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Abstract

A wireless sensor network is a kind of data-centric,
application-specific and recourse constraint distributed sys-
tem. In these battery powered systems, energy efficiency is
one of the most important system design goals. In this pa-
per, energy efficiency is examined from the perspective of
data consistency, which not only includes temporal consis-
tency and value consistency, but also considers the applica-
tion specific requirements of the data and data dynamics in
the data field. We first formally model the energy-efficiency
problem in the scenario of a passive monitoring application
with the goal of delivering minimum number of messages
under the constraint of data consistency. Then, we give the
formal definition of the data consistency in wireless sensor
networks. To achieve this goal, we propose a data collec-
tion protocol named Alep, which adapts the data sampling
rate to the data dynamics in the data field and keeps lazy
when the data consistency is maintained. From the results
of a comprehensive simulation based on PowerTOSSIM, we
find that the proposed approach indeed reduces the number
of delivered messages by more than 20%, extends the life-
time of the wireless sensor network by more than 50%, and
improves the accuracy of the sampled data. Furthermore,
we show that the tradeoff between the energy efficiency and
data consistency should be made based on the specific re-
quirements of different applications.

1 Introduction

With the development of technologies in micro-sensor
and wireless communication, wireless sensor networks
(WSN) have become a very hot research field in last five
years [4]. Micro sensors such as Motes from Intel and
Crossbow [2] are developed to make WSN applications pos-
sible; TinyOS [7, 9] is designed to provide system support
for operating sensors; and lots of efficient protocols are pro-
posed to make the sensor system workable. Thus, Appli-
cations such as habitat monitoring [25], environment sam-
pling [1] and structure monitoring [27], have been launched,
showing the promise of wide applications of WSN.

Because of the special characteristics of WSN such as
limited power supply, restricted computing and storage ca-
pability, previous proposed protocols in WSN are mainly
focus on designing an energy efficient sensor system. Lots
of work has been done to extend the lifetime of WSN,
including energy-efficient routing protocols [20], energy-
efficient MAC protocols [28], and energy efficient data
aggregation [11] and clustering [29]. These approaches
achieve energy efficiency by taking energy-efficient paths
or increasing the sleep time of sensors. Several recent
work from database filed tries to achieve energy-efficient
by adapting the sample rate [8, 11, 13] and filtering unnec-
essary sampled data [15, 23] to reduce the total data traffic;
however, a model to measure the quality of the collected
data is missed in their work. As a matter of fact, in data-
centric distributed systems such as WSN, we argue that a
model for the quality of the collected data such as a data
consistency model is essential in WSN applications. In this
paper, we first try to model the data consistency, and then
examine the effects of data consistency on energy efficiency
in data collection in the WSN.

As we argued in this paper, data consistency, includ-
ing temporal consistency and value consistency, is consid-
ered as the integration of two factors, specific application
requirements to the sampled data and the feature of data
dynamics in the sensor field. First of all, most WSN sys-
tems are application-specific systems. Thus, different ap-
plications may have totally different requirements of data
consistency. Moreover, the temporal and spatial data dy-
namics in various applications also affect the data consis-
tency. Having known that the major goal of the WSN is
to collect consistent data and noticing that energy is mostly
consumed in the data transmission and idle listening [12],
we intend to save energy by reducing the number of deliv-
ered messages. Thus, we first model the energy efficient
data collection problem with the goal of delivering the min-
imum number of messages under the constraints of the data
consistency. Then, an adaptive, lazy, energy-efficient data
collection protocol for WSN named Alep is designed to re-
duce the number of messages. The basic idea of our pro-
tocol is three-fold: (1) adapting the data sampling rate of



each sensor to the data dynamics in the data field based on
a reinforce learning strategy; (2) reducing the number of
total transmitted messages by dropping the data when data
consistency is maintained; (3) reducing the number of total
transmitted messages by aggregating and delaying the data
reporting as much as possible.

The contributions of this paper are listed as three aspects.
First, consistency requirements and data dynamics and their
relation with energy consumption of WSN applications are
analyzed. A formal model for data consistency in WSN is
proposed. To our knowledge, we are the first to consider
the formal model for data consistency in WSN. Second, an
adaptive lazy protocol is proposed to reduce the number of
delivered messages and save energy. Finally, a compre-
hensive simulation is designed and implemented based on
PowerTOSSIM [24] to validate the effectiveness and effi-
ciency of the proposed protocol by considering both non-
aggregation and aggregation cases.

The rest of this paper is organized as follows. We first
analyze data consistency requirements from specific appli-
cations and the feature of data dynamics in Section 2. Sec-
tion 3 depicts the scenario of a passive monitoring applica-
tion and the approach to collect data. In Section 4 we for-
mally model the data collecting problem and presents the
formal definition for data consistency and data dynamics.
An adaptive lazy energy-efficient protocol for data collec-
tion is described in Section 5. A comprehensive perfor-
mance evaluation for the proposed protocol is reported in
Section 6. Finally, related work and conclusion are listed in
Section 7 and Section 8 respectively.

2 Consistency Requirements and Data Dy-
namics

WSNs are mostly application-specific systems that are
widely used in various scenarios, and different applications
have different requirements to the data consistency. Be-
sides, WSNs are also data-centric systems, so that data con-
sistency is closely related with data dynamics in the data
field. In this section, we analyze different data consistency
requirements from the applications as well as the feature of
data dynamics.

Basically, the data consistency requirements in WSN
consist of two aspects: temporal consistency which means
that the data should be delivered to sink before it is expected
and value consistency which requires that the collected data
should be accurate. Some systems pay more attention to the
temporal consistency and others care more about the value
consistency. For example, in a patient monitoring system,
emergency conditions of a patient should be reported to the
control panel or caregivers in a limited time. Otherwise,
the patient may be in a dangerous condition. Thus, most
systems that need quick response or have high real-time re-
quirements usually have high requirements on the temporal

consistency. Other systems may have no strict time require-
ments on the collected data. For instance, a system that
is counting the number of passed vehicles in one area may
only need the data to be reported every long period, e.g.,
twice every day. In this case, data aggregation is more pos-
sible because some aggregation functions need to wait until
sufficient data are available. However, these kinds of sys-
tems may have high requirements on the accuracy of the
collected data, e.g., recording totally 80 and 90 vehicles
may differ a lot. Thus in WSN system design, temporal
consistency and value consistency should both be adjusted
carefully in terms of energy-efficiency and application re-
quirements.

The data consistency should also be integrated with the
feature of data dynamics in the sensor field. In this pa-
per, data dynamics means the trend and frequency of data
changing. Usually, the data dynamics comes from two di-
mensions, temporal data dynamics and spatial data dynam-
ics. In the temporal dimension, data changing frequency
varies at different time periods. Figure ?? (a) shows the
data changing in terms of the time. In the figure, the data
changes very fast before time t1 and between time t2 and
t3, while it keeps almost stable between time t1 and time t2.
Thus, if we keep the constant data sampling rate, the differ-
ent data consistency will get during different periods with
various data dynamics. On the other hand, from the spa-
tial dimension, the data dynamics differs from area to area.
An example of data changing differing spatially is shown in
Figure ?? (b). In the figure, the data changes quickly in the
right part of the sensor field and slowly in the left part. If
we use the same data sampling rate in different locations,
we will get different data accuracy, i.e., the collected data
may be accurate in the area with low data dynamics, but not
accurate for the area with high data dynamics. Furthermore,
the temporal data dynamics and spatial data dynamics effect
the data consistency at the same time. Thus to collect con-
sistent data, the data sampling rate should be adapted to the
feature of data dynamics from time to time and from area
to area. For example, it should sample more data when the
data dynamics is high and in the area with high data dynam-
ics, while sample less data when data dynamics is low and
in the area with low data dynamics.

Having known that data consistency should take consid-
eration both specific application requirements to data and
the feature of data dynamics, next, we explore the effect of
data consistency in the data collection in WSN.

3 A Typical Application Scenario

The applications in WSN can be classified to three ma-
jor types, including passive monitoring applications, active
query applications, and event-driven applications. In these
applications, sampled data form a data stream and are de-
livered from the source to the sink. Furthermore, these dif-
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Figure 1. Data dynamics with the time.

Figure 2. Data dynamics in different
location.

ferent applications have different consistency requirements
and data dynamics. For example, passive monitoring ap-
plications usually collect a large number of data but with
looser real-time requirement, furthermore, they usually re-
quire a longer system lifetime, while event-driven applica-
tions often have higher requirements on the temporal con-
sistency. In this paper, the consistency model and the pro-
tocol to save energy and explore the effect of data consis-
tency to the energy efficiency in WSN can be applied in
all applications. We choose the passive monitoring appli-
cation as a scenario to demonstrate the importance of data
consistency and the performance of out protocol because
it collects largest number of data and is easier to be simu-
lated based on simulators like PowerTOSSIM [9, 24]. Also,
this type of applications are the most successfully deployed
WSN applications.

In our passive monitoring application, we assume that
after sensors are deployed in the sensor field, they are self-
organized into a load balanced tree where each sensor has
three children as shown in Figure 3. We also assume the
ideal case of a load-balanced tree; however, in a real WSN
this may not be the case. But this does not hurt our analysis
at all. In the tree, the sink acts as the root of the tree. The
leaf nodes are responsible for periodically sampling value of
monitoring parameters, while internal nodes are responsi-
ble for periodically sampling interested parameters, aggre-

Figure 3. A tree-structured sensor net-
work.

gating the data from children and reporting the data to the
parent. We assume there is a time synchronization scheme
to synchronize all sensors. Each sensor follows a specific
wakeup/sleep schedule and serves its children in a TDMA
way, i.e., dividing the time slot to several pieces as shown
in Figure 4. At the first several periods of time, it gets the
data from its children one by one; then it senses the data
by itself, and finally transmits the data to its parent. After
that the sensor goes to sleep until the next time it wakes up.
Thus, the readings at each sensor forming a continuous data
steam are transferred to the sink hop by hop.

listen to
child 1 ...

listen to
child 2

listen to
child n

sensor
data

report to
parent

Figure 4. TDMA schedule.

We choose a tree-structure to build our WSN because it
is widely used in WSN applications and has the following
advantages. First, it is easy to design a TDMA schedule for
tree-based structured WSN. Second, each sensor can easily
know its distance, the number of hops, to the sink, which is
equal to the depth of the sensor in the tree, thus it is easy to
estimate the time bound to deliver a message from current
node to the sink. Third, hierarchical structures like tree are
scalable to be applied in large scale application. However,
our protocols and models are not limited to the application
of tree-based structure. They can be applied in various ap-
plications with different data collecting approaches.

4 Formal Consistency Models for WSN

Our goal of this paper is to examine the effect of data
consistency to the data operations in WSN. We argue that
energy can be saved by considering the data consistency
in WSN. Noting that most energy is consumed in message
transmission and idle listening [12], we want to save en-
ergy by reducing the number of delivered messages, which
can not only save energy from sending and receiving mes-
sages but also increase possible sleeping time. By consider-



ing data consistency, we can estimate some data rather than
get all the data from the data field to reduce the number of
delivered messages. In this section, we first model the en-
ergy efficiency data collection problem by considering data
consistency, then we give the formal models for data con-
sistency and data dynamics.

4.1 Problem Definition and System Level Data
Consistency

We model the energy-efficient data collecting problem
as the problem with the goal of reducing the total delivered
messages meanwhile keeping the data consistency. So the
problem can be modelled as the following,

obj. min
∑n

i=1 mi −−−−−−−−−−−−− (1)
s.t. T (rijk)− t(rijk) ≥ 0,−−−−−−−− (C1)∑n

i=1

∑nm
j=1

∑dpm
k=1 (rijk − eijk)2 ≤ C −−(C2)

where the goal of the model is to minimize the number of
delivered messages; the first condition, C1, implies the tem-
poral consistency, i.e., the message should be delivered to
the sink before it is expected, and the second condition, C2,
shows the value consistency, i.e., the maximum variance of
the collected data should not exceed the upbound of the ap-
plication consistency requirements to the data as denoted as
C, which is specified by applications. n is the total number
of sensors; nm is the number of messages sampled at each
sensor and dpm is the number of data in each message. mi

is the number of messages delivered at node i; rijk and eijk

are the real and estimated value of the kth reading in the
jth message at node i accordingly. T (rijk) is the expected
deadline for reading rijk while t(rijk) is the time the read-
ing arrives at the sink.

Here the energy efficient data collection problem is mod-
eled in a centralized way, i.e, the data consistency is mea-
sured centrally at the sink at system level; however, in
WSN, a totally distributed environment, the data transmis-
sion decision is made locally at each sensor, so it is better
to achieve the global goal locally with local goal and local
constraints on data consistency. In the following subsection,
we model the problem at individual sensor level.

4.2 Model at Individual Sensors
In the above subsection, we model the energy efficiency

data collection problem in a central way, however, due to the
inborn distributed feature of WSN, we convert the system
level model for problem to the model at individual sensor
level, i.e., each sensor intends to reduce the number of de-
livered messages, and keeps the requirements of data fresh-
ness and value accuracy. So the problem model for each
individual sensor can be,

obj. minmi −−−−−−−−−−−−− (2)
s.t. T (rijk)− t(rijk) ≥ t(is),−−−−−(C3)∑nm

j=1

∑dpm
k=1 (rjk − ejk)2 ≤ Ci −−− (C4)

where the goal is to minimize the number of delivered mes-
sages at each sensor; the first condition implies the time con-
sistency, and the second condition shows the value consis-
tency, Ci is an application-specific consistency threshold at
sensor level. mi is the total number of the messages deliv-
ered by one sensor; t(is) is the upbound of the estimated
time needed to deliver the message from node i to the sink;
rjk and ejk are the real and estimated value of kth read-
ing in the jth message separately. Next, we show that the
problem modeled at sensor level is a subset of the problem
modeled in system level.

Theorem 1 Solutions for the problem defined in the sen-
sor level model are solutions of the problem defined in the
system level model.

Proof. First, we show that if the objective of the sen-
sor level model is minimized, the objective of the system
level model is also minimized. Assuming Si is the result
for individual model, thus, Si = minmi. Assume S is
the result for the system model, S = min

∑n
i=1 mi =∑n

i=1 min(mi) =
∑n

i=1 Si. Thus, we can see that the sys-
tem objective is the sum of the individual objectives. If the
individual objective is achieved, the system objective can be
achieved.

Second, we check two conditions in both models. We
show that if the conditions hold in the sensor level model,
they hold in the system level model as well. For the tempo-
ral consistency constraint, we can see that in the sensor level
model the temporal consistency constraints are expressed as
T (rijk)− t(rijk) ≥ t(is). If we let i = s in C3, we can see
that T (rijk)− t(rijk) ≥ t(ss), which is exactly C1, where
t(ss) = 0, so if C3 holds, C1 holds.

For the value consistency constraint, we can show that
if we select small enough value of Ci for each sensor,
we can guarantee that if C4 holds, C2 holds. In C2,∑n

i=1

∑nm
j=1

∑dpm
k=1 (rijk − eijk)2 ≤

∑n
i=1 Ci. Here, if we

can have
∑n

i=1 Ci ≤ C holds and C4 also holds, C2 must
hold. The easiest way to choose each Ci is to make Ci ≤ C

n ,
where n is the number of sensors. Thus if we choose suffi-
cient small value for each Ci in sensor level model, we can
guarantee to satisfy the second condition in the system level
model.

From above analysis, we can find that the global opti-
mization problem can be converted to a local optimization
problem. Now our aim is to minimize the number of de-
livered messages and to satisfy the data consistency con-
straints at each sensor. As a matter of fact, consistency re-
quirements should be refined to the sensing data level in a
real WSN system, as shown in next subsection.

4.3 Data Consistency Model for Data Items with-
out Aggregation

In the previous model, we specify the data consistency
requirement of each sensor. However, in a multimodality



application, one sensor may deliver multiple messages, e.g.,
a hybrid sensor is capable of sensing multimodality data,
such as temperature, light, pressure, and so on. We argue
that multimodality is a common case, and not an abnormal
for future WSN applications. Thus, even one delivered mes-
sage may contain several pieces of sensing data. However,
these data may have different requirements on data consis-
tency; furthermore, the data aggregation functions usually
distinguish and operate only on the same type of sensing
data. Thus, data consistency constraints at each individual
sensor should be refined to the level of each piece of sens-
ing data. Here, we formally model the data consistency for
each piece of data, which is defined as follows:

Consist(p)di = Acc(p)di&OnTm(p)di

where Acc(p)di specifies the value consistency of the dith

data of monitoring parameter p, and OnTm(p)di denotes
the timeliness property of that data. This model means that
the data is consistent if and only if the it maintains value
consistency and temporal consistency. The models for both
consistency are listed as follows.

Acc(p)di =
{

1 |EV (p)di − V (p)di| ≤ C(p)s−bnd

0 otherwise

where EV (p)di and V (p)di are the estimated value and real
value of the dith sensing data for p, and C(p)s−bnd is the
value consistency bound for p.

OnTm(p)di =
{

1 Tdue(p)di − Ts(p)di ≤ ET (p)di

0 otherwise

where, Ts(p)di is the time that the message will be delivered
and Tdue(p)di is the time when the sink expected to receive
the data; and ET (p)di is the estimated time to deliver the
message from current sensor to the sink.

Similar to the proof in Section 4.2, we can easily prove
that if we can guarantee the consistency at each sensing
data, we can guarantee the consistency at each sensor and
further the consistency at the whole WSN. For example, if
we make C(p)s−bnd ≤ Ci

nm∗dpm , where nm ∗ dpm is the
total number of sensing data sent at sensor i, the value con-
sistency requirement at sensor i will be satisfied.

4.4 Data Consistency Model for Data Items with
Aggregation

Noting that data aggregation is a common way in WSN
to reduce the number of delivered messages, having consis-
tency model for single data, we also need to define a consis-
tency model for aggregated data. Similar to the consistency
model for a single data, the consistency model for aggre-
gated data is also application-specific and related with dif-
ferent parameters. The difference of two consistency mod-
els for single data and aggregated data is that there is an

aggregated function operating on a set of data in the case of
aggregation. So the data consistency model for aggregated
data is defined as follows:

Consist(p)di = Acc(p)di&OnTm(p)di

Acc(p)di =
{

1 |f(p, EDdi)− f(p, Ddi)| ≤ C(p)a−bnd

0 otherwise

OnTm(p)di =
{

1 Tdue(f(p, Ddi))− Ts(f(p, Ddi)) ≤ ET (f(p, Ddi))
0 otherwise

where f is the aggregation function such as average,
sum, count, and so on; p is the specific parameter; Ddi and
EDdi are the real and estimated value for the dith data set
separately; f(p, Ddi) and f(p, EDdi) are the real and esti-
mated aggregated value for the dith data set separately; and
C(p)a−bnd is the value consistency bound for parameter p.
Tdue, Ts and ET have the same meaning as that of in the
model for single data.

4.5 Model for Data Dynamics
Data consistency reflects the value difference between

the estimated data and the real data and the staleness of the
data. From the view of accuracy, we envision that the data
accuracy is closely related with the data sampling rate. For
a series of n sensing data, if we get every piece of data,
the accuracy is the best by using reading values as estima-
tion values. If we get readings in a half frequency, the ac-
curacy will decrease since we have to estimate half of the
data. On the other hand, the energy is saved from sampling
and reporting less data. Thus data sampling rate should be
decided by making tradeoff between the data accuracy and
energy efficiency. In this section, we model the behavior of
data dynamics.

To describe data dynamics in the monitoring field, we de-
fine a number of windows to observe the data readings. Two
parameters, winSize and winNum are defined to model
the dynamics of data. winSize denotes the number of read-
ings in one window, e.g., if the winSize is seven, then in
one monitoring window, the sensor will obtain seven read-
ings, and winNum specifies the number of windows in one
observation, e.g., if winNum is four, in one observation
there will be four windows. Thus the total number of read-
ings in one observation is Numrd = winSize ∗winNum.
Since data dynamics reflects the frequency of the data
changing, so we first define the frequency of the data chang-
ing as the number of data changing in one observation:

Numchg = {Cnt(i)‖ri+1 − ri| > B&i ∈ [0 : Numrd]}

where, Cnt(i) is the number of is satisfying the condi-
tions; ri and ri+1 is the ith and i + 1th reading separately.
And B = C(p)bnd is the accuracy bound for this parame-
ter. Based on this definition, we define the data dynamics



(DY N ) as the average number of changing in one monitor-
ing window.

DY N =
Numchg

Numrd
∗ winSize

From above definition, we can find that data dynam-
ics is defined based on time period, i.e., inside the win-
dow of observation. By adjusting the value of winSize
and winNum, we can get the data dynamics with various
sensitivity. For instance, when we set winNum small, the
value of DY N will be calculated with high frequency, i.e.,
it can be very acute to the data changing. While the value
of winSize controls the range of the DY N , e.g., if we set
winSize to two, data dynamics can be expressed as above
one and below one; however, if we set the value of winSize
to four, data dynamics can have four levels, below one, one
to two, two to three, and above three. Based on data dynam-
ics, it is possible for users to choose suitable data sampling
rate to accurately collect data in an energy efficient way,
which will be explained in detail in Section 5.

In our design, both concepts of data consistency and data
dynamics are data-centric and application-specific. First,
both of them are directly related with the value and stal-
eness of sensor reading. Second, the applications can
choose suitable data consistency model to meet their spe-
cific data consistency requirements by setting specific con-
sistency bounds and choose different values for winSize
and winNum to estimate the data dynamics. Furthermore,
our models to calculate the data consistency and data dy-
namics are full decentralized, i.e., data dynamics and sam-
pling rate is calculated at each sensor, thus it is easy to be
applied in WSN.

In our models, we use the number of delivered messages
to replace the energy consumption in WSN because we be-
lieve most energy is consumed in the message transmission
and idle listening, which is mostly reflected in the number
of the delivered messages. We also simplify our models in
calculating the number of delivered message without con-
sidering retransmission; however, we believe that the model
can be easily extended to a version of considering retrans-
mission by assuming a packet lossy rate. In the next section,
we give details of the protocol for data collection.

5 ALEP: An Adaptive, Lazy, Energy-efficient
Protocol

In this paper, we intend to save energy by estimating the
value of the sensing data so that to reduce the number of de-
livered messages. Note that the estimated data should sat-
isfy the consistency requirements of applications. Having
the models for the energy efficient data collection problem
definition, data consistency, and data dynamics, we are now
in a position to design a new protocol to reduce the number
of delivered messages for data collection. In this section,

we will first introduce the rationale of our design, then give
the details of the protocol.

5.1 Rationale
As argued in the previous sections, when the data sam-

pling rate is low, we need to estimate more data on the sink
side. Thus, the sampling rate affect the data accuracy sig-
nificantly, because the estimated values may not be accurate
enough. There are two extremes between data accuracy and
energy-efficiency. For energy-efficiency purposes, we can
only gather and deliver very small amount of data. Sub-
sequently, the gathered data cannot satisfy the consistency
requirements of the application. On the other hand, if we
always keep high sampling rate and deliver a lot of mes-
sages to get very accurate data, sensors will run out of en-
ergy very quickly. Moreover, considering the limited stor-
age and bandwidth of sensor motes, the data may be over
sampled, i.e., the volume of the sampled data exceeds the
available resource so that sensors have to drop some impor-
tant data which ruin the data consistency. Thus, we should
make a tradeoff between the energy consumption and the
data accuracy as well as find a suitable sampling rate. From
our observation, we find that the data dynamics varies from
time to time and area to area. Furthermore, we also find that
it is easier to get accurate estimation when the data dynam-
ics is low, however it is difficult to get accurate estimation
when the data dynamics is high. Thus, within the budget of
the available resource, the sampling rate should adapt to the
data dynamics in both temporal and spatial ways. When the
data dynamics is high, the sampling rate should be raised to
improve the data accuracy, otherwise, it should be decreased
to reduce the number of delivered energy.

Except adapting the data sampling rate to data dynamics,
we can improve the techniques to estimate the next data, so
the number of delivered messages can be dramatically re-
duced using estimated data to replace the sensing data and
high data accuracy is kept. Besides, as mentioned in lit-
erature [12], sending a message with long length is more
energy efficient than sending several messages with short
length. Thus, we intend to integrate multiple short mes-
sages into one big message.

In summary, our proposed Alep protocol consists of three
components, adapting the sampling rate based on the data
dynamics and resource availability, keeping lazy in trans-
mission based on consistency-guaranteed estimations, and
aggregating and using long length packet. These methods
are described in detail in the following subsections.

5.2 Adapting the Sample Rate
We adapt the sampling rate based on the model for data

dynamics defined in previous sections. The process of
adapting the sampling rate is a process of reinforce learn-
ing based on the data reading. In the model, data dynamics
reflects the average number of changes in one monitoring



window. Thus based on the value of DY N , we can define
the adaption of the sampling rate as

Rsmp =


dDY N−Avechg

Dfbnd
e ∗Rcr, DY N > Avechg

Avechg−DY N
Dfbnd

∗Rcr, DY N ≤ Avechg

where, Rsmp is the adapted sampling rate; Rcr is the cur-
rent sampling rate. Avechg is the normal average changes
happen in one window size; and Dfbnd bounds maximum
difference between the observed value of data dynamics and
the normal average changes, i.e., if DY N is larger than
Avechg and the difference exceeds the bound, the sampling
rate should be increased; when DY N is much smaller than
Avechg , the sample rate should be decreased. Different
applications could define their specific up-bound and low-
bound of the suitable sampling rate. However, these bounds
cannot exceed the maximum bound and minimum bound.
Here we define the maximum bound of the sampling rate
as the maximum bandwidth of the sensor and the minimum
bound of the sampling rate as the smallest sampling rate that
satisfies the Nyquist-Shannon sampling theorem [14]. We
argue that the data sampled using the sampling rate between
the maximum and minimum sampling bounds are meaning-
ful and will not cause the problem of over sampling.

Based on this formula, the sampling rate learns from the
previous data dynamics, and uses the most recent data dy-
namics to estimate the nearest future data dynamics. We be-
lieve that in most cases the data dynamics will not change
dramatically. The data history is limited by the number
of windows and the window size in one observation. By
adjusting the length of history based on the window size
and the number of windows, we can adjust the frequency of
sample rate changing and the acuteness of the changing of
the environment, e.g., we can change the sampling rate very
quickly by setting small value to the number of windows in
observations.

5.3 Keeping Lazy in Transmission
One way to reduce the number of delivered messages is

to keep lazy in transmission, i.e., only sending the messages
that are necessary to be sent because we think that if the re-
ceiver can estimate an accurate enough value for the current
reading, the message need not to be sent, i.e., if the data
consistency requirement can be hold, the messages are not
necessary to be sent.

In this protocol, every sensor caches the last transmit-
ted reading for every parameter for all potential senders that
may deliver message to it, and it uses the cached values as
the estimation of the current reading. To check the data
consistency for this piece of data, the sensor will use the
current reading as the real value and the cached value as the
estimated value. If the difference between the current read-
ing and the cached value is within the consistency bound,

the sender will not send this piece of data, i.e., keeping lazy.
For example, in an application which monitors the tempera-
ture of a sensor field, when a sensor gets a reading of value
3.7, and the cached last reading is 3.5 which is within the
consistency bound of 0.3. So the new reading is not nec-
essary to be sent. When the current data reading is absent,
the sensor assumes the value is unchanged so that it keeps
silent. This approach has two advantages: easier to estimate
the undelivered data and only keeping copy of a very small
amount of data.

In the case of the aggregated data, every receiver caches a
copy of the latest aggregated value calculated from senders.
After it applies the aggregation function, it will compare
the new calculated value with the cached value. If the dif-
ference between them is within the consistency bound, the
sender will keep silent. For the aggregated data, the receiver
has to wait for the new reading from all the senders for a pe-
riod of time. If there are still data absent from some senders,
the receiver will use the cached data to substitute the current
reading and calculate the new aggregated value.

5.4 Aggregating and Delaying Delivery

Another aspect of the Alep protocol is to integrate sev-
eral pieces of data into one message to reduce the number
of messages and delay the delivery when the data temporal
consistency is not violated. In our design, each sensor main-
tains a data queue where the received data are stored. The
data in the queue are sorted according to the application spe-
cific priority and the requirement of temporal consistency.
When there are free space in the queue and the consistency
is satisfied, the sensor will keep sleeping instead of sending
data to its parent node. The temporal consistency is checked
by comparing the estimated time to deliver the message to
the sink and the time the data is expected at the sink. In our
application, the expected time to deliver the message to the
sink can be estimated based on the number of hops to the
sink. For example, if we assume it takes Tdev to transmit
one message from the child to the parent, then we can esti-
mate the time it takes for current sensor to deliver a message
to sink is Tdev × Hjs, where Hjs is the number of hops
from the current sensor to the sink. Then the time bound
for the data is the sum of the estimated time plus one time
slot, which denotes the time between two reporting points
according to the TDMA schedule.

5.5 Discussion

Noting that the proposed protocol is a general proto-
col for sensor networks, we still have several assumptions.
First, the data readings from sensors are accurate, i.e., here
we do not consider reading errors. Second, synchronization
between sensors are kept by using some mechanisms, e.g.,
RBS [3]. Third, sensors in the sensor field are static, which
is true in most monitoring-based applications. Finally, the



sensors in the sensor field are homogeneous, i.e., each sen-
sor has the same physical capacity.

Although our protocol is proposed for a tree-based sen-
sor network, the basic idea of adapting the data sample rate,
keeping silent during transmission and merging transmis-
sions can be applied in any protocol to achieve both data
consistency and energy efficiency. When there are several
parameters being monitored at one sensor, we can assign
different priorities to these parameters, however, a good re-
source allocation algorithm should be designed to appropri-
ately allocate resources to satisfy the consistency require-
ments of each parameter, especially in the case of resource
hungry.

From the model for the problem definition, we can see
that the optimization at a single sensor can guarantee the
system level optimization. However, the system level opti-
mization doesn’t necessarily require the optimization at sin-
gle sensor. The consistency requirement at a single sensor
is more rigorous than the consistency requirement for the
whole sensor network. So, we may loosen the consistency
requirements for individual sensor a little, and the consis-
tency requirements for the whole sensor network will still
hold at a very high probability.

In our design, we use the last reading to estimate the pre-
vious reading which is consistent when the transmission is
reliable. However, it only reduces the messages having data
within the consistency bound. If other techniques can accu-
rately estimate the value of the data out of the range of the
consistency bound, they can further reduce the number of
delivered messages, which will be our future work.

6 Performance Evaluation

To evaluate the performance of the proposed adaptive,
lazy, energy-efficient protocol, we have implemented the
protocol in TinyOS using the PowerTOSSIM [9, 24] envi-
ronment. In the rest of this section, we will describe the sim-
ulation setup and the performance metrics first, then present
the performance of our protocol in terms of these perfor-
mance metrics.

6.1 Simulation Setup
In our simulation, 121 nodes are distributed in a circle

area, with the base station located at the center of the circle
area. All these nodes are connected to a tree-based structure
with height of four, i.e., the depth of the tree, in which all
the internal nodes have three children as shown in Figure 3.
The sensors periodically collect data from its children and
report the readings to its parent based on a TDMA sched-
ule. Besides, the sensors may have the ability of aggrega-
tion. The data consistency requirements at each sensor are
preloaded from the sink by broadcast.

Each sensor node acts as a multiple functional sensor,
which can sample three parameters: Temperature as Temp,

Pressure as Press, and Rain-index as Humid. To evaluate
the proposed protocol in different data dynamics environ-
ments, we intentionally make these three parameters have
different characteristics. For example, for the perspective
of temporal, the reading of Temp changes very fast, and the
reading of the Press is relatively stable, while the read-
ing of Humid may change very fast during the raining time
while it is stable otherwise. To simulate the data dynamics
in different areas, we intentionally separate the whole area
to three sub-areas as the three subtrees shown in Figure 3,
where the reading for parameters changes fast in the left
subtree, and the reading is relatively stable in the right sub-
tree, while the reading in the middle subtree changes fast at
first period then becomes stable.

Three algorithms will be simulated in our experiment.
First, the method without considering both lazy and adap-
tive approaches will be simulated, denoted as Simple. Sec-
ond, the method with lazy approach but without adaption is
simulated, denoted as Lazy. Finally, the method considering
both lazy and adaptive approaches is simulated, denoted as
Alep.

6.2 Evaluation Metrics
The goal of the Alep protocol is to save energy by re-

ducing the number of delivered messages and to examine
the tradeoff between the energy efficiency and data consis-
tency. Thus, Alep will be examined in three ways: Does this
protocol reduce the number of the messages and extend the
lifetime of WSN? Does this protocol improve the accuracy
of data? And what is the tradeoff between the number of
delivered messages and the data accuracy?

To measure the reduction of the number of delivered
messages, we count the total number of messages that have
been sent at each sensor. Meanwhile, we measure how
much energy can be saved and how much the lifetime of
WSN can be extended using the mechanism provided by
PowerTOSSIM, including the total energy consumed in
sampling, transmission, and computing. The definition of
the lifetime of WSN is referred from [21], which is the max-
imum number of messages the WSN can gather before the
WSN loses connectivity or coverage.

To answer the question of the effect of reduced messages
to the data consistency, we propose a new performance met-
ric called data inconsistency factor, which is defined as the
total variance between the gathered data in the sink and real
data, i.e., V =

∑n
1 (drcv − dfld)2, where, V is the value

of variance; drcv and dfld are the reading value received at
sink and the real value sampled at data field separately. The
more accurate the data, the smaller the variance.

To examine the tradeoff between the energy consump-
tion and the data accuracy, we adjust the value of the tem-
poral consistency bound and the value consistency bound,
which are two parameters in the Alep protocol. By adjust-
ing these parameters, we can get different simulation results



in terms of energy consumption and data accuracy.

6.3 Number of Delivered Messages
Usually collecting more data is a way to improve the

data accuracy; however, by adapting the sampling rate to fit
the feature of data dynamics and keeping lazy when data is
in the range of consistency, data accuracy can be improved
without significantly increase the number of delivered mes-
sages. Moreover, in some cases when the data dynamics
is low, the data consistency can be kept even by deliver-
ing fewer number of messages. In this section, we show the
number of messages delivered at each sensor using different
approaches.

Figure ?? lists the number of delivered messages at each
sensor without and with aggregation respectively. The x-
axis is the ID of each sensor, and the y-axis denotes the
number of delivered messages. Note that the y-axis of Fig-
ure ?? (a) and ?? (b) are at different scales. As a matter of
fact, the number of delivered messages for all approaches
reduces significantly when aggregation is used. From the
two figures, we can see that Simple generally delivers the
most number of messages and Lazy transfers almost the
least number of messages in both cases of with and with-
out data aggregation.

These three approaches have totally different perfor-
mance in terms of the number of delivered messages. In the
case of without data aggregation shown in Figure ?? (a),
the sensors are classified to four types based on the layer
in the tree using Simple, i.e., sensors in the same layer us-
ing Simple deliver the same number of messages. However,
using Alep and Lazy, the sensors transmit different num-
ber of messages because of the various data dynamics in
the different areas. For example, among sensors located at
layer 3, sensors with ID between 13 and 21 transfer 140
messages because the high data dynamics of the monitor-
ing area, while the sensors with ID between 31 and 39 only
deliver 41 messages because the low data dynamics of the
monitoring area, which is fewer than 1

3 of that in the high
dynamics area. The similar results exist in the case with
data aggregation in Figure ?? (b), where all the sensors de-
liver the same number of messages using Simple, while the
sensors using Alep and Lazy located at different areas trans-
mit different number of messages, i.e., the sensors located
at high dynamics area deliver 57 messages but the sensors
located at low dynamics area only send 9 messages.

Comparing with Lazy, we observe that the sensors us-
ing Alep send more number of messages than using Lazy at
the area with high data dynamics (e.g., node 13 – 21) but
send fewer number of messages than that of using Lazy at
the area with low data dynamics (e.g., node 31 – 39). This
is because the sampling rate is increased much in the area
with high data dynamics and decreased a lot in the area with
low data dynamics. From above analysis, we conclude that
Lazy can always reduce the number of delivered messages,

and Alep usually does not increase the number of delivered
messages and reduce the number of delivered messages a
lot when the data dynamics is low. To take full advantage
of adapting sample rate, we need an intelligent adaptation
scheme, which is our future work.
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6.4 Lifetime of Sensor Networks
Lifetime of WSN plays an important role in the most pas-

sive monitoring applications. Thus, in this section we check
the possible lifetime of WSN might be achieved by using
Simple, Alep and Lazy. We calculate the lifetime of the sen-
sor network based on the energy consumption of each sen-
sor as defined in [21]. In previous sections, we have seen
that the energy is wasted using current implementation. So,
we examine the lifetime of sensor network in the case of
without unnecessary energy waste.

Figure 7 depicts the possible lifetime of a WSN can
achieve by using Alep, Lazy and Simple in both cases of
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with and without aggregation. The x-axis denotes the initial
energy, and the y-axis shows the possible lifetime of WSN,
which is defined as the maximum number of messages the
sensor network can handle. In this experiment, three types
of data, changing quickly, changing slowly, and changing
quickly first then slowly, are collected at all sensors. From
the figure, we can see that WSN largely extend the lifetime
by using aggregation. The maximum lifetime without ag-
gregation is 234, 6.3% of with aggregation (Simple). More-
over both Alep and Lazy can extend the lifetime by more
than 50% and 150% as that using Simple because they can
reduce the number of messages. Furthermore, Lazy usually
has longer lifetime than that of Alep, because although Alep
samples less data when the data dynamics is low, it samples
more data when the data dynamics is high. The difference
between Alep and Lazy will be further discussed later.

6.5 Data Inconsistency Factor
From above sections, we can see that Lazy and Alep can

largely reduce the number of delivered messages. However,
delivering fewer message means that there are more data
estimated at the sink, which may result in the degradation
of the data consistency. In this subsection, we examine the
effect of unsent messages to the data accuracy. We use data
inconsistency factor as the metric to measure the effect.

Figure 8 reports the relationship between the data in-
consistency factor and different monitoring parameters with
variant data dynamics. In the figure, the x-axis is differ-
ent data types with variant data dynamics and the y-axis
represents the calculated data inconsistency factor of the
collected data. Three types of parameters with different
data dynamics are monitored, among which Temp has rela-
tively higher data dynamics than Humid and Press while
Press has relatively lower data dynamics. Furthermore,
for each parameter, data dynamics also varies according to

Figure 8. The results of data inconsis-
tency factor.

different areas, i.e., each parameter has three types of data
dynamics, high, high first then low denoted as mix, and low.
Thus, there are totally nine sets of data with variant data dy-
namics.

In the figure, we note that when the data dynamics is
high, the value of data inconsistency factor is larger, e.g.,
the Temp high has larger data inconsistency factor than
Temp mix and Temp low, and Temp high also has
larger data inconsistency factor than Humid high and
Press high. The reason of this is when the data dy-
namics is high, it is more difficult for the sink to estimate
the correct data. From the figure, we also find that Alep has
much smaller data inconsistency factor than that of Simple
and Lazy when the data dynamics is high, while it has larger
data inconsistency factor than that of Simple and has the
same data inconsistency factor as Lazy when the data dy-
namics is low. This result shows that Alep indeed makes the
data sampling rate to fit the feature of data dynamics, i.e.,
when the data dynamics is high, it will use higher sampling
rate to gather more data so that to make the variance small.
Otherwise, it will sample less data to save energy.

Furthermore, the data inconsistency factor increases very
fast with the increasing of data dynamics using Simple and
Lazy, but increases slowly using Alep. As a result, Sim-
ple and Lazy may not collect enough accurate data when
the data dynamics is high, i.e., the data inconsistency factor
exceeds the data consistency requirements of the applica-
tion. However, Alep can keep the data inconsistency factor
low by adapting the data sampling rate to data dynamics.
We should also notice that Alep improves the data accuracy
meanwhile somehow reduces the number of delivered mes-
sages as shown in Section 6.3.

Comparing Lazy with Simple in terms of the accuracy of
the collected data, Lazy has very close value of data vari-
ance as Simple, however, in Section 6.3 we know that Lazy



delivered fewer messages than Simple, which means that
the dropped messages are not necessary to be transferred to
the sink. Thus, we conclude that lazy delivering can reduce
the number of delivered messages, while the approach of
adapting the data sampling rate to data dynamics can sig-
nificantly improve the data accuracy. It is good to integrate
those two approaches to collect accurate data in an energy-
efficient way.

6.6 Tradeoff between Energy Efficiency and Data
Consistency

We have already seen that Lazy and Alep can largely re-
duce the number of delivered messages so that they have po-
tential to save energy and extend the lifetime of WSN, and
Alep can sufficiently improve the data consistency. Now
we are in position to examine the effect of two key factors
related with Alep: the temporal consistency bound and the
value consistency bound.

First let us consider the effect of the temporal consis-
tency bound to the energy efficiency and data value consis-
tency. If we release the temporal consistency of data, the
same set of data will be delivered to the sink regardless of
different arrival times. Thus changing the temporal consis-
tency bound will not affect the data inconsistency factor of
the collected data. However, releasing the temporal consis-
tency bound does affect the number of delivered messages.
Figure ?? (a) displays the relationship between the num-
ber of delivered messages and the different temporal con-
sistency bounds ranging from 4 units to 7 units, which is
the maximum time to transfer the data to the sink assuming
each hop taking one unit time. In the figure, the x-axis is the
ID of the sensors and the y-axis is the number of delivered
messages.

From the figure, we can see that the increasing of the
bound of temporal consistency results in the decreasing of
the number of total delivered messages. When the tempo-
ral consistency bound is tight as 4, some sensors deliver
more than 110 pieces of messages because data combina-
tion is not possible. While the temporal consistency bound
is raised to 7, sensors deliver only about 50 pieces of mes-
sages. Thus, releasing the bound of temporal consistency
can reduce the number of delivered messages. However,
based on simulation data, the energy consumption almost
keeps the same (overlapped in the figure) with the releas-
ing of the bound of the temporal consistency as show in
Figure ?? (b). This is because the same reason of idle lis-
tening as we mentioned in Section ??, and we believe that
releasing the temporal consistency bound will reduce the
energy consumption by reducing the number of delivered
messages. In this case a well designed schedule is needed
to save energy from idle listening. This problem may be
solved automatically in the new version of Motes, such as
TelosB [17], which can automatically transfer to the sleep-
ing state. We plan to implement Alep in a TelosB testbed

next step.
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Having seen that releasing the temporal consistency
bound can reduce the number of the delivered messages,
next, we examine the effect of the value consistency bound
to the number of delivered messages and the data inconsis-
tency factor. Figure ?? (a) shows the number of delivered
messages with the relation to the variant value constraints.
In the figure, the x-axis is the ID of the sensors and the y-
axis shows the number of delivered messages. From the
figure, we can see that when the value consistency bound is
enlarged, the number of the delivered messages is decreased
very fast. Next, we examine the changing of data incon-
sistency factor with the changing of the value consistency
bound.

Figure ?? (b) shows the relationship between the data
inconsistency factor and the value of the data consistency
bound. The x-axis is the different value bounds and the y-
axis depicts the value of the data inconsistency factor. In
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the figure, when the data consistency bound is released, the
data inconsistency factor increases very quickly, especially
when the data dynamics is high. Thus we argue that there
is a tradeoff between the data consistency and the energy
efficiency. Releasing the data consistency bound results in
both energy efficiency and larger data inconsistency factor,
so the application should decide the data consistency bound
based on its specific data consistency requirements. If the
application cares little to the data consistency, it may raise
the bound, otherwise, it has to use tightly bound. Data con-
sistency is an application-specific requirements, therefore
for future WSN applications, it is better to provide a set of
interfaces (API or GUI) to allow application scientists to
choose appropriate parameters by themselves, which is our
future work.

7 Related Work and Discussions

In this paper, we mainly model the data consistency re-
quirements of data collection in WSN and propose an adap-
tive, lazy protocol to collect sensing data in an energy ef-
ficient way. In this Section, we compare our work with
previous efforts in terms of energy efficiency design, data
consistency, and adaptive design respectively.

Energy efficiency is always one of the major goals in the
design of WSN. Energy efficient protocols have been ex-
plored for a long time. Previous work expects to achieve
the goal of energy efficiency by designing energy efficient
routing protocols such as [20], energy efficient MAC proto-
cols like [28], energy efficient clustering [29], and other en-
ergy efficient approaches [19]. However, these approaches
mainly focus on finding some energy efficient paths, design-
ing better turn on/off schedules, forming energy efficient
clusters, and so on. And none of them has examined the en-
ergy efficiency from the view of the data itself, i.e., to adapt
the data sampling rate to the data dynamics and keep lazy

when data consistency is maintained.
Data consistency is a classical problem in computer ar-

chitecture, distributed systems, database, and collabora-
tive systems. Interested readers please refer to these text-
books [16, 18, 26]. A lot of consistency models have been
proposed in the research of these fields. However, these
models are usually not applicable in WSN. Ramamritham
et al. propose an idea to maintain the coherency of dynam-
ics data in the dynamics web monitoring application [22].
In their follow-up work in [5], they model the dynamics of
the data items. Their work is similar to ours; however, their
work is to collect data from the web, and our work is to col-
lect data in WSN, which is more resource constraint. More-
over, we have different goal in data operations from theirs so
that we use a different protocol, and our model for data con-
sistency is more general than theirs. Lu et al. propose a spa-
tiotemporal query service in [10], and their goal is to pro-
vide a service to enable mobile users to periodically gather
information and meet the spatiotemporal performance con-
straints, but they propose neither data consistency models,
nor adaptive protocols. However, their work complements
to our effort very well, i.e., we can integrate their approach
with our data consistency models by using their service in
the scheduling of our protocol. Thus, as far as we know, this
is the first model to define the data consistency in WSN.

Adaptive approach is always attractive in system de-
sign. Several adaptive protocols including [6] are proposed
in literature. However, these protocols are mostly used in
the cluster formation, communication patten selection, and
duty cycle designing. None of them intends to adapt the
data sampling rate according to the data dynamics. A recent
paper [12] from Mainland et al. uses an adaptive approach
to allocate the resource for sensor networks. They model
sensors as self-interested agents and use price to tune the
behavior of each sensor. They can also adapt the sampling
rate to the data dynamics. However, they neither propose a
formal model for data dynamics nor consider data consis-
tency in their adaptive approach. Thus their approach is not
from the perspective of the data, but from the view of every
sensor’s profit.

Several work about adaptive sampling rate has been pro-
posed from researchers of database field, sharing the same
goal of our Alep protocol. Jain and Chang propose an
adaptive sampling for the sensor networks [8]. They em-
ploy a Kalman-Filter (KF) based estimation technique and
the sensor uses the KF estimation error to adapt the sam-
pling rate. Their approach is different from our approach in
that it has to store more data. Moreover Kalman-Filter has
matrix operation so that it is much more computing inten-
sive. Marbini and Sacks [13] propose a similar approach to
adapt the sampling rate as ours; however they do not model
the data dynamics and require an internal model, which
is usually difficult to find, to compare the sampled data.



TinyDB [11] also adapts the sampling rate based on current
network load conditions, but not based on the data dynam-
ics in the data field. Their work complements to our work
very well. More work on sampling rate adaption should be
done by considering the network load condition and the data
feature such as data dynamics and priorities together.

Filters are used to reduce the size of the data stream.
Work by Olston et al. uses an adaptive filter to reduce the
load of continuous query. Their work focuses on the adap-
tive bound width adjustment to the filter so that their results
are helpful to analyze our lazy approach, but they have not
modeled the data consistency and considered adapting sam-
ple rate. Sharaf et al. study the trade off between the energy
efficiency and quality of data aggregation in [23]. They im-
pose a hierarchy of output filters on sensor network to re-
duce the size of the transmitted data. Data prioritization
in TinyDB [11] chooses the most important samples to de-
liver according to the user-specified prioritization function,
which is not as general as our work on data consistency and
data dynamics.

8 Conclusions and Future Work

In this paper, we consider the effect of data consistency
to data operations in WSN. First, we analyze the data con-
sistency requirements from applications and the feature of
data dynamics in the data field. Then, we formally model
the data collection problem in the scenario of the passive
monitoring application, with the goal of delivering the min-
imum number of messages under constraints of data con-
sistency, and propose a formal definition for data consis-
tency and data dynamics in WSN. Then, an adaptive, lazy,
energy-efficient protocol is proposed to save energy as well
as keep the data consistency. A comprehensive experiment
has been designed to show the effectiveness and efficiency
of the proposed protocol. The results from the simulation
show that the proposed protocol indeed reduces the number
of messages, saves energy and extends the lifetime of WSN.
Finally, the tradeoff between the energy efficiency and data
consistency is explored.

Considering the data consistency in the design of WSN
is an interesting problem. We plan to extend our first try in
the following two directions. First, implied from the sim-
ulation, we plan to design a consistency-driven duty cycle
management scheme to take full advantage of Alep. Sec-
ond, in this paper, we assume sensors are willing and able
to report the correct values; however, this is not true in real-
ity. How to keep data consistency in a non-cooperative and
malicious environment is our next step.
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