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Abstract—Understanding the characteristics of MapReduce workloads in a Hadoop cluster is the key to making optimal
configuration decisions and improving the system efficiency and throughput. However, workload analysis on a Hadoop cluster,
especially in a large-scale e-commerce production environment, has not been well studied yet. In this paper, we performed a
comprehensive workload analysis using the trace collected from a 2,000-node Hadoop cluster at Taobao, which is the biggest
online e-commerce enterprise in Asia, ranked 10t" in the world as reported by Alexa. The results of the workload analysis
are representative and generally consistent with the data warehouses for e-commerce web sites, which can help researchers
and engineers understand the workload characteristics of Hadoop in their production environments. Based on the observations
and implications derived from the trace, we designed a workload generator Ankus, to expedite the performance evaluation
and debugging of new mechanisms. Ankus supports synthesizing an e-commerce style MapReduce workload at a low cost.
Furthermore, we proposed and implemented a job scheduling algorithm Fair4S, which is designed to be biased towards small
jobs. Small jobs account for the majority of the workload and most of them require instant and interactive responses, which
is an important phenomenon at production Hadoop systems. The inefficiency of Hadoop fair scheduler for handling small jobs
motivates us to design the Fair4S, which introduces pool weights and extends job priorities to guarantee the rapid responses
for small jobs. Experimental evaluation verified the Fair4S accelerates the average waiting times of small jobs by a factor of 7

compared with the fair scheduler.
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1 INTRODUCTION

With the rapid growth of data volume in many enterprises,
large-scale data processing becomes a challenging issue,
attracting plenty of attention in both the academic and in-
dustrial fields. The MapReduce framework [1], proposed by
Google, provides a highly scalable solution for processing
large-scale data. The fundamental concept of MapReduce is
to distribute data among many nodes and process the data in
a parallel manner. Hadoop, an open-source implementation
of the MapReduce framework [2], can easily scale out to
thousands of nodes and work with petabyte data. Due to its
high scalability and performance, Hadoop has gained much
popularity. High-visibility organizations, such as Yahoo,
Facebook, Twitter, and many research groups adopt Hadoop
to run their data-intensive applications.

Our work was originally motivated by the need for
improving the system performance and resource utilization
of a Hadoop cluster in Taobao. To meet this end, we
solve the problem in two ways. In one aspect, the Hadoop
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system involves hundreds of configuration parameters. It
will be beneficial, but challenging, for Hadoop operators
to make optimal configuration decisions. In another aspect,
as tens of thousands of MapReduce jobs are scheduled and
executed everyday, the job scheduling algorithm plays a
critical role in the whole system performance. Optimizing
the job scheduling efficiency is also essential work.

Our work starts with the analysis of MapReduce work-
load in the Hadoop cluster. We believe that understanding
the characteristics of MapReduce workloads is the key
to obtain better configuration decisions. Hadoop operators
can apply the results of the workload analysis to optimize
the scheduling policies and to allocate resources more
effectively under diverse workloads. However, as of yet,
workload analysis of MapReduce, especially in a large-
scale e-commerce production environment, has not been
well studied.

To gain insight on MapReduce workloads, we collected
a two-week workload trace from a 2,000-node Hadoop
cluster at Taobao, Inc. This Hadoop cluster is named Yunti,
which is an internal data platform for processing petabyte-
level business data. The trace comprises over a two-week
period of data, covering approximately one million jobs
executed by 2,000 nodes. Our analysis reveals a range of
workload characteristics and provides some direct impli-
cations. We believe that workload analysis study is useful
for helping Hadoop operators identify system bottlenecks



and figure out solutions for optimizing performance. A
deep understanding of the characteristics of jobs running
in Hadoop contributes to determining the factors affecting
jobs execution efficiency.

Due to the system complexity and scale, an intuition-
based analysis is often inadequate to explicitly capture the
characteristics of a workload trace. The problem is even
worse if the workload is diverse. The first challenge of
MapReduce workload characterization arises in identify-
ing key factors and parameters that might help systems
designers and practitioners of large-scale MapReduce sys-
tems. The second challenge is to figure out appropriate
statistical models for profiling various characteristics, which
give insights of open research problems for future system
design, implementation and optimization. Finally, an even
greater challenge is to deeply understand the workload
characteristics, so as to design practical tools and derive
new knowledge about the MapReduce systems.

To address these challenges, we conducted a compre-
hensive workload analysis using statistical models. Based
on the results of the workload analysis, we designed an
effective workload generator Ankus, to synthesize an e-
commerce style workload for expediting the performance
evaluation. Furthermore, we proposed and implemented a
job scheduling algorithm Fair4S, which is designed to be
biased towards small jobs. Fair4S introduces pool weights
and extends job priorities to guarantee the rapid response
for small jobs. More specifically, the contributions of this
paper are listed as follows.

o We undertook a comprehensive analysis based on a

production workload trace, which is collected from
a 2,000-node production Hadoop cluster during two
weeks. The trace includes 912,157 jobs, which are
representative and common in data analysis platform-
s of e-commerce web sites. The main observations
and their direct implications derived from the trace
analysis are listed in Table 1. These findings can
help researchers and engineers better understand the
performance and job characteristics of Hadoop in their
production environments.

o We designed and implemented a workload generator
called Ankus based on the models derived from the
workload analysis. Ankus supports two mechanisms
for generating workloads, one is to replay a historical
workload traces, or scale the workload intensity which
follows similar statistical distribution observed in the
real-world workload trace; the other is to synthesize
configurable workloads to meet various user demands.
Ankus facilitates the evaluation of job schedulers and
debugging on a Hadoop cluster.

o We proposed and implemented a job scheduler called
Fair4S, to optimize the completion time of small
jobs. According to the results of trace analysis, we
found that small jobs account for the majority and
most of them require instant and interactive respons-
es. Unfortunately, fair scheduler [3], the default and
most commonly used scheduler of Hadoop, fails to
support interactive responses for small jobs. The same

observation is true on Facebook [4]. To address this
problem, Fair4S introduces pool weights and extends
job priorities to guarantee the rapid response for small
jobs. It is verified that Fair4S accelerates the average
waiting times by a factor of 7 compared with fair
scheduler for small jobs.

The rest of this paper is organized as follows. Sec-
tion 2 provides a brief introduction of MapReduce and
Hadoop, and then gives an overview of the Yunti cluster.
Section 2.2 discusses the summary of the trace, including
the information extracted and the format of the logs. A
detailed analysis of these logs at the granularity of jobs
and tasks is described in Section 3. Section 4 shows the
resource utilization of the Yunti cluster in terms of disk
IO and network transfer. Section 5 describes the workload
generator Ankus and Section 6 presents the job scheduling
aiming at optimizing the execution efficiency of small jobs.
The evaluation results on Ankus and Fair4S are given in
Section 7. Section 8 discusses the related work and this
paper is concluded in Section 9.

2 BACKGROUND

To facilitate the understanding of MapReduce workload
analysis in this paper, we describe the architecture of the
Yunti cluster [5] and its implementation details. Then we
present the summary of trace, including the information
extracted and the format of the logs.

2.1 Architecture of the Yunti Cluster

The Yunti cluster is an internal data platform for processing
petabyte-level business data mostly derived from the e-
commerce web site of “www.taobao.com”. Up to December
2011, the Yunti cluster consists of over 2,000 heterogeneous
nodes'. The total volume of data stored in the Yunti has
exceeded 25PB, and the data volume grows with the speed
of 30TB per day. The goal of the Yunti cluster is to provide
multi-user businesses with large-scale data analysis service
for some online applications. Yunti is built on Hadoop
0.19, with some slight modifications. Figure 1 presents the
overview of the Yunti cluster.

The data resident in the Yunti cluster comprises the
replicas of online databases, logs of Web servers (e.g.,
Apache and Ngnix), crawled pages, and so on. The Yunti
cluster maintains synchronization with the corresponding
online server periodically. The synchronization cycles are
optimized for different data sources, dependent on the syn-
chronization cost and requirements of various applications.

The jobs executed on the Yunti cluster are diverse.
Over fifty-six groups, including over five hundred users,
submit about sixty thousand jobs to the Yunti platform
for everyday. These jobs include multi-hour collaborate
filtering computations, as well as several-second ad-hoc
queries. These jobs originate from numerous applications,
such as commodities recommendations, traffic statistics and
advertise delivery system.

1. Note that the scale of the Yunti grows every week. All statistics about
the Yunti cluster given in this paper was collected on Dec.12, 2011.



TABLE 1: Summary of observations and implications.

Observations Implications Sections

O1: Job arrival rate follows a fairly constant pattern. The | Node scheduling mechanism based on the job arrival pattern | 3.1.1

arrival times of jobs follow a Poisson distribution. will be feasible and useful for saving power.

02: Slot preemptions caused by high-priority jobs are frequen- | Optimizing a preemption scheme should be a priority. 3.12

t.

03: The completion time of successful, failed, and killed jobs | Jobs with diverse completion times bring extra challenges | 3.1.3

follow the log-normal distribution. for job scheduling.

04: 80% of jobs write less than 64MB data on HDFS. Small files are a big problem in Hadoop. Improving the | 3.1.4
efficiency of small files access will be very beneficial.

OS5: The task counts of jobs in Yunti are diverse. Small jobs | Hadoop schedulers need to be improved for scheduling | 3.2.1

constitute the majority, and medium and large jobs account for | small jobs.

a considerable part.

06: Both map task and reduce task duration time follow a | Conventional simulation with uniform-duration tasks is | 3.2.2

log-normal distribution. unrealistic.

O7: The execution time inequity for map task is much worse | Data skew on the map phase is much worse due to | 3.2.3

than that of reduce tasks. some skewed map operations, such as with the table JOIN
operations.

08: The fair scheduler used in Hadoop does a very well on | To reduce data movement by further improving data locality | 3.2.4

data locality. will be not a satisfactory method.

09: Data read and write workloads on HDFS are high. It might | Employing a distributed shared memory system would be | 4.1

be beneficial to optimize the implementation of MapReduce on | a good solution to decrease the read and write workloads

Hadoop. on HDEFS.

010: Network transfer generated on shuffle operation and | Efficient data placement and scheduling policies for reduc- | 4.2

remote HDFS access causes high network load. Network will | ing network load are needed.

become a system bottleneck with the data volume growth.
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Fig. 1: Overview of the Yunti cluster.

2.2 Overview of the Trace

The trace was collected over a two-week period from Dec.
4 to Dec. 20, 2011. During this period, over 912,157
MapReduce jobs were submitted by 572 different users
belonging to fifty-six groups. Most of the jobs are daily
periodic, which are submitted automatically and loaded at
a constant time every day. Table 2 gives an overview of the
dataset. On average, each job consisted of 42 map tasks
and 12 reduce tasks running on 19 nodes. Maximum nodes
allocated to a job was 489. According to the job’s final
status, all jobs are separated into three groups:

« Successful jobs: those jobs executed successfully.

o Failed jobs: those jobs aborted or canceled due to

unhandled exceptions.

« Killed jobs: those jobs killed by the Yunti operators.
Among the 912,157 jobs, the number of successful job was
902,837 (about 99%), and the number of failed and killed
jobs was 5,672 (0.6%) and 3,648 (0.4%), respectively. The

TABLE 2: Summary of the workload trace.

Log Period 4/10-20/10, 2011
Number of groups 56

Number of users 572

Number of jobs 91,2157

Successful jobs 90,2837 (90%)

Failed jobs 5,672 (0.6%)
Killed jobs 3,648 (0.4%)
Maximum maps per job 91,081
Average maps per job 42

Minimum maps per job 1

Standard deviation of maps 2677.3
Maximum reduces per job 28,107
Average reduces per job 12

Minimum reduces per job 1

Standard deviation of maps 291.3
Maximum job duration 59040s
Average job duration 35s

Minimum job duration Is
Standard deviation of job durations | 237.7

trace related to job execution is collected by standard tools
in Hadoop. However, raw trace data is enormous in volume,
approximately 20GB. We extracted job characteristics using
Taobao’s internal monitoring tools and saved them in two
relational tables: (1) Table JobStat: this table stores the
job features. Each row represents a job and contains the
following fields: JobID (a unique job identifier), job status
(successful, failed or killed), job submission time, job
launch time, job finish time, the number of map tasks,
the number of reduce tasks, total duration of map tasks,
total duration of reduce tasks, read/write bytes on HDFS,
read/write bytes on local disks. (2)Table TaskStat, this
table stores task features. Each row represents one task
and contains the following fields: TaskID (a unique task
identifier), JobID, task type (map or reduce), task status,
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Fig. 2: Arriving jobs count for each 10-minute interval during one day.

task start time, and task finish time.

In addition to the workload trace, resource utilization
statistics of the Yunti cluster in terms of network transfer,
and data I/O were collected by Ganglia [6]. Details on
resource utilization are presented in Section 4.

3 WORKLOAD TRACES ANALYSIS

In this section, we first describe job statistics, including job
arrival pattern, job completion times and data size. Then, we
present task statistics, including task count, task duration,
task equity, and data locality. Our empirical observations
are italicized at the end of the corresponding paragraph.

3.1 Job Statistics
3.1.1 Job Arrival Rate

Figure 2 shows the number of arriving jobs per 10-minute
interval during a one-day period. The workload reaches the
first daily-peak from 1:00 am to 4:00 am, and reaches the
second peak from 1 p.m. to 4 p.m. The maximum number
of arrived jobs within a 10-minute interval exceeds 1,100.
The first workload peak is mainly formed by periodic jobs,
which are pre-defined by application developers and loaded
at a constant time everyday. These jobs are arranged to be
executed in the early morning of everyday. Most of the
periodic jobs remain about the same, generating periodic
reports. In addition, the second one is formed by temporary
jobs. Temporary jobs are defined temporarily and submitted
by application developers manually, just as ad-hoc queries.

After curve fitting, the sequence of arrival times of
these jobs is composed by two Poisson random processes.
Assuming a time unit is one minute, the values of A
of Poisson distribution for periodic and temporary jobs
are 76 and 42, respectively. For most temporary jobs,
these workloads are also referred to as MapReduce with
Interactive Analysis (MIA) workloads [7]. During the work
hours, many application developers will submit temporary
jobs, forming the second workload peak. Note that most
temporary jobs are executed only once.

Figure 3 depicts the arriving job count per two-hour
intervals during two weeks. As shown in the figure, the job
arrival pattern expressed every day is very similar, except
for the bursty jobs arrival on Dec. 13 and 14. Bursty jobs
were generated by a big promotion activity held on Dec. 12,
especially for investigating the effect of the promotion ac-
tivity. Therefore, some additional jobs were submitted in the
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Fig. 3: Arriving jobs count for each two-hour interval during two weeks.
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Fig. 4: Running jobs count, sampled per 5-second interval.

subsequent days following a big promotion. Observation 1.
Job arrival rate follows a relatively-constant daily pattern.
The arrival times of jobs follow a Poisson distribution. This
observation implies that a resource scheduling mechanism
based on the job arrival rate pattern will be feasible and
beneficial for saving electrical power, i.e., some nodes work
while the others sleep if the workload is low.

3.1.2 Jobs Count on Running Status

Figure 4 shows the changes of concurrently running jobs
count loaded on the Yunti cluster during a one-day period.
It was sampled per 5 seconds. The number of running
jobs exceeds 600 at the peak time, and falls down to
approximately 300 at 5:00 am. A couple of hours later,
the second workload peak time appears at 9:00 am, when
the company staff begins to work.

The feature of two workload peaks in number of running
jobs is similar to the job arrival rates. However, if we
compare Figure 2 and 4, we can obtain an interesting
observation: the second peak of arriving jobs and running
jobs do not appear at a same time. This observation can be
explained by the difference of job duration time. According
to Little’s law [8] in the theory of queue, the long-term
average number of running jobs is equal to the long-
term average job arrival rate multiplied by the average job
execution time. After detailed investigation, it is verified
that temporary jobs arrived in the morning contains more
long jobs than the jobs arrived in the afternoon, which
confirms this observation.

Actually, the maximum count of concurrent running jobs
has been limited to 300, but it exceeds the upper limit.
That is because the high-priority jobs arrival will induce
the scheduler to kill some tasks and preempt their occupied
slots if there are not enough idle slots. Therefore, some
running jobs may have to switch to be in an awaiting-state.
Observation 2. As depicted in the Figure 4, we can infer
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period.

that preemption is frequent, and optimizing a preemption
scheme should be a priority.

3.1.3 Job Completion Times

Figure 5 presents the cumulative distribution function (CD-
F) of completion time of successful jobs, failed jobs, and
killed jobs during the two-week period. Failed jobs are
jobs that were canceled due to task failure. Killed jobs
are jobs that were killed by Hadoop operators due to slots
preemption or some other reasons. The completion time of
a job is calculated as the time scope from the first task
starts until the last task ends.

Intuitively, the jobs completion time follows a long-
tail distribution. More than 80% of jobs finished within
4 minutes. The maximum job completion time reaches 16
hours and 24 minutes. Failed jobs consume less time than
killed jobs. Ninety percent of failed jobs were canceled
within 8 minutes, while 90% of killed jobs were stopped
within 25 minutes. When one task fails more than a pre-
defined time (4 in default), the corresponding job will fail.
Common causes of task failures include JVM failure, task
execution time-out, and hardware faults, and so on. Killed
jobs are the jobs canceled by the Hadoop operators because
these jobs are not well-designed. Most of the job failures
are caused by failure times that exceed a pre-defined value.
We employed the Levenberg-Marquardt algorithm [9] to
fit the job completion times to the Weibull, exponential
and log-normal distributions. The goodness of fit between
the original distribution and the reference distributions is
examined by the Kolmogorov-Smirnov test[10], which cal-
culates the maximal distance between the (empirical) CDF
of the original distribution and the reference distributions.
Kolmogorov-Smirnov test is a commonly used technique to
compare two distributions, which is also adopted in several
literatures[11], [12]. Observation 3. After measuring the
goodness of fit of the job completion times against the expo-
nential, Weibull, and log-normal distributions, we find that
the log-normal distribution is the best fitting distribution
for the successful, failed, and killed jobs. A log-normal
distribution LN (4.32, 1.31) fits the CDF of successful jobs
duration with a Kolmogorov-Smirnov (KS for short) value

_ (nz—w?

of 0.05, where LN (z, 1,0) = T(s\l/ﬂe 252 is the log-

normal distribution with mean p and variance 9.
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3.1.4 Job Data Size

Job execution processes bring forth plenty of data
read/write operations at various stages of MapReduce. The
total bytes of data read/writes involve two parts, HDFS
read/write bytes and local read/write bytes, which represent
the total bytes of data read or written on HDFS and
local disks, respectively. HDFS read/writes bytes involve
input data read from HDFS and output data written on
HDEFS. The data access on HDFS is guided by NameNode
and carried out by one of the HDFS DataNodes. Local
read/write bytes involve the intermediate data generated in
the MapReduce stages. The intermediate data is stored in
local disks directly.

Figures 6 and 7 show the cumulative distribution of
HDFS and local read/write bytes per job. As shown in these
two figures, 80% of jobs write under 64MB data to HDFS,
and 50% of jobs read under 64MB data from HDFS. As
expected, data read size is much larger than data write size
on HDFS, because input data is much larger than output
data for most jobs. While for IO on local disks, 80% of jobs
read and write under 1GB data on local disks, data write
size is slightly more than data read size. This result is also
expected because the intermediate data generated during the
job execution process is stored on local disks. Observation
4. Eighty percent of jobs write small files (#size <64MB) to
HDFS. Some previous works reported that a large number
of small files will depress the efficiency of NameNode [13],
[14]. Therefore, efficiency for small files storage on HDFS
is a significant and urgent issue to be solved.

3.2 Task Statistics

This subsection provides trace analysis at the granularity
of tasks, including the cumulative distribution of task count
per job, task duration, task equity, and data locality.
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TABLE 3: Job size statistics.

Task count within a job | number of jobs | Percentage

<10 370,062 40.57%

10-500 358,751 39.33%

500-2,000 109,733 12.03%

>2,000 73,611 8.07%
3.2.1 Task Number

Figure 8 depicts the cumulative distribution of task number
per job. Over 40% of jobs are divided into less than 10
tasks, while about 50% of jobs’ task count ranges from 10
to 2,000. The largest job consists of 91,798 tasks, and the
smallest job contains only one map task. Job distribution
grouped by the size is also presented in Table 3.

Small jobs pose a big challenge to Hadoop. Hadoop
was originally designed for processing large jobs. It is
reported that the data locality will be impacted for small
jobs [15], [16]. Observation 5. The task counts of jobs in
the Yunti are diverse. Small jobs account for the majority,
and medium and large jobs are a considerable part of
the jobs analyzed. Thus, Hadoop schedulers need to be
improved for scheduling small jobs. In the latter part of
this paper (Section 6), we will describe an improved fair
scheduler for optimizing the small jobs execution.

3.2.2 Task Duration

Figure 9 shows the cumulative distribution of the map and
reduce task duration. More than 50% of tasks are executed
for less than 10 seconds. The longest task lasts 20 minutes
and 48s. Observation 6. Both map task and reduce task
duration time follow a log-normal distribution. For map
task duration, LN (2.31,0.87) fits with a KS value of 0.02;
for reduce task duration, LN (3.24,1.37) fits with a KS
value of 0.01.

To further summarize the task duration distribution, we
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TABLE 4: Task duration statistics.

Task type Quantity Percentage
map second-tasks (<120s) 12954135 | 98%

map minute-tasks (2m-1h) 206234 1.5%

map hour-tasks (>1h) 1290 0.5%
reduce second-tasks (<120s) | 1352878 87%
reduce minute-tasks (2m-1h) | 184939 12%
reduce hour-tasks (>1h) 596 1%
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Fig. 10: Gini coefficients of task durations.

classify all tasks into three groups according to their du-
ration: second-tasks, minute-tasks and hour-tasks. Second-
tasks mean those tasks executed for several seconds up to a
fixed duration, i.e., 120 seconds. Second-tasks cover small
task and temporal jobs. Minute-tasks include those tasks
executed for more than 2 minutes but less than one hour.
Hour-tasks refer to those tasks with a duration of more than
one hour. Table 4 presents the amount of tasks in each task

group.

3.2.3 Task Equity

Task equity measures the variation between task duration
times. Ideally, the tasks belonging to the same job are
executed in a parallel manner and consume a similar time
duration. Task equity also indicates execution efficiency or
parallelization degree.

Various methods have been proposed to measure the
equity for a distribution. Gini coefficient [17] is the most
commonly one. It is typically used to evaluate the income
equality in a country. In our work, we use it to measure
the equity of task duration. The Gini coefficient varies
between 0 and 1. A value of 0 means all tasks have identical
durations, while a higher value indicates that there is a
greater disparity among the durations of tasks. A Gini
coefficient of 1 indicates complete inequality.

Figure 10 shows the cumulative distribution of jobs with
the given Gini coefficient for their map and reduce tasks,
respectively. We observed that more than 95% of jobs with
Gini coefficients of map task durations <0.15, and more
than 95% of jobs with Gini coefficients of reduce task
durations <0.05. Observation 7. The task inequity problem
for map tasks is much worse than the one for reduce tasks,
which is beyond our conventional viewpoints. After in-depth
analysis, we recognize that it is caused by skewed map
operations, like table JOIN. The map tasks that perform
the broadcasts do more I/O than the other ones.



TABLE 5: Data locality Statistics.

Locality level | Percentage
Node-local 92.7%
Rack-local 4.4%
Remote-rack 2.9%

3.2.4 Data Locality

In order to reduce data movement, the fair scheduler in
Hadoop uses a delay scheduling mechanism to optimize
data locality of tasks (placing tasks on nodes that contain
their input data). The job scheduler selects the task with
data closest to the TaskTracker, trying to place the tasks
on the same node if possible (node-local), otherwise on the
same rack (rack-local), or finally, on a remote rack (remote-
rack). Table 5 shows the statistics of data locality for all
tasks. 92.7% of tasks achieved node-local data locality.
Observation 8. The fair scheduler can achieve a high data
locality. Therefore, to reduce data movement by further
improving data locality is not necessary.

4 RESOURCE UTILIZATION

In this section, we report a detailed resource utilization
statistics of the Yunti cluster in terms of network transfer,
and data I/O during the same period. All statistics are
collected once over 30 seconds. For the statistics in terms of
CPU utilization, memory usage, please refer to our previous
work[5].

4.1 1/0 Statistics

Figures 11(a) and 11(b) show the I/O statistics on local
disks. Local disks read and write are mainly caused by
accessing intermediate data generated on the map stage.
The local disks read and writes bytes reach about 1.5PB
and 2PB per day, respectively. Since the Hadoop cluster
consists of 2,000 nodes, data read and write speeds on each
DataNode are 9MB/s and 12MB/s on average, respectively.
Figures 11(c) and 11(d) show the data I/O statistics on
HDFS per day during two weeks. The Y-axis represents
the amount of read/write bytes. During a job execution
process, HDFS read is mainly caused by reading input
data from HDFS, while HDFS write is mainly generated
by writing output data to HDFS. It is observed that data
reads and writes on HDFS reach about 3PB and 4PB per
day, respectively. On average, data read and write speeds
on each DataNode are 18MB/s and 25MB/s, respectively.
Note that if a task gains node-level data locality, HDFS
read is actually carried out on the local nodes. Observation
9. Data read and write workloads on HDFS and local
disks are high. It might be beneficial to optimize the
implementation of MapReduce on Hadoop. Employing a
distributed shared memory system [18] would be a good
solution to decrease the read/write workloads. The rapid
growth of data volume requires scalable and efficient data
management and scheduling strategies for Hadoop.

4.2 Network Transfer

For each job execution, data is transferred or exchanged
between the nodes of the Yunti cluster. The network traffic
on a node contains in-flow data and out-flow data. The
former means the data received from the other nodes, and
the latter means the data sent to the other nodes. The
network in-flow and out-flow are mainly generated in two
cases: 1) data shuffle in the reduce stage; 2) remote HDFS
access when tasks do not gain node-level data locality. Note
that the values are collected cumulatively for each day.

Figures 11(e) and 11(f) show in-flow and out-flow net-
work traffic per second during two weeks. The Y-axis
represents the network 10 speed (MB/s) for each node. The
network IO consists of input read, shuffle, and output write.
For most of the time, the in-flow and out-flow network
traffic ranges from 10MB/s to 20MB/s. Observation 10.
The network load is rather busy. With the data volume
grows and cluster scales, the network transfer will become
a potential bottleneck of the whole system. Efficient data
placement and scheduling policies for reducing network
load are needed.

5 ANKUS: E-COMMERCE WORKLOAD SYN-
THESIZATION

In a production environment, a workload generator is need-
ed to synthesize a representative workload for a particular
use. The generated workload is used to evaluate the perfor-
mance of Hadoop for a specific configuration. However, the
increased complexity and diversity of the workload impose
difficulties for the development of workload generator.

The results of the workload trace analysis in Section 3
provide significant information for synthesizing representa-
tive workloads in e-commerce data warehouses. Based on
the models derived from the trace analysis, we design a
workload generator Ankus to support flexible and config-
urable e-commerce workload synthesization.

5.1 Overview of Ankus

The functionality of Ankus relies on a workload trace. For
each job in the workload trace, it covers a lot of information
about the job, such as job submission time, map/reduce
tasks count, bytes and records read/written by each task
and allocated memory for each task. Given a workload
trace, Ankus distills the statistical distributions and models
of the trace, and employs these information to generate a
job sequence that simulates a real-world workload. Ankus
can be easily generalized to be used in other application
environments by only replacing the workload trace for
bootstrapping Ankus.

Ankus provides two mechanisms for generating work-
loads. The first one is to merely replay a sample of the
workload trace, or scale the workload intensity which
follows similar statistical distribution derived from in the
workload trace. This mechanism generates a comparable
workload that mimics real workloads. The second one is
to synthesize a groups of jobs, which follows specific
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Fig. 11: Resource utilization statistics during the two-week interval.

statistics configured by users. The second manner is often
used by Hadoop operators to synthesize diverse job types
and mixtures for performance evaluation. No matter which
mechanism is used by Ankus, the jobs generated by Ankus
are injected to JobTracker with a Poisson random process.

As the first mechanism is easy to understand, we mainly
focus on the implementation of the second mechanism.
In order to synthesize representative jobs, identifying the
job groups and find a small set of representative jobs
in the workload is requisite. Therefore, we model each
individual MapReduce job and then cluster the jobs into
several groups. The representative jobs are formed by the
cores of all job clusters.

5.2 Job Modeling

Based on the results described in Section 3, we find that
an individual MapReduce job can be modeled by many
features (dimensions). Among these features, we selected
six discriminative features for modeling each MapReduce
jobs, including the running time, the input data size, the
output data size, local I/O size, running time, map task
duration and reduce task duration. Map (reduce) duration
is defined as the sum of every map (reduce) task execution
time. For example, if a job contains two map tasks and each
task execution consumes 10 seconds, the map duration of
this job is 20 seconds. Formally, a MapReduce job is mod-
eled by a tuple as Job; = {I;,0;, LIO;, JD;, M D;, RD;},
where the meanings of these symbols are listed in the
Table 6. All values in each dimension are normalized into
a uniform range [0,1].

5.3 Job Clustering

As each job is described by a tuple of features, K-means
algorithm [19] is a good solution to determine the natural
clusters of jobs. The jobs belonging to a same cluster are
aggregated and the core of the cluster is regarded as a single
‘representative job’.

However, the job cluster number K may not be easy
to be determined. The optimal value is dependent on the

TABLE 6: Symbols and description.

Symbols | Description

Job; The i-th MapReduce job

I; The input data size of the i-th job

O; The output data size of the ¢-th job

LIO; The local read and write of i-th job

JD; The running time of the ¢-th job

MD; The sum of each map task duration time
RD; The sum of each reduce task duration time

diversity of jobs. If the workload is diverse, a higher value
for £ will be much more accurate. Otherwise, a small
value for K is enough. Motivated by the work in [20], we
employ a heuristical method for finding the optimal value
by incrementing & until the improvement of cluster quality
is below than a predefined threshold.

5.4 Job Mixture

In Ankus, the collection of the workload is described by
two features.

o Job arrival pattern, which is characterized by number
of submitted job per minute. We use a list of <Tj
,J;>to describe a job submission pattern. Each entry
of <T}, J;>represents the i-th job arrives at the time
of T;.

o Share of representative jobs. For synthesized work-
load, the share of representative jobs can be consistent
with historical workload, or be set by users.

In summary, workload generation is performed by the
following steps. First, the total number of jobs in the trace is
calculated and the job arrival entries list is derived. Then,
a heuristic K-means clustering is employed to group all
jobs and capture the representative jobs. Finally, the jobs
are mixed based on share given by users. According to
the job arrival patterns derived from the workload analysis
(Section 3.1.1), the arrival of all jobs is simulated by a Pois-
son random process. The parameter A is configurable for
users. Adjusting the parameters of jobs share and poisson
distribution allows us to tune the workload characteristics.



6 FAIR4S: JOB SCHEDULER FOR SMALL
JOBS

As presented in the observation OS5 (Section 3.2.1), small
jobs constitute the majority of the workload and most of
small jobs require instant responses. The same observation
is also valid in the Hadoop cluster of Facebook [4], which
is a good example of large-scale social media networks. We
believe that this observation is a common case. Therefore,
if the scheduler is designed biased towards small jobs,
the execution efficiency of small jobs will be improved
effectively.

6.1 Revisit of Fair Scheduler

Fair scheduler (FAIR in short) was originally designed
by Facebook and subsequently released to the Hadoop
community. FAIR is the default scheduler used in Hadoop.
The rationale of FAIR is to give every job a fair share
of slots over time. The jobs are assigned to pools, where
each pool is configured with a minimum share of slots. Idle
slots are shared among jobs and assigned to the job with
the highest slot deficit.

In the early stage, the Yunti cluster directly employed
FAIR [3] to allocate the slots because FAIR achieves high
performance and supports multi-user clusters. However,
after several months of system running, it is observed that
FAIR is not optimal for scheduling small jobs within a
miscellaneous workload. The goal of FAIR is to assure the
fairness among all jobs. FAIR always reassigns idle slots to
the pool with the highest slot deficits. However, small jobs
usually require fewer slots, leading to the slot deficits of
small jobs are lower than the other jobs. Therefore, small
jobs are more likely to suffer from long waits than the other
jobs. The users of Yunti submitting small jobs, including
application developers, data analysts and project managers
from different departments in Taobao, will complain about
the long-waits.

With new workloads which feature short and interactive
jobs are emerging, small jobs are becoming pervasive.
Many small jobs are interactive and online analysis, which
requires instant and interactive response. It is quite nec-
essary to design a job scheduler biased towards on small
jobs. To meet this goal, the source of FAIR’s weakness
needs further analysis.

The weakness of FAIR is caused by the policies of
slot allocation and re-assignment. In one aspect, setting
a minimum share of slots does contribute to maintain
fairness, but the response time of jobs are uncontrollable.
We believe that specifying a maximum share, rather that
a minimum share for each pool contributes to guarantee
the efficiency of jobs that require short response times. In
the other aspect, the job priority in FAIR only exists four
types, not differential enough for massive and diverse jobs.
In FAIR, the priority of a job is determined by job-types
(production or experimental) and job-priority (VERY_LOW,
LOW, NORMAL, HIGH, VERY_HIGH). This priority con-
figuration makes it hard to satisfy the requirements for
scheduling massive jobs in production environments.

6.2 Features of FairdS

We introduce four techniques to address the weakness
sources of FAIR and implement these techniques in Fair4S.
These techniques are described as follows.

1) Setting Slots Quota for Pools. All jobs are divided
into several pools. Each job belongs to one of these
pools. In FAIR, each group is configured with a
minimum share to guarantee that it will receive its
minimum share if the sum of the minimum shares
of all pools is lower than the slots capacity [3].
While in Fair4S, each pool is configured with a
maximum slot occupancy. All jobs belonging to an
identical pool share the slots quota, and the number
of slots used by these jobs at a time is limited to
the maximum slots occupancy of their pool. The slot
occupancy upper limit of user groups makes the slots
assignment more flexible and adjustable, and ensures
the slots occupancy isolation across different user
groups. Even if some slots are occupied by some large
jobs, the influence is only limited to the local pool
inside.

2) Setting Slot Quota for Individual Users. In Fair4S,
each user is configured with a maximum slots occu-
pance. Given a user, no matter how many jobs he/she
submits, the total number of occupied slots will not
exceed the quota. This constraint on individual user
avoids that a user submit too many jobs and these
jobs occupy too many slots.

3) Assigning Slots based on Pool Weight. In FAIR,
priority is given to the pool with the highest deficit
when idle slots are allocated. While for Fair4S, each
pool is configured with a weight. All pools which
wait for more slots form a queue of pools. Given
a pool, the occurrence times in the queue is linear
to the weight of the pool. Therefore, a pool with a
high weight will be allocated with more slots. As the
pool weight is configurable, the pool weight-based
slot assignment policy decreases small jobs’ waiting
time (for slots) effectively.

4) Extending Job Priorities. Compared with FAIR,
Fair4S introduces an extensive and quantified priority
for each job. The job priority is described by an
integral number ranged from 0 to 1000. Generally,
within a pool, a job with a higher priority can preempt
the slots used by another job with a lower priority.
An quantified job priority contributes to differentiate
the priorities of small jobs in different user-groups.

6.3 Procedure of Slots Allocation

The slots allocation is performed by two steps, which
can be described as follows:

1) The first step is to allocate slots to job pools. Each job
pool is configured with two parameters of maximum
slots quota and pool weight. In any case, the count
of slots allocated to a job pool would not exceed its
maximum slots quota. If slots requirement for one



Algorithm 1 Procedure of Fair4S algorithm.

Input:

A list of job pools, each of which contains a set of jobs
QOutput:

Results of task scheduling and slots allocation
Parameters:

P;: the i-th job pool

PWeight;: the weight of the job pool F;

PQuota;: the quota of the job pool F;

Jj: the k-th job in the job pool P

J Priorityy: the priority of job .J¢

PQueue: a queue of job pools

OSlot Numy;: the number of slots occupied by P;

/[Configuration Initialization
1: for each P; do
2:  Initializing PWeight; and PQuota;
3. for each J} in P; do
4: Initializing J Prioritys
/ISlots Allocation
5: repeat
6:  Forming PQueue based on PWeight values. The
number of occurrence for P; is linear to its weight
PWeight;
/IThe Ist step: allocating idle slots to PQueue
repeat //Round-Robbin Scheduling
for each P; in PQueue do
: if OSlotNum;<PQuota; then
10: Allocating one slot to P;
11: OSlotNum; < OSlotNum; + 1
12:  until No slot is idle or PQueue is empty
/IThe 2nd step: allocating idle slots to jobs
13:  for each P; in PQueue do

14: for each J; in P; do

15: Calculating J Prioritys

16: Sorting a job queue according to J Priority

17: repeat

18: Allocating slots to the job with the highest
J Priority

19: until No slot is idle or P; is empty

20: until PQueue is empty

job pool varies, the maximum slots quota can be
manually adjusted by Hadoop operators.

If a job pool requests more slots, the scheduler
firstly judges whether the slots occupance of the
pool will exceed the quota. If not, the pool will be
appended with the queue and wait for slot allocation.
The scheduler allocates the slots by weighted round-
robbin algorithm. Probabilistically, a pool with high
allocation weight will be more likely to be allocated
with slots.

2) The second step is to allocate slots to individual
jobs. Each job is configured with a parameter of job
priority, which is a value between 0 and 1000. The
job priority and deficit are normalized and combined

into a weight of the job. Within a job pool, idle slots
are allocated to the jobs with the highest weight.

Wi=a-NP;+3-ND, where a4+ =1

where N P; denotes the priority of the job ¢, and
ND; denotes the deficits of the job ¢. Both values
are normalized into the interval of [0,1] by dividing
the maximum values across all jobs.

To clarify the description of Fair4S, we present the pseudo-
code of Fair4S in Algorithm 1.

7 EVALUATION

In this section, we first conducted a group of experiments
to validate the representativeness of workload generated by
Ankus, and then evaluate the performance of Fair4S.

7.1 Evaluation of Ankus

To validate the representativeness of the workload gener-
ator, we need to measure the similarity between the gen-
erated workload and real-world trace. Unfortunately, there
is no existing metric for measuring the similarity of two
workloads yet. In this study, we conducted a comparison
between the generated workload and real-world trace in
terms of job arrival rate and duration time. The purpose
of comparison is to confirm the synthesized workload
generated by Ankus expresses realistic characteristics.

Figures 12(a) and 12(b) shows the comparison results
in terms of job arrival rate. To investigate these statistical
properties, we firstly generate a day-long workload using
Ankus, which contains 64,238 jobs. Ankus samples the
historical traces for every 10 minutes. All of the jobs are
submitted to a Hadoop cluster for performance testing.
Then, we use Ankus to replay all the job arrivals observed
in the trace collected from Dec. 4 to Dec. 20. As shown in
these two figures, the workload generated by Ankus does
introduce a degree of statistical variation, but it is relatively
small. That is to say, Ankus supports producing the realistic
workload with representative characteristics.

Figures 12(c) and 12(d) depict the CDF of job duration
and task duration for 10,000 jobs generated by Ankus.
The 10,000 jobs are generated based the collected trace
described in Section 2.2. We did not generate a entire
day’s workload because it is not allowed to impose too
much extra workload on the production Hadoop cluster. All
generated jobs are submitted to Yunti, which executes those
jobs as “real” jobs. Ideally, the average of duration of the
jobs and tasks are independent with the generation of jobs.
JobTracker and TaskTrackers are unaware of the source of
the jobs. Therefore, the distribution of job duration and task
duration should keep unchanged. As we expected, Figures
12(c) and 12(d) have confirmed the inference. These figures
show the small deviation of distribution statistics between
the real-world trace (the curve labeled by real) and the
generated workload (the curve label by Ankus). To quan-
titatively measure the deviation between these two curves,
we use Kolmogorov-Smirnov (K.S) test method and the
corresponding K.S values are presented in Table 7.
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Fig. 12: Characterization comparison of the real workload and the synthetic workload.

TABLE 7: The quantitative comparison results
Smirnov test.

using Kolmogorov-

CDF of distributions K S value
Job Duration (Figure 12(c)) 0.04

Map Task Duration (Figure 12(d)) 0.07
Reduce Task Duration (Figure 12(d)) | 0.04
HDFS Read Bytes (Figure 12(e)) 0.03
HDEFS Write Bytes (Figure 12(e)) 0.04
Local Read Bytes (Figure 12(f)) 0.032
Local Read Bytes (Figure 12(f)) 0.028

Figures 12(e) and 12(f) present the CDF of read/write
bytes on HDFS and local disks for the 10,000 jobs. We can
observe the is a small deviation between the real jobs and
generated jobs (Table 7). This variation can be explained as
follows: some jobs in the workload are date-related, and the
data in HDFS grows everyday. Given a job, if it is executed
repeatedly at different times, the data involved by the job
will change, thus the read/write bytes from HDFS/local
disks would change as well.

Figure 13 depicts the scalability of workload intensity
generated by Ankus. The X-axis represents the value of
job generation rate configured in Ankus, and the Y-axis
represents the workload intensity, which is measured by the
number of arrived jobs per minute. Ankus samples a set of
jobs from the collected trace and submits the jobs to the
JobTracker of Yunti with a specific rate. Meanwhile, both
the count of jobs initialized by JobTracker and the count of
jobs generated by Ankus are observed. As shown in Figure
13, the number of generated by Ankus increases linearly,
but the number of initialized by the JobTracker becomes
convergent when the JobTracker is overloaded. JobTracker
consumes a great deal of effort on job initialization and
tracking the heartbeats messages, so it is more susceptible
to become a bottleneck compared with the Hadoop clients.
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Fig. 13: Scale of Workload Intensity.

The results presented in the figure illustrated Ankus could
provide high enough scalability. Moreover, the scalability
of Ankus can be further increased by adding more clients
for submitting jobs.

7.2 Evaluation of Fair4S

In this subsection, we evaluate the scheduling performance
of FairdS. As FAIR is the default scheduler and most
commonly used scheduler of Hadoop, and FIFO achieves a
high performance in terms of batch response time [3], we
selected FIFO and FAIR as references to compare.

7.2.1 Extending Ankus with a MapReduce Simulator

Fair4S has been implemented to the Yunti since April, 2011.
Before that time, Yunti employed FAIR [3] as the schedul-
ing algorithm. To measure the improvement achieved by
Fair4S, a comprehensive performance comparison between
FairdS and FAIR is necessary. However, it is infeasible to
obtain the accurate comparison results on the production
systems®. To facilitate the performance evaluation, we ex-

2. The reason is two-fold: it is not allowed to switch the scheduler on
a production environment; the historical statistics of the Yunti using FAIR
is not appropriate for reference because the workload, cluster and data
volume have scaled up by multiple times.



tend Ankus with a component of a MapReduce simulator
which mimics a Hadoop cluster with thousands of nodes
based on a small number of physical nodes.

The input of the MapReduce simulator involves the
topology of a cluster, cluster scale, network transfer speed,
node capacities, and so on. Each node is modeled by a
set of configurable parameters related to various resources.
The output of the simulator is a log for describing how the
workload executed under a specified Hadoop configuration.

The MapReduce simulator simulates the computing n-
odes and Map/Reduce tasks, and models them by a set
of features affecting the job execution time. The map task
and reduce task are simulated by two Java objects of
SimMapTask and SimReduceTask, respectively. Both the
SimMapTask and SimReduceTask objects are driven by a
discrete-event engine. For example, to model the process of
copy input chunks to local disks from HDFS, a SimMapTask
adds an event into the event engine, and when the event gets
timeout, the event engine would inform the SimMapTask
that the input data is ready. MapReduce simulator also
provides the simulation of HDFS, which is modeled by
three parameters in Ankus: replication level, block size and
data locality strategy.

7.2.2 Evaluation of Fair4S

We conducted a group of experiments to evaluate the effec-
tiveness of Fair4S in comparison with FIFO and FAIR using
the MapReduce simulator. Different scheduling algorithms
are incorporated in the simulator component of Ankus, and
then the workload generated by Ankus are loaded to drive
the simulator.

Figure 14(a) depicts the workload execution process 15
minutes at the interval of 0 a.m. to 4 a.m. We used Ankus
to replay the workload trace collected from the Yunti.
At this interval, most of submitted jobs are large jobs,
which are executed periodically everyday. As shown in
Figure 14(a), FairdS and FIFO achieved similar workload
execution efficiency.

Figure 14(b) shows the throughput per 15 minutes for
both Fair4dS and FIFO. In this comparison, only large
jobs were generated and executed. It is observed that
performance achieved by Fair4S is comparable to the one
of FIFO.

Figure 14(c) presents the workload execution process
per one minute. The small jobs were selected from the
temporary jobs submitted on the daytime. Then, the small
jobs were synthesized and submitted to the Yunti. We
record the start time and finish time for each job, and
concluded that Fair4S achieved a remarkable improvements
for scheduling small jobs compared with FAIR.

Figure 14(d) shows the cumulative distribution of waiting
time for small jobs. Using Fair4S, over 80 percent of small
jobs wait less than 4 seconds, and the median job waiting
time is about 1.3 second. While using FAIR, only about
30 percent of small jobs wait less than 4 seconds, and the
median job waiting time is about 9 second. Therefore, the
scheduling efficiency achieved by Fair4S was improved by
a factor of 7.

8 RELATED WORK

Workload characterization studies are useful for helping
Hadoop operators identify system bottleneck and figure
out solutions for optimizing performance. Many previous
efforts have been accomplished in different areas, including
network systems [21], [22], storage systems [23], [24], Web
servers [25], [26], and HPC clusters [27]. Both network
and storage subsystems are key components for the Hadoop
system. Our trace analysis also covers workload statistics
in terms of network and storage. This paper builds on these
studies.

Several studies [28], [29], [30] have been conducted
for workload analysis in grid environments and parallel
computer systems. They proposed various methods for
analyzing and modeling workload traces. However, the job
characteristics and scheduling policies in grid are much
different from the ones in a Hadoop system [3].

Mishra et al. [31] focused on workload characteriza-
tion that includes behavior characteristics such as CPU
and memory. The Yahoo Cloud Serving Benchmark [32]
focused on characterizing the activity of database-like sys-
tems at the read/write level. Soila Kavulya er al [11]
conducted an analysis about the job characterization, such
as job patterns and failure sources, based on the Hadoop
logs from the M45 super-computing cluster. Their research
work focused on predicting job completion time and found
potential performance problems based on the historical
data.

However, these studies do not analyze many of the
workload characteristics discussed in this paper. For ex-
ample, we report not only the job statistics but also task
statistics. We also derive some direct implications on the
observations of the MapReduce workload trace, and present
resource utilization on a Hadoop cluster, which is very
helpful in facilitating Hadoop operators to improve system
performance.

Reiss et al. [33] analyzed the google cluster trace and
found several significant characteristics including: workload
heterogeneity; highly dynamic resource demand and avail-
ability; predictable resource needs and so on. Ren et al. [34]
analyzed Hadoop workloads from three different research
clusters, where the main users are from academic institu-
tions. The workload analysis is conducted in the terms of
application workload, use behavior, IO performance, and
load balance. Our research contributions, which are derived
on a commercial e-commerce website, can be regarded as
a meaningful complement to these works in [33], [34].

Chen et al. [20] analyzed and compared two production
MapReduce traces derived from Internet service companies,
in order to develop a vocabulary for describing MapReduce
workloads. The authors show that existing benchmarks
fail to reproduce synthetic workloads that express such
characteristics observed in real traces. These works are
instructive to our work. Our study uses a similar statistical
profile of the trace showing both behavior at the granularity
of jobs and tasks. Our analysis of MapReduce workloads
corroborates observations from previous studies of work-
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Fig. 14: Scheduling performance comparison among Fair4S, FAIR and FIFO.

load on the Hadoop system [35], [11].

Wolf et al. [36] designed a flexible scheduling allocation
scheme FLEX for Hadoop. Through collaboration with
the default scheduler FAIR, FLEX provides to optimize
the various scheduling metrics, such as response times,
stretch, Service Level Agreements, while ensuring the same
minimum job slot. The research of FLEX is orthogonal to
our work, and it is also applicable for collaborated with
Fair4S as an add-on module.

Although our work is close to the study presented in
[35], [11], this paper has three novel aspects. (1) The jobs
analyzed in this paper are representative and common in
a data platform for an e-commerce website. We believe
the trace is a beneficial complement of a current public
workload repository. (2) In addition to workload analysis,
we concentrate on the relation of workload analysis and
the performance optimization method, and conclude some
direct implications based on the analysis results. It is useful
for guiding Hadoop operators to optimize performance.
(3) We proposed and implemented a job scheduler called
Fair4S, to optimize the completion time of small jobs.

9 CONCLUSIONS

In this paper, we have presented the analysis of Hadoop
trace derived from a 2,000-node production Hadoop cluster
in Taobao, Inc. The trace covers the jobs execution logs
over a two-week period, which are representative and
common in data platform for an e-commerce web site. We
conduct a comprehensive analysis of the workload trace at
the granularity of jobs and tasks, respectively. Some main
observations and their direct implications are concluded.

These findings can help other researchers and engineers un-
derstand the performance and job characteristics of Hadoop
in their production environments. Based on the character-
istics we observed from the real-world traces, we designed
and implemented Ankus to synthesize representative jobs.
We proposed and implemented Fair4S, a priority-based fair
scheduler aiming to optimize the efficiency of scheduling
small jobs.
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