neighbor set cover degree of that node
denoted as CDi(α).

CDi(α) is defined as the minimum number of nodes
in node’s i neighbor set, which together can cover α
portion of node’s i neighbor set (NSi), and is read as
the α neighbor set cover degree.

From this definition we can see that α is an important
parameter in calculating the neighbor set cover degree
(CDi(α)), and directly affects the probability of having
a disconnected network. We use α as a tuning para-
meter in RAT. α trades off energy saving to network
connectivity. Choosing a low α value allows for higher
levels of energy saving, but may result in a disconnected
network. Choosing a high α value lowers the level of
energy saving, but will more probably result in connected
network. We use Threshold of Connectivity Confidence
(Tcc), denoted as (Tcc), as a representative value for α.

B. Example Scenario

Fig. 1 shows an example scenario of several nodes
connected by wireless links as shown on the left side,
from which we can find the neighbor sets (NSi) and the
pair-wise shared neighbor sets (SNSi,j), which is the
intersection of node i and node j neighbor sets, as shown
in the central table. Based on this scenario, Fig. ?? shows



Node(i) NSi di

1 {2,3,4,6,10,9,13} 7
4 {1,10,6,8,13,5} 6
5 {4,13,8} 3

SNS(1,4) {10,6,13}
SNS(4,5) {13,8}

Node(i) DoCR(i,j)=
|SNS(i,j)|

di−1
NSCi(Tcc=80%) CDi(Tcc=80%)

1 DoCR(1,4)=
3
6

∞ -
4 DoCR(4,1)=

3
5

{1,5} 2
DoCR(4,5)=

2
5

5 DoCR(5,4)=
2
2

{4} 1

(a) (b) (c)

Fig. 1. An example scenario with a Tcc value of 80%: (a) communication graph, (b) corresponding NSi and di, and (c) DoCRi, j,
NSCi(Tcc) and corresponding CDi(Tcc)

the pair-wise DoCRi,j , NSCi(Tcc), and CDi(Tcc) for
nodes (i = 1, 4, 5). The neighbor set cover of node
i (NSCi(Tcc)) is simply the minimum set selected
to calculate the neighbor set cover degree of node i
(CDi(Tcc)). It is vital to note that no node maintains the
entire tables, and the way these information is distributed
over the nodes is presented and discussed next.

C. Redundancy-Aware Topology Management (RAT)

In the initialization phase all the nodes, which start
from the Active mode, perform neighbor discovery
(See Section III-B), in which nodes become aware of
their neighbor sets and the pair-wise shared neighbor sets
with each one of their neighbors. Nodes use the neighbor
sets and the shared neighbor sets together to find the
DoCRi,j and the CDi(Tcc). B-RAT uses DoCRi,j to
control the propagating scheduling thread, while E-RAT
uses CDi(Tcc) to trigger several scheduling threads in
the network simultaneously.

1) Initialization Phase: The heart of the initialization
phase is to obtain the pair-wise shared neighbor sets.
A straight forward technique is for the neighbors to
exchange their neighbor sets [6], but this can severely
decrease the protocol’s potential to save energy after
all [3]. In RAT, we exploit neighbor discovery procedure
and the broadcast underlying wireless communication
to aid each node obtain the shared neighbor sets with
each one of its neighbors efficiently. Technically speak-
ing, obtaining shared neighbor set does not incur any
new overhead traffic (The neighbor discovery has to be
performed anyway). For now, we will assume that the
neighbors are aware of their pair-wise shared neighbor
sets, a detailed discussion of how we do this is deferred
until Section III-B.

Once the neighbor set and the shared neighbor sets are
available, each node i can locally calculate the DoCRi,j

with each neighbor j and the CDi(Tcc). Finding the
CDi(Tcc) is an NP-Complete problem (by simple reduc-
tion from subset sum), a greedy approximation is to order
the nodes in the neighbor set according to their DoCRi,j ,

and start including neighbor by neighbor (highest to
lowest) in the neighbor set cover until the node reaches
a coverage equal to or greater than the Tcc (Please,
refer to [2] for detailed algorithm). By calculating the
DoCRi,j list, and the CDi(Tcc), node i is done with the
initialization phase and ready for the scheduling phase,
which is discussed next.

2) Scheduling Phase: In B-RAT, the sink (sender)
triggers a scheduling thread by sending an active an-
nouncement. Recipient nodes initiate timers proportional
to their DoCRi,j with the sender, so that nodes with least
communication redundancy with the sender switch to the
active mode first and so minimize the total number of
active nodes in the network. All other nodes hold back
their timers once they receive an active announcement.
During the active announcements, any node that is able
to collect enough neighbor set coverage becomes eligible
for the sleep mode and switch to sleep immediately
without sending any extra overhead messages.

B-RAT suffers a deadlock problem, which is possible
when all the recipient nodes become eligible for the
sleep mode leaving no node to pick up the schedul-
ing thread. To overcome the deadlock problem in B-
RAT, E-RAT uses the neighbor set cover degree to
trigger scheduling threads. In a trial to minimize the
total number of active nodes, E-RAT lets nodes with
higher neighbor set cover degree switch to the active
mode first and trigger a scheduling thread giving the
opportunity for more nodes to collect enough neighbor
set cover and switch to the sleep mode. The intuition is
that nodes with higher neighbor set cover degree require
more nodes to stay active and cover its neighbor set than
a node with smaller neighbor set cover degree. In E-RAT,
all nodes start in “E-RAT” operation mode by starting
up timers inversely proportional to their CDi(Tcc). If
the timer fires before any scheduling thread reaches
that node, the node switch to active and triggers a new
scheduling thread to break a potential deadlock. On the
other hand, if the node hears an active announcement
before the timer fires, the node switches to normal “B-



Fig. 2. Functional components: shaded boxes represent our modules,
PMsg, PRMsg, and DMsg represent Probe, Probe reply, and Data
messages respectively.

RAT” mode, in which later, the node can switch to active
or sleep mode depending on how the existing scheduling
threads propagate in the network, but the node will never
trigger a new scheduling thread. If it happens that all B-
RAT scheduling threads died, some node in the network
will eventually break the deadlock by triggering a new
scheduling thread as this node must have never been
reached by any scheduling thread and still running in
the E-RAT mode.

3) RAT protocol overhead: The RAT protocol over-
head messages consists of two parts, overhead messages
in the initialization phase and in the scheduling phase.
By careful design of the neighbor discovery process,
RAT can build the shared neighbor sets without introduc-
ing any new overhead messages, See Section III-C. To
keep low overhead in the scheduling phase, only active
nodes need to announce their states, as we present in
Section IV, the number of active nodes stays constant
even for higher density topologies, this ensures a con-
stant message overhead during the scheduling phase.

III. IMPLEMENTATION DETAILS

In this section we present the detailed implementation
of RAT. Fig. 2 shows the functional decomposition
including Score [1], neighbor discovery service, which
consists of the passive listening and active probing mod-
ules, and finally the RAT module. The former two service
modules provide integrated neighbor set abstraction and
neighbor discovery service. This integrated service is
used by RAT, which performs topology management. In
the following section we briefly discuss Score interfaces,
refer to [1] for more detailed discussion of Score.

score

interface SCore{
    // Sequential Access Iterator commands
    command result_t first();
    command result_t next();
    event result_t nextDone(uint16_t neighborID);

    // Ramdom Access Iterator command
    command result_t seek(uint16_t n_id);
    event result_t seekDone(result_t success);

    // SCore Reader
    command result_t read(uint8_t *neighbor);
    event result_t readDone(uint8_t *neighbor);

    // SCore Writer
    command result_t write(uint8_t *neighbor);
    event result_t writeDone(result_t result);
}

Page 1

(a)
state

interface State{
   
   // To change the node's current state
   command result_t change(uint8_t newState)

   // Fired whenever the node's state changed
   event result_t changed(uint8_t newState);
   
}

Page 1

(b)

Fig. 3. Score APIs, (a) neighbor set abstraction API and (b) state
interface.

A. Sensor Core Module (Score)

Score sits at the core and provides other modules with
three services. First, a unified neighbor set abstraction.
Second, a modular cross-layer interface. Third, a cross-
layer coordination mechanism.

1) Neighbor Set Abstraction API: Using Score access
interface (Fig. 3(a)) a client module can read or write
any neighbor record simply by pointing at the required
record and performing a read or a write. Moving the
pointer can be done in two ways, sequentially using
the first and next commands, or randomly using the
seek command (Fig. 3(a)). Following nesC/TinyOS phi-
losophy, Score provides split-phase operations to keep
the sensor responsive to external events. Score does not
impose any limitations and is not involved in deciding
which nodes are included in the neighbor set. In other
words, Score only provides the mechanism and not the
policy. The implementation of a specific neighbor policy
is completely independent of Score and done by the
neighbor discovery service.

2) Cross-layer Interface: To eliminate the need for
pair-wise interfaces between the different network mod-
ules, Score defines a global neighbor record structure,
in which each network module is allocated a number of
bytes. A network module can use these bytes to annotate
the neighbors with useful information that other modules
wish to access. For example, A trust network service



can rank the neighbors based on some trust criteria, and
annotate the neighbors with this value. Another service,
the routing protocol for example, can access these trust
values and exclude untrussed neighbors while building a
routing tree.

To keep the Score access interface simple and gen-
eral, Score does not provide individual read and write
commands to read and write specific fields in the neigh-
bor record, it only supports reading and writing entire
records. By doing so, Score is not severely involved
and dependent on a particular neighbor record structure,
which we think can change in different implementations.
Reading and writing entire records raises the need for
Score to prevent network services unintentionally or
intentionally (malicious service implementations) from
overwriting each other’s information in the neighbor
record. Therefor, each network service is assigned a
writing mask, This mask (for short) is statically defined
in Score according to the current neighbor record struc-
ture. Each time a network service writes a neighbor
record, Score will first apply the mask, on the new
record, which sets all the unrelated bits to zeros, and then
perform a bit-wise and operation with the old neighbor
record. The masking process does not only provide inter-
service overwrite protection, it also allows for multiple
writers at the same time with no need for inter-service
synchronization (each service writes its bytes only in the
shared neighbor record).

3) Cross-layer Coordination: Score supports cross-
layer coordination by maintaining a sensor node oper-
ational state, this state (e.g., DISCOVERY, BOOTED,
SLEEP, and ACTIVE) describes the current sensor node
operational status. Each network service can react in
its own way when a new state is announced by Score.
For example, The active probing module will send
neighbor probing messages if the node state change
to DISCOVERY (a DISCOVERY state means there are
no enough neighbors in Score), while a routing service
will hold its protocol messages as there are no enough
neighbors to maintain a routing tree, and so save the
precious node energy from being wasted for nothing.

Score provides a state interface (Shown in Fig. 3(b)),
which provides a command to change the node current
state and uses an event to announce state changes. Any
network service wishes to react to state changes must
provide implementation of the changed event, in which
the service can take the appropriate action.

B. Neighbor Discovery Service

The neighbor discovery service works in passive as
well as active mode. In active mode, the neighbor
discovery service actively probes nodes in the vicinity
to populate Score with new neighbors, while in passive
mode, the neighbor discovery service passively intercepts
incoming messages, extract the source address and insert
a new record into Score. Other network services and
protocols access the set of neighbors transparently using
Score access API with no need for direct interface with
the neighbor discovery service. Active probing module,
Fig. 2, is responsible for active probing whenever Score
announces a DISCOVERY node operational state, while
passive listening module, Fig. 2, passively intercepts
incoming messages and insert neighbor records into
Score.

1) Active Probing: To perform active neighbor dis-
covery, the active probing module simply broadcasts
probe messages, which consists of the source node ad-
dress (sender), nodes in the vicinity (receivers) reply by
sending messages consisting of the the receiver’s address
and the original sender address. As we present in Sec-
tion III-C, including original sender address in the probe
reply messages is important to build the shared neighbor
sets. The active probing module registers with Score for
node operational state, whenever the operational state
changes to DISCOVERY, active probing module starts
probing for neighbors so that passive listening can insert
new neighbor records into Score.Once the operational
state changes back to BOOTED, the active probing holds
back its probing messages.

2) Passive Listening: The passive listening module
is placed under the active messaging layer so that it
can intercept all incoming messaging and not only those
targeted to the neighbor discovery service, and so lower
the need for costly active neighbor discovery. To make
this possible, the source node address has to be included
as the first two bytes of the payload of all the packets,
so that the passive listening module can simply extract
the first two bytes of any incoming message and insert
a new neighbor record into Score.

A ProbReply(i, j) message, on its own, tells any third
party receiving node that both i and j are neighbors, RAT
leverages this by overhearing these message to build and
maintain the shared neighbor sets, a detailed discussion
of this process is presented next.

C. Building Shared Neighbor Sets

As discussed above, all the nodes have to have access
to their neighbor sets and the shared neighbor sets with
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Fig. 4. Building shared neighbor sets at node k.

their neighbors to finish the initialization phase of RAT.
The neighbor discovery process along with Score provide
RAT with sequential as well as random access to the
neighbor set. The shared neighbor sets are built and
maintained by RAT itself. By overhearing a probe reply
message sent from node j to node i, RAT at node k can
add node j to the shared neighbor set of node i, and node
i to the shared neighbor set of node j only if node i is
in the neighbor set of node k. This scenario is illustrated
in Fig. 4(a). Fig. 4(b) and Fig. 4(c) show the other two
possible scenarios. In Fig. 4(b) node j and node k are
neighbors, but node k and node i are not, in this case,
node k will receive the probe reply message from node
j, but never add any records to the shared neighbor sets
as node i is not in node k neighbor set. In Fig. 4(c) node
k and node i are neighbors, but node k and node j are
not, in this case, node k does not receive the probe reply
message from node j in the first place.

IV. EVALUATION

A. Evaluation Setup and Metrics

Using nesC and PowerTOSSIM we implemented B-
RAT and E-RAT and compared their performance to the
all-active case. In B-RAT and E-RAT cases, only active
nodes participate in the multi-hop network, while in the
all-active case, all the nodes actively participate in the
network and forward messages.

Two sets of performance metrics are used, the first is a
low level metrics to show some attractive characteristics
of the protocol, while the second set is a high level
metrics to show the advantage of B-RAT and E-RAT
over the all-active case in terms of energy savings. The
first set includes four metrics. First is the average active
node degree, which is the average of the number of
active nodes in the neighbor sets of all the nodes in the
network. Second is the active degree distribution, which

is the number of nodes having the same active node
degree. Third is the sleeping ratio, which is the ratio
of sleeping nodes to the total number of nodes. Fourth
is the propagation time, which is the time it takes the
protocol (B-RAT and E-RAT) to finish and all the nodes
switch to active or sleep.

In the second set, we use the total power consumption
in comparing B-RAT and E-RAT to the all-active case.
Two communication patterns are used, one-to-many and
many-to-one, a detailed discussion of the experiments is
presented later.

The experiments are conducted on five topologies. In
all of the topologies, the nodes were randomly distributed
over a fixed area of 100 by 100 units squared. In order
to show the ability of B-RAT and E-RAT in leveraging
high node densities, the average node degree in the
topologies varies from seven to thirty, we use (Top
7, Top 10, Top 17, Top 21, and Top 30) to refer to
them. The communication ranges are adapted to get the
desired node degree, (Please refer to [2] for topology
configuration details).
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Fig. 5. Choosing appropriate Tcc values: (a) B-RAT, and (b) E-RAT
value.



B. Simulation Results

In order to decide a good Tcc value, which is used
to ensure a connected network, we conducted a set of
experiments, in which we ran B-RAT and E-RAT using
Tcc values ranging from 20% to 100%, each time the
number of of zero degree nodes was recorded and plotted
as in Fig. 5(a) and Fig. 5(b). The number of zero degree
nodes is used as an approximation to find whether the
network is connected. As the sleep mode eligibility is
lenient for small Tcc values, B-RAT suffered deadlocks
frequently, and in most cases the scheduling thread was
not able to propagate over the entire network. Top 7 and
Top 30 are used in these experiments as representatives,
we can see from Fig. 5(b) that a Tcc value of 85% is
good enough to ensure connectivity.
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Fig. 6. The average active node degree of different topologies in
B-RAT and E-RAT.

The second experiment shows the average active node
degree after the application of B-RAT or E-RAT as
the node density increases. A constant average node
degree as the node density increases is important first
to prove the correctness of the protocol and to show
that the protocol actually has a constant overhead. The
experiment was performed by running B-RAT and E-
RAT on each one of the topologies and taking the
average active node degree over all the nodes. Each value
in Fig. 6 represents the average of 10 runs of B-RAT and
E-RAT.

We can observe from Fig. 6 that both B-RAT and
E-RAT maintains a constant active node degree as the
deployment node density increases, which emphasizes
two things: First, both B-RAT and E-RAT can leverage
high node redundancy by selecting a constant number
of nodes to be active which is only necessary for
connectivity. Second, B-RAT and E-RAT maintain a con-
stant protocol overhead (i.e. only active nodes announce

their states in the protocol). In addition to the average
active node degree, the active node degree distribution
is important to show how uniformly the active nodes
spread over the sensor field. Having a uniform active
node degree helps in avoiding a situation where some
network channels have a high contention (high node
degrees), while others have low contention, which makes
the decision of a MAC back off time for example
difficult. An ideal distribution would be for all the nodes
to have exactly the same active node degree, but this is
impossible as boundary nodes by default have less node
degree. Fig. 7 (next page) depicts the active node degree
distribution for B-RAT, E-RAT, and the all-active case
of three configuration, where the x-axis represents the
active node degree values, while the y-axis represents
the number of nodes with the corresponding active node
degree. The figures show that in the all-active case, the
node degree is highly variable. For example, in Fig. 7(c),
some nodes have a degree of 40 while others have a
degree of 10. In B-RAT and E-RAT, we can observe a
neat distribution where most of the nodes have an active
degree of 5.
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Fig. 9. Energy saving potential.

An understanding of the protocol’s propagation and
convergence time is important, other network services
and protocols need to wait for the network to become
stable before starting generating and sending data mes-
sages. Fig. 8 (next page) plots the cumulative distribution
frequency of the decided nodes over time. By decided
nodes we mean a node that either switches to active or
sleep mode. Both can finish the protocol in less than 4
milliseconds. E-RAT can propagate faster in the network,
which follows from the fact that E-RAT initiates multiple
B-RAT threads concurrently in the network. In addition
to a deadlock-free RAT, E-RAT has a faster propagation
time.
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Fig. 8. The percentage of decided nodes vs time: (a) Top 7 (b) Top 21 (c) Top 30.

The ability of B-RAT or E-RAT in saving energy can
be predicted from the percentage of nodes that switch
to sleep mode. Fig. 9 shows an increasing percentage
of sleeping node as the node redundancy increases, a
percentage of more than 85% of the nodes switched to
sleeping mode in topology 30.

In the last two experiments, we used the most
two common communication patterns (one-to-many and
many-to-one) to compare the performance of B-RAT
and E-RAT to the all-active case in terms of the total
power consumption. The sink in the one-to-many routing

60 sec

14 sec

Sink

Sleeping node

Radio ON

14 sec

Radio ON

new msg new msg

14 sec

Radio ON
Radio OFF Radio OFF

Fig. 10. Sleeping node duty cycle.

scenario, periodically (every 60 seconds) broadcasts a
data message, and the recipient nodes rebroadcast again.
To avoid forwarding the same data message more than
once, each node forwards the same data message only
once. In the all-active case, all the nodes stay active all

the time and participate in the forwarding process, while
in B-RAT and E-RAT, only active nodes stay active all
the time and participate in message forwarding. On the
other hand, sleeping nodes do not forward data messages
and turn their radios off unless they need to receive
data messages. A simple time line for the sink and a
sleeping node is shown in Fig. 10. The figure shows that
a sleeping node turn its radio on for 14 seconds starting
from the time a new message generated at the sink, 14
seconds is the maximum time that a data message may
take to propagate from the sink to the furthest node in
the network. This time interval (i.e., 14 seconds) is a
conservative value that accounts for the maximum one
hop delay and the maximum number of hops in the
network. A one hop delay may take up to 1 second,
which is the maximum back off time a node may wait to
avoid collisions, and the maximum hop in the topologies
in our simulation is 14.

In the many-to-one routing scenario, the nodes in the
network are arranged in a shortest path routing tree
rooted at the sink, each node generates a data message
every 60 seconds, which is forwarded up the tree after
aggregated with other data messages to the sink. In the
all-active case, all the nodes are active, join the routing
tree, and participate in the data message forwarding,



while in B-RAT and E-RAT, only the active nodes form
the routing tree and forward data messages, sleeping
nodes turn their radios off unless they need to send a
new data message generated locally at the node.
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Fig. 11. Total energy consumption per data message: (a) One-to-
many routing and (b) Many-to-one routing.

Fig. 11 compares the total energy consumption of E-
RAT and the all-active case for three different topologies
in the one-to-many routing scenario (Fig. 11(a)) and the
many-to-one routing scenario (Fig. 11(b)). Since B-RAT
and E-RAT show similar energy saving potential in Fig. 9
we use E-RAT only in our comparison with the all-
active case. In both Fig. 11(a) and Fig. 11(b), the y-axis
represents the total energy in joules consumed by all the
nodes in the network for each individual data message
generated in the network, while the x-axis represents the
node density of each topology. Fig. 11(a) shows a total
energy reduction of at least half in low density topologies
(Top 7) and up to 67% in total energy reduction for
higher density topologies (Top 30). Fig. 11(b) on the
other hand, shows a total energy reduction of more than

80% for high node density (Top 30).
In the many-to-one routing scenario, Fig. 11(b), E-

RAT shows an even increased energy saving over the
all-active case compared to the one-to-many routing
scenario, Fig. 11(a). This is due to the fact that in
the many-to-one routing scenario in Fig. 11(b), sleeping
nodes don’t need to become active to receive data
messages, instead, sleeping nodes become active only
to send data messages, this allows for even lower duty-
cycle of sleeping nodes.

V. RELATED WORK AND DISCUSSION

Several topology management protocols have been
presented in the literature [5], [6], [14], [20], RAT
complements and enhances previous work by providing
a working nesC/TinyOS implementation, which accounts
for more practical issues such as irregular wireless
channels. We also consider new important performance
metrics in addition to energy saving such as active node
density distribution and propagation time.

GAF [20] uses physical location to define communi-
cation equivalence and redundancy. The assumption that
relates physical location to connectivity does not neces-
sarily hold in real deployments [22], [23] and limits GAF
applicability in real life deployments. Using the neighbor
set to define communication redundancy, RAT adapts
and captures harsh connectivity models. Exchanging
long neighbor lists (high density deployments) among
neighbors, as in SPAN and ReORG [6], [14] respectively,
puts high overhead on the network. This high overhead
limits the protocols’ ability in saving energy after all.
To avoid exchanging neighbor lists, RAT leverages the
broadcast underlying medium of wireless channels to
build communication redundancy information which is
necessary for selecting the active node set. In addition
to overhead resulted from exchanging neighbor lists,
ReORG requires all the nodes to announce their states
(active or sleep), this results in poor scalability with the
total number of nodes. RAT on the other hand, requires
only active nodes to announce their states, since the
number of active nodes is constant relative to the total
number of nodes, RAT scales very well to deployments
with large number of nodes.

Also, the tight coupling of the routing and topology
management layers, in SPAN [6], may un-necessarily
limit the design space for the routing layer designers.
RAT avoids any dependency on the routing layer, which
makes it operational with any routing protocol, never-
theless the state interface provided by Score allows the
routing layer to get notification of any topology changes



smoothly so that it can adapt its routing infrastructure
appropriately. ASCENT [5] takes a different approach
in selecting a set of active nodes, it uses the active
node density and loss rate as driving factors in assigning
nodes active and sleep states. Transient node failures and
high wireless channel quality variation may compromise
the integrity of a node’s decision of going to sleep or
active, which may lead to a disconnected network. RAT
guarantees connectivity by forcing nodes to stay active
unless a set of active nodes already provide enough
communication redundancy.

Topology management, in which a set of nodes stay
active while other nodes turn their radios off completely,
is not the only mechanism that has been used to control
network topology and so save energy. Several protocols
and algorithms [4], [10], [11], [19] have been proposed to
control network topology by adjusting the sensor node
sending power. Such mechanisms can be used side by
side to complement our work and further provide higher
levels of energy savings.

Unlike previous neighborhood abstraction [17], [18],
in which the goal was to support a unified neighbor
view for application developers, Score is designed to
support the system developers by providing neighbor set
abstraction and mechanisms for cross layer interface and
coordination.

VI. CONCLUSION AND FUTURE WORK

We have designed and implemented RAT, Score, and
neighbor discovery service, and evaluated RAT under
two routing scenarios. RAT achieves energy savings up
to 87% by leveraging high node density by assigning
80% of the nodes sleep mode and assigning a small set
of nodes, good enough to maintain connectivity, active
mode. Our future work is three fold. First, perform
RAT continuously so that the topology is adjusted to
environmental changes. Second, study the effect of RAT
on the network capacity. Third, consider fault tolerance
as another primary network property besides connectivity
in RAT.
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