
ARTICLE IN PRESS

Journal of Network and Computer Applications] (]]]])]]]–]]]
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

� Corr

E-m

zhifeng

Pleas
(200
journal homepage: www.elsevier.com/locate/jnca
A survey on dynamic Web content generation and delivery techniques
Jayashree Ravi, Zhifeng Yu, Weisong Shi �

Department of Computer Science, Wayne State University, USA
a r t i c l e i n f o

Article history:

Received 9 October 2008

Received in revised form

16 March 2009

Accepted 21 March 2009

Keywords:

Dynamic Web content

Content distribution

Personalised Web content
45/$ - see front matter & 2009 Published by

016/j.jnca.2009.03.005

esponding author.

ail addresses: jayashreeravi@ymail.com (J. Rav

.yu@wayne.edu (Z. Yu), weisong@wayne.edu

e cite this article as: Ravi J, et al. A s
9), doi:10.1016/j.jnca.2009.03.005
a b s t r a c t

While Web applications serve personal needs and business functions almost in every area, the

responsiveness and performance of Web applications is the key factor to their success. With continuous

innovation on Web technology, Web sites have evolved from document Web to application Web and

further to service Web recently. During the evolution course, Web sites serving dynamic content started

to grow exponentially to dominate the area. Dynamic pages require servers to generate the response

content per-user request before delivering it back to the user, which introduces network traffic, server

workload and results in extra latency. This drew tremendous efforts from both research and industry on

how to accelerate the dynamic content generation and distribution in order to reduce the user perceived

latency and improve the application performance, among which caching is a vital technology. This paper

attempts to survey the innovative research and products recently published in this area and presents

them in a road map style. It first examines the dynamic characteristics of Web applications and the

inherent challenges for caching. Then the rest of this paper explores the varied acceleration solutions on

content generation process and content delivery process, respectively, followed by the analysis of how

different caching solutions fit Web applications of different characteristics. Finally it ends with the

future trends on Web caching technique and a summary of the survey.

& 2009 Published by Elsevier Ltd.
1. Introduction

As we are heading into Internet Services Era, ‘‘online’’ becomes
a necessity for any software system which attempts to prevail in
today’s market. Even the giant software maker Microsoft started
to sense the urgency and decided to ‘‘go live,’’ after many Web-
based services such as Google Inc and Yahoo Inc were gaining
momentum in this area recently. The ‘‘online’’ software (also
known as software-as-a-service, SaaS) is enabled by low-cost
bandwidth, widespread wireless access, and cheap memory and
storage, and marked by rapid release cycles, an agnostic attitude
about whether products run on PCs or other computing devices,
and the ability to blend local, peer-to-peer, and online functions
(Ricadela, 2005). Needless to say, since the last 10 years when the
majority of Web sites were developed to publish static informa-
tion only, they have evolved steadily and ubiquitously to serve
dynamic and complex Web contents and business functions.

From the first generation marked by document Web, Web sites
are evolving into application Web, and further towards service
Web recently. Document Web simply has Web server host
Internet accessible documents, most of which are static HTML
and images. Most of the traditional content delivery acceleration
Elsevier Ltd.

i),

(W. Shi).

urvey on dynamic Web con
technologies addressed document Web only. With the surging
popularity of Web sites, the application Web aligned with
e-Business models started to emerge, which relies on server side
programs executing business logics hosted on application servers
to generate the dynamic HTML as per each user request, for
example, the online book store, auction site, and enterprise Web
applications. The Web application growth provides the opportu-
nity of e-Business process integration which in turn pushed the
technology advancement and resulted in service Web which is yet
to mature. The service Web is powered by application server
which supports Web service and delivers the XML as response.
Both application Web and service Web require dynamic content
generation on server side for each unique request. In this paper,
we do not specifically distinguish these three types of Web when
discussing about the content generation and delivery and they are
all referenced as Web application hereafter.

Responsiveness, i.e., user-perceived latency, is the most im-
portant performance measurement which people use to deter-
mine if application Web fits personal or business needs. A great
amount of efforts from both research and industry sectors have
been made to improve the Web performance by reducing the
client response latency and network traffic. The work varies from
increasing network bandwidth, improving data transmission rate,
caching the content in every possible location, to scaling up the
server farm by any means.

On the other hand, there is significant increase in on-the-move
access to the Web content using a variety of mobile resource
tent generation and delivery techniques. J Network Comput Appl

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2009.03.005
mailto:jayashreeravi@ymail.com
mailto:zhifeng.yu@wayne.edu
mailto:weisong@wayne.edu
dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

App Server

App Server

App Server

Web Server

Web Server

Web Server

Edge Server

Edge Server

Edge Server

Browser

Browser

Browser

Request

Internet Internet/
Intranet

Enterprise
Information

System

Fig. 1. A typical Web application system model.

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]2
constrained devices. It is observed that the Web enabled PDA and
cellular phone as well as the efforts in trying to ‘‘mobilize’’ Web
content keep growing explosively. As mobile communication
cannot be as stable as wired network inherently, the requirements
for responsiveness are even higher. All these enforce a demand for
the technologies to accelerate the content generation and
distribution.

Web application needs a more complex infrastructure than
static content Web site, as Fig. 1 shows. This system model is a
typical one in practice and will be referenced in the rest of this
paper. It consists of

(1) Edge server, which extends the service from the original
server to the Internet edge close to user by caching content and
application code in order to reduce the client latency and offload
the original servers. The new generation edge servers support
caching the application code as well. (2) Web server, which takes
HTTP request and sends response back to client. (3) Application
server, which executes the business logic. The application server
normally connects to the back-end enterprise information
systems, and performs read or write operation driven by business
rules. Most of the dynamic contents are generated on application
servers. (4) Enterprise information system, where the content is
originally stored. It can be of varied form, for example, XML, file
system or DBMS, where DBMS is the most popular information
system type in practical use.

With this typical Web application deployment infrastructure,
there are many variables which can influence the user perceived
latency. This can be notated as follows:

Lt ¼ Ldns þ Lg þ Lnt þ Lna þ Lu (1)

where the total user perceived latency Lt is a sum of the latency
introduced by the DNS lookup Ldns, latency introduced by the
origin server to generate the dynamic page Lg , latency introduced
by the network traffic Lnt , latency introduced by the Internet
access used by the user (dial-up introduces more latency
compared to DSL or cable access) Lna and latency introduced by
the speed of machine the user is using to access the Web pages Lu.

Dynamic content generation and delivery will cost both
network bandwidth and response latency if content caching is
not possible. Caching serves four main purposes: improving the
user perceived latency, reducing the Internet traffic (bandwidth
availability), improving the scalability and availability of the
origin server. Although the legacy content caching and content
distribution network (CDN) improved the static Web site
performance significantly, it lacks the proactive and effective
invalidation mechanism required for caching dynamic content.
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
The key issues with caching dynamic content is to determine
what should be cached, where cache should be placed and how to
invalidate the cached data efficiently. These new challenges and
issues drew the researches on: (1) what characteristics of Web
application bring challenges of caching dynamic content: analyze
the cacheability and challenges for dynamic content and study
how to improve it; (2) acceleration of dynamic content genera-
tion: study how to accelerate the content generation via caching
within architecture, on database or edge computing, implement
these approaches in adaptive or programmatically; and (3)
acceleration of dynamic content delivery: explore new caching
strategies and content delivery approaches for dynamic content.

While one relevant survey by Sivasubramanian et al. (2007)
reviewed content caching techniques for database-driven Web
applications and the other one by Pathan et al. (2008) surveyed
the technologies used in content distribution network, this survey
extends the scope to the acceleration technologies of dynamic
content Web from its generation to delivery and includes caching
of both content and computation. The rest of this paper is
organized as follows. In Section 2 we analyze the characteristics of
Web content. Section 3 explains how the different caching
techniques and deployment models help to accelerate content
generation. Different types of content delivery approaches are
discussed in Section 4. Section 5 further investigates how these
content caching solutions are applicable to applications with
different characteristics. Finally, in Section 6 we discuss the
remaining challenge and research opportunities in this area and
summarize our survey in Section 7.
2. Dynamic content Web site characteristics

This section defines the salient characteristics applicable to
dynamic pages, which can help us propose good solutions for
improving the performance. However, when it comes to char-
acteristics of Web applications, researchers, to start with, define
the characteristics based on heuristics. Some of the heuristics are
proved to be correct by the same or other researchers at a later
point of time. Rabinovich and Spatscheck (2002) defined a set of
rules of thumb which are applicable to any Web application. Rules
of thumb are generally based on popular real life experiences.
Dynamic Web pages form a subset of the Web application. Hence
these rules of thumb can be extrapolated and applied to dynamic
Web pages as well. The rules defined are: (1) The mean Web
object size is of the order of 10–15 kB and the median is 2–4 kB. (2)
The popularity of Web objects are very uneven: a small fraction of
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 3
objects are responsible for a majority of accesses. The popularity
distribution of Web objects can be approximated to a Zipf-like
distribution. This heuristic is proved correct by research (Breslau
et al., 1999). (3) The access rate of objects is typically much higher
than the modification rate. (4) On a time scale below 1 min, Web
traffic is very bursting. Because of the burst, characteristics
averaged over a period of a few tens of seconds or less are in
general unreliable. (5) A non-negligible fraction of Web accesses,
between 5% and 10% are aborted. Knowing these characteristics
helps us design the generation, dissemination and delivery
techniques which help us get the best performance. For e.g.,
knowing that the popularity distribution follows Zipf-like dis-
tribution can help us design a caching solution based on Zipf-like
distribution which would enable us identify the inactive pages
which can be considered for elimination to conserve memory.
There are many generation, caching and delivery techniques
which are designed to take advantage of these characteristics to
improve performance. The same techniques can be applied to
dynamic pages as well. Detailing the general solutions applicable
to Web applications is beyond the scope of this paper. In addition
to the above characteristics which are applicable to Web
applications in general but never the less is also applicable to
dynamic pages, there are some special characteristics which are
applicable to dynamic pages alone. We detail these special
characteristics below.

The most significant characteristic of a dynamic page is that
dynamic page changes with time more frequently than static
pages. Though caching a Web application object is a general
requirement, caching a dynamic page which changes very often is
a very tricky problem. Simple caching techniques which are
employed for static pages would not be an efficient way for
caching dynamic pages. Most of the caches and proxies deployed
in the earlier times would only cache static pages. Caching of
dynamic pages was introduced in the recent past. Proxies and
caches which cater to only static pages needed a way of
determining whether to cache a response or not based on
studying the salient characteristic of a dynamic page. HTTP1.1
provides a clear rule, which is every page is cacheable as default
unless the response header indicates ‘‘no cache’’ otherwise. This is
based on the assumption that dynamic pages will have a ‘‘no
cache’’ tag in the header. However, many dynamic pages are
generated without declaring ‘‘no cache’’ in the header. If such
pages are cached and displayed to another user at a later point of
time the user will get obsolete data. To overcome such problems
proxies and caches follow common heuristics to identify a
dynamic page by studying some of the subtle differences noticed
in the request object, response object and the URL which
differentiate them from a static page (Rabinovich and Spatscheck,
2002). Proxies and caches do not cache the following: (1) If the
URL contains ‘‘cgi-bin’’, a question mark ‘‘?’’, or a suffix ‘‘.cgi’’. This
heuristic is based on the fact that URLs of this form usually
identifies dynamic pages. (2) If the request contains a cookie
header and response contains a set-cookie header. This is again a
heuristic and the rational here is cookies are used to personalize a
dynamic page. (3) If the requests use methods other than common
‘‘GET’’ and ‘‘HEAD’’. Zhu et al. (2004) defined seven un-cacheable
subtypes based on HTTP header methods, viz., NonGet, DynGet,
Pragma, CacheCtl, Personalized, AbnormalStatus and ZeroTTL. If a
page contains any of these headers then that page can be safely
considered to be a dynamic page. (4) If the request contains
authorization header or with ‘‘307 Temporary Redirect’’.

The above differences which identify a dynamic page from a
static page would be based on many mechanisms which are
specific to dynamic pages such as the generation method used to
generate the dynamic page, the type of the data being collected by
the Web site from the users, and the type of users it is intended to
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
and so on. If the proxies and caches stop caching based on the
above, then about 40% of total requests are un-cacheable
(Feldmann et al., 1999; Wolman et al., 1999). However, the
research community has proposed caching solutions to this 40% of
Web pages, which are explained in detail in Sections 3 and 4.

Types of dynamic pages: We can broadly classify all dynamic
pages into two types. The first type which we henceforth call just
dynamic pages are those that are generated without taking
sessions of the user into account. This type does not need to
know who has accessed the page and for every user the dynamic
page generated is the same at any instant of time. The second
type, which we call personalized dynamic pages are generated
when the user accesses them through a secured system. In this
case the dynamic page generated is tailor made for each user. All
the major Internet service providers do provide personalized
content with iGoogle and My Yahoo! as typical examples. Though
both these types of dynamic pages inherit the general character-
istics of dynamic pages, they still have certain salient character-
istics which distinguish them from each other.

(1) Characteristics of dynamic pages: In this type, the same page
will be shown to every user who access the Web site. However,
the page itself may be changing at a very fast rate making it
difficult to cache. For example, Web pages containing real time
stock quotation is not cacheable as stock prices may vary every
second. However, it was observed that if a page is divided into
fragments, some or all of the fragments, for example, the header,
footer of the page, become reusable and cacheable. The portion
which shows the stock prices would still not be cacheable. This
notion further developed into a two popular fragment caching
schemas: ESI (edge side include) and DE (delta encoding). While
ESI approach divides page into cacheable and un-cacheable
fragments, the DE breaks the page into base file and delta
fragments. Fragments are assembled on the edge server side
closest to the client to minimize the content generation request on
original server and therefore reduce the network traffic, the
burden on original server side and improve client response time
as well. The delta encoding approach is based on the observation
that two different versions of the same dynamic Web page share
great similarity. Therefore, the common portion of the page can be
cacheable and reusable, called ‘‘base file’’, while the other portion
has to be generated dynamically, called correspondingly ‘‘delta’’.
These are explained in detail in Section 4.

(2) Characteristics of personalized dynamic pages: If a new
dynamic page has to be generated for each user request then
caching of such a page could be impossible. For such Web
application, each request is unique even when the URL looks
identical, as personalization and customization are the key
features of this type of Web application. The HTTP request is
represented by the URL with associated parameters, which may be
invisible depending on what request method is used. As two most
popular methods, ‘‘GET’’ method attaches the associated para-
meters with the URL in a string of key-value pairs. ‘‘POST’’ method
includes the parameters in the request but not visible from the
URL itself. HTTP header also contains some user specific attribute
and drives for different response content. For example, the
‘‘locale ¼ es_ES’’ indicates the locale and internationalized Web
application will display the content in Spanish automatically. In
addition, the client cookie is usually carried with request which
stores user or session information. Bent et al. (2004) analyzed the
trace for 3000 popular Web site and concluded that 47% of
workload could not be cacheablesimply because they have a
cookie attached and overall 66% of responses across the Web sites
are not cacheable, surprisingly higher than previous estimation.

The prevailing use of session object makes almost each request
unique and harder to cache the response. Usually session object
contains some important attributes, for example, business state,
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]4
user identity, user authorization and session id, in between
requests, which makes one request affect or be affected by the
service of another request. These attributes can only be read on
original application server unless application code is deployed on
edge server and session data consistency is maintained in the
infrastructure.

Interestingly research community has proposed several solu-
tions for caching of both dynamic and personalized dynamic
pages which are explained in the next section.
3. Dynamic content generation and caching

Most of the Web pages today are generated dynamically on the
server side before they are delivered to clients. Even with content
caching proxy available, if cache hit misses or the cache is invalid,
the content has to be generated on demand. The latency
introduced to generate the dynamic page Lg is determined by
the performance and scalability of original servers.

Content generation process involves the tasks of executing
business logic, accessing data, and generating the presentation, all
occurring on server side. To help the future discussion on caching
technologies in this section, we use a typical Web application with
common model-view-control (MVC) architecture to illustrate the
caching options.

As Fig. 2 shows, the controller takes HTTP request, interprets
the URL and associated parameters, and maps them into the
command to be performed by the model. It also determines which
view will be displayed as the response back to the client. The
model represents the business data and business logic or
operations, which retrieves or computes on the business data
usually stored in DBMS system. The view is simply responsible for
accessing data from the model, which may have been previously
created and cached by the controller, and populating the
presentation templates with data.

The MVC architecture clearly separates data access from
business logic, presentation from content, and inherently provides
the caching opportunity in application design. With regard to
Organize wo
Reque

Retrieve Data

Enterprise Informatio

Determine page to display

Format Page to Display

ResponseView

Model

Browser
Client

Fig. 2. The model-view-controller arch

Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
where caching can be implemented, Mohan (2001) partitioned
J2EE application into four logic tiers: edge of enterprise or
network, presentation logic, business logic and data, and caching
can be placed in each tier. The latter three tiers correspond to the
view, model and data access in the model. The significance of
caching in different tiers varies, and the implementation can be
provided by application developers, middle ware product vendors,
application server vendors and DBMS vendors.

We hereafter elaborate these caching technologies from four
aspects: (1) dynamic content caching within infrastructure; (2)
database caching strategies; (3) application deployment models
to support caching; and (4) programmatic or transparent caching
solutions.
3.1. Dynamic content caching within infrastructure

When Web applications tend to be more interactive but lack
temporal locality which traditional CDN technology relies on, it
becomes a key requirement to accelerate content generation on
original servers. More specifically, content caching can be offered
by application server vendors, DBMS vendors, or application
specific caching implementation in application framework.

Almost all market leading J2EE application servers, namely
IBM WebSphere (IBM Corp,), Oracle WebLogic Application Server
(ORacle Corp,), provide the dynamic caching features. The built-in
cache service is an in-memory cache system to store cached
objects and it includes the cache replication service as well. For
example, IBM WebSphere application server supports Web-
sphere:01: (1) Servlet/JSP result caching, based on request
parameters and attributes, URI and session information. It can
be used to cache both page level and fragment level. (2) Command
result caching on the Java application level, used to cache the
dynamic data that require back-end data retrieval or additional
computation or manipulation. (3) Caching replication allows the
data to be generated once and then be replicated to the other
server in a cluster environment. Cache consistency is also
managed by application server. In a clustered server environment,
Fliter Request

Extract Input Data

Map Request to Command

Invoke Command to
Handle Request

rk for
st

Perform Operation

n System

Request
Controller

itecture (Singh and Stearns, 2002).

tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 5
if the cache entry is invalidated on one server, the invalidation is
propagated to all servers. This caching option does not require
code change and it reduces the latency relatively more as cache is
maintained in Java heap memory. However, it is limited by the
physical capacity of heap memory and programmers have little
control over the caching mechanism.

For the Web application with MVC architecture, it is easy to
conceive that there are two locations where caching can improve
overall performance. One is the view where page can be divided
properly into fragments which represent useable Web objects, the
other one is the model where the query result can be cached and
reused for consequent requests. The popular ESI (Tsimelzon
(2000)) technology enables Web pages to be broken down into
fragments of differing cacheability profiles. These fragments are
maintained as separate elements in the application server’s local
cache and/or on the content delivery network. ESI page fragments
are assembled into HTML pages when requested by end users.
This implies the opportunity that much more dynamically
generated content can be cached, then assembled and delivered
from the edge when requested. Zhu and Yang (2001) proposed a
class-based cache management schema, which partitions the page
into classes based on URL patterns so that application can specify
page identification and data dependence and invoke invalidation
for a class of dynamic pages. They further proposed the selective
pre-computing to refresh the stale pages and smoothen the load
peaks. However, this approach in general only fits into application
with relatively slower changing data, rather than the frequently
changing data like stock quotations.

Others explore the benefit of caching intermediate query
results. Yagoub et al. (2000) discussed what, when and where to
cache the data to reuse the intermediate computation results to
answer subsequent queries. They also implemented weave
management system to cache database data, XML fragments and
HTML files. Although the system is build for declarative data-
intensive Web sites, the caching policies and the approach to
optimize performance apply to most Web applications with MVC
architecture and XML/XSLT views. Another dynamic content
caching and invalidation framework ‘‘CachePortalI’’ for accelerat-
ing database-driven Web application is proposed in Li et al.
(2004). The suggested technology enables the dynamic content
caching by automatically deriving the relationship between
cached pages and database contents (i.e., URL and query
mapping), and intelligently monitoring database changes to
‘‘eject’’ stale pages from caches. A case study on the Java Pet
Store shows, if the proposed guidelines are followed, more than
90% of the content can be cached and the Web site can be scaled
up more than 20 times, and this can be achieved without
modification to the underlying application business logic and
without sacrificing functionalities.

However, there is a cost to manage cache consistence and
cache replacement. If a cached object has to be invalidated and
refreshed very often it is not worthy caching. Server side caching
object in memory will demand resource and potentially impact
application scalability. To manage the caching cost efficiency
given limited resource, Mahdavi and Shepherd (2004) introduced
the cache-worthiness scores calculated based on parameters of
access frequency, update frequency, computation cost and
delivery cost. The best candidates for caching are objects who
are requested frequently, not changed frequently and expensive to
compute or deliver.
3.2. Database caching strategy

We list database caching strategy as a separate section, in
recognition of its vital role in the Web application, as most of the
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
dynamic content is extracted and generated from back-end
databases. To identify the performance bottle neck of the Web
applications, the benchmark on some typical e-commerce
applications is conducted by Amza et al. (2002) and Liu et al.
(2004) independently, results point to database performance as
the bottleneck. Researches also find that using dynamic caching
can substantially reduce the CPU utilization but not always the
number of DISK I/O of the database server. In most of the cases,
dynamic caching reduces temporal locality in database page
references but to a smaller degree than that reported in file
servers and Web proxies.

Recent years have witnessed that more researches move on to
the middle tier database caching. Luo et al. (2002) observed that
simply cloning Web applications could scale up to heavy work-
loads but eventually leave the back-end DBMS as performance
bottleneck. They initiated and developed research prototype of
‘‘DBCache’’ to enable a regular DB2 UDB instance to become a
DBCache without any application modification. Four caching
schemas are presented with category of the units of logical data:
full table, a subset of a table, an intermediate query result or a
final query result. Soundararajan and Amza (2005) proposed the
use of semantic information to improve performance of transpar-
ent query caching for dynamic content Web sites. The approach
avoids the cached query response invalidations what would
otherwise occur due to the addition of new records by keeping
newly inserted rows in small temporary tables. This allows
reusing the cached query for partial coverage of query results.
Another transparent caching approach is proposed in Amza et al.
(2005), where they start with a coarse-grain table-level automatic
invalidation cache and enhance the cache with the necessary
dependency tracking and invalidations at the finer granularity of
columns based on observed workload characteristics. In addition,
the approach reduces the miss penalty of invalidations through
full and partial coverage of query results. And the system design
could allow query cache be located at the database back-end, on
dedicated machines, on the frond-ends or on a combination
thereof.

Other middle tier database caching mechanisms work with
specific programming language. Hibernate is an object/relational
mapping (ORM) approach to provide bridge between relational
data and Java object. It provides multiple level caching to cache
the Java object of classes which correspond to table rows, in
addition to the query result caching. It improves the performance
of data access layer when the cached object is rarely changed and
local to the application. C-JDBC (Inria,) provides transparent
database clustering (partitioning, replication, etc.) to any Java
application through JDBC. It presents a single virtual database to
the application through JDBC. While its primary purpose is to
support database scalability by combination of both vertical and
horizontal approaches, the query response caching improves the
performance even with single database back-end.

Database cache can be further extended to the edge server for
Web application to offload the original server, but caching
dynamic data is a great challenge. The general requirements for
caching data on edge server are: independence of DBMS; self-
management; fast query matching; efficient space management;
and consistency management. DBProxy (Amiri et al., 2003)
is an edge data caching implementation. It maintains partial
but semantically consistent materialized view of previous
query result, designed to adapt to the changes in the workload
in a transparent and graceful fashion by caching a large
number of overlapping and dynamically changing ‘‘materialized
view’’. The cache replacement mechanisms address the challenges
of shared data across views and adjusts to operate under
various space constraints using a cost–benefit-based replacement
policy.
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]6
When it comes to the database caching schema design, the
preassumption about user access pattern and workload is one of
the most important design factors and validity of the assumptions
determines the actual performance gain. The assumption speci-
fically affects the choice or replica placement. For example,
Soundararajan and Amza (2005) assumed that high frequency of
browser-type access to newly inserted items as a common
application pattern. In Sivasubramanian et al. (2005) caching
schema is based on the belief that typical Web application issues
more than 80% of simple queries, which use primary key for
search and result in exact match. On the other hand, the complex
queries base on secondary keys and span multiple tables. This
premise drives the design of GlobalDB and its strategy for replica
placement. The system directs all simple queries to the closest
replica and the complex ones to central server. Another system
GlobeTP (Groothuyse et al., 2007) assumes that a Web applica-
tion’s query workload is composed of a small set of read and write
templates. Therefore, a partial replication is exploited based on
the knowledge of these templates and their respective execution
costs. Hibernate works best for reading rarely changed objects.
But the concurrency management is very costly and results in
noticeable decreased performance and deadlocks on cached
objects, when user access pattern moves to massive updating.
On the other hand, Sivasubramanian et al. (2005) specifically
discussed the data placement strategies for update-intensive Web
applications.

Finally, among the researches in this area, some of them are
attributed to data consistence management. We will discuss them
in the context of edge computation later in this paper.
3.3. Application distribution model

Web application has to deal with both of the data and the
computation which generates content out of the underlying data.
The real challenge is how to distribute both computation/
transaction and database globally, and subsequently where to
place replicas and how to maintain consistence. Replicating a Web
application requires the distribution of both application code and
data replica. There have been researches on both aspects:
replicating database to reduce the data access latency yet with
consistency maintained, and distributing the computation to
offload the original server. The key is how to manipulate shared
data without incurring the availability and performance penalties
that could cost by accessing traditional centralized database.

The industrial market has seen a few commercial products like
IBM WebSphere Edge server IBM Corp, Oracle RFID ORacle Corp.
Edge server improves response time by offload back-end server
computation or data accesses. Akamai Technologies Inc also
introduces the EdgeComputing Model (Davis et al., 2004), which
is the new deployment model for Web application. To deploy Web
application with the edge service product, the developer typically
must split the application into two components: an edge
component deployed on edge server and an origin component
deployed in the traditional manner within the central data center.
The most common model for EdgeComputing is to deploy the
presentation layer of an application onto edge server and to cache
access to original server via the Java Web service client model.
Edge server replicates the user session states, permitting the edge
components to maintain per-user states that remain available
even when the user is mapped to different servers.

Edge service can significantly benefit the Web application
either with static database or not requiring the database, by
dynamically assembling the content. Yuan et al. (2004) evalua-
ted the different strategies of edge caching and their design/
deployment tradeoff. They applied five different application
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
portioning and offloading schemas on the Pet Shop.Net applica-
tion, and measure their performance, respectively. With the
benchmark result, they argued that with great benefits that can
be reached in general advanced offloading strategies can be overly
complex and even counterproductive. In contract, simple argu-
mentation at proxies to enable fragment caching and page
composition achieves most of the benefits without compromising
important considerations like security.

In addition, edge service expects the developer to divide the
application into edge and origin components, which may require
the redesign of the application to gain the most benefit. Gao et al.
(2005) demonstrated how the knowledge of application specific
semantics can help to maximize the caching effectiveness, where
the specific distributed objects are designed to manage a specific
subset of shared information using a simple and effective
consistency model. It shows that their object-based edge server
system provides a factor of five improvements in response time
over traditional centralized cluster architecture and a factor of
nine improvements over an edge service system that distributes
code but remains a centralized database. However, this is
achieved by the data replication specifically designed to slightly
relax the consistence.

Stronger data consistence always means the higher cost for
data replication. This leads to research work to study how to
obtain strong consistence and performance at the same time.
Different than the work presented in Gao et al. (2005) which
achieves availability by relaxing the consistence, Sivasubramanian
et al. (2004) attempted to maintain strong consistence with high
scalability and further proposed the design for replicating Web
application on demand, where data units are replicated only to
the servers that access them often. This will reduce the
consistency overhead as updates are sent to a reduced number
of servers. A middleware layer called Ganesh Tolia and Satyanar-
ayanan (2007) is developed to reduce the volume of data
transmitted without semantic interpretation of queries or results.
It achieves this reduction through the use of cryptographic
hashing to detect similarities with previous results, while not
requiring modifications to applications, Web servers, or database
servers, and works with closed-source applications and databases.

Cannataro et al. (2002) proposed a new data centric model for
generating dynamic pages by proposing an application domain
model with XML and object-oriented approach. The model makes
use of XML for the description of meta data about basic
information fragments. They propose a three-dimensional ap-
proach to model different aspects namely, user’s behavior,
external environment and technology. Based on these aspects a
dynamic page is generated.
3.4. Programmatic or transparent caching solution

In terms of programming model, those suggested approaches
or products for accelerating content generation can be categorized
into two types: Programmatic approach and Transparent ap-
proach. The former approach is per-application, specific solution
requiring either the code change to capitalize the caching options
or the site administration tasks, for example, Hibernate requires
developer to code with the Hibernate generated classes in stead of
the SQL language. The latter one is transparent as it does not
require any change on application code or server product, C-JDBC
(Inria,) is an example which can implement data replication and
query caching without any change on application and database
engine except for it works with JDBC applications only.

Programmatic approach takes advantage of semantic knowl-
edge of application code and data, therefore can potentially
maximize the performance improvement without comprising
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 7
other requirements. Gao et al. (2005) demonstrated that given the
semantic knowledge of data they can achieve higher availability
and efficiency by slightly relaxing the data consistency. ESI
(Tsimelzon, 2000) requires application to use ESI scripts to
describe cacheable and non-cacheable Web page components.
And ESI for Java provides extensions to Java that make it easy to
program JSPs using ESI. ‘‘CachePortalII’’ (Li et al., 2004), Weave
System (Yagoub et al., 2000), and ‘‘query caching’’ (Soundararajan
and Amza, 2005) are other examples of programmatic approach.
WebSphere Edge Server (IBM Corp,) and Akamai EdgeComputing
Server (Akamai Technologies Inc,) both require developer to
partition the origin and edge components and declare them while
deploying applications.

On the other hand, the transparent approach is characterized
by the automatic replica replacement and invalidation. This
requires the system to self-learn the client access pattern and
workload in real time and autonomically adjust to the reality.
Otherwise, the strong data consistence will sacrifice the
system performance and scalability. The research work GlobalDB
(Sivasubramanian et al., 2005) and Amza et al. (2005) demon-
strated how to maintain both strong consistence and performance
yet transparently. DBCache (Luo et al., 2002) is an extension to
DB2/UDB database, does not require any programming effort
when utilized, neither does C-JDBC (Inria,). And DBProxy (Amiri
et al., 2003) is designed to adapt to the changes in the workload in
a transparent way.

Plattner and Alonso (2004) proposed Ganymed which uses a
scheduler to route transactions to a set of replicas using RSI-PC
scheduling algorithm. The key idea behind RSI-PC is the separa-
tion of update and read-only transactions. Updates will always be
routed to a main replica, whereas the remaining transactions are
handled by any of the remaining replicas potentially unlimited,
which act as read-only copies. A JDBC driver enables client
applications to be connected to the Ganymed scheduler, thereby
offering a standardized interface to the system and also helps in
keeping the access pattern transparent. The evaluation shows that
Ganymed offers almost linear scalability. The scalability manifests
itself both as increased throughput and as reduced response
times.

In a summary, accelerating content generation remains a big
challenge despite various caching technologies proposed or
readily available in every phase of content generation process.
There is no single technology that fits all scenarios as each Web
application is unique from each other. Generally speaking, with
user requirements and queries being somewhat predictable, it is
common that a customized design will achieve better perfor-
mance if both cacheability and scalability exploited. For example,
Amazon SDB follows its unique ‘‘eventual consistency’’ data
model and utilizes its own cloud computing platform EC2 and
S3 (Amazon Web Service,) to maximize the performance. But it is
Location of cache

Server side Edge side Client side

Cache

Fig. 3. A hierarchical classification

Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
a big challenge to predict the user access pattern dynamically and
adapt to it in a real time fashion.

On the other hand, some emerging trends in Web application
development deserve further research. Firstly, gaining popularity
of Web 2.0 applications require more interaction and better
responsiveness which contributes to rapid adoption of asynchro-
nous HTTP request–response model. But how the back-end
content generation process adapts to this trend is not explored.
Secondly, even a well-designed Web application could fail the
user expectation when facing unusually overwhelming requests,
which has more to do with the scalability of content generation.
While cloud computing supports the scalability in a dynamic way,
very few research is present on how content generation can be
accelerated further by leveraging cloud computing.
4. Dynamic content delivery

This section focuses on the caching techniques for dynamic
page delivery. These are the solutions which are applicable
between the Web server and the client of Fig. 1. The available
solutions can be broadly classified by viewing them in two
orthogonal dimensions, viz., based on location of the cache and
type of cached object, as shown in Fig. 3.

4.1. Caching classification based on location of cache

The techniques for dynamic content caching which are
proposed by the research community over the years are equally
challenging and interesting. The most popular classification is
mainly based on the location of the cache: server side effort
(Challenger et al., 1999, 2000; Zhu and Yang, 2001), proxy side
effort (a.k.a edge side effort) (Cao et al., 1998; Douglis et al., 1997;
Mikhailov and Wills, 2001; Myers et al., 2001; Shi and Karamcheti,
2001), and client side effort (Rabinovich et al., 2003).

In case of server side solutions, caches are placed very close to
the origin Web site and for all practical purposes, caches and
origin Web sites can be considered to be on one point of the
network. Many industry leaders support dynamic content cach-
ing. Some of the popular ones are ASP.NET, BEA WebLogic, IBM
WebSphere (IBM Corp,), Oracle 91AS. Server side caching can
reduce server load and improve response time when the client
stress is high. Client side solutions place caches very close to the
client and thus the client and cache will be considered to be on
the other point of the network. In case of edge side solutions,
caches are placed in between the client and the server and most of
the cases it would be close to the client. However, edge side
caches are treated to be having their own point on the network.

As shown in Eq. (1) the total latency depends upon many
factors. There are many solutions proposed for improving the
Method of cache

Function cache Content cache

of Web caching technology.

tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]8
performance of DNS lookup Ldns. In this paper, however, we are not
concentrating on that area. Latency introduced by the user
machine is another area on which the research community can
do little about. A higher speed cpu of the user machine will invoke
a Web page faster than a lower speed cpu. Research community
has concentrated on improving Lg , Lnt and Lna variables along with
solutions to improve bandwidth availability, scalability and
availability of the origin servers. In this section we concentrate
on techniques which improve Lg , Lnt and Lna. Most of the server
side caches focus on improving Lg . Most of edge caching
methodologies tend to improve Lnt and most of the client side
caching techniques improve Lna.

4.2. Caching classification based on type of object being cached

Based on the type of object being cached, we classify the
caching solutions into two main types, viz., function caching and
content caching. Both methods could be used for either server side
proxies, client side proxies or proxy side caches.

In the content caching, the HTML page which the application
generates is cached as different fragments/channels. These
fragments/channels are maintained as separate objects in the
edge server’s cache and are dynamically assembled into Web
pages using XML/JavaScript type languages by fetching only non-
cacheable or expired fragments/channels from the origin server in
response to user requests. The origin server supports this
assembly and the exchange of information between origin server
and proxy is XML type data. The representatives of this approach
include Akamai Technologies Inc, CONCA Shi and Karamcheti
(2001), and client side include (Rabinovich et al., 2003). All of
them are built upon the edge side include (ESI) technology
(Tsimelzon, 2000). In the function caching, the application itself is
replicated and cached along with its associated objects so that the
edge servers run applications instead of the origin server. The
exchange of information between the origin server and the proxy
is the state of the application itself. Examples of this method are
vMatrix (Aggarwal and Rabinovich, 1998), IBM Websphere (IBM
Corp,), Active Cache (Cao et al., 1998), Gemini (Alzoubi et al.,
2008), ACDN (Karbhari et al., 2002), Proxyþ (Yuan et al., 2004),
and SEE (Mastoli et al., 2003). In the following sections we explain
each technique in detail.

4.2.1. Content caching

The most popular solution lies in breaking the dynamic pages
into fragments and then studying each individual fragments to
understand their cacheability. Based on this concept many have
proposed many different solutions. In all content caching
scenarios a part or whole of the dynamic page will be shipped
from the origin servers. The main job of the proxy is to assemble
the pieces if pieces are shipped else manage and maintain the
complete pages if full pages are shipped. In all these cases the
work on the proxy is directly proportional to the size and number
of pages that it handles. Hence CPU time is directly proportional
to these variables. There are many content caching schemes
available.

Among the server side content caches we have DUP algorithm:
performance and cache hit has been improved dramatically by
introducing DUP algorithm (Challenger et al., 1999, 2000) by
keeping a data dependency information between cached objects
and underlying data. Caches may contain entire HTML pages and
also fragment of HTML pages. As soon as the system becomes
aware of changes in the underlying data by way of triggers, graph
traversal algorithms are applied to determine which cached
objects are affected by the change. Based on invalidation, pages
are pre-fetched instead of waiting for load on demand. This way
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
the cache hit rate is as good as close to 100%. Since cache is close
to the origin server, update of the cache is very quick and thus
cache holds the most recent data. Prefetching does not involve
much overhead on network bandwidth as the cache is very close
to the server. Due to the proximity of the cache and also
prefetching scalability of the system is very good. However, data
storage source and cache are highly integrated and are imple-
mented at the source end of the cache. To adopt the same at the
network edge requires more complex integration with the origin
server and implementation becomes vendor and application
specific. This works for dynamic pages that are not personalized.
Having a session build into the dynamic page generation is not
addressed in this solution. DUP with its trigger tables could be
complex when we have a combination of many fragments of
HTML objects and also entire HTML pages which are associated
with the database data. Every single database data could be
associated with many fragments which in turn could make up
complete HTML pages and thus linking of these HTML fragments
with the underlying data could potentially become very complex
with many data displayed in the same page or a fragment
changing at different times. This could even lead to frequent
invalidation and updating which could hurt performance.

Commercially available technologies: Content caching is the
most widely applied caching methodology in the commercial
world. The techniques that are used to implement content caching
are unique to each technology. Some existing commercially
available technologies are described as below.

Java Server pages technology and ASP.NET: Java Server Page and
ASP.NET allow programmers to mark a part of a page as cacheable
using tags, e.g., in JSP we can use a custom JSP tag ‘‘jc:cache’’ to
cache a fragment. By using this tag, the application server will not
generate that part of the fragment. Such fragments can be
explicitly put into a user control which has its own cache
parameters and can be included by pages or other user controls.
However, the use of this would be mainly restricted to static
portions of a dynamic page. For instance, any dynamic page would
have a header, footer, and menu systems which would not change
with time. However, since it is a part of a dynamic page,
traditional servers will assemble them again and again whenever
that page is invoked irrespective of the fact that portion of the
page has not changed. To avoid such works on the server, these
portions can be marked within the special tags. The advantage of
using these technologies is that it is simple to implement and also
it is very well accepted by the industry and implemented in
modern applications. Though this is used mainly at the server end,
the same can be extended to be workable at the edge servers as
well provided the edge servers support these technologies.
WebSphere suites can make use of the java tags and the edge
suite can get the benefit by this implementation. However, this
technique would be applicable only for non-personalized data.

Proxyþ is proposed by Microsoft research. The concept is to
replicate the server side caching functionality to the proxies.
Latest technologies as already explained above provide special
tags for fragment caching which is used by the servers. This
methodology uses the same tags to be used at the edges. This
model consists of Web filter and a cache. Web filter is responsible
for directing the caching of multiple versions of pages and
fragments as well as composing pages. Cache is the storage of
previously requested pages and fragments. When a HTTP request
arrives at the proxy, filter computes the cache keys of the pages
and its fragments. If all necessary items are valid in the cache the
result will be returned immediately. Otherwise it attaches a list of
keys identifying cached versions deemed relevant to the HTTP
request header and forwards it to the server. Server uses ‘‘cache’’
tags to inform proxy that these are being cached. Proxy uses
‘‘X-cachedKeys’’ tag to inform about the already cached content so
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 9
that redundant computation and transfer may be avoided. Since
this is an extension of the existing protocol it is simple to use. No
ill side effects are caused when a proxy+ aware application
interacts with a normal proxy. The extra tags will be ignored by
the normal proxy and no keys will be forwarded to the server
which is just fine for the server functioning.

Disadvantage of these commercially implemented technolo-
gies is that each technology has its own set of tags for the usage.
Filter and cache pair have to be uniquely designed to each
technology. Scalability will be an issue with many different types
of Web servers which are in the market today. Personalization is
again not addressed here.

Edge side include technology: ESI is a simple markup language
used to define Web page components for dynamic assembly and
delivery of Web applications at the edge of the Internet. It enables
dynamic assembly of Web pages composed of both cacheable and
non-cacheable page fragments. It also contains a content
invalidation specification for transparent content management
across content delivery networks, application servers. For a
dynamic Web page, the Web site has to pre-establish where ESI
tag is used to define the content data and layout and their cache
control attributes. ESI enables companies to develop Web
applications once and choose at deployment time where the
application should be assembled—on the content management
system, the application server or the content delivery network.
The ESI open standard specification is being co-authored by
Akamai, ATG, BEA Systems, Circadence, Digital Island, IBM,
Interwoven, Oracle, and Vignette.

Using ESI lets a content provider break a dynamic page into
fragments with independent cacheability properties. These frag-
ments are maintained as separate objects in the edge servers
cache and are dynamically assembled into Web pages in response
to users requests. A key advantage to using fragments is that when
a fragment changes, the entire Web page does not have to be
updated; only the fragment needs to be updated. This is an
industry widely used caching technology which has the backing of
big players like Akamai and Oracle, which uses a simple protocol
based on markup language. This technology can be implemented
on any part of the network, i.e., server end, edge server or client
end of the network. However, it is more popularly used at network
edge.

There are several techniques proposed by the research
community which extrapolate ESI. Determining the fragment
granularity level and how to fragment the pages are two key
issues here. Shi et al. (2003) traced three news Web sites, two e-
commerce Web sites and one entertainment site and discovered
some characteristics of dynamic content: How to divide the Web
page into object components without affecting the page fresh-
ness? When dividing page into components, the size of the
component is not related to the freshness (this indicates the
fundamental challenge on the fragment level assembly). It also
shows that all of the objects either change on almost every access
or change very infrequently, indicating a significant opportunity
for content reuse both temporal and spatial ways, and the finer
object granularity leads to more reusability. And the nature of
freshness time distribution makes client-initiated caches consis-
tency approach more appropriate than server initiated one. Brodie
et al. (2005) also noticed another common behavior of dynamic
content that one or more fragments move between the different
positions across document.

There are a few proposals presented to automatically fragment
the Web pages rather than manual approaches suggested earlier.
Brodie et al. (2005) proposed two approaches which depend on
keyword-based fragment detection. The technique uses prede-
fined keywords to find these fragments and split them out of the
core document. The DyCA, a dynamic content adapter, was
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
implemented to take original dynamic Web content and convert
it into fragment-based document. The other proposal, an
augmentation to the ESI standards, allows splitting the informa-
tion based on the position of each fragment in the template from
the template data itself by using a mapping table. By using this
keyword-based approach, a fragment enabled cache can have a
finer grained level of identifying fragments independent of their
location on the template, which enables it to take into account
fragment behaviors such as fragment movement.

Ramaswamy et al. (2005) proposed a framework for automatic
fragment detection, by including an augmented fragment tree
with shingles encoding for modeling the dynamic Web pages. A
so-called ‘‘shared fragment detection algorithm’’ can detect
fragments shared across multiple documents. The work also
suggests lifetime-personalization-based fragment algorithm to
detect fragments which are most beneficial to caching based on
the nature and the pattern of the changes occurring in dynamic
Web pages.

While ESI seems promising for the Web site where cache can
be application independent, it has issues with the dynamic page
which requires server side application to support. If the fragment
cache is determined only based on the request URL or other
attribute like keyword, it may mistreat the validation.

The biggest drawback of the commercially implemented
solutions is that personalization is not addressed. Hence all
personalized page requests are forwarded to origin servers with
no improvement in performance. Whenever authentication is
required, Akamai Technologies Inc edge servers do not cache any
data and the entire request is forwarded to the origin server. Also
though ESI is widely accepted industry standard today, the user of
ESI has to still redesign deployment of dynamic pages on his
servers to make it ESI compatible for page dissemination.

Client side include technology: In this technology ESI fragments
are extrapolated to be used at the client end with the client side
include (Rabinovich et al., 2003) technology. Here ESI fragments
are assembled at the client end. JavaScript/ ActiveX objects are
used to run the applications on the browser which fetch the
needed fragments from the origin server. This reduces the latency
in the ‘‘last mile’’, which is especially useful with dial-up clients
who have slow connections. In this scheme, since the ESI
fragments are cached at the client end, improvement in user
perceived latency is the best among all the methods addressed so
far. Since it uses the existing technologies like Javascript/Active X
and applies it on exiting browsers hence deploying the idea is
simple. However, if a client uses a different browser each time he
accesses a Web page then this technique would be of little help.
Also once the fragments are fetched at the client end it can
be used by only one user unlike in edge side caching where a
fetched fragment can be used by many clients who visit that edge
cache.

AJAX-asynchronous JavaScript and XML: The most recent trend
in the client site scripting is AJAX. In this, scripts which run on the
client or on the remote server retrieve data from the server
asynchronously in the background without interfering with the
display and behavior of the existing page. The data could be either
pre-fetched or the delta data alone could be retrieved which could
be used to populate the next set of pages that the user browsers,
which significantly reduces the user perceived latency. Castro et
al. (2006) proposed client side state management for AJAX
applications. In their solution, the application runs on the client
browser and the data exchange between client and server
happens after several interactions between client browser and
the user. Domenech et al. (2006) proposed a pre-fetching
algorithm which significantly reduces the user perceived latency.
Furthermore, to enable rich content on mobile devices, Flashproxy
(Moshchuk et al., 2008) applies a proxy-based approach which
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]10
splices active content out of Web pages and replace it with an
AJAX-based remote display component.
Performance gain

Improve
Latency (Lt)

Save bandwidth Improve uptime

Improve

generation
latency (Lg)

Improve latency
due to heavy
traffic (Lnt)

Improve latency
due to poor internet

access (Lna)

Fig. 4. The advantages of caching techniques.
4.2.2. Function caching

There are many function caching solutions which are im-
plemented in the commercial world. IBM WebSphere Edge Server
V2.0 for Multiplatforms (edge server) distributes application
processing to the edge of the network under centralized admin-
istrative and application control. Application offload shifts the
burden of serving composed, personalized, dynamic content from
the application server to edge servers placed at network edges by
offloading back-end servers and peering links. Application is de-
layered into edgeable components. This also has transcoding
capabilities and also enhanced cache for holding fragments. This
product has both function and content caching capabilities built
into the edge server. Personalization is addressed here. Using
Tivoli SecureWay Policy Director, edge server itself can handle
authorization. Load balancing of servers can also be achieved in
this method. However, the system is tightly integrated with
WebSphere software family and also is not an open protocol
which others can use and implement.

On the above lines there is another solution proposed by
Stanford University called VMatrix (Awadallah and Rosenblum,
2002). The basic idea behind VMatrix is that every dynamic page
is a result of executing a program. Program which produces the
dynamic page depends upon many variables which makes the
page status to change. The concept here is to encapsulate all
the variables and also the program into a virtual machine file. This
file would be instantiated on any proxy which is hosting a virtual
machine monitor. Virtual machine monitor virtualizes the real
machine at the hardware layer and exports the virtual machine
which mimics the real machine state. Each proxy is able to hold a
users session and hence personalization and authorization are
easy to implement on the proxy. This is an open protocol;
however, commercial implementation of this protocol is still
awaited.

University of Wisconsin proposes another function caching
solution: active cache. Active cache scheme supports caching of
dynamic contents at Web proxies. The scheme allows servers to
supply cache applets to be attached with documents, and requires
proxies to invoke cache applets upon cache hits to furnish the
necessary processing without contacting the server. This function
caching mechanism incurs less overhead in terms of network
bandwidth and hence it incurs least communication overheads as
the size of the function is usually independent from the object state
and size. Hence even if the entire page has changed the size of the
function transported is the same. It works best when the content of
dynamic page changes drastically. However, the analogy is also true
which is even if the change in the content of the page is very small
then also the same size function needs to be shipped which might
eat up on the efficiency of the system especially when the changes
are very small. The disadvantage of this system is that every proxy
should be capable of running the furnished applets.

There is another set of function caching which not only
presents the information that the origin servers provide but also
add value at the network edges. These include the transcoding
services at edge servers as described by Bell Laboratories (Beck
and Hofmann, 2001; Mastoli et al., 2003), collects per-user
information and provides personalized services based on the user
information at the edges. IETF’s open pluggable edge service
(OPES) framework (Barbir et al.) and content adaptation (Fox et al.,
1998; Fu and Shi, 2001) encourage one to offload functions to edge
services due to perceived advantages in terms of user perceived
latency, load balance, availability of service to name a few.
Content adaptation allows the system to inject additional
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
functionalities along the data path between client and server.
OPES proposes an environment to provide value added services to
the end-users and/or content providers. Providing services at the
edges enables incremental deployment and amortization of
operating costs, thus benefiting the client and the provider both
(Beck and Hofmann, 2001; Fox et al., 1998; Mastoli et al., 2003).
5. Application characteristics and caching solutions

The previous sections describe different solutions to improve
different parameters of the latency (Eq. (1)). Caching is employed
to improve performance in the areas as indicated in Fig. 4.

However, not all application may benefit from all these
solutions. For example, the Web application which has high
computational needs will not benefit from a content cache but a
function cache would be a more ideal solution. The Web
application which has sparse clients who use dial-up connection
will benefit from client side caching than having a distributed
network edge cache or any other cache which improves network
bandwidth as what is needed for this application is a solution
which reduces the latency in the last mile Lna, rather than
reducing latency in any other leg viz., Lg , Lnt which contribute
little to nothing to the overall user perceived latency compared to
Lna which has higher influence on the overall latency. When
deciding on which caching methodology to adopt, it would be
more appropriate to study the application’s dynamics and needs
and identify the weak areas which has adverse influence on the
overall performance.

With this background it is important to study the application’s
characteristics then choose an appropriate caching solution. The
applications could be classified based on the size, nature,
complexity of the architecture and the Web pages being hosted.
The variable metrics to be considered while choosing a caching
type can be broadly based on the frequency of update needed for
the caches, application complexity, and application’s computa-
tional needs, which are explained in detail below.

In this section, we classify and study the application needs and
study the existing caching solutions which match the particular
applications needs.
5.1. Based on application’s computational needs

If an application has a high computational demand in which
every single dynamic page is generated by performing intensive
computations on the server side, then the Lg of the application
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 11
would dominate over other variables in Eq. (1). Most of the
dynamic page generations reflect the values in the database. There
are, however, certain types of dynamic page generations, for
example, online exams which have to compute the final score
based on user inputs. Such pages which utilize heavy cpu times
for dynamic page generation would benefit by using any of the
function caching mechanisms. For all these applications, however,
the proxy servers should be capable of handling the computation
and should be able to communicate with the origin server to
receive only function updates.

IBM WebSphere Edge Server V2.0 (IBM Corp,) for Multiplat-
forms (edge server) distributes application processing to the edge
of the network. Origin server shifts the load on computation to the
edge server and the edge server uses its cpu to generate the
dynamic pages. VMatrix (Awadallah and Rosenblum, 2002) is
another function caching solution which generates the page from
the edge by executing a program on the virtual machine of every
edge server. In both of these solutions each proxy is able to hold a
users session and hence personalization and authorization are
easy to implement on the proxy. Karve et al. (2006) evaluated a
middleware clustering technology capable of allocating resources
to Web applications through dynamic application instance
placement. If a particular application has a computational
demand for only a certain period of time, then the proposed
solution is ideal. Application instances on a given set of server
machines are placed to adjust the amount of resources available to
applications in response to varying resource demands of applica-
tion clusters. If only certain requests consume excessive computa-
tional power of the resource, Zhou and Yang (2006) proposed a
termination scheme for threads which consume more resource so
that threads which are computationally less intensive will be
serviced faster thereby enhancing the QoS. When the heavy
computation moves to the database queries, like, e.g., continuous
aggregate queries used in online decision making applications,
data mining applications, Gupta and Ramamritham (2007)
proposed a content distribution network of dynamic data items.
Just as various fragments of a dynamic Web page are served by
one or more nodes of a content distribution network, their
technique involves decomposing a client query into sub-queries
and executing sub-queries on judiciously chosen data aggregators
with their individual sub-query incoherency bounds. Their
performance results show that cost-based query planning leads
to queries being executed using less than one-third the number of
messages required by existing schemes.

5.2. Based on number of dynamic pages which change with the

change in data

Most of the dynamic pages reflect the data in the databases.
However, data in a certain table could be susceptible to changes
more frequently than others. If the design of the dynamic pages are
such that frequently changing data are shown in certain pages and
data which do not change so frequently are separated out, then we
can decide on the type of caching solution for this mix of pages. For
example, if we consider a stock exchange Web page, the user profile
page which holds the user information does not change as often as
the price of the stocks. If we divide the Web pages based on this
category, then more efficient solutions can be proposed for
frequently changing Web applications and different suitable solu-
tions can be applied to less frequently changing Web applications.

5.2.1. Few pages, about 0–20% of Web pages change with change in

underlying data

For applications which have low level of page updates, we can
propose full page caching techniques like Challenger et al. (1999)
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
and Candan et al. (2001). The commercial solutions include
Internet security and acceleration (ISA) server from Microsoft,
while hardware solutions are available from CacheFlow Gadde et
al. (1997) and network appliance. These sit between the site and
Internet, relieving the site from the work required to push
responses through the site. Many other solutions are deployed
in forward proxy mode, that is, in distributed caching architec-
tures located at numerous points around the Internet, e.g., Gadde
et al. (1997) and Aggarwal and Rabinovich (1998). There are also
content delivery networking solutions, offered by vendors such as
Akamai and Exodus which provide full page caching.

Since it is only a few pages that change due to change in the
database data, techniques like ESI may not be warranted to be
used though they might be more efficient in terms of reducing the
user perceived latency. When we consider the overhead of
maintaining individual fragments and the need to make the
system ESI compatible, page level caching might work out better.
This can be better explained in the following equation:

Total cost ðTcÞ ¼ bandwidth usage cost ðBcÞþoverhead on
infrastructure to maintain a cache object ðOcÞþcost in terms of
time to generate the cached page ðGcÞ.

In the case of page level caching Gc would be zero as no page
needs to be generated by the cache; however, Bc might be high as
the complete page is being transported. Oc is also on the lower
side as the entire page is one single object. In case of ESI, Bc might
be low as only fragments are being transported; however, Gc

would be more than 0, Oc would be linearly proportional to the
number of fragments which make up a page as every fragment is
treated as an independent entity and the edge server needs that
much more memory and resources to hold each fragment
information.
5.2.2. Many pages of the application (80–100%) change with change

in underlying data

Many of the news Web sites have pages which change very
frequently. However, there is only a small portion of the
dynamic page which gets affected due to change in the underlying
data. For example, the head line news portion could change
very often during the day while the local news portion does not
change as often. In these cases page level caching will not work
due to the huge overhead on bandwidth to carry the entire page
where it is really not required as certain portions of the page
would not have changed at all. In these cases, ESI, CSI, delta
encoding-based solutions work the best in terms of efficiency for
any edge-based proxy. DUP would work best for server side
proxies.

As can be seen from the equation above, if the application has
too many fragments which change with change in the underlying
data, then ESI will tend to be very inefficient. The reason being
every fragment introduces overheads for its maintenance in terms
of maintaining its TTL, memory in the cache to save the
information, etc. If a dynamic page has all of its fragments
changing with any changes in database data, then maintaining the
cache with too many fragments will fail heavily on the bandwidth
between the server and the proxy in addition to extra load on the
server to process each fragments. In all such cases a page level
caching works best despite a few more updates that may be
required due to not making it more granular.
5.2.3. Moderate number of pages (20–80%) of the Web pages

changes with change in underlying data

For these applications a suitable solution from the above two
categories can be chosen based on which end the application
leans toward over a period of time.
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]12
5.3. Based on the frequency of changes observed by the

dynamic page

The change frequency of dynamic pages becomes an important
issue while deciding on the type of caching to adopt. We define
high frequency change as a state when the page changes its
content everyday several times a day. A page falls under medium
frequency change when the page changes a few times in a month
and low frequency change is applicable when the page changes
few times a year.
5.3.1. High frequency change

If a page is changing every day many times in a single day, for
instance a stock market page, then a caching mechanism which
does not impose huge overheads on the network traffic would be
needed. If there is any change in the data at the origin server, the
origin server would have to maintain and manage the change and
communicate the change very frequently to all its proxies. Before
we decide on the solution, we first emphasize the need to study
the network traffic and hence the usage of the bandwidth. The
bandwidth usage can be broken into two parts. The first is the
traffic created by the users to access the Web site to see the latest
data. The second is the network traffic generated by the server to
update and maintain all its replicas. The network traffic generated
by the former is not under the control of the application. However,
the traffic generated by the latter can be controlled based on the
type of caching solution adopted. For example, Active Cache,
vMatrix, PACE, and other function caching techniques generate
less traffic in the latter as the traffic generated by shipping
functions is far less than the traffic generated by shipping the
whole pages. For more sophisticated, secure, multi-tier systems,
IBM WebSphere and BEA WebLogic can be used. When the
frequency of change is very high then any function caching
methodology is most suited. Though the function shipping is
small, if the dynamic page generated depends heavily on
databases, then traffic due to maintaining consistency with
distributed databases also comes into picture. However Ravi et
al. (2005) have shown through their prototype PACE that the
network traffic generated by sending just the database data is far
less compared to the traffic generated by sending the complete
pages which incorporate these data. This is especially true in case
of dynamic pages which are generated to display emails. Studying
a typical email page of Yahoo and Hotmail service providers as
examples they have shown that a large amount of data is added to
the actual required data on every single Web email page. Even if
the email itself is 1 byte, usually a page of 18–40 kB is dynamically
generated to display it. Hence caching 18–40 kB of data at the
network edge and transporting the email from the origin server to
the edge would significantly save bandwidth as shown by the
prototype PACE.

Sivasubramanian et al. (2005) have shown that for applications
which have high updates, replication of application along with
data gives better performance along with wide area bandwidth
savings. Hence for all applications which have high client access
and dynamic pages of high frequency of changes, function caching
would be the ideal solution. With high frequency change also
requires keeping the content fresh. Li et al. (2003) proposed a
freshness-driven adaptive dynamic content caching, which moni-
tors the system status and adjusts caching policies to provide
content freshness guarantees for a given set of user request rate,
database update rate, and network latency parameters. The idea
here is to use a DB cache which is a lightweight DBMS without the
transaction management system and it may cache only a subset of
the tables in the master database. All non-transactional requests
are forwarded to DB cache which is present in all proxies.
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
However, if the consistency can be relaxed as in the case of news
Web sites where freshness of data can be compromised but high
availability and performance is the key then fresh data, Gao et al.
(2005) model of using the application specific semantics to design
distributed objects using simple consistency models would work.
They find that their object-based edge server system provides five
times better response time over a traditional centralized cluster
architecture and a factor of nine improvement over an edge
service system that distributes code but retains a centralized
database.

5.3.2. Medium frequency change

These dynamic pages change once in a week or a few
times a month. In this case the traffic generated by the origin
server to maintain consistency across caches due to change
in the data is not very high. In every case there is strong
need to study both the client traffic and the traffic generated by
the server to maintain change consistency across proxies/caches.
There are many advantages in using full page caches
and ESI-based caching for these kind of applications. The main
advantage is that using these systems, the scalability is very high,
better availability, simple protocols and these will in turn
translate to better pricing. Though we have not studied the
price implication in this survey paper, using more sophisticated
tools will generally translate to more price as well. Naaman
et al. (2003) have shown that for low frequency changes delta
encoding could be a good choice considering the fact that
CDNs are not really required and a few hardware and software
updates at the server and proxies can give good performance
improvements. They recommend ESI for high frequency changes
as delta encoding would suffer from high network traffic due
to exchange of complete base files instead of fragments as in the
case of ESI.

However, if the application needs security, authentication,
authorization feature, multi-tiered, messaging, etc., then again
IBM WebSphere, BEA WebLogic would be a good choice.

5.3.3. Low frequency change

For all applications where the frequency of change is
not very high, these pages can be treated as static pages and all
the caching methodologies used for static pages can be adopted
here too. In fact if the frequency of change in the dynamic
page is a few times a year, the best methodology would be to
convert the page to a static page instead of a dynamic page and
use the existing, conventional, proven static caching techniques
which have been in the market for several years. However, if
authentication and authorization are needed for these dynamic
pages, it would be ideal to break the site into two halves,
one half carrying all the static pages which do not need
authorization/authentication, and the other half needing author-
ization requirements and providing two different solutions for
each on the above lines.

5.4. Based on locality of clients

Client locality plays a very important role in deciding on the
type of caching to choose. We decide on a different caching
solution for each scenario as detailed below.

5.4.1. Most of the clients are very close

For the types of applications which have all the clients located
in one area, there is no need to go in for distributed caches. In this
scenario, network traffic from the server to the Internet would be
directly proportional to the number of clients accessing the
system. For every request, the server has to generate the dynamic
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 13
page for each client. In this scenario any of the server side caching
solutions would be the ideal choice. The server side cache could
even pre-fetch the changed page from the server ahead of
time. In DUP the authors have shown that using graph traversal
algorithm, the dynamic page is made current even before the
client hits the page. This has resulted in significant performance
gain and also hit rate has been found to be 100%. Cache and the
server are tightly integrated which helps in maintaining the
consistency. Sivasubramanian et al. (2004) have shown that it is
really not required to maintain consistency across all proxies
when only a few proxies are invoked by the users. A significant
performance improvement and bandwidth savings is noticed
when replication is done on demand to selected proxies which are
accessed the most. This function caching technique can be applied
to applications with localized clients. Saroiu et al. (2002)
have shown that a local proxy cache received almost the same
cache hit compared to an Akamai server which suggests that for
clients who are concentrated in a single area, Akamai would not
really help in a significant way compared to deploying a local
proxy cache.
5.4.2. Clients are distributed all across the globe

For applications which have clients who are distributed all over
the globe but clients are sparse, then again a distributed cache
which has the capacity to cater to tens of thousands of clients
would not be of much use as the cache would always run below
its capacity. It would be a good idea to also study the nature of the
connection that the clients are using for connecting to the ISP
providers. If the clients are using dial-up predominantly then in
such cases any client side caching solutions would work the best.
Solution proposed by CSI, caches the dynamic page on the client
computer using ActiveX, JavaScript objects. Castro et al. (2006)
proposed client side state management for AJAX applications
where instead of downloading a succession of HTML pages, users
download a single application and use that application for a long
period of time. The application is not a set of HTML pages, but
rather a single page that can possible modify its own presentation
based on data exchanged with a server. Client contacts the server
only for small data exchanges after a period of interaction with
the user.

The network traffic from the client to the server would be only
in terms of getting the fragments and not the whole dynamic
page. This would improve the performance at the same time other
cost intensive solutions of using distributed proxies is not
warranted. There would be a computational overhead on the
client to assemble the fragments; however, the benefits of
reducing the latency due to the last mile of the network will
outweigh the extra computation and perceivably the user
perceived latency reduces overall, as shown by CSI. Even if the
clients are having high speed connections then also CSI would be
most ideal from the cost perspective as other high end caching
solutions may not be cost effective.
5.4.3. Many near clients and many dispersed clients

When clients fall under all strata of classification viz., while
many clients are widely distributed with many others close to the
original server, then we have to provide solutions at all levels
namely, server side, client side and proxy side. Based on the
application complexity, security needs, and dynamic content mix,
all the above solutions can be studied and then a comprehensive
solution can be worked out. Alzoubi et al. (2008) proposed load
aware IP anycast to solve routing the client request by selecting
the CDN not only based on the closeness but also based on the
network traffic to the CDN.
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
5.5. Based on the dynamic page content mix

Many dynamic page applications have a mix of personalized
pages and non-personalized pages which make up the total
dynamic pages. The ratio of personalized pages to non-persona-
lized pages plays an important role in deciding which caching
method to adopt. We explain the solutions based on this
classification below.

Personalized pages need some degree of security. Session also
needs to be maintained for such pages. Any of the ESI/CSI-based
systems works best for non-personalized pages. However, ESI/CSI-
based systems are not capable of maintaining a session and also
authentication and authorization are still a research area in these
systems. WebSphere, Weblogic, J2EE, .NET and any of the function
caching methodologies like vMatrix, CONCA, active cache are
best suited to host sessions and hence good for personalized
pages. An application might have a need for a personalized page to
just to greet the user or it may go in for more sophisticated
functionality which might include the need to save credit card
details of the user. Depending upon the applications need for
security, a suitable secure system can be chosen as explained in
the Section 5.7.

5.6. Based on application complexity

Applications can be broadly classified as two tier and multi-tier
systems. Two tiered systems mainly generate dynamic pages to
display the data in the database. The caching opportunity in case
of a two tiered application is at two tiers viz., front-end
(presentation tier) and back-end or the EIS tier.

Multi-tiered architectures are software models that extend the
basic two-tiered client/server model to three or more tiers. In the
basic two-tiered client/server model, the client requests services
and the server provides services. There are software interfaces on
the client and the server side that connect with one another to
handle these interactions. From the caching perspective, in a
multi-tiered model the scope for caching is in all tiers, for
example, the user interface tier, middle tier objects and the
database tier. If the system has a messaging tier, legacy tier, etc.,
then caching can be spread across to these tiers too. Padala et al.
(2007) developed an adaptive resource control system that
dynamically adjusts the shared resources to individual tiers in
order to meet application level QoS. This solution is applicable to
all tiers of an application.

Caching in a multi-tiered system (a.k.a multi-layered system)
becomes very interesting and complicated due to the complexity
of the system. Different caching techniques can be implemented
at different applicable tiers of the system. Any multi-tiered
application will have a front-end which is the presentation tier,
consisting of dynamic pages which the clients invoke. The middle
tier will be business objects which are basically the interfaces
between the clients and the back-end systems. Java has EJB’s
which form the middle tier. The end tier is usually a database or a
legacy system. To simplify the tier caching solutions, we divide
the tiers into three main tiers viz., Presentation tier, middle tier
and ESI tier. A multi-tier application can exploit caching solutions
in all the three tiers where as, a two tier application can use the
solutions given for EIS and presentation tiers. We explain the
solutions in the three tiers as follows:

5.6.1. Presentation tier caching

All the caching techniques that we have explained so far cater
to this tier. ESI, CSI, full page caching, etc., all work on concept of
caching the pages that the user sees. All the other tiers of the
application are like a black box while considering front-end
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]14
caching methodologies as we are only concerned about how best
to cache the generated pages to the user and present it to the user
in the least possible time. Since we have explained this tier in
detail elsewhere in this paper, we would like to cover the
presentation tier caching that is implemented by the application
server. The ones that we discuss here is specifically meant for the
presentation tier of the application server. The techniques in the
presentation tier caching is mainly based on caching HTML
fragments. Many application servers provide this type of caching
capability (e.g., WebSphere from IBM and WebLogic from BEA
systems, which can mitigate delays due to presentation tier tasks.
Solutions from vendors such as SpiderCache take the approach of
caching dynamically generated pages within the site infrastruc-
ture. These solutions are similar to reverse proxy caches, except
that they operate within the site infrastructure, and are typically
implemented as plug-ins to the Web server.

5.6.2. Middle tier caching

In some scenarios, data-intensive Web-oriented applications
can benefit from middle tier caching (i.e., caching data at locations
separate from the central database where that information is
stored and transactional operations are performed). The main goal
of caching on the middle tier is to make data readily available to
applications without repeated involvement from central database
servers to provide the data. By keeping data cached at this tier, we
can reduce the need to communicate back to the database tier for
every request. This not only preserves the capacity at the database
tier, but eliminates network traffic as well.

Sun has Java objects like EJB’s which cater to these needs and
Microsoft has COM/MTS or COM+ for the same. Users can user
session EJB’s to cache a user’s session and reuse it during the
generation of another dynamic page. With IBM Websphere and
BEA Web logic which implement j2ee technology can use EJB’s in a
distributed environment thus still maintaining content and
transactional consistency across proxies and thus enabling edge
side proxies in applications.

5.6.3. Back-end (EIS tier) caching

When the number of client requests increases, this places a
burden on the middle tier and the EIS tier. It is important to realize
that while application servers excel at distributing application
logic, they do very little to help load balance the application data.
This is because application servers do not attempt to act like
databases. The database is where the data resides, and it is the
primary responsibility of the database to ensure transactional
integrity.

While the application server can scale will all the above
techniques of caching and replication to meet the demands of the
user population, the database can act as a single entity and can
become overburdened. In other words, each client request is
ultimately translated into a database request. At some point, the
middle tier is blocked and unable to handle additional load
regardless of how many idle worker threads are sitting in the pool
which are waiting to help the users in the presentation tier. The
database’s inability to scale with the middle tier renders many of
the scalability features of the application server cluster ineffective.
Chen and Iyengar (2003) have proposed a tiered system for
serving differential content to improve performance. The idea
here is to introduce service differentiation by routing the clients
needing higher quality of service to certain databases carrying
better service and routing other strata of clients to other strata of
databases while still maintaining consistency across all strata of
databases. Wei et al. (2008) have proposed service-oriented data
denormalization to address scalability. They propose to break Web
application data into multiple independent data services which
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
simplifies each database workload and allows a much more
efficient use of classical techniques.

Caching is most beneficial when the majority of data access
operations are read-oriented. It is not viable to cache data on the
middle tier if the data change with each user transaction. Lookup
lists for items that change infrequently, such as product catalogs,
benefit most from middle tier data caching. Caching static
information is simple and is done intuitively. For example, instead
of repeatedly asking a database to return a static table of valid ZIP
codes, the application might read them once during initialization
and cache the results to be returned to every request asking for
this information. Dynamic caching, on the other hand, is a much
more challenging problem to solve. It is important to understand
how frequently the data to be cached changes. If the information
is modified every three months, a static caching approach will
probably work (provided the application is re-initialized at least
once every three months). As the update interval becomes more
frequent, more thought must be given on how to access the cache.
For applications that are primarily read-oriented, caching will be
effective. For applications that are primarily update-oriented,
caching will be potentially of a limited value.

Many approaches have been proposed to accelerate dynami-
cally generated content through ESI tier caching. These ap-
proaches are based on the idea of caching different components
which make up EIS tier within the site architecture. Various types
of data caching have been proposed, including caching result of
database queries (Yagoub et al., 2000), caching WebViews (which
are essentially query results wrapped in HTML or XML) (Labrinidis
and Roussopoulos, 2003), and caching database tables, e.g.,
TimesTen Team (timesten team, 2002) and Altinel et al. (2003).
Tolia and Satyanarayanan (2007) proposed caching technique
using cryptographic hashing to detect similarities with previous
results and show that this increases the throughput for data-
intensive applications by ten fold. Database caching approaches
can reduce some of the delays associated with query processing
operations.

All the back-end caching approaches can improve user
perceived latency. As they are tightly integrated with the Web
servers, data consistency is at the highest level. Since they are
cached at finer granularity, their reusability rate is very good and
thus have high cache hit rates. Limitation of this approach is that
since it is not scalable and hence cannot be distributed close to the
client which results in adding network latency.

While back-end approaches guarantee the correctness of
results and offer the advantages of fine-grained caching, they do
not reduce bandwidth requirements. They just help in reducing
the dynamic page generation latency introduced by the origin
server. However, ke Larson et al. (2004) proposed MTCache for
mid-tier database caching to improve system throughput and
scalability by offloading part of the database read only queries to
intermediate database servers that partially replicate data from
the back-end server. MTCache is a prototype mid-tier database
caching solution for SQL server.
5.7. Based on security requirements

Dynamic Web pages can be broadly classified based on the
need for security. Many of the news sites, though dynamic have
least security needs as every user browses the same set of pages
and there is no need for having security built in. However when
ever personalization is needed, some amount of security is
enforced. When it comes to e-commerce sites where purchasing
and payment features are added to the application, highest
security would be enforced. We now study the existing solutions
and apply them to each group.
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 15
5.7.1. Low security needs

When a Web application hosts dynamic pages which reflect
data which are not specific to a specific user then there is no need
to enforce security. For example, a news site is not specific to a
particular person and thus every user will view the same data. At
the same time these are dynamic pages since the news changes
with time. For such needs any content-based caching systems
explained above can be applied, in particular, full page cache, ESI
and CSI are a good choice as it is widely accepted in the market
and also simple to implement. Services can be hired easily as well.

5.7.2. Medium security needs

A Web application may have a need to know who is visiting a
Web site-based on which, specific pages are generated. In this case
a need for authentication comes into picture. Only authentic users
would be able to view certain pages. For example, any news group
Web site, other entertainment and fun groups like yahoo groups
have a need for medium security. The reason for authentication
for these sites would be the ability of an authentic user to view
certain data. For example, in yahoo groups, an authentic group
member would be able to post messages and view messages of
other group members. The security is enforced so that the right
person is authorized to use the group services. Such sites do not
have any purchasing capabilities and hence the protocol used
could be either HTTP and some times HTTPS. However, in many
cases even HTTPS may not be really needed for such systems. In
most of these site even if the Web site is hacked by a successful
hacker, there would not be any information that could be used by
the hacker to cause any damage to the end user. Hence high
security is really not needed for such systems. For the creation of
dynamic pages of such Web sites we would propose an upcoming
system which handles authorization and authentication like
proxy+, vMatrix and Conca could be a good choice. Mannan and
van Oorschot (2008) proposed a scheme called IM-based privacy-
enhanced content sharing (IMPECS) for personal Web content
sharing. IMPECS enables a publishing user’s personal data to be
accessible only to his/her IM contacts. A user can put his/her
personal Web page on any Web server he/she wants (vs. being
restricted to a specific social networking Website), and maintain
privacy of his/her content without requiring site-specific pass-
words.

5.7.3. Highly secure system

Online security is becoming increasingly important to compa-
nies that intend to build their business over the Internet,
especially with the sudden boom of online marketplaces. Most
e-commerce sites have very stringent security requirements.
These systems would generally be an extension of the medium
security systems. Not only do these Web sites provides persona-
lized greetings to the user but also allow the user to use his/her
credit cards to purchase services and items on their Web sites.
These systems have a need to pass stringent security require-
ments to the caches and every cache would perform just like
another origin server.

Programmers of such applications add digital signatures and
data encryption to their e-commerce applications. Security soft-
wares like digital signatures, online authentication and data
encryption help secure transactions, carried out on popular online
marketplaces and other e-commerce sites. These Web sites
invariably use HTTPS as their protocol.

At the least a multi-tiered application would have: (1)
Presentation services tier: responsible for gathering information
from the user, sending the user information to the business
services for processing, receiving the results of the business
services processing, and presenting those results to the user. (2)
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
Business services tier: responsible for receiving input from the
presentation tier, interacting with the data services to perform the
business operations that the application was designed to auto-
mate (e.g., income tax preparation and order processing), and
sending the processed results to the presentation tier. (3) Data
services tier: responsible for storage, retrieval, maintenance, and
integrity of data. With multi-tiered applications, security needs to
be enforced at every tier which drills down to every proxy. For
example, in a J2EE application, security needs to be enforced at
the Web server which generates the dynamic Web pages and thus
responsible for the presentation tier, application server which
holds the business objects which communicate with the Web
server on one side and the EIS systems like database systems and
legacy systems, messaging systems on the other end and hence
responsible for the business services tier. Databases, EIS, legacy
systems which make the final tier which actually hold the data.
Hence every tier is important to be secure else the weakest
security tier will be vulnerable for hacking which will render the
high security implemented in other tiers useless. As an example if
a user has entered a credit card information, then every tier
carries this information at different points of time and hence any
tier which is weak in its security would be vulnerable for hacking
and hence security cannot be compromised at any tier and all tiers
are to be treated equally with respect to security.

For all these kinds of systems, proven function/content caching
solutions like IBM Web sphere, BEA Web logic,.NET suites of
products would be ideal as they integrate very well with their
edge server suites. However, the disadvantage with these systems
is that they are not inter-operable as the protocols used by these
systems are highly custom made for each suite and hence the user
will be confined to one set of advantages or disadvantages that he
is offered with each suite. Strong security implementation comes
with decreased scalability. Manjhi et al. (2006) provided a
solution for security-scalability tradeoff and propose a new
scalability-conscious security design methodology that features:
(a) compulsory encryption of highly sensitive data like credit card
information and (b) encryption of data for which encryption does
not impair scalability. Effective invalidation is an essential part of
a effective cache. Manjhi et al. (2007) proposed invalidation clues
which are especially applicable for secure data.

Though the clients can be broadly divided in the above fashion
initially, some of the clients may tend to lean toward another type
after a period of time. We intend to address such issues also while
proposing a solution.

With the wide availability of content delivery networks, many
e-commerce Web applications utilize edge cache servers to cache
and deliver dynamic contents at locations much closer to users,
avoiding network latency. By caching a large number of dynamic
content pages in the edge cache servers, response time can be
reduced, benefiting from higher cache hit rates.

The CONCA (Shi and Karamcheti, 2001) project addresses the
creation of dynamic pages at the edges by dividing the content
into channels and each channel is cached separately. CONCA proxy
maintains a per-user information which is used for personaliza-
tion. CONCA also carries out user authentication at the proxy
along with addressing the issues of personalization with respect
to the nomadic user.
6. Future directions

Now we are in a position to discuss the possible future
directions of Web content generation and delivery techniques. We
classify them into four categories, trusted peer-to-peer Web caching

and delivery, exploiting clients access patterns, considering the

semantics of Web content, and correctness of caching.
tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]16
Trusted peer-to-peer Web caching and delivery: While Web
application itself explores opportunities to accelerate content
generation and distribution, the underlining Internet technologies
never stopped evolution. In the recent years peer to peer (P2P)
applications have become very popular with the wide acceptance
of Kazaa, Napster Inc and Bittorrent (for audio/video file sharing)
and now recently Skype (for voice services) to name a few. A
recent study motes that P2P systems accounts for more than three
fourth of the HTTP traffic (Saroiu et al., 2002). It further shows
that a P2P cache in their environment achieved a significant
savings in peak bandwidth compared to any other type of caching.
P2P eliminates the stereotype that we have accepted so far in the
industry viz., client and server. In a P2P system every node is a
client and also a server. Hence the traditional caching methodo-
logies for static and dynamic pages which are all based on the
concept of client and server will no longer be applicable in P2P
context. There are many research papers on P2P caching
(Androutsellis-Theotokis and Spinellis, 2004); however, the
research area for using P2P for dynamic content caching is still
in a very initial stage. Globule proposed by Pierre and Steen is one
of few efforts towards this direction, which is a collaborative
content delivery network composed of end-user machines that
operate in a P2P fashion (Pierre and van Steen, 2006). The issues
concerned will be in terms of the peer being able to host a
complicated application on itself along with trust evaluation of
the peer which is one of the most important issues when it comes
to P2P. How to trust a peer to host another users application? How
to guarantee reachability of a peer? Liang and Shi (2005) address
these issues in their study of a peer-to-peer Web server sharing
application. Their solution is based on the concept of building a
decentralized rating of each neighbor peer, considering the
availability, trustworthiness, peer system capacity, the number
of users served by the peer, and so on. Based on the trust value, a
new interesting concept called ‘‘currency mechanism’’ is intro-
duced which can be used by the individual peers to barter each
others services. Kubiatowicz et al. (2000) proposed an architec-
ture in which un trusted servers can also participate and the data
is protected through redundancy and cryptographic techniques
(Table 1).

Fortino and Mastroianni (2008) provided a brief survey of
future trends in CDN’s and conclude the future of CDN’s lies in
using P2P, Grid and Agent technologies as applied to a CDN
network. The logic is in utilizing the strengths of each of these
technologies, viz., dynamism and fault tolerance of a P2P system,
robustness of a Grid technology, intelligent behavior and self-
organization features of agent-based technologies. They provide
research papers which discuss each of these separately as also all
three applied to a CDN network as put forth in the UPGRADE-CDN
workshop. They even discuss a P2P solution with a practical
application domain of a health care system where they aggregate
Table 1
Comparison of available solutions.

Types Data change Change frequency Client locality Web pa

– High Low High Low Local Dist Persona

Java Server page (J2EE) Yes Yes Yes No No Yes Yes

ASP (.NET) Yes Yes Yes Yes Yes No Yes

IBM Websphere Yes No Yes No No Yes Yes

ESI Yes No Yes No No Yes No

AJAX Yes No Yes No No Yes Yes

DUP algorithm Yes Yes Yes Yes Yes No No

Proxyþ Yes No Yes No No Yes No

CSI Yes Yes Yes Yes Yes Yes No

VMatrix Yes No Yes No No Yes No

Active cache Yes No Yes No No Yes No

Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
a patients information distributed across different peers using
simple XML.

Exploiting client access patterns: The assumption about user
access pattern drives the design for caching schema, replication
replacement and consistence management. However, the real user
access behavior may be different from the assumption. Moreover,
if the reality is just the opposite of the assumption, the
performance can be even worse than without caching implemen-
tation, as extra caching management cost occurs without any gain.
Very few work addressed how to make the caching mechanism
self manageable by learning and adapting to real time user access
pattern change. It is especially important for the Web site with big
user base where the user access pattern is not well predictable. On
the other hand, modern Web applications usually categorize users
into different roles which makes user behavior more predictable.
In the role-based Web application design, each role is associated
with one or more certain resources, where resource can be either
a function, HTML page or any URL. These semantic knowledge can
be leveraged on design for data replication and user request
dispatch to edge service.

We feel detailed discussion on cloud computing is out of scope
of this survey paper however, we would like to briefly put forth
the concept of ‘‘pay-as-you-go’’ concept which is gaining
recognition in the recent days. In this model, a particular client
of a CDN provider would pay for the services of CDN based on the
usage of bandwidth and data stored by the CDN. With a very short
notice the capacity of the service can be enhanced. This is
especially useful for services where the client access patterns are
seasonal or sporadic with intermittent peak loads for which
upfront investment in the infrastructure is not required instead
the capacities could be increased for the time required and the
services costs are directly proportional to the usage. CloundFront
(Amazon Web Service,) is one such CDN which runs on a cloud.

Considering the semantic of content: Can content generated by
one Web application be re-purposed for other independently
developed ones? The movement of semantic Web technology
tends to make the Web site a global content database, it suggests
the opportunity for content reuse horizontally. Instead of tradi-
tional content reuse in consequent requests or sessions for one
particular Web application, content can be discovered, shared and
reused among applications, as semantic Web can express itself
and be understood to other Web applications. In this sense, cache
agents can collaborate globally, across the boundaries of domain
and applications, and achieve the maximum of content reuse. As
the sematic Web still in its infancy, there is little research on how
to publish, discover the content for reusability purpose.

Correctness of caching: While considerable research efforts or
research concentrated on content generation and delivery accel-
eration techniques, little study has been given to the correctness
of these techniques themselves. When the techniques improve the
ge mix Application complexity Security requirements Caching type

lize Regular Multitier Two tier High Low Content Func

No Yes Yes Yes Yes Yes Yes

Yes No Yes Yes Yes Yes Yes

No Yes No Yes No Yes Yes

Yes No Yes No Yes Yes No

Yes Yes Yes No Yes Yes No

Yes No Yes No Yes Yes No

Yes Yes Yes No Yes No Yes

Yes No Yes No yes Yes No

Yes Yes Yes No Yes No Yes

Yes Yes Yes No Yes No Yes

tent generation and delivery techniques. J Network Comput Appl

dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]] 17
performance of the Web applications, do they ensure the
correctness of system? For some Web sites whose primary
purpose is information publish, the correctness is equivalent to
the freshness, which means user will get the dynamic content as
fresh as he or she is supposed to have. When it comes to the Web
application with business logic, the correctness means the
business state is consistent regardless of what content generation
and delivery technologies are used. For example, when the same
use case scenario repeats, system should maintain the same
business state at the end, with either lazy caching or active
caching or without caching at all.

In a recent study by Souders (2008) on high performance Web
sites, he noted that the design of the front-end plays a significant
role in reducing the overall latency of the loading a page. He
proposes several techniques which emphasize on rearranging the
content of a page for high performance which includes putting
style sheets in the top of the page, putting java scripts in the
bottom, Gzip the components which are being accessed by the
Web page, making fewer http requests by merging smaller pages
into a bigger one, adding expires header, and avoid css expres-
sions. He even proposed that every Web site should use a tool,
YSlow which evaluates a given Web page and analyzed why a
particular Web page is loading slowly. Just re-arranging the Web
content of a page can significantly reduce the latency is the claim
in this work. This is especially true for pages which have rich UI
with many css, Java Scripts, and links accessing other objects. In
such cases the latency due to accessing back-end is about 9%
compared to 91% being the latency of simply rendering the rich UI
which can be significantly reduced by applying rules as given in
this paper which includes re-arranging the data as one of the
important rule.

7. Summary

Responsiveness is the most important success factor for Web
application. Researchers and practitioners haven been trying all
means to improve it where caching in the content generation and
delivery is the key technology. Considerable solutions are
developed for all aspects of applications, from the location of
server, client and proxy sides, tiers of architectural layers, to
processes of page fragmenting and assembly. A particular caching
methodology could be very effective for a given application and
less effective for others. Or it improves the performance on one
aspect but has no effect on others. The amount of research work
devoted to studying the different solutions available in the market
but in terms of evaluating their effectiveness to a specific
application as a whole it is not yet sufficient. If breaking up an
application into modules, an effective dynamic caching solution
for an application can only be studied based on how effective the
solution is across all modules. The ideal approach would be to see
the effectiveness of each individual solution against each module
of the application and then see the overall effectiveness from the
context of the complete application. This drives the need for more
research efforts that do not assume the modules and solutions to
be independent of each other.

References

Amazon Web Service hhttp://aws.amazon.com/i.
Aggarwal A, Rabinovich M. Performance of dynamic replication schemes

for an internet hosting service, 1998 hciteseer.ist.psu.edu/aggarwal
98performance.htmli.

Akamai Technologies Inc. hhttp://www.akamai.com/i.
Altinel M, Bornhoevd C, Krishnamurthy S, Mohan C, Pirahesh H, Reinwald B. Cache

tables: paving the way for an adaptive database cache. In: Proceedings of the
29th international conference on very large data bases, September 2003
hhttp://www.vldb.org/conf/2003/papers/S22P01.pdfi.
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
Alzoubi HA, Lee S, Rabinovich M, Spatscheck O, der Merwe JV. Anycast CDNs
revisited. In: WWW ’08: proceedings of the 17th international conference on
World Wide Web. New York: ACM; 2008. p. 277–86.

Amiri K, Park S, Tewari R, Padmanabhan S. Dbproxy: a dynamic data cache for Web
applications. In: ICDE04: Proceedings of the 19th international conference on
data engineering, 2003. p. 821–31.

Amza C, Chanda A, Cecchet E, Cox A, Elnikety S, Gil R, Marguerite J, Rajamani K,
Zwaenepoel W. Specification and implementation of dynamic Web site
benchmarks, 2002 hciteseer.ist.psu.edu/amza02specification.htmli.

Amza C, Soundararajan G, Cecchet E. Transparent caching with strong consistency
in dynamic content Web sites. In: ICS ’05: Proceedings of the 19th annual
international conference on supercomputing. New York: ACM Press; 2005. p.
264–73.

Androutsellis-Theotokis S, Spinellis D. A survey of peer-to-peer content distribu-
tion technologies. ACM Computing Surveys 2004;36(4):335–71.

Awadallah A, Rosenblum M. The vMatrix: a network of virtual machine monitors
for dynamic content distribution. In: Proceedings of the 7th international
workshop on Web caching and content distribution (WCW’02), August 2002.

Barbir A, Penno R, Chen R, Hofmann M, Orman H. An Architecture for Open
Pluggable Edge Services (OPES), Internet RFC3835 hhttp://www.ietf.org/rfc/
rfc3835.txti.

BitTorrent—Peer to peer file sharing application hhttp://www.bittorrent.comi.
Beck A, Hofmann M. Enabling the internet to deliver content-oriented services. In:

Proceedings of the 6th international workshop on Web caching and content
distribution (WCW’01), June 2001 hhttp://www.cs.bu.edu/techreports/
2001-017-wcw01-proceedings/107_beck.pdfi.

Bent L, Rabinovich GM, Voelker Z. Xiao, Characterization of a large Web site
population with implications for content delivery. In: WWW ’04: Proceedings
of the 13th international conference on World Wide Web. New York: ACM
Press; 2004. p. 522–33.

Breslau L, Cao P, Fan L, Phillips G, Shenker S. Web caching and zipf-like
distributions: evidence and implications. In: Proceedings of IEEE conference
on computer communications (INFOCOM’99), 1999. p. 126–34 hhttp://www.
research.att.com/�breslau/papers/zipf.ps.gzi.

Brodie D, Gupta A, Shi W. Accelerating dynamic Web content delivery using
keyword-based fragment detection. Journal of Web Engineering 2005;4(1):
79–99.

Candan KS, Li W-S, Qiong W-P, Agrawal HD. Enabling dynamic content caching for
database-driven Web sites. In: Proceedings of the 2001 ACM SIGMOD
international conference on management of data, 2001 hhttp://portal.ac-
m.org/citation.cfm?id=375736i.

Cannataro M, Cuzzocrea A, Mastroianni C, Ortale R, Pugliese A. Modeling adaptive
hypermedia with an object-oriented approach and xml. In: 2nd international
workshop on Web dynamics, 2002.

Cao P, Zhang J, Beach K. Active cache: caching dynamic contents on the Web. In:
Proceedings of IFIP international conference on distributed systems platforms
and open distributed processing, 1998. p. 373–88 hhttp://www.cs.wisc.edu/
�cao/papers/active-cache.psi.

Castro P, Giraud F, Konuru R, Ponzo J, White J. Before-commit client state
management services for ajax applications. Hotweb 2006;0:1–12.

Challenger J, Iyengar A, Dantzig P. A scalable system for consistently caching
dynamic Web data. In: Proceedings of IEEE conference on computer
communications (INFOCOM’99), March 1999.

Challenger J, Iyengar A, Witting K, Ferstat C, Reed P. A publishing system for
efficiently creating dynamic Web content. In: Proceedings of IEEE conference
on computer communications (INFOCOM’00), March 2000.

Chen H, Iyengar A. A tiered system for serving differentiated content. World Wide
Web: Internet and Web information systems, vol. 6(4), December 2003 hhttp://
www.research.ibm.com/people/i/iyengar/wwwj03.pdfi.

Davis A, Parikh J, Weihl WE. Edgecomputing: extending enterprise applications to
the edge of the internet. In: WWW Alt. ’04: Proceedings of the 13th
international World Wide Web conference on alternate track papers and
posters. New York: ACM Press; 2004. p. 180–87.

Domenech J, Gil J, Sahuquillo J, Pont A. Ddg: an efficient prefetching algorithm for
current Web generation. Hotweb 2006;0:1–12.

Douglis F, Haro A, Rabinovich M. HPP:HTML macro-pre-processing to support
dynamic document caching, In: Proceedings of the 1st USENIX symposium on
Internet technologies and systems (USITS’97), December 1997. p. 83–94
hhttp://www.douglis.org/fred/work/papers/hpp.pdfi.

Feldmann A, Caceres R, Douglis F, Glass G, Rabinovich M. Performance of Web
proxy caching in heterogeneous bandwidth environments. In: Proceedings of
IEEE conference on computer communications (INFOCOM’99), March 1999. p.
107–16. hhttp://www.douglis.org/fred/work/papers/hetproxcache.pdfi.

Fortino G, Mastroianni C. Special section: enhancing content networks with
P2P, grid and agent technologies. Future Gener. Comp. Syst. 2008;24(3):
177–9.

Fox A, Gribble S, Chawathe Y, Brewer EA. Adapting to network and client varia-
tion using infrastructural proxies: lessons and prespectives, IEEE Personal
Communication 1998 hhttp://www.cs.washington.edu/homes/gribble/papers/
adapt.ps.zipi.

Fu X, Shi W, Akkerman A, Karamcheti V. CANS: composable, adaptive network
services infrastructure In: Proceedings of the 3rd USENIX symposium on
Internet technologies and systems (USITS’01), March 2001. p. 135–46.

Google Inc. hhttp://www.google.comi.
Gadde S, Rabinovich M, Chase J. Reduce, reuse, recycle: an approach to building

large internet caches. In: Workshop on hot topics in operating systems, 1997
tent generation and delivery techniques. J Network Comput Appl

http://aws.amazon.com/
http://www.citeseer.ist.psu.edu/aggarwal98performance.html
http://www.citeseer.ist.psu.edu/aggarwal98performance.html
http://www.akamai.com/
http://www.vldb.org/conf/2003/papers/S22P01.pdf
http://citeseer.ist.psu.edu/amza02specification.html
http://www.ietf.org/rfc/rfc3835.txt
http://www.ietf.org/rfc/rfc3835.txt
http://www.bittorrent.com
http://www.cs.bu.edu/techreports/2001-017-wcw01-proceedings/107_beck.pdf
http://www.cs.bu.edu/techreports/2001-017-wcw01-proceedings/107_beck.pdf
http://www.research.att.com/~breslau/papers/zipf.ps.gz
http://www.research.att.com/~breslau/papers/zipf.ps.gz
http://www.research.att.com/~breslau/papers/zipf.ps.gz
http://portal.acm.org/citation.cfm?id=375736
http://portal.acm.org/citation.cfm?id=375736
http://www.cs.wisc.edu/~cao/papers/active-cache.ps
http://www.cs.wisc.edu/~cao/papers/active-cache.ps
http://www.research.ibm.com/people/i/iyengar/wwwj03.pdf
http://www.research.ibm.com/people/i/iyengar/wwwj03.pdf
http://www.douglis.org/fred/work/papers/hpp.pdf
http://www.douglis.org/fred/work/papers/hetproxcache.pdf
http://www.cs.washington.edu/homes/gribble/papers/adapt.ps.zip
http://www.cs.washington.edu/homes/gribble/papers/adapt.ps.zip
http://www.google.com
dx.doi.org/10.1016/j.jnca.2009.03.005

ARTICLE IN PRESS

J. Ravi et al. / Journal of Network and Computer Applications] (]]]])]]]–]]]18
hhttp://citeseer.ist.psu.edu/cache/papers/cs/8247/http:zSzzSzwww.cs.duke.e-
duzSz�chasezSzcps216zSzcrisp.pdf/gadde97reduce.pdfi.

Gao L, Dahlin M, Nayate A, Zheng J, Iyengar A. Improving availability and
performance with application-specific data replication. IEEE Trans. Knowl.
Data Eng. 2005;17(1):2005.

Groothuyse T, Sivasubramanian S, Pierre G. Globetp: template-based database
replication for scalable Web applications. In: WWW ’07: Proceedings of
the 16th international conference on World Wide Web. New York: ACM; 2007.
p. 301–10.

Gupta R, Ramamritham K. Optimized query planning of continuous aggregation
queries in dynamic data dissemination networks. In: WWW ’07: Proceedings
of the 16th international conference on World Wide Web. New York: ACM;
2007. p. 321–30.

Hibernate—Relational persistence for Java and .NET hhttp://www.hibernate.orgi.
IBM Corp. Websphere platform hhttp://www.ibm.com/webspherei.
Inderjeet Singh MJ, Stearns B. Designing enterprise applications with the J2EE

platform, 2nd ed. Reading, MA: Addison-Wesley; 2002.
Inria EC. C-jdbc: a middleware framework for database clustering hciteseer.ist.psu.

edu/682076.htmli.
Kazaa—Distributed peer to peer file sharing service hhttp://www.kazaa.comi.
Karbhari P, Rabinovich M, Xiao Z, Douglis F. Acdn: a content delivery network for

applications. In: SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD
international conference on management of data. New York: ACM Press;
2002. p. 619–19.

Karve A, Kimbrel T, Pacifici G, Spreitzer M, Steinder M, Sviridenko M, Tantawi A.
Dynamic placement for clustered Web applications. In: WWW ’06: Proceed-
ings of the 15th international conference on World Wide Web. New York: ACM;
2006. p. 595–604.

Kubiatowicz J, Bindel D, Chen Y, Eaton P, Geels D, Gummadi R, Rhea S,
Weatherspoon H, Weimer W, Wells C, Zhao B. Oceanstore: an architecture
for global-scale persistent storage. In: Proceedings of ACM ASPLOS, November
2000.

Labrinidis A, Roussopoulos N. Balancing performance and data freshness in Web
database servers. In: Proceedings of the 2004 international workshop on
information quality in information systems, September 2003 hhttp://
www.db.cs.cmu.edu/Seminar/Summer2003/aug27i.

ke Larson P, Goldstein J, Zhou J. Transparent mid-tier database caching in sql
server. In: Proceedings of the 2003 ACM SIGMOD international confe-
rence on management of data, June 2004 hhttp://portal.acm.org/citation.
cfm?id=872848i.

Li W-S, Hsiung W-P, Po O, Hino K, Candan KS, Agrawal D. Challenges and practices
in deploying Web acceleration solutions for distributed enterprise systems. In:
WWW ’04: Proceedings of the 13th international conference on World Wide
Web. New York: ACM Press; 2004. p. 297–308.

Li W-S, Po O, Hsiung W-P, Candan KS, Agrawal D. Engineering and hosting adaptive
freshness-sensitive Web applications on data centers. In: WWW ’03:
Proceedings of the 12th international conference on World Wide Web. New
York: ACM Press; 2003. p. 587–98.

Liang Z, Shi W. Enforcing cooperative resource sharing in untrusted peer-to-peer
environment. ACM J Mobile Netw Appl (MONET) 2005;10(6):771–83.

Liu F, Zhao Y, Wang W, Makaroff D. Database server workload characterization in
an e-commerce environment. In: MASCOTS 2004: Proceedings of the IEEE
computer society’s 12th annual international symposium on modeling,
analysis, and simulation of computer and telecommunications systems. Silver
Spring, MD: IEEE Computer Society, 2004. p. 475–83.

Luo Q, Krishnamurthy S, Mohan C, Pirahesh H, Woo H, Lindsay BG, Naughton JF.
Middle-tier database caching for e-business. In: SIGMOD ’02: Proceedings of
the 2002 ACM SIGMOD international conference on management of data. New
York: ACM Press; 2002. p. 600–11.

Mahdavi M, Shepherd J. Enabling dynamic content caching in Web portals. In: RIDE
’04: Proceedings of the 14th international workshop on research issues on data
engineering: Web services for E-commerce and E-government applications
(RIDE’04). Silver Spring, MD: IEEE Computer Society; 2004. p. 129–36.

Manjhi A, Ailamaki A, Maggs BM, Mowry TC, Olston C, Tomasic A. Simultaneous
scalability and security for data-intensive Web applications. In: Proceedings of
SIGMOD, 2006. p. 241–52.

Manjhi A, Gibbons PB, Ailamaki A, Garrod C, Maggs BM, Mowry TC, Olston C,
Tomasic A, Yu H. Invalidation clues for database scalability services. ICDE
2007;0:316–25.

Mannan M, van Oorschot PC. Privacy-enhanced sharing of personal content on the
Web. In: WWW ’08: Proceeding of the 17th international conference on World
Wide Web. New York: ACM; 2008. p. 487–96.

Mastoli V, Desai V, Shi W. SEE: a service execution environment for edge services.
In: Proceedings of the 3rd IEEE workshop on internet applications (WIAPP’03),
June 2003.

Mikhailov M, Wills CE. Change and relationship-driven content caching, distribu-
tion and assembly. Technical Report WPI-CS-TR-01-03, Computer Science
Department, WPI, March 2001 hhttp://www.cs.wpi.edu/�cew/papers/tr01-03.
pdfi.

Mohan C. Caching technologies for Web applications. In: VLDB ’01: Proceedings of
the 27th international conference on very large data bases. Los Altos, CA:
Morgan Kaufmann; 2001. p. 726.

Moshchuk A, Gribble SD, Levy HM. Flashproxy: transparently enabling rich Web
content via remote execution. In: MobiSys ’08: Proceeding of the 6th
international conference on mobile systems, applications, and services. New
York: ACM; 2008. p. 81–93.
Please cite this article as: Ravi J, et al. A survey on dynamic Web con
(2009), doi:10.1016/j.jnca.2009.03.005
Myers A, Chuang J, Hengartner U, Xie Y, Zhang W, Zhang H. A secure and publisher-
centric Web caching infrastructure. In: Proceedings of IEEE conference on
computer communications (INFOCOM’01), April 2001.

Naaman M, Garcia-Molina H, Paepcke A. Evaluation of delivery techniques for
dynamic Web content, Poster. In: Proceedings of 12th international World
Wide Web conference, May 2003 hhttp://www2003.org/cdrom/papers/poster/
p268/Poster.htmi.

Napster Inc. hhttp://www.napster.comi.
ORacle Corp. Oracle application server hhttp://www.oracle.com/appserver/index.

htmli.
Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K.

Adaptive control of virtualized resources in utility computing environments.
SIGOPS Oper Syst Rev 2007;41(3):289–302.

Pathan M, Buyya R, Vakali A. CDNs: state of the art, insights, and imperatives.
Content delivery networks. Germany: Springer; 2008.

Pierre G, van Steen M. Globule: a collaborative content delivery network. IEEE
Commun Magazine 2006;44(8):127–33.

Plattner C, Alonso G. Ganymed: scalable replication for transactional Web
applications. In: Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware. New York: Springer; 2004. p. 155–74.
hhttp://portal.acm.org/citation.cfm?id=1045658.1045671i.

Rabinovich M, Spatscheck O. Web caching and replication. Reading, MA: Addison-
Wesley; 2002.

Rabinovich M, Xiao Z, Douglis F, Kamanek C. Moving edge side includes to the real
edge—the clients. In: Proceedings of the 4th USENIX symposium on Internet
technologies and systems (USITS’03), March 2003.

Ramaswamy L, Iyengar A, Liu L, Douglis F. Automatic fragment detection in
dynamic Web pages and its impact on caching. IEEE Trans Knowl Data Eng
2005;17(6):859–74.

Ravi J, Shi W, Xu C. Personalized email management at network edges. IEEE
Internet Comput. 2005;9(2).

Ricadela, A., Microsoft goes alive hhttp://www.informationweek.comi, November
2005.

Saroiu S, Gummadi KP, Dunn RJ, Gribble SD, Levy HM. An analysis of internet
content delivery systems. In: Proceedings of the 5th USENIX symposium on
operating systems, design and implementation, December 2002.

Shi W, Collins E, Karamcheti V. Modeling object characteristics of dynamic Web
content. J Parallel Distrib Comput 2003;63(10):963–80.

Shi W, Karamcheti V. CONCA: an architecture for consistent nomadic content
access. In: Workshop on cache, coherence, and consistency (WC3’01), June
2001.

Sivasubramanian S, Pierre G, van Steen M. Replicating Web applications on-
demand. In: Proceedings of the IEEE international conference on services
computing, September 2004.

Sivasubramanian S, Pierre G, van Steen M. Autonomic data placement strategies
for update-intensive Web applications. In: Proceedings of the international
workshop on advanced architectures and algorithms for Internet delivery
and applications, June 2005 hhttp://www.globule.org/publi/ADPSUIWA_
aaaidea2005.htmli.

Sivasubramanian S, Pierre G, vanSteen M, Alonso G. Analysis of caching and
replication strategies for Web applications. IEEE Internet Comput 2007;11(1):
60–6.

Skype—Peer to peer voice service hhttp://www.skype.comi.
Souders S. High performance Web sites. Queue 2008;6(6):30–7.
Soundararajan G, Amza C. Using semantic information to improve transparent

query caching for dynamic content Web sites. DEEC 2005:132–8.
Timesten team. Middle-tier database caching for e-business. In: Proceedings of the

2002 ACM SIGMOD international conference on management of data,
September 2002 hhttp://portal.acm.org/citation.cfm?doid=564691.564761i.

Tolia N, Satyanarayanan M. Consistency-preserving caching of dynamic database
content. In: WWW ’07: Proceedings of the 16th international conference on
World Wide Web. New York: ACM; 2007. p. 311–20.

Tsimelzon M. ESI language specification, 1.0 2000 hhttp://www.esi.orgi.
Wei Z, Dejun J, Pierre G, Chi C-H, van Steen M, Service-oriented data

denormalization for scalable Web applications. In: Proceedings of the 17th
international World Wide Web conference, April 2008 hhttp://www.globu-
le.org/publi/SODDSWA_www2008.htmli.

Wolman A, Voelker GM, Sharma N, Cardwell N, Karlin A, Levy HM. On the scale and
performance of cooperative Web proxy caching. In: Proceedings of 17th ACM
symposium on operating systems principles (SOSP), December 1999. p. 16–31.

Yahoo Inc. hhttp://www.yahoo.comi.
Yagoub K, Florescu D, Issarny V, Valduriez P. Caching strategies for data-

intensive Web sites. In: Proceedings of the 26th international conference on
very large data bases, May 2000 hhttp://portal.acm.org/citation.cfm?coll=
GUIDE&dl=GUIDE&id=672020i.

Yuan C, Chen Y, Zhang Z. Evaluation of edge caching/offloading for dynamic
content delivery. IEEE Trans Knowl Data Eng 2004;16(11):1411–23.

Zhou J, Yang T. Selective early request termination for busy internet services. In:
WWW ’06: Proceedings of the 15th international conference on World Wide
Web. New York: ACM; 2006. p. 605–14.

Zhu H, Yang T. Class-based cache management for dynamic Web content. In:
Proceedings of IEEE conference on computer communications (INFOCOM’01),
April 2001 hhttp://www.cs.ucsb.edu/projects/swala/cache2001.psi.

Zhu Z, Mao Y, Shi W. Workload characterization of uncacheable http content. In:
Web engineering: 4th international conference, ICWE. Berlin: Springer GmbH;
2004. p. 319–95.
tent generation and delivery techniques. J Network Comput Appl

http://citeseer.ist.psu.edu/cache/papers/cs/8247/http:zSzzSzwww.cs.duke.eduzSz~chasezSzcps216zSzcrisp.pdf/gadde97reduce.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/8247/http:zSzzSzwww.cs.duke.eduzSz~chasezSzcps216zSzcrisp.pdf/gadde97reduce.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/8247/http:zSzzSzwww.cs.duke.eduzSz~chasezSzcps216zSzcrisp.pdf/gadde97reduce.pdf
http://www.hibernate.org
http://www.ibm.com/websphere
http://www.citeseer.ist.psu.edu/682076.html
http://www.citeseer.ist.psu.edu/682076.html
http://www.kazaa.com
http://www.db.cs.cmu.edu/Seminar/Summer2003/aug27
http://www.db.cs.cmu.edu/Seminar/Summer2003/aug27
http://portal.acm.org/citation.cfm?id=872848
http://portal.acm.org/citation.cfm?id=872848
http://www.cs.wpi.edu/~cew/papers/tr01-03.pdf
http://www.cs.wpi.edu/~cew/papers/tr01-03.pdf
http://www.cs.wpi.edu/~cew/papers/tr01-03.pdf
http://www2003.org/cdrom/papers/poster/p268/Poster.htm
http://www2003.org/cdrom/papers/poster/p268/Poster.htm
http://www.napster.com
http://www.oracle.com/appserver/index.html
http://www.oracle.com/appserver/index.html
http://portal.acm.org/citation.cfm?id=1045658.1045671
http://www.informationweek.com
http://www.globule.org/publi/ADPSUIWA_aaaidea2005.html
http://www.globule.org/publi/ADPSUIWA_aaaidea2005.html
http://www.skype.com
http://portal.acm.org/citation.cfm?doid=564691.564761
http://www.esi.org
http://www.globule.org/publi/SODDSWA_www2008.html
http://www.globule.org/publi/SODDSWA_www2008.html
http://www.yahoo.com
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=672020
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=672020
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=672020
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=672020
http://www.cs.ucsb.edu/projects/swala/cache2001.ps
dx.doi.org/10.1016/j.jnca.2009.03.005

	A survey on dynamic Web content generation and delivery techniques
	Introduction
	Dynamic content Web site characteristics
	Dynamic content generation and caching
	Dynamic content caching within infrastructure
	Database caching strategy
	Application distribution model
	Programmatic or transparent caching solution

	Dynamic content delivery
	Caching classification based on location of cache
	Caching classification based on type of object being cached
	Content caching
	Function caching

	Application characteristics and caching solutions
	Based on application’s computational needs
	Based on number of dynamic pages which change with the change in data
	Few pages, about 0-20% of Web pages change with change in underlying data
	Many pages of the application (80-100%) change with change in underlying data
	Moderate number of pages (20-80%) of the Web pages changes with change in underlying data

	Based on the frequency of changes observed by the dynamic page
	High frequency change
	Medium frequency change
	Low frequency change

	Based on locality of clients
	Most of the clients are very close
	Clients are distributed all across the globe
	Many near clients and many dispersed clients

	Based on the dynamic page content mix
	Based on application complexity
	Presentation tier caching
	Middle tier caching
	Back-end (EIS tier) caching

	Based on security requirements
	Low security needs
	Medium security needs
	Highly secure system

	Future directions
	Summary
	References

