Modeling Data Consistency in Wireless Sensor Networks

Kewei Sha and Weisong Shi
Department of Computer Science
Wayne State University
{kewei, weisong}@wayne.edu

Abstract— With the rapid growth of wireless sensor systems
deployment, data quality has become a critical issue to the
success of these applications. In this paper, we first raise the
data quality problem in WSN. Then, we propose a novel metric,
data consistency, to evaluate the data quality. Our consistency
models consider three perspectives of consistency: femporal,
numerical, and frequency, covering both individual data and
data streams. Moreover, several system protocol design issues
are identified to support data consistency. Finally, we propose
a set of APIs to facilitate managing data consistency.

I. INTRODUCTION

A variety of applications such as environmental and
habitat monitoring [1], [6] and emergency care [2] have been
launched showing the promise of wireless sensor networks
(WSN). However, their success is nonetheless determined
by whether the sensor networks can provide a high quality
stream of data over a long period. The inherent feature of
unattended and untethered deployment of networked sen-
sors, however, imposes challenges to the underlying systems.
These challenges are further complicated by the fact that
sensor systems are usually seriously energy constrained.
Most previous efforts focus on devising techniques to save
the sensor node energy and thus extend the lifetime of
the whole WSN. However, with more deployment of real
sensor systems, in which the main function is to collect
interesting data at the sink, data quality has been becoming
a critical issue in the design of sensor systems. We argue that
the quality of data should be used as a basic performance
evaluation metric, as energy efficiency does, to evaluate
protocols, and envision that the quality of data should reflect
the timeliness and accuracy of collected individual data, and
be able to control the frequency of dramatic data changes
and abnormal readings of data streams. Unfortunately, we
have not seen any metric being proposed to evaluate the data
quality in public literature. This paper takes an initial step.

On the other hand, data consistency models have been
extensively studied in previous research. However, due to
the distinct features of WSN, such as unreliable wireless
communication and limited bandwidth, storage and power
supply, previous consistency models are not applicable in
WSN, and novel consistency models in WSN should be
redefined to evaluate the quality of collected data, which
is the goal of this paper.

In order to model data consistency, we first abstract
the consistency requirements from temporal and numerical

perspectives. Based on the observation that data streams are
more meaningful than individual data from the perspective
of applications, we extend the consistency requirements by
including the requirement to control the frequency of dra-
matic data changes and abnormal readings of data streams,
i.e., frequency consistency. Thus, data consistency is mod-
eled as an application-specific concept for both individual
data and data streams. Keep this in mind, we argue that the
design of WSN system protocols should be revisited to cater
to the consistency goal. Four open issues including an adap-
tive protocol, a data management algorithm, consistency-
driven cross-layer protocols and consistency related APIs,
are identified to support data consistency. Furthermore, we
tackle the last open issue, by designing a set of APIs to
check the consistency status and manage the consistency
based on application scientists’ decision. The contributions
of our paper are summarized as follows. First, we raise the
problem of data consistency to the society and analyze the
consistency requirements in WSN. Second, we propose a
series of data consistency models that can be used as metrics
to evaluate the data consistency in different applications.
Finally, a set of APIs are designed to facilitate the data
consistency management.

The rest of the paper is organized as follows. We analyze
consistency requirements in Section II, followed by the
description of consistency models. In Section IV, we identify
four open issues. APIs that facilitate managing data consis-
tency are proposed in Section V. Finally we summarize in
Section VI.

II. CONSISTENCY REQUIREMENTS ANALYSIS

Data consistency is an important problem in computer
architecture, distributed systems, database, and collaborative
systems [3], [4], [7]. A lot of consistency models have been
proposed in these fields. However, these models are usually
not applicable in WSN because of the specific characteristics
of WSN. Thus, consistency models, the key to evaluate
the quality of the collected data, should be remodelled
for WSN applications. In this section, we first analyze
the difference between WSNs and traditional distributed
systems in terms of consistency; then, we abstract the data
consistency requirements in WSN.

Although a WSN is an instance of a distributed system,
there are several significant differences between WSNs and

traditional distributed systems. First, WSNs are resource
constraint systems. Due to the constraints of the memory
and the large amount of the data, the data are usually not
stored in sensors for a long period, but they will form
data streams to be delivered to the sinks or base stations.
As a result, data consistency in WSN will not focus on
the read/write consistency among multiple data replicas as
in traditional distributed systems; instead, data consistency
in WSN is more interested in the spatial and temporal
consistency of the same data, i.e., the consistency among
several appearances of the data at different locations and in
different time. Second, WSN applications may have more
interests in a set of data which can depict the trends of the
monitoring parameter or report an event by combining these
data together. Thus, consistency models for data streams are
more important than those for individual data. In this paper,
consistency models for both types of data are modeled.
Third, compared with traditional distributed systems, the
unreliable wireless communication is common, rather than
abnormal, in WSN. Although retransmission is a strategy to
rectify the effect caused by the unreliable wireless commu-
nication, there is no simple technique that can guarantee the
successful delivery of a message. Thus, in the consistency
model, the data loss due to wireless communication should
also be considered. Furthermore, in previous definition of
the data consistency [7], the effect of channel noises and
intended attacks are neglected. We argue that attacks are
normal nowadays, and the security technologies should be
integrated in the system design to prevent attacks.

In summary, we conclude that consistency models in
traditional distributed systems that basically discuss the
read/write consistency among different replicas are not suf-
ficient to be applied in WSNs. Given the specific features
of resource constraints and unreliable communication, con-
sistency models in WSN should be remodelled.

Frequency
Consistency

Temporal
Consistency
>

Numerical
Consistency

Fig. 1. A three-dimension view of consistency requirements.

Considering both individual data and data streams, we
argue that the quality of the data should be examined
from three perspectives: the numerical consistency, the
temporal consistency, and the frequency consistency, as
shown in Figure 1. The numerical consistency requires
that the collected data should be accurate. Here we have

two kinds of concerns on numerical errors: absolute and
relative. Absolute numerical error happens when the sensor
reading is out of normal reading range, which can be
pre-set by applications. In the case of absolute numerical
error, we can remove it and estimate a reasonable value
for it. Relative numerical error depicts the error between
the real field reading and the corresponding data at the
sink. To trade off the resource usage and data accuracy, we
can leverage estimation technologies to estimate readings
at the sink while still providing the data with the same
level of accuracy. As a result, some sensor readings can
be dropped to save resource usage. Subsequently, there are
relative numerical errors between the real ground truth and
the collected data at the sink. The temporal consistency
means that the data should be delivered to the sink before
or by it is expected. The frequency consistency controls the
frequency of dramatic data changes and abnormal readings
of data streams, i.e., the number of dramatic data changes
and the number of readings out of normal reading range
in one time interval should be limited by the application
specific consistency requirements. Given this definition, we
can see that the quality of each individual data is determined
by the numerical and temporal consistency, while the quality
of data streams is depicted by the combination of three
consistency perspectives.

All these three types of consistency are application-
specific concepts, thus different application may have var-
ious consistency requirements for them respectively. For
example, in a patient monitoring system, emergency con-
ditions of a patient should be reported to the control panel
or caregivers as quick as possible. Otherwise, the patient
may be in a dangerous condition. Thus, most systems that
need quick response or have high real-time requirements
usually have high requirements on the temporal consistency.
Other systems may have no strict time requirements on the
collected data. For instance, a roadside monitoring system
that counts the number of passed vehicles in one area may
only need the data to be reported twice a day. In this case,
data aggregation is more possible because some aggregation
functions need to wait until sufficient data are available.
However, these kinds of systems may have high accuracy
requirements (i.e., numerical consistency requirement) on
the collected data. And the applications that have high
accuracy requirements may have strict requirements on high
frequency requirements for the purpose of quick system
reaction when some abnormal data is detected, e.g., some
event-detection applications may care more on the dramatic
data changes and abnormal readings, which usually repre-
sent the occurrence of some interesting events or attacks.

III. CONSISTENCY MODELS

We are in a position to propose data consistency models
to evaluate the different data quality. In this section, we first
define a general data format used in our models. Then, we

model data consistency for individual data followed by data
consistency models for data streams. Note that we assume
that unnecessary data are detected and filtered by detecting
protocols, and an estimation technique [5] is used to fill
these data at the sink.

A. Data Format

Before we formally model data consistency, we define a
general data format that will be used in consistency models.
Considering both the temporal and numerical consistency
requirements and noticing that the frequency consistency
requirement is derived from the numerical values of the data,
we define the data format used in consistency models as
follows,

(Pis Tstamp, Seq-Ran, Val, ReT)

where p; denotes that the data is from the i*" sensor for

parameter p; Tsiqmp specifies the time when the value is
sampled and Seq_Ran is the range of the sequence number
of the reading at the i‘" sensor for parameter p. Seq_Ran
contains only one number where there is no two continuous
readings that have the same value. Val is the value of the
reading with sequential number in Seq_Ran, while ReT
depicts the remaining time before it is expected by the
sink. The initial value of ReT is set the same as temporal
consistent requirements and the value of Ts¢map, Seq-Ran,
and Val are set locally by the i*" node.

As we analyzed in the above subsection, different ap-
plications can have various consistency requirements. An
example of a consistency requirement is given here, (NE =
0.2, Max T = 3m,Max_Diff = 1.2,Max CHG =
5, Range = [1,4], Maxz_OutRange = 3), where NE =
0.2 means that the application can endure 40.2 numerical
error; Max_ T = 3m denotes the data should be received
at sink in 3 minutes after it is sampled; Max_Dif f = 1.2
and Max_ CHG = 5 together define that the number of
dramatic changes, the difference between two continuous
readings exceeds +1.2, should not exceed five; and Rang
and Max_OutRange requires that the number of read-
ings with value not in the Range should be less than
Maxz_OutRange. These consistency requirements are pre-
distributed by other protocols (Section IV). Based on these
requirements, we can abstract two consistency semantics:
(1) the difference between any two continuous meaningful
readings (at the sink) should be larger than 0.2; and (2) if
the number of dramatic changes in one minute exceeds five,
the collected data is not good enough because the detail
of the changing is ignored. Next, we formally model data
consistency by using these abstracted semantics.

B. Consistency Models for Individual Data

For each individual data, we model three types of
data consistency, the hop-consistency, the single-path con-
sistency, and the multiple-path consistency. The hop-
consistency means that the data should keep consistency in

each hop, while the single-path consistency and the multiple-
path consistency imply that data consistency holds when the
data is transmitted from the source to the sink using a single
path and multiple paths respectively. The hop-consistency is
checked at each hop when the data is transferred and it is
maintained if the data packet still has sufficient time to be
transferred from current node to the sink and the value of
the new arrive reading is within the range of the consistency
semantics. We define it as below,

HopConsist = (InSemantics(Val,Valjgst)
&OnTime(ReT, EsTy)) — — — (1)

where, InSemantics judges the numerical consistency by
checking whether the new arriving value and the cashed
last value follow the pre-defined consistency semantics, and
OnTime checks the temporal consistency, i.e., ReT >
EsT; denotes that the node has enough time to deliver the
data to the sink. Because the hop-consistency is checked
at each hop along the path, so it is very useful to detect
attacks on data and filter redundant aggregated data when
data aggregation is applied by using estimation technologies.
This will reduce the source usage while providing the same
level of data accuracy.

The hop-consistency defines the consistency only at each
hop, however, the end-to-end consistency between data
source and data destination is more important from the
viewpoint of applications. We define this type of consistency
as the path-consistency, which is usually checked at the sink.
According to the different routing strategies and application
requirements, we define two types of path-consistency, the
single-path consistency using single path routing and the
multiple-path consistency using the multiple-path routing
or flooding. The difference between them lies in that at
most one copy of the same data is reported to the sink
in the single-path consistency, while several copies of the
same data will be received at the sink in the multiple-path
consistency. Both types of path-consistency consider two
concepts, temporal consistency and numerical consistency.
We model the single-path consistency as below,

SPathConsist = (InSemantics(Val,Valjgst)
&(ReT > 0)) — — — (2)

Similar to functions in the hop-consistency, InSemantics
checks the numerical consistency in terms of the consistency
semantics. The temporal consistency is reflected by the
condition that ReT is larger than O when the data arrives
at the sink. In the multiple-path consistency, several copies
of same data will be delivered to the sink. Thus the sink
will check the consistency as k-consistency, which means
at least k copies of the same data should be reported to
the sink in time. The multiple-path consistency modeled as
below is very useful to detect the faked readings inserted by
malicious nodes (i.e.,fault detection), which might be very

important to some applcaitions.

M PathConsist = (InSemantics(Val, Valjast)
&ReT > 0&Count(P;, Seq_Ran) > k) — — — (3)

Compared with the single-path consistency, the multiple-
path consistency has one more requirement about the
number of copies for the same data, denoted by
Count(P;, Seq_-Ran).

C. Consistency Models for Data Streams

In WSN, data are usually collected in the format of data
streams. Individual data may not have significant meaning,
while they are useful when the set of the data are considered
together. Thus, we argue that consistency models for a set
of data, data streams, denoted as D = {di,da,...,d,},
are the same important, if not more important, as the
models for individual data. For data streams, we propose six
types of consistency models including the strict consistency,
the «a-loss consistency, the partial consistency, the trend
consistency, the range frequency consistency and the change
frequency consistency. All these consistency models are
application-specific concepts. The first four consider the
different levels of numerical and temporal consistency while
the rest two focus on the frequency related consistency.

The strict consistency has the most strict requirements
to the consistency of collected data. To satisfy the strict
consistency, three requirements must be satisfied. First, no
data is missed during transmission, i.e., the packet with each
sequence number ¢ should be received at the sink. Second,
the temporal consistency is satisfied, i.e., for all received
data at the sink, ReT; > 0. Third, the numerical consistency
in terms of consistency semantics is maintained, e.g., any
two continuous readings d; and d;;; in the data set D
received at the sink, are out of each other’s endurance range.
So the restricted consistency is modeled as

StrictConsist = (InSemantics(D)&ViReT; > 0
&Yiel,n]),d; € D) — ——(4)

The strict consistency differs from the hop-consistency be-
cause it is defined based on a set of data and requires no
data lose, so it is stricter than the hop-consistency from
this point of view. Not all applications require the strict
consistency, which may be almost impossible to achieve in a
wireless communication based system such as WSN. If we
allow some data loss during transmission, we get the a-loss
consistency, where all received data should keep temporal
consistency and at least 1 —a percent of totally sampled data
should be received at the sink. So the a-loss consistency can
be modeled as

a — LossConsist = (InSemantics(D)&ViReTi > 0
&Counter(D) > (1 — a) * max(Seq_Ran)) — — — (5)

where InSemantics checks the numerical consistency as
before. All the received data are temporal consistent and

the number of total received data is large than 1 — « percent
of the number of total sampled data, which is checked based
on the sequence number of the received data. For example,if
totally n pieces of data should be received based on the value
of Seq_Ran, and the real received number is Counter (D),
we can check if the condition in above formula is satisfied.
The «a-loss consistency is suitable for applications that have
high real-time requirements. The value of « is adjustable
to cater to the numerical consistency requirements of the
applications.

In addition to releasing numerical consistency require-
ments, we can also release the temporal consistency require-
ments, which results in the partial consistency. In the partial
consistency, not all the data are required and the temporal
consistency are not so strict, thus it is modeled as

ParConsist = (InSemantics(D)&ViReT; > —a
&Counter(D) > (1 —) x max(Seq_Ran)) — — — (6)

The partial consistency is similar to the a-loss consistency
except that the temporal consistency requirement is released.
This consistency model is useful in applications where
aggregation applies, which have numerical consistency re-
quirements but low temporal consistency requirements.

If we further release the numerical consistency require-
ment, we get another consistency model named the trend
consistency, which is defined as follows,

TrendConsist = (TrendSatisfy(D)) — — — (7)

where TrandSatisfy detects if the trend of data streams
is maintained. Mechanisms are needed to evaluate the valid
trends. For instance, we might utilize some algorithms from
the signal processing field to evaluate the quality of data
streams, e.g., frequency domain features. This consistency
model matches the trend requirement (Section II) of some
WSN applications very well, which could be used in attack-
resilient data collection protocols.

Now we consider the abnormal data readings in data
collection. In certain applications, the application scientists
may have pre-knowledge of the normal data range of their
application. This is very helpful to filter erroneous readings,
which are resulted from a variety of reasons, including
intended attacks. Also, if the number of abnormal read-
ings exceeds a certain number pre-set by the application,
the application scientists may need to check the abnormal
phenomenon. The notification of the abnormal phenomenon
will be triggered by a violation to the range frequency
consistency. Here we define the range frequency consistency
as follows,

RangeConsist = (Vi € [1,...,k], Count(V;not € Range)
< Max_OutRange) — — — (8)

where RangeConsist denotes the range frequency consis-
tency. V; shows a number of k readings in a time interval and

Max_OutRange denotes the application pre-set maximum
number of readings that may be out of the normal range,
Range, in one period. This consistency can be checked both
locally at each sensor and at the sink. Further action are
usually needed by the application scientists when this type
of consistency is violated.

In some other applications, application scientists may care
a lot about the detail of the data changes, thus we define the
change frequency consistency to detect whether the changes
of the sensor reading are abnormal. The detail of the change
frequency consistency is denoted as follows,

ChangeConsist = (Vi € [1,...,k], Count(|V;+1 — V4|
> Mazx Dif f) < Max CHG) — — — (9)

where ChangeConsist depicts the change frequency con-
sistency. V; is a set of total k readings in a time inter-
val, Max_Diff is the pre-set maximum difference be-
tween two continuous readings when the consistency holds,
and Max_CHG means the maximum number of dramatic
changes, which is defined as the case that the difference
between two continuous readings exceeding Max_Dif f, in
one interval. With this consistency, we can either prevent the
data from changing too dramatically or dynamically change
sampling rate to zoom in and observe the details [5]. The
observation of violation of this consistency may also result
in a request of application scientists involvement.

In summary, we propose a set of basic but powerful
consistency models for data quality measurement in WSN
from the perspective of temporal, numerical and frequency
consistency. These models can be used as metrics to evaluate
the quality of collected data both in aggregated format or
non-aggregated format. With these proposed basic consis-
tency models, various applications can find their suitable
consistency models for their specific data quality require-
ments by adjusting the parameters in these models or
composing the above basic proposed consistency models to
form complicated models. For example, the two frequency
consistency models can be combined to control the dramatic
data changes and the abnormal readings in a time interval.
The partial consistency and the two frequency consistency
are also composable to set all numerical, temporal and
frequency consistency requirements. Furthermore, various
applications should make a trade off between the energy
efficiency and data consistency based on their energy budget,
which remains an open problem in the community.

IV. OPEN ISSUES

We argue that WSN system protocols should be revisited
to achieve the goal of consistency; moreover, these designs
should keep the goal of energy efficiency in mind. In this
section, we identify four open issues in WSN system design
as follows.

e An adaptive protocol to improve the quality of col-

lected data and take advantage of data consistency

by considering data dynamics. We observe that data
consistency and energy efficiency are closely related
to data dynamics. Thus, models for data dynamics
are required. A protocol that automatically adapts the
data sampling rate according to the data dynamics in
the data field is necessary to improve the quality of
collected data and energy saving.

o An intelligent data management algorithm. To take
advantage of data consistency, data management algo-
rithms are needed to control the amount of traffic in
an energy efficient way, e.g., we can drop data whose
value is within the consistency semantics. And more
intelligent algorithms are expected from other research
field such as signal processing to filter unnecessary
data.

o Consistency-driven cross-layer protocols to achieving
data consistency. Diverse data consistency requirements
and variant data traffic of nodes resulting from afore-
mentioned adaptive protocols bring the new challenging
for the node scheduling, MAC protocols, and routing
protocols. Cross-layer protocols should be designed
to filter unnecessary data, control traffic, and route
packets while maintaining consistency. Moreover, adap-
tive resource allocation and topology control are also
expected to be integrated into these protocols.

e A set of APIs to manage data consistency. Data
consistency requirements should be distributed to the
monitoring area when the sensor network is deployed.
Later on, the consistency requirement should be up-
dated according to the observed data consistency from
recent collected data. APIs are essential to support the
functionality of checking consistency status, and to
distribute consistency requirements. These APIs have
to provide interfaces for lower layer data collection
protocols to efficiently transfer the data to the sink.

All four issues described above should be addressed to
take full advantage of data consistency models. In this paper,
we take an initial step to design a set of APIs to manage
data consistency as described in detail in next Section, and
leave the rest three as our future work.

V. APIS FOR MANAGING DATA CONSISTENCY

There is a gap between the lower layer protocols de-
signed to support the consistency goal and the higher layer
consistency requirements from applications. It is critical to
provide user-friend interfaces for application scientists to
take advantage of these models. Our APIs are designed for
the purpose of the data quality management, and differ from
the APIs proposed in [8]. First, our APIs lie at the higher
layer (for application scientists) than theirs (for system
programmers). Second, the design goals are different too.
We believe that our APIs can take advantage of theirs
in the real implementation. To manage the consistency,
the APIs must have the following functions, checking the

APIs

Function Descriptions

CheckStatus(P, Set(N), Trqn, ConMode)

Check the consistency of the data from the nodes in Set(N) during the time period Tyqn
according to the data consistency requirements to that data.

SetReq(P, Set(N), Treq, Vreq, Range, Max_OutRange,
Maz_Dif f, Max_.CHG, ConMode, CommPtn)

Set the temporal or numerical consistency requirements for parameter P to the set of nodes
Set(N) using the specified communication pattern to distribute the requirements.

UpdateReq(P, Set(N),6(T),6(V), Range, Maxz_OutRange,
Maz_Dif f, Max_.CHG,ConMode, CommPtn)

Update the temporal or numerical consistency requirements for parameter P at the set of nodes
Set(N), and use the specified communication pattern to distribute the updating.

TABLE I
APIS FOR DATA CONSISTENCY MANAGEMENT.

current consistency status (CheckStatus), setting consis-
tency requirements for new parameters (SetReq), updating
consistency requirements (Update Req), and getting support
from lower layer protocols, as listed in Table I, where
CommPtn denotes the communication pattern to distribute
the consistency requirements; C'onM ode depicts the name
of consistency model. Together with V..., , T}.c, and other
parameters, C'on M ode also specifies the consistency seman-
tics; and Set(n) depicts the set of destination nodes.

Several protocols and algorithms are needed to support the
above proposed APIs. For example, consistency checking
algorithms are needed when the CheckStatus API is called.
Various algorithms are needed to check consistency in dif-
ferent models. While in SetReq and UpdateReq, different
protocols are used depending on the size of Set(n). If there
is only one node in Set(n), a point-to-point communication
pattern is adopted to deliver the consistency requirements.
When Set(n) contains all the sensors in the field, broadcast
is launched to distribute the requirements. If Set(n) con-
tains nodes located in one area, area multi-cast is used to
disperse the requirements. Hence, various routing protocols
are needed for different communication patterns.

The process of consistency management consists of three
steps. First, the consistency requirements are distributed.
Second, the consistency will be checked at the sink. Third,
if the sink finds that current consistency cannot be satisfied
because of constrained resources, it might release consis-
tency requirements. If the sink finds that the quality of
current collected data is not satisfactory, it might increase
consistency requirements. These update will be distributed to
related nodes, who will in turn change their data collecting
strategy according to the new consistency requirements.

Next, we give an example of how to use these APIs.
In a habitat monitoring application, if an irregular
animal movement is observed in some area, a request to
monitoring the temperature of that area is issued, i.e.,
SetReq(temp, Set(area), Treq, Valyeq,0,0,0,0,10% —
LossConsist,area — cast), where temp denotes the
name of parameter; Set(area) and area — cast show
that the consistency requirements will be sent to all the
nodes in that area using area — cast. Tyeq, Valyeq and
10% — LossConsist specify the consistency semantics.
Four zeros denote no specific frequency consistency
requirements. After the application scientist collects

some data from the monitoring area, he/she will call
CheckStatus(temp, Set(area),last — one — hour, 10% —
LossConsist) to check whether the data received in
last one hour satisfy the requirements specified by the
consistency mode, 10% — LossConsistency. Based on
the result of the call, the application scientist makes a
decision to tune consistency. For example, if the application
scientist thinks that the quality of the data is good
enough, he will do nothing to change it; otherwise, he
will update the new consistency requirements by calling
UpdateRge(temp, Set(area),§(T)),5(Val),0,0,0,0,5%—
LossConsist,area — cast). Then, when receiving the
new update request, the node will update the consistency
requirements locally. The whole process forms a close-loop
feedback control. In this way, high quality data could be
collected in an energy efficient way.

VI. SUMMARY

In this paper, we propose to use data consistency as a
metric to evaluate the quality of data in WSN. Several
formal consistency models are defined. We also identify
four consistency related system design issues, and propose a
set of APIs for consistency management. This is our initial
step to investigating the data quality problem in WSN. The
authors’ hope is that this position paper will stimulate further
work on the problem of data quality in sensor networks using
data consistency models.

REFERENCES

[1] M. Batalin et al. Call and responses: Experiments in sampling the
environment. Proc. of ACM SenSys 2004, Nov. 2004.

[2] T. Gao, D. Greenspan, and M. Welsh. Improving patient monitoring
and tracking in emergency response. Proc. of the International
Conference on Information Communication Technologies in Health,
July 2005.

[3] L.L.Peterson and B. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann, 2003.

[4] R. Ramakrishnan. Database Management Systems. WCB/McGraw-
Hill, 1998.

[5] K. Sha and W. Shi. On the effects of consistency in data operations
in wireless sensor networks. Proceddings of the 2006 International
Conference on Parallel and Distributed Systems (ICPADS’06), July
2006.

[6] R. Szewczyk et al. Habitat monitoring with sensor networks. Commu-
nications of the ACM 47(6):34—40, June 2004.

[7] A. Tanenbaum and M. Steen. Distributed Systems: Principles and
Paradigms. Prentice-Hall, 2002.

[8] M. Welsh and G. Mainland. Programming sensor network using
abstract regions. Proceedings of the First USENIX/ACM Networked
System Design and Implementation, Mar. 2004.

