
iGen: A Realistic Request Generator for Cloud File Systems Benchmarking

Zujie Ren1, Biao Xu1, Weisong Shi2, Yongjian Ren1, Feng Cao3, Jiangbin Lin3 and Zheng Ye1

1School of Computer Science 2Department of Computer Science 3Pangu Team
Hangzhou Dianzi University Wayne State University Alibaba Cloud Computing Ltd.

Hangzhou, China Detroit, USA Beijing, China
{renzju,xubiao.codeyz}@

gmail.com
weisong@wayne.edu {feng.cao,jiangbin.lin}@

alibaba-inc.com

Abstract—Benchmarking is a traditional approach for sys-
tem performance evaluation and optimization. Over the past
decades, a variety of file systems, e.g., GFS, HDFS and Ceph,
have been designed and implemented, serving as the key
components in cloud infrastructures. With the mature of those
cloud file systems, the demands for performance evaluation and
comparison are also rising. However, due to the complexity and
heterogeneity of I/O workloads in cloud infrastructures, it is
still challenging to generate realistic I/O workloads. System
developers often use traditional file system benchmarks and
make inaccurate assumptions on workload generation, yielding
to misleading results.

To address this problem, we investigate the characteristics
of I/O requests in a production cloud infrastructure at Alibaba
Cloud Computing, which is one of the biggest cloud providers
in Asia. We proposed a flexible framework iGen to mimic I/O
request arrivals. One of the salient features of the iGen is
that the request arrival process is modeled by three statistics
properties, request arrival rate, inter-arrival time distribution,
and request periodicity. According to these properties, the iGen
can determine the sequence of requests and the inter-arrival
time between two subsequent requests. We use the iGen to
emulate a real workload that collected from Alibaba cloud
platform. Experimental results show that high accuracy and
flexibility of the iGen.

Keywords-cloud file systems; benchmarking; workload gen-
erator;

I. INTRODUCTION

Last decade has witnessed that cloud infrastructures gain
a rapid increase of popularity. Some well-known cloud
infrastructures, e.g., Amazon EC2 and Microsoft Azure
attract millions of users. As the storage-layer components
of cloud infrastructures, various cloud file systems have
been designed and implemented. Typical examples include
GFS (Google File System), HDFS (Hadoop Distributed File
System), Ceph [1], GlusterFS [2], and so on. Notable re-
search efforts have been devoted to improve their scalability,
reliability[3], fault-tolerance[4], etc.

As the cloud file systems mature, the demand to evalu-
ate the performance of these file systems rises. Although
hundreds of file system benchmarks have been proposed [5]
in the past decades, most of them are unsuitable for cloud
file systems because their workload characteristics differ
significantly. Previous studies consistently reported that the

I/O workloads in cloud file systems are much more hetero-
geneous and dynamic than traditional file workloads [6][7].
Though existing file system benchmarks, e.g., Postmark [8]
and SPC[9] , can provide a variety of options to generate
diverse workloads, they have trouble generating realistic I/O
workloads on cloud infrastructures, making the benchmark
results inaccurate.

To address this problem, we collected a two-week I/O
workload trace from Alibaba cloud file system, called Pangu,
which supports object storage, block storage and file storage
for a variety of Alibaba cloud services. The workload trace
is characterized in terms of multiple properties, including the
request arrival pattern, session behaviors, periodicity pattern,
request size, and so on[6]. One of key observations in [6]
is that the request arrivals do not follow a Poisson process.
Another is that the request arrival process presents multiple
periodicities. The pattern of request arrival process is po-
tentially significant but has been overlooked unfortunately
in the past. Most of workload generators simply assume the
requests arrive in a constant rate, or simply regard the request
arrivals as a Poisson process, failing to capture the realistic
arrival pattern.

Motivated by the previous observations, we perform a
more in-depth investigation on the model of request arrival,
and propose a novel framework iGen to generate realistic
request arrivals. In the iGen, the arrival process is modeled
by three statistics properties.

1) Request arrival rate. Request arrival rate reflects the
time-varying intensity of workload. It is usually de-
fined as the number of arrived requests per second. In
the iGen, the arrival rate is time-varying, rather than
constant.

2) Inter-arrival time distribution. The inter-arrival time
distribution regulates the intervals of two subsequent
requests arrival time.

3) Request periodicity. At a long-time scale, I/O requests
exhibit a clear periodicity, such as daily or weekly. I/O
workloads may contain other periods, which may be
identified using the workload’s auto-correlation [10].
Different cloud services may generate cyclic request
streams with different periods, so the periodicity should
be miscellaneous.

In this work, we have implemented iGen1 as the workload
generator module of a file system benchmark, which allows
users to specify multiple parameters of workload properties.
We address the issue of generating realistic request arrivals
commonly observed in cloud infrastructures. The main con-
tributions of this work can be summarized as follows.

1) We showed that request arrival process is a complex
stochastic process. The request arrival rates follow a
lognormal-like distribution and inter-arrival times fol-
low a Pareto-like distribution.

2) We proposed that request arrival process can be mod-
eled by three configurable properties, request arrival
rate, inter-arrival time distribution, request periodicity.

3) We implemented a flexible framework to mimic re-
alistic requests, called iGen. The iGen is designed
with high flexibility to generate a customized workload
based on a group of configurable parameters. As a case
study, we employed the iGen to generate request ar-
rivals observed in the Pangu, showing the high accuracy
of the iGen.

The rest of this paper is organized as follows. In Section
II, we briefly review some related work on big data system
benchmarks and illustrate the motivations of our work. We
describe the arrival generation model in Section III. Section
IV presents the design and implementation of the iGen. The
evaluation and validation of the iGen are shown in Section
V. We conclude this paper in Section VI.

II. RELATED WORK

The topic of workload modeling and generation has been
discussed in many previous literatures. A myriad of related
literatures have shed light on this work. In this section, we
review some related work, and illustrate the motivations of
our work.

With the advent of big data techniques, there have been
plenty of benchmarks developed to benchmark the per-
formance of various big data systems. Table I presents
an overview of the state-of-the-art big data benchmarking
efforts. These benchmarks are widely used for evaluating d-
ifferent target systems, e.g. database systems and virtualized
platforms. As the target systems of those benchmarks are
different, the workload types and arrival patterns differ with
each other.

For example, CloudBench[11] is an IaaS benchmark tool
for deploying complex applications and running applications
inside acquired VMs. It is quite useful for customers to
choose appropriate cloud providers. YCSB (Yahoo! Cloud
Serving Benchmark) [31], was proposed to compare the
performance of transactional processing systems including
Cassandra, HBase, PNUTS, and a simple sharded MySQL
implementation. YCSB supplies several workloads with d-
ifferent combinations of insert, read, update and

1iGen Project - https://github.com/renzj/iGen

scan on database tables. Pitchumani et al. [25] proposed
a YCSB-based key-value storage benchmark. In the work,
the authors modified YCSB to generate workloads based on
three three categories, including Poisson process, self-similar
process and envelope-guided process.

Shi et al. [32] developed two benchmarks with a collection
of structured queries, to compare the performance of Cas-
sandra, HBase, Hive and HadoopDB. While in the field of
MapReduce-style computing, GridMix2[13], HiBench[33]
and SWIM[14] contain some representative offline analytical
jobs and target on benchmarking MapReduce-style data ana-
lytical systems. Our work is orthogonal to these benchmarks
because we focus on evaluating the performance of file
systems in cloud infrastructures. The types of workloads and
their characteristics are totally different.

Traeger et al. [5] examined 415 file system benchmarks
from over 100 papers, such as PostMark [8] and SPC[9], the
authors found that in many cases benchmarks do not provide
adequate evaluation of file system performance. In contrast
to traditional cluster computing systems, the workload in
a cloud platform is much more heterogeneous, complex
and dynamic [7][34]. The characteristics of I/O requests in
clouds are quite different and complex. Due to the lack of
a publicly available trace, file system workload analysis in
cloud platforms has not been well studied yet.

In contrast to traditional file systems, workload charac-
terization on cloud file systems poses special challenges
for benchmarking efforts. These challenges arise from the
characteristics of cloud file systems, including (1) system
complexity, which makes it difficult to develop request pro-
cessing models; (2) workload heterogeneity and dynamicity,
which hamper efforts to identify representative workload
behavior; (3) high data volume and large cluster scale,
which make it challenging to replay the workload and
reproduce system behavior; and (4) rapid system evolution,
which requires benchmarks to accommodate changes in the
underlying systems. Without real-life empirical knowledge,
system researchers and engineers could easily make incor-
rect assumptions about their own workloads, thus yielding
inaccurate performance evaluation results.

Traditional models for generating requests include
statistics-based models and queue theory based
models[6][17]. In these models, data characteristics
like probability distribution and stochastic process are
analyzed firstly. For example, Meisner et al. [35] describe
BigHouse a simulation infrastructure for data center
systems. Bighouse uses a combination of queuing theory
and stochastic modeling to derive workload inter-arrival
and service time distributions. Juan et al. [17] investigated
the inter-arrivals of job requests in an industrial data
centers. In [17], the authors found that the majority of job
requests show a regular periodicity with log-logistic noise,
power-law-like distribution.

Despite some recent studies [7, 36, 37] that characterized

Table I
AN OVERVIEW OF BIG DATA BENCHMARKING EFFORTS.

Benchmarks Workload Types Target Systems Arrival Pattern
CloudBench[11]
CloudBurst[12] VM instances deployment and ap-

plications running
IaaS Clouds, e.g., Amazon
EC2, Emulab, Openstack

N/A

GridMix2[13]
HiBench, SWIM[14]

MapReduce jobs MapReduce-style systems Unconsidered or Poisson ar-
rival process

BigDataBench[15][16] Offline analysis, online services,
realtime analytics

Hadoop, Spark, MySQL,
NoSQL, MPI, Impala, etc.

N/A

HiBM [17] A mix of MapReduce jobs and
high-performance (or throughput)
jobs

Resource schedulers in data
centers.

Power-law-like distribution

CloudSuite[18]
DCBench[19]

Data analytics, data caching, da-
ta serving, media streaming, Web
search, Web serving

NoSQL, DBMS, Hadoop, etc. N/A

Rain[20],
CloudStone[21]

A mix of HTTP requests Web 2.0 applications N/A

COSBench[22] Object operations, Restful API
(PUT, GET, DELETE)

Object storage systems, such as
Amazon S3, Openstack Swift,
MOS

N/A

YCSB[23] YCSB++
[24]

Relational operations, record in-
sert, update, scan, read

NoSQL, key-value store Constant rate

Pitchumani et al. [25] Relational operations, records in-
sert, update, scan, read

NoSQL, key-value store Poisson, self similar or
Envelope-guide process

TPC-C TCP-W Relational operations Databases Poisson arrival process.
MimesisBench [26]
Abad et al.[27]

File meta-data operations HDFS Delayed renewal process,
clustered renewal process

Delimitrou et al.[28] Block-level operations,
random/sequential reads/writes
blocks

Block-level storage systems. Inter-arrival times follow
one of four distributions:
normal, exponential, pois-
son and gamma.

PostMark[8], SPC,
Filebench [29]
CodeMRI [30],

File and directory operations, ran-
dom/sequential reads/writes

(Distributed) File systems Poisson process or uncon-
sidered

iGen (proposed in this
paper)

File and directory operations, ran-
dom/sequential reads/writes

Cloud file systems Five alternatives: log-
normal, normal, Poisson,
etc.

the workloads on cloud storage systems, it is far from
enough to know how to mimic a realistic workload for
benchmarking cloud file systems. The lack of understanding
realistic request arrivals motivates our work in this paper.

III. REQUEST ARRIVAL PROCESS MODELS

Request arrival process is a stochastic process. The dis-
tribution of Inter-Arrival Time (IAT for short) and arrival
rate (the number of Arrived Requests Per Second, ARPS for
short) are key attributes for profiling the pattern of arrival
process. A commonly-used method for modeling request
arrivals is Poisson process. In a Poisson process, the request
arrivals are independent events, with an average rate of
λ. Meanwhile, the inter-arrival times follow an exponential
distribution.

Although many big data benchmarks generate the requests
using a Poisson process [25][14], it is not always true
in cloud environments. Our previous study on Pangu file
system shows that the ARPS follows a log-normal-like
distribution [6]. The details of the request arrival pattern

are depicted in Figure 1. Motivated by this observation, we
argue that using a Poisson process is not precise enough
to model the real request streams. In the remainder of this
section, the models for generating realistic request arrivals
will be depicted in detail.

A. The ARPS Generation Model

The distribution of ARPS reflects the fluctuation of re-
quest arrival rates. In the iGen, the ARPS is constructed by
two steps.

1) First, generate a group of arrival rate values that follow
a log-normal distribution. The parameters of mean and
standard deviation can be specified by the users. For
most users, the optimal values for the parameters should
be derived by a quantitative workload analysis of their
own I/O traces. The arrivals may be a mixture of
multiple kinds of distributions, and it is difficult to
decompose workload and figure out which the best
fitting distribution is and what the optimal values of the
corresponding parameters are. To address this problem,

 0

 5000

 10000

 15000

 20000

1413121110987654321

N
um

be
r

of
 a

rr
iv

al
 r

eq
ue

st
s

pe
r

se
co

nd

Days over two weeks

Arrival Rate

(a) Arrival patterns of requests over two weeks.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

5000 6500 8000 9500 11000 12500 14000

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Number of arrived requests per second

Poisson
Real trace

Log-normal

(b) Distribution fitting of arrival rates

Figure 1. Patterns of request arrivals observed in the Pangu file system [6].

the users are allowed to set a sample of arrival rate
values, and the iGen creates the complete group of
arrival rates by fitting the sample values.

2) Second, the periodicity attribute of workload is intro-
duced to regulate the arrival rate in a longer-time scale.
In the iGen, users are allowed to set multiple periods
for a specific workload. The multiple periods schedule
the fluctuation arrival rates over time.

The distribution and periodicity determine the stream
of request arrival events of a simulated I/O workload. At
this state, the number of arrival request for a given time
interval has been determined. However, the generation of
request arrival is not completed yet, as the intervals of two
subsequent requests (IAT) are still undetermined. Supposing
the arrival rate is 10 req/s during one second, these ten
requests within the one-second interval do not arrive with
a constant rate. Therefore, the IATs should be generated to
form the arrival patterns for every second.

B. The IAT Generation Model

If the requests arrivals are independent, they will for-
m a Poisson process and the inter-arrival times follow
an exponential distribution. However, our previous study
demonstrates that inter-arrival times fail to follow an expo-
nential distribution, but show a Pareto-like distribution. This
observation can be explained by that the request arrivals are
not independent. Therefore, in the iGen, Pareto distribution
is used to model inter-arrival times.

1) Pareto Distribution: The Pareto distribution is a kind
of heavy-tail and power-law distribution. The survival func-
tion of Pareto distribution is:

P (X > x) =

{
1 x < xt

(
xt

x
)α x >= xt

(1)

The probability function of the Pareto distribution is gov-
erned by shape parameter α and scale parameter xt. A
large-scale parameter gives the minimum value of X while

shape parameter, also called tail index, has an effect on its
skewness.

The expectation of the Pareto distribution is calculated as
follows:

E(X) =
αxt

α− 1
(2)

The Pareto distribution is common in the field of computer
systems. For instance, the file sizes followed a Pareto-like
distribution [38]. In the field of computer network, the best
fitting distribution of the IATs of network requests is the
Pareto distribution, rather than an exponential distribution.
In addition, multiple Pareto distributions with different shape
parameters, are mixed to make up all of the IATs. This
conclusion implies IATs should be modeled by multiple
probability functions with different parameter values.

2) Generating IAT with Pareto Distribution: The ARPS
and IAT are two key attributes of request arrival pattern.
For a Poisson process, it is easy to generate a group of IATs
that accord with an exponential distribution. As discussed
in Subsection III-A, the ARPS varies over time and it
is likely to follow a log-normal distribution. A realistic
workload should fit both of these properties. We use the
Pareto distribution to generate some inter- arrival times to
form a time interval. Table II lists a set of symbols used in
the following description and their meanings.

Given an arrival rate N in an interval T , the interval T
needs to be divided into N subsequent IATs. At first, we
know that

T =
N∑
i=1

Xi (3)

and let the Pareto distribution’s expectation be equal to the
average of N IATs,

E(X) =
αxt

α− 1
=

T

N
(4)

For a given α, the scale parameter can be calculated from
Equation 2 and 4, thus

xt =
T (α− 1)

Nα
(5)

Period

Controller

ARPS

Generator

IAT Generator

Process Coordinator

Client Interface

Cloud File Systems

Slave

Process

Slave

Process

Rate

Period

IAT

Data

Requests

Figure 2. The architecture of the iGen.

Then, the set of IAT values can be produced using the
parameters xt and α.

Table II
SYMBOLS AND THEIR DESCRIPTIONS USED IN THE WORK.

Symbols Descriptions
T a time interval in resolution of second
N number of request(s) arrived in T
X IAT series
xt scale parameter of Pareto distribution
E(X) expectation of Pareto distribution
α Parameter of iGen, defining shape pa-

rameter of Pareto distribution
γ Parameter of iGen, defining array of

ARPS distributions
ρ Parameter of iGen, defining array of

periods

IV. DESIGN AND IMPLEMENTATION OF THE IGEN

The iGen simulates I/O requests and submits the request
stream to target file systems. It mimics realistic I/O requests
by three statistical properties, including request arrival rate,
inter-arrival time distribution and request periodicity. Figure
2 demonstrates the architecture of the iGen in detail.

Based on our previous research findings, in cloud infras-
tructure different services have various ARPS distributions
and periods. Even for a same cloud service, the APRS distri-
bution varies over time. Therefore, to achieve high flexibility,
the iGen is designed to be easily configured with multiple
ARPS distributions and periods, which are integrated to
generate hybrid I/O workloads. The iGen contains a Client
Interface module that is responsible for invoking common
I/O operations described as follows.

• Write. Write data into an existing file.
• Read. Read data from an existing file.

• Create. Create a new file.
• Delete. Delete an existing file.
• Rename. Rename an existing file.
• CreateDirectory. Create a new directory.
• DeleteDirectory. Delete an existing directory.
• RenameDirectory. Rename an existing file.
• List. List all files of a directory.

In the iGen, the request arrivals obey an open model [39].
In an open model, new requests arrive independently of
request completions. The number of requests in the system is
indefinite at any time. Every request is arrived asynchronous-
ly and thread pool is applied to achieve this feature. Once
a request is generated, it will be put into the thread pool. If
there are some threads available, the request will be fetched
and executed. Otherwise, the request will be blocked and
kept waiting. To enhance the scalability, the iGen adopts
one-master/multiple-slave architecture. The Master Process
is responsible for generating requests following some arrival
patterns and distributing them to Slave Process, while the
Slave Process receives and triggers request submission.

The Master Process is composed by four modules, which
are described as follows.

1) Period Controller. This module regulates the periods of
ARPS. In computer, the same random seed determines
the same random number. Thus, every time Period
Controller resets the random seed, the same ARPS
series are generated. The accuracy of period depends
on efficiency and precision of clock.
It will register the alarms in the interrupt vector table
and provide resolution in millisecond. A linked list
of period values is maintained. Every time the alarm
comes, it checks the linked list whether there is a period
ending or not.

2) ARPS Generator. This component generates ARPSs.
It contains an array of threads, corresponding to pa-
rameter γ. Each thread generates one of the ARPS
distributions. Except these threads, the generator has
a queue which preserves the sum of arrival rate array.
Every thread puts ARPS into it. Serious preemption
will happen if using mutex to synchronize thread. To
improve efficiency, atomic operations like fetch add is
adopted. This component itself is producer-consumer.
It generates ARPSs and passes them to IAT Generator
to produce IATs.

3) IAT Generator. For every second, this component re-
ceives ARPS from ARPS Generator. Then, it generates
IAT using Pareto distribution.

4) Process Coordinator. To generate higher loads, multiple
slaves are set to send I/O requests conforming to the
same configuration. This component is responsible for
distributing requests generated by master to slaves. In
order to decrease frequency of sending requests in each
slave node, load balancing is applied. Its principle is,

ThreadPool 1

ThreadPool 2

ThreadPool N

IAT1 IAT2
... IATN IATN+1 ...

IATN+2

Figure 3. Coordination of the slave processes.

for N slave nodes, M time-sequential requests and their
IATs IAT1, IAT2, ..., IATM , assigning requests one by
one, circularly. The i-th slave gets i-th, i+N-th, i+2N-
th · · · requests, as shown in Figure 3. Thus, in the i-th
slave, its new IATs for requests are generated using

IATs = (
i∑

j=1

IATj ,

i+N∑
j=i+1

IATj ,

i+2N∑
j=i+N+1

IATj , ...) (6)

The interval times between requests become larger and
action of sending is less frequent. So each slave gets
enough time to schedule.

The Slave Process is responsible for receiving IATs from
master and sending requests to the target systems. Each slave
process has a timer for deciding when to transmit requests
according to the corresponding IATs. Once an IAT ends, one
request will be selected and put into one of the thread pools.

V. EVALUATION

In this section, we conducted a group of experiments to
validate the accuracy of the iGen framework. The trace used
in these experiments is same as the one in [6].

A. Periodicity
The feature of periodicity is common in various work-

loads, e.g., daily, weekly period, or even mixture of multiple
periods. Figure 4 presents the periodic behavior of ARPS in
two hours. A period with 30 seconds is pre-defined by users.
Figure 4 shows that the arrival rate has a period around 30
seconds. The method of discrete fourier transform is used
to detect the periodicity. Figure 5 depicts the amplitudes of
each discrete frequency and high power-spectrum amplitude
at 30-seconds is consistent with user configuration.

In addition, we conducted another experiment of validate
the effectiveness by configuring iGen with multiple periods.
More specifically, the periods of 30-second and 50-second
work together, while the corresponding ARPS is a log-
normal distribution with the mean value of 6.5 and the
standard deviation value of 0.8. According to the spectrum in
Figure 6, the highest amplitude represent 26-second period,
and the closest value to the expectation is 31-seconds and
52-seconds period. This small deviation is caused by the
iGen’s request scheduling operations.

Figure 4. Periodic request arrivals, with a configuration of 30-seconds
period.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 500 1000 1500 2000 2500 3000 3500

A
m

p
lit

u
d
e

Frequency Hz(1/7200s)

30s

Figure 5. The spectrum of arrivals events. The 30-second period is
configured and the highest power spectrum amplitude is located at 30-
second.

B. IAT Generation Model

The ARPS is configured to follow a log-normal distribu-
tion with mean 6.5 and standard deviation 0.8, while IAT’s
shape parameter is set to 5. Note that the IAT distribution
is not static. That is to say, the Pareto distribution’s scale
parameter is changing over time. This feature is also con-
firmed in [6]. Therefore, the probability density decreases
as its value increases, forming a long tail behavior. The

 0

 500000

 1e+06

 1.5e+06

 2e+06

 0 500 1000 1500 2000 2500 3000 3500

A
m

p
lit

u
d
e

Frequency Hz(1/7200s)

31s

52s

26s

Figure 6. The spectrum of arrivals events. Two periods of 30-second and
50-second are configured.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
o
u
n
ts

Inter-arrival times(us)

Figure 7. The shape parameter of inter-arrival time distribution is 5. The
probability density function is formed by multiple Pareto distributions with
different scale parameters.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000 6000

D
e
n
s
it
y

IOPS

Desired
Generated

Figure 8. The arrival rates follows a log-normal distribution with the
mean value of 6.5 and the standard deviation value of 0.8. The cumulative
distribution function of the generated arrival rate fits well with the desired
rates.

probability density function in Figure 7 is not smooth, but
with several fluctuations. This is caused by overlap of many
IATs following different scale parameters. There are several
waves in the range of between 0 and 100. This can be
explained by that ARPS with a log-normal distribution has
burstiness, generating a few high rates at some time.

This phenomenon is also shown in the cumulative distri-
bution function of ARPS in Figure 8. About one percent of
ARPS is higher than 5,000 which determines the significant
difference. In the plot, the generated ARPS fits well with
the desired values. Figure 8 demonstrates that the generation
model adopted by the iGen meet the requirements for the
workload simulation. Based on the observations in [6], the
arrival rates follows a log-normal distribution. Here we set
the distribution parameters with the mean value of 6.5 and
the standard deviation value of 0.8. As shown in Figure 8,
the cumulative distribution function of the generated arrival
rate fits well with the desired rates.

C. Flexibility of iGen

In the iGen, five probability distributions are provided, in-
cluding log-normal distribution, normal distribution, Poisson
distribution, uniform distribution, empirical distribution. To
enhance the flexibility, the iGen supports to import historical
workload trace and replays the trace using one of these
distributions. In addition, the iGen allows users to easily add
new probability distributions as plugins. In this experiment,

Table III
ACCURACY OF SIMULATING PROBABILITY DISTRIBUTIONS.

Distributions Parameters P val-
ue

Log-normal mean is 8.05, deviation is 2.58 0.3344
Normal mean is 5000, deviation is 2 0.9571
Poisson λ is 10000 0.5145
Uniform interval is [5000, 10000] 0.8621
Empirical trace from Pangu file system 0.3470

K-S test is used to measure the accuracy of simulating these
probability distributions. K-S test is a kind of hypothesis
testing. The parameter settings of log-normal distribution
and empirical distribution in Table III are derived from the
Pangu. While, the parameters of the other three distributions
are selected randomly. It is notable that the parameters
of distributions do not affect the result of K-S test. The
significance level P is 0.05. The results listed in Table
III show that the simulation of each distribution is passed
using K-S test, which proves the accuracy of distribution
simulation.

VI. CONCLUSION

In this paper, we developed a framework iGen which mod-
el the requests with three statistics properties, request arrival
rate, inter-arrival time distribution and request periodicity.
We use dynamic Pareto distribution functions to generate
IAT. We evaluated the efficiency and effectiveness of. In
addition, we evaluated the characteristics of I/O requests the
iGen generated, which is consistent with our expectations.
We believe the iGen is helpful to deploy a realistic file
system benchmarking for cloud infrastructures.

ACKNOWLEDGMENT

This work was partially completed during Biao Xu’s
internship at Alibaba. We would like to thank Pangu team
at Alibaba. Zujie Ren is supported by NSF of China (No.
61300033). Weisong Shi is in part supported by the In-
troduction of Innovative R&D team program of Guang-
dong Province (No. 201001D0104726115) and Hangzhou
Dianzi University. Zheng Ye is supported by NSF of China
(No.61300117).

REFERENCES

[1] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed
file system,” in OSDI, 2006, pp. 307–320.

[2] Glusterfs, http://www.gluster.org/.

[3] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A
scalable cloud file system with efficient integrity checks,” in
Proceedings of the 28th Annual Computer Security Applica-
tions Conference. ACM, 2012, pp. 229–238.

[4] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and
E. Baldeschwieler, “Apache hadoop YARN: Yet another re-
source negotiator,” in SoCC. ACM, 2013.

[5] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A nine
year study of file system and storage benchmarking,” ACM
Transactions on Storage (TOS), vol. 4, no. 2, p. 5, 2008.

[6] Z. Ren, W. Shi, and J. Wan, “Towards realistic benchmarking
for cloud file systems: Early experiences,” in IISWC. IEEE,
2014, pp. 88–98.

[7] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale:
Google trace analysis,” in SoCC, 2012, p. 7.

[8] J. Katcher, “Postmark: A new file system benchmark,” Tech-
nical Report TR3022, Network Appliance, 1997. www. ne-
tapp. com/tech library/3022. html, Tech. Rep., 1997.

[9] SPC, http://www.storageperformance.org/home/.
[10] D. G. Feitelson, Workload modeling for computer systems

performance evaluation. Cambridge University Press, 2015.
[11] M. Silva, M. R. Hines, D. Gallo, Q. Liu, K. D. Ryu, and

D. Da Silva, “Cloudbench: experiment automation for cloud
environments,” in IC2E, 2013, pp. 302–311.

[12] M. C. Schatz, “Cloudburst: highly sensitive read mapping
with mapreduce,” Bioinformatics, vol. 25, no. 11, pp. 1363–
1369, 2009.

[13] GridMix2, https://hadoop.apache.org/docs/r1.2.1/gridmix.
html.

[14] SWIM Project, https://github.com/SWIMProjectUCB/SWIM/
wiki.

[15] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,
Z. Jia, Y. Shi, S. Zhang et al., “Bigdatabench: A big data
benchmark suite from internet services,” in HPCA. IEEE,
2014, pp. 488–499.

[16] R. Han, S. Zhan, C. Shao, J. Wang, J. Xu, L. K. John,
L. Wang, and J. Zhan, “BigDataBench-MT: A Benchmark
Tool for Generating Realistic Mixed Data Center Workloads,”
arXiv preprint arXiv:1504.02205, 2015.

[17] D.-C. Juan, L. Li, H.-K. Peng, D. Marculescu, and C. Falout-
sos, “Beyond poisson: modeling inter-arrival time of requests
in a datacenter,” in Advances in knowledge discovery and data
mining. Springer, 2014, pp. 198–209.

[18] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: a study of emerging scale-out
workloads on modern hardware,” in ACM SIGPLAN Notices,
vol. 47, no. 4. ACM, 2012, pp. 37–48.

[19] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo, “Charac-
terizing data analysis workloads in data centers,” in IISWC.
IEEE, 2013, pp. 66–76.

[20] Rain Project, https://github.com/jacksonicson/rain.
[21] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,

H. Wong, A. Klepchukov, S. Patil, A. Fox, and D. Patterson,
“Cloudstone: Multi-platform, multi-language benchmark and
measurement tools for web 2.0,” in Proc. of CCA, vol. 8,
2008.

[22] Q. Zheng, H. Chen, Y. Wang, J. Duan, and Z. Huang, “Cos-
bench: A benchmark tool for cloud object storage services,”
in CLOUD. IEEE, 2012, pp. 998–999.

[23] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in ACM Symposium on Cloud computing. ACM, 2010, pp.
143–154.

[24] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López,
G. Gibson, A. Fuchs, and B. Rinaldi, “YCSB++: benchmark-
ing and performance debugging advanced features in scalable
table stores,” in SOCC. ACM, 2011, p. 9.

[25] R. Pitchumani, S. Frank, and E. L. Miller, “Realistic request
arrival generation in storage benchmarks,” in Mass Storage
Systems and Technologies (MSST), 2015 31st Symposium on.
IEEE, 2015, pp. 1–10.

[26] C. L. Abad, “Big data storage workload characterization,
modeling and synthetic generation,” Ph.D. dissertation, Uni-
versity of Illinois at Urbana-Champaign, 2014.

[27] C. L. Abad, M. Yuan, C. X. Cai, Y. Lu, N. Roberts, and
R. H. Campbell, “Generating request streams on Big Data
using clustered renewal processes,” Performance Evaluation,
vol. 70, no. 10, pp. 704–719, 2013.

[28] C. Delimitrou, S. Sankar, K. Vaid, and C. Kozyrakis, “Ac-
curate modeling and generation of storage i/o for datacenter
workloads,” EXERT, 2011.

[29] R. McDougall, J. Crase, and S. Debnath, “Filebench: File
system microbenchmarks,” 2006.

[30] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Towards realistic file-system benchmarks with
codemri,” ACM SIGMETRICS Performance Evaluation Re-
view, vol. 36, no. 2, pp. 52–57, 2008.

[31] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in SoCC, 2010, pp. 143–154.

[32] Y. Shi, X. Meng, J. Zhao, X. Hu, B. Liu, and H. Wang,
“Benchmarking cloud-based data management systems,” in
CloudDB. ACM, 2010, pp. 47–54.

[33] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The Hi-
Bench benchmark suite: Characterization of the MapReduce-
based data analysis,” in ICDEW. IEEE, 2010, pp. 41–51.

[34] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a
warehouse-scale computer,” in ISCA. IEEE, 2015, pp. 158–
169.

[35] D. Meisner, J. Wu, and T. F. Wenisch, “BigHouse: A simula-
tion infrastructure for data center systems,” in ISPASS, 2012,
pp. 35–45.

[36] C. Abad, N. Roberts, Y. Lu, and R. Campbell, “A storage-
centric analysis of mapreduce workloads: File popularity,
temporal locality and arrival patterns,” in IISWC, 2012, pp.
100–109.

[37] R. Gracia-Tinedo, D. Harnik, D. Naor, D. Sotnikov, S. Tole-
do, and A. Zuck, “SDGen: mimicking datasets for content
generation in storage benchmarks,” in FAST, 2015, pp. 317–
330.

[38] J. R. Douceur and W. J. Bolosky, “A large-scale study
of file-system contents,” ACM SIGMETRICS Performance
Evaluation Review, vol. 27, no. 1, pp. 59–70, 1999.

[39] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open
versus closed: A cautionary tale,” in NSDI, 2006, pp. 18–18.

