
CONCA: An Architecture for Consistent Nomadic Content Access

Weisong Shi and Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

{weisong, vijayk}@cs.nyu.edu

Abstract

Future access to web-based content is likely to be dom-
inated by two trends: (a) increasing amounts of dy-
namic, personalized content, and (b) a significant growth
in “on-the-move” access using various mobile resource-
constrained devices. These trends point to a situation
where a user would have ubiquitous access to content,
but require that content be efficiently delivered to the
user irrespective of location, and in a form most suited
to the user’s end device. Unfortunately, classical caching
and transcoding solutions do not work well together,
necessitating a new caching architecture built from the
ground-up to handle problems caused by dynamic con-
tent, transcoded versions of objects, and the nomadic na-
ture of users. This paper describes the goals and archi-
tecture of such a system: CONCA, an architecture for
Consistent Nomadic Content Access.

1 Introduction

Future patterns for web content access are likely to be
dominated by two growing trends. First, there has been
a shift towards dynamically generated content, which is
increasingly personalized to users as exemplified by ser-
vices such asMy Yahoo! [29] andMyCiti.com . Re-
cent studies of proxy cache effectiveness have shown
that dynamic content accounts for over 50% of all re-
quests [40]. A related study of HTTP traces from AT&T
WorldNet Internet service provider has revealed that 30%
of all user requests carry cookies, header elements typ-
ically indicating that a request be personalized [2]. The
second trend has been a significant increase in on-the-
move access to web content using a variety of mobile
resource-constrained devices. The growing popularity of
web-enabled PDAs and cellular phones as well as the ex-
plosive growth in Internet startups trying to “mobilize”
web content is a testament towards this trend. Together,
the two trends raise the potential of ubiquitous (anytime,
anywhere) access, but require some way of ensuring that
users have access to content in the most efficient fashion,

irrespective of location and the end-device they might be
currently using.

Well-understood solutions exist in isolation for improv-
ing web access latency and coping with device hetero-
geneity; however, these solutions do not work well with
each other, particularly in light of the above trends.
Caching and content distribution are popular solutions
for the first problem and have the effect of moving con-
tent closer to the client. However, these typically do
not work well with dynamically generated and person-
alized content. In the AT&T study mentioned earlier,
caches can only achieve object hit ratios around 35% and
byte hit ratios around 30% [2]. Transcoding is a popular
solution to resolve server-client mismatches, but is un-
able to benefit from caching in general, with the result
that clients see larger access times. Furthermore, neither
technique provides particularly good solutions for cop-
ing with user mobility: caches are effective only when
there is reuse, which may or may not apply in the user’s
new location, particularly when the latter is geographi-
cally and culturally different from the origin location.

Although there does not appear to be any way to re-
solve the above situation, this outlook is more a reflec-
tion of current architectures for caching and transcod-
ing as opposed to a fundamental limitation. In particu-
lar the following two observations can be made. First,
despite the dynamically generated and personalized na-
ture of web content, at the underlying level a relatively
large amount of such content can in fact be shared. For
example, even on personalized views of the Yahoo portal
(my.yahoo.com), different users end up sharing the same
news headlines and TV program guides. In fact, a recent
study shows that approximately 75% of the bytes in dy-
namic responses from a set of popular web sites could in
fact be reused from a previous retrieval of the page [39].
The second observation pertains to user access patterns.
Most users exhibit a relatively static access pattern, often
starting from a set of popular documents and following
the links contained therein. Modern caching and content-
distribution networks already exploit this observation to
some extent, biasing resource management decisions in

favor of “hot” documents.

These two observations suggest a solution to our prob-
lem: caching architectures should be designed to reuse
the shared portions of dynamic content, exploiting
knowledge of user content access preferences to effi-
ciently support transcoding and nomadic access (e.g., by
prefetching). However, fully exploiting these observa-
tions requires fundamental changes not only in caching
architectures but also in the nature of client requests and
server responses. This paper presents a novel architec-
ture forCOnsistentNomadicContentAccess (CONCA),
which attempts to support, from the ground up, caching
of dynamic personalized content for mobile users. Re-
search on CONCA has just begun: this paper presents
the underlying motivation and goals of the architecture
and identifies issues that we intend to focus on as part of
this project.

The rest of this paper is organized as follows. We iden-
tify the key enablers for CONCA in Section 2. Section 3
presents a high-level description of the CONCA archi-
tecture, and Section 4 describes a qualitative analysis of
benefits resulting from CONCA-like architectures in the
context of two personalized web portals. Section 5 dis-
cuss challenges and outstanding issues, Section 6 surveys
related efforts, and we conclude in Section 7.

2 Enablers: Additional Server-Side and
Client-Side Information

CONCA relies on two key enablers: additional server-
side information about content structure, and additional
client-side information about user content preferences.
Fundamental to the CONCA system is the decoupling
between content supplied by a server and that provided a
client: CONCA automatically bridges the semantic gap
between the two by relying upon these additional pieces
of information. Exposing such information, which has
traditionally been kept implicit at the server and client,
enables the CONCA architecture to enhance the effec-
tiveness of proxy caches.

2.1 Server Information: Document Templates

All content supplied by servers in the CONCA architec-
ture is assumed to be associated with a “document tem-
plate” which defines both the structure and form of the
content. The former refers to layout, the latter to se-
mantics, such as the object type, whether the object is
sharable or personalized, its time-to-live (TTL) charac-
teristics, information about server update protocols, etc.
Figure 1 shows an example of the kind of information
contained in a document template. The original person-
alized document consists of objects, some of which can
be shared among other users (S1 throughS5) and some

which are personalized to a specific user (P1 andP2).
The document template identifies these different kinds of
objects and tags them with additional information such as
their time to live. In the example, the news headline and
TV program objects are reusable across multiple users,
while some of the other objects (stock quotes, regional
weather) are less so. Thus, the document template en-
ables efficient construction of a personalized view of the
document for other users by fetching only those objects
that are unique, reusing to the extent possible the shared
objects already present in the cache (taking into consid-
eration their validity).

We must note that document templates need to refer to
finer-granularity objects than are currently identified us-
ing hyperlinks in top-level documents (e.g., the HTML
HREF tag). The latter are already amenable to sharing
using conventional caching architectures. More appro-
priate for our purpose are sub-document entities such as
HTML frames, tables, paragraphs, etc. Also relevant are
emerging standards such as the XSL Formating Object
specification [20], which could provide an appropriate
language in which to express document templates.

2.2 Client Information: Personal Assistants

To support efficient transcoding from cached objects
and support nomadic users, the CONCA architecture re-
quires additional information from users. This infor-
mation, captured in a “personal assistant” identifies the
kinds of devices the user has access to, the templates
for each of these devices, transcoding information about
how the original content must be converted for display
on a particular device, and additional information such
as (consistency) linkages between transcoded content
and original objects, etc. These user preferences allow
the CONCA architecture to (a) maintain consistency be-
tween an original document and its transcoded versions;
(b) decide how best to realize a user request for content
access taking into consideration the end-device charac-
teristics; and (c) concisely define the notion of a “per-
user state” in the cache, allowing efficient reconstruction
of the latter in a different cache to support nomadic users.

Continuing with our example in Figure 1, the informa-
tion contained in the user’s personal assistant is depicted
on the right. The information describes how the content
must be transcoded and structured for each of the user’s
end devices (in this case, a desktop, a laptop, and a PDA).
Note that similar to the document template, user pref-
erences also contain information about both layout and
form. For example, the template associated with the PDA
device indicates both that the content must consist of four
objects (S2’ throughS4’ andP1’), and makes explicit
the linkage between the original objects (S2 throughS4
andP1) as well as how the transcoded objects are gener-

S1

S2

S3

S4

S5

P1

P2

S1

P1

P2

S2
S3
S4

S5

S1 (TTL = 1 day)

P1
(TTL = 5

min)

P2
(TTL = 1

hour)

S2 (TTL = 20 min)

S3 (TTL = 20 min)

S4 (TTL = 20 min)

S5 (TTL = 1 hour)

P1 P2

S2
S3

S4

P1'

S2'
S3'
S4'

Document Template User Preferences

Laptop

Desktop

PDA

Figure 1. An example of a document template, differentiating between shared and personalized content.

ated (not shown).

We next describe how the CONCA architecture takes ad-
vantage of these two pieces of information.

3 CONCA Architecture

Figure 2 shows an overview of the CONCA architec-
ture. CONCA uses a distributed client-side proxy cache
architecture, similar to NSF’s IRcache project [14] and
other recently proposed projects [43, 26]. Such architec-
tures, which are complementary to server-side solutions
such as reverse proxy caches and content delivery net-
works [23, 8], attempt to reduce network traffic associ-
ated with a miss in the local cache; ideally, such schemes
would service the miss from a “near” proxy as opposed
to requesting the object from the original server. In
CONCA, as we shall see below, distributed proxy caches
are the key to providing scalability.

Each CONCA node consists of cache storage and three
modules—remote control unit, local control unitandre-
source management unit—which manage the node’s in-
teractions with other cache nodes, with users, and inter-
nal storage policies respectively. The information de-
scribed in Section 2 is leveraged by each CONCA node
to provide two broad kinds of support: (a) consistent
caching of dynamic personalized content, even when
some of the content needs to be transcoded prior to de-
livery to the client; and (b) support for nomadic users, by
enabling efficient recreation of per-user cache state.

3.1 Caching of Dynamic, Transcoded Content

CONCA cache nodes service client requests for dynamic
content, transcoding the latter to suit the client’s end de-
vice. Their performance advantage stems from (a) reuse
of shared portions of the dynamically generated content;

and (b) elimination of some of the transcoding opera-
tions. In more detail, the cache performs the follow-
ing six operations in response to a client request: (1)
looks up the personal assistant associated with the user,
(2) according to the description in the personal assis-
tant, figures out what ”device” to transcode content for
and how to perform the transcoding on the content, (3)
examines what shared/personalized objects need to be
fetched (based on what is already present in the cache),
(4) fetches the necessary objects,1(5) transcodes as re-
quired, while storing the intermediate objects, and (6)
constructs the response appropriate for user’s device ac-
cording to the related templates. These operations de-
pend upon the cache having access to both the document
templates and user personal assistants. The personal as-
sistant associated with the user can be either preloaded
(e.g., when the user registers with itshome cache) or
obtained on demand (e.g., from the home cache when
the user moves to a new location). We defer discussion
of the home cachenotion to Section 3.2. Similarly, the
cache can have the document templates preloaded or ob-
tain them on demand from either the server itself or from
a third party. Note that dynamically obtaining the tem-
plate from the server needs modifications in the protocol
between servers and caches.

Figure 3 shows the logical organization of cache stor-
age, which consists of two separate portions:sharedand
personalized. The shared portion contains static content
(e.g., objects associated with the URLwww.nyu.edu)
and the sharable subset of dynamic content (e.g., the ob-
jectsS1 throughS5 in our previous example associated
with the URLmy.yahoo.com). The personalized por-
tion stores the per-user state, both for “home” users as
well as other (nomadic) users who are temporarily us-

1Note that the cache can (and should) prefetch contents that a user
is likely to access, guided by the user’s personal assistant.

Shared

user 1

user 2

user N

Temporary
Users

Resource
Management

Remote
Control Unit

Local
Control Unit

R

Server Server

RRR

Cache
Cache

client client client client

 Cache

Cache

Cache

Cache

Figure 2. CONCA architecture: distributed proxy caches receive data from multiple server replicas (R).

ing this cache. This consists of (a) the user’s personal
assistant, which contains information about the user’s
profile, devices, and transcoding preferences, (b) down-
loaded personalized objects (e.g.,P1 andP2 from our
earlier example), and (c) (intermediate) transcoded ver-
sions of these objects. Note that although the figure
shows transcoded versions of all objects as being stored
in per-user storage, in general we may be able to share
intermediate transcoded versions of the shared objects.
In response to a user request, the cache first looks up
the personal assistant associated with the user to deter-
mine the objects of interest, then acquires the missing ob-
jects, transcodes them as required, and finally delivers to
the user a document assembled from the various pieces.
Each of these operations—content fetching, transcoding,
and assembly—can be done in an anticipatory fashion
using the information in the document templates and the
personal assistants, further reducing client-perceived la-
tency.

We must note that the reuse of shared objects in CONCA
can save more bandwidth than thedelta encodingtech-
nique proposed in HTTP/1.1 [31]. For example, if a
shared object is part of many pages at a site, delta en-
coding will require a separate retrieval for each changed
page, while only one retrieval is required in CONCA.

The CONCA architecture relies on transcoding to cope
with device heterogeneity. However, transcoding raises
a consistency problem in having multiple representations
of the same object. The CONCA architecture ensures
consistency among the various representations by asso-
ciating a TTL with each transcoded version (which de-
pends upon its creation time and the TTL and creation
time of its root object), and maintaining linkages be-
tween an object and its transcoded versions. While this
scheme works, it has the shortcoming that the granular-
ity of consistency is the entire object. Thus, a transcoded
version of an object might get invalidated even when
updates to the object do not affect the transcoded por-
tion. To capture such finer-grained and object-specific
relationships, we plan to leverage the notion of ob-
ject views [28] developed by the authors in prior work.

Object views permit explicit specification of conflicts
among multiple object representations, permitting effi-
cient maintenance of consistency.

3.2 Support for Nomadic Users

CONCA cache nodes support nomadic users by exploit-
ing the fact that the cache storage conveniently identi-
fies per-user state. This allows the state to be efficiently
recreated on another proxy node that the user is currently
close to. More specifically, each user associates a fixed
proxy cache as hishome cachein CONCA, defined as the
cache that maintains his per-user state persistently. The
user has the freedom to any cache as his home cache,
although for performance reasons one might choose the
one closest to the user’s residence. All of the users that
associate a particular cache as their home cache are col-
lectively referred to ashome users.

When a user travels away from his home cache, requests
from client applications are routed to whichever cache is
nearest to the user’s current location. We plan to leverage
the Web Proxy Auto-Discovery (WPAD) protocol [7] re-
cently reviewed by IETF to help nomadic users locate
near proxy caches. This new cache contacts the user’s
home cache to obtain information about the state asso-
ciated with the user. It can then satisfy the user’s re-
quests more efficiently by reusing any locally cached
content and prefetching personalized content from the
user’s home cache. Information about the home cache
can be provided either explicitly, as part of the protocol
employed when connecting to a new cache, or implicitly
by looking up a directory.

Supporting nomadic users introduces two consistency
problems:inter-proxy cache consistency for shared ob-
jects (a consequence of the distributed cache architec-
ture), andconsistency of personalized objects. Our ini-
tial solution to the first problem is to maintain a directory
structure for each shared cache item using thecoarse bit-
vector method[10]: a bit represents a group of neighbor-
ing caches. When an invalidation message is received
from the original server or higher-level caches, the in-
validation message is sent out to each group of sharers.

my.yahoo.com

myciti.com

www.nyu.edu

user 1

user n
temp user 1

temp user m

S
ha

re
d

lo
ca

l
te

m
pr

or
ar

y

P
er

so
na

liz
ed

S1

S2

S3

Sn

my.yahoo.com

myciti.com

etrade.com

template (desktop)

template (laptop)

template (PDA)

P1

P2

P1 P2

P1

profile (id,passwd)

S1

S2

S3

Personal Assistant

S2' S3' S4'

Figure 3. Detailed structure of a CONCA cache node, showing shared and personalized portions of the cache.

We intend employing a home-based eager update proto-
col to maintain consistency of personalized data between
a user’s temporary cache and his home cache. Eager
update means that the latest version of per-user content
stored in the remote proxy’s temporary cache is sent back
to the user’s home cache either periodically or when the
user explicitly disconnects from the cache. As such, a
strong consistency model is provided for personal con-
tent. The underlying assumption with this scheme is
that network transmission is faster than people moving,
which is reasonable.

4 Case Studies

To assess the benefits likely from CONCA-like architec-
tures when accessing dynamic and personalized content
from web sites, we qualitatively examined two represen-
tative portal sites:NYUHomeandMy Yahoo! . The first
is used by the relatively localized New York University
community, while the second caters to geographically
distributed clients who exhibit larger diversity. We are
currently in the process of quantifying the qualitative ob-
servations discussed here.

4.1 NYUHome Portal

NYUHome is a portal for information, collaboration,
interaction and communication for all students, faculty
and staff of New York University (NYU), and is being
widely used by the NYU community. Using any web
browser, NYUHome account holders are able to obtain
news and stock information, access their e-mail, regis-
ter for courses, participate in web forums, access class
pages, research tools, and more. The NYUHome screen
is customizable, and can be personalized by different

users to fit different needs and interests. Figure 4(a)
shows a screen snapshot of the dynamically generated
and personalized NYUHome page. Different resources,
such as news, courses management, reference searches
and/or a schedule of campus events, are provided through
channels, and the user can choose which channels he
wants to display on his screen. Currently NYUHome
supports 20 channels as shown in Figure 4(b).

Among these 20 channels, 9 of the channels are for ob-
jects that are sharable by everyone that has selected a
particular channel. These include event listings for the
NYU campus, news headlines, research tools linking to
the NYU library pages, movie listings, sports headlines,
web search interface, and form-based interfaces to the
NYU directory and an instant messaging system. Note
that users can still choose to locate these channels at dif-
ferent positions within their page; however, exposing this
layout information via server-supplied document tem-
plates would enable an intermediate CONCA-like cache
architecture to construct responses to user requests by
reusing cached data. Two (2) other channels are made up
of a common sharable part and a personalized part. For
example, the finance channel comprises a portion that
shows headlines from financial newspapers and a second
part that provides information about user-selected stocks.
The document template would identify for this channel,
the part that was shared and the part that was personal-
ized. Two (2) more channels exhibit more diversity in
their object contents but can still be thought of as be-
ing sharable in a large user population. For example, the
horoscope channel can be shared among the subset of the
user pool that shares the same zodiac sign.

The remaining 7 channels provided by NYUHome re-
fer to truly personalized objects, such as a user’s Email,

(a)

(b)

Figure 4. NYUHome portal: (a) a screen snapshot of
a personalized page, (b) a listing of all 20 channels
whose contents can be personalized by users.

enrolled classes, personal files, personal web page(s), in-
teresting links and forums, messages, and a personal My-
HTML channel. Although these personalized channels
cannot be shared among different users, note that their
identification as part of the document template and the
user’s personal assistant permits their prefetching.

The benefits of using a CONCA-like architecture in the
NYUHome context are clear. In addition to the fact
that there is significant reuse of traditionally uncacheable
content, CONCA would also enable efficient consistency
maintenance between the server and the cache. In con-
trast to treating the entire page as a single consistency
unit, which has the consequence that the page must be
updated every time any of its objects change, CONCA
permits different objects to be updated according to their
individual TTL settings. This has the potential of pro-
viding a big performance advantage over the traditional
scheme because objects with longer TTLs (e.g., links to a
user’s courses) need not be refetched everytime an object
with a shorter TTL (e.g., stock information) is updated.

4.2 My Yahoo! Portal

Yahoo! was one of the first sites on the Web to use per-
sonalization on a large scale, most notably with itsMy
Yahoo! (my.yahoo.com) application introduced in July
1996. My Yahoo! is a customized personal copy of Ya-
hoo!. Users can select from hundreds of modules, such
as news, stock prices, weather, and entertainment, and
place them on one or more Web pages. Figure 1(a) shows
an example of a personalized My Yahoo! page of one of
the authors.

Like the NYUHome portal, My Yahoo! users can bene-
fit from module-level sharing because several user pages
contain general modules sharable in their entirity. For
example, every user (at least those within geographical
proximity) see the same content for channels such as the
“top health news”, “new movie releases”, etc. Unlike
the small-scale NYUHome portal, the My Yahoo! portal
sometimes customizes the context of these general mod-
ules based on a user’s location. Such customized content
still lends itself to caching as long as a significant frac-
tion of users using the same proxy cache are subject to
similar customization. As with the NYUHome portal,
truly personalized My Yahoo! modules supporting per-
sonal information management such as Email, calender,
and weather information can benefit from prefetching.

However, an important difference between NYUHome
and My Yahoo! is that the latter provides many more
content modules to satisfy the diverse needs of a larger
user base, each of which is associated with a relatively
large number of alternatives. For example, the news
headlines of My Yahoo! can be customized to user-
selected news sources, such as Reuters and New York
Times, and the channels in the TV listings can choose
from different cable companies, etc. Although it is un-
likely that a significant subset of the user population
would have the samemodule-levelpersonalization for
such channels, there is a high likelihood of being able to
reuse individualitems(e.g., the New York Times head-
lines) among a moderately-large user base. Thus, unlike
channel-level sharing in the NYUHome portal, the My
Yahoo! pages benefit from item-level sharing, requir-
ing that the document templates supplied by the server
identify this hierarchical structure. Note that effective
exploitation of such reuse requires the cache to store
and manage individual items on the page. Whether or
not the overheads of such fine-grained management out-
weigh potential benefits is one of the issues we intend to
investigate in this project.

5 Challenges and Outstanding Issues

CONCA is a novel architecture which attempts to sup-
port, from the ground up, caching of dynamic personal-

ized content for nomadic users. Whether or not an archi-
tecture such as CONCA is successful depends on solu-
tions to several concerns, specifically how to obtain doc-
ument templates and personal assistant information and
how to manage cache node resources so as to achieve an
overall performance benefit. Our research is investigat-
ing these issues, discussed in additional detail below.

5.1 Obtaining Document Templates

As described in Section 2, document templates are es-
sential to caching dynamic and personalized content by
facilitating the reuse of shared objects. We anticipate that
document templates will be obtained in one of two ways.
The first, relies on servers making available information
about document structure that they already possess. Such
CONCA-friendly servers, for example along the lines of
fragment-based publishing systems proposed in [5], may
be willing to share information that they already maintain
internally (at either the XML/XSL level or other similar
forms) to ensure that they continue to exert control over
the content seen by the user. Since the CONCA architec-
ture is primarily concerned with presentation of the final
content to the user, servers do not need to expose any ap-
plication logic. The second scheme relies on a third party
to infer the document template either via automatic anal-
ysis or through human assistance. Several services such
as Avant Go, Spyglass, Yodlee, and EveryPath are al-
ready employing a similar strategy to “mobilize” legacy
web content for various devices.

5.2 Capturing User Content Access Profiles In
Personal Assistants

Logically, CONCA personal assistants capture the fol-
lowing three pieces of information: (1) the information
about the home cache of this user, (2) information about
the kinds of devices the user has access to, the templates
for each of these devices, transcoding information about
how the original content must be converted for display
on a particular device, and (3) additional information
such as (consistency) linkages between transcoded con-
tent and original objects, etc.

An important question here is what is the “right” level
at which such information must be expressed? Should
the personal assistants be mobile code that on behalf
of the user explicitly handle sensing the user’s context,
(pre)fetching, cache lookups, transcoding, and construct-
ing the response content, or should they just be high-
level specifications? The latter for instance could spec-
ify transcoded forms for various devices at the level
of MIME types (e.g.,Text+Image for a laptop ver-
sus Text for a PDA), relying upon a preexisting set
of transcoding components (e.g. different ICAP ser-
vices [19]) to convert one type into another. The cache

node takes responsibility for determining how best to
obtain a required type trading off concerns of qual-
ity against resource usage. Dynamic creation of such
transcoding paths has recently attracted a fair bit of atten-
tion, including in the context of the CANS system [16]
developed by the authors.

5.3 Communication versus Computation
Tradeoffs

Transcoding operations are often time consuming, there-
fore the cache node may sometimes have to decide be-
tween (re)transcoding an object locally and fetching the
transcoded object from a neighbor cache, even when the
original version is available locally. Similar issues crop
up in trying to decide between fetching content from a
cache node connected with a slow link that already has
the content in transcoded form, versus fetching it from
a cache node reachable via a faster link but where one
has to spend time transcoding the content. More gen-
erally, it is possible to treat the fetch and transcode op-
erations as components along the path, each with their
cost and effect on response time or throughput. There-
fore, the tradeoff between computation and communica-
tion becomes an optimization problem, with the objec-
tive being minimization of response time or maximiza-
tion of throughput. This problem is very similar to our
earlier work on automatic path creation and reconfigu-
ration in the context of the CANS system [17], where
the goal was to select and map appropriate components
along network-aware access paths.

5.4 Resource Management Issues

Several resource management aspects of the cache node
will end up determining overall performance benefits.
These include questions such as how should the cache
space be divided up between shared and personalized
content, and between home and temporary content, is
it possible to further reuse personalized objects by mi-
grating some of the server-side processing to the caches,
what are the best cache placement/replacement algo-
rithms, and how to efficiently support multiple home
caches.

6 Related Work and Discussion

Our work on CONCA builds on a large body of related
work in the general area of web caching. The interested
reader is referred elsewhere [1, 38] for good surveys of
different technologies. Instead of describing each sep-
arately, we group related efforts into four broad cate-
gories: commercial, dynamic content generation and de-
livery, transcoding, and prefetching.

Commercial efforts Commercial caching and edge

server products, most notably IBM’s WebSphere [9] and
Akamai’s Edgesuite [22] are beginning to incorporate
functionality that can be viewed as necessary infrastruc-
ture for CONCA-like architectures. Specifically, both of
these products support use of XML as a means to encode
document semantics in a presentation-independent fash-
ion, combined with tools that convert XML-based docu-
ments to formats such as HTML and WML to cope with
device heterogeneity. More recently, these products have
also been extended to enable execution of server appli-
cation logic on edge servers within a content-distribution
network. Doing so lowers client-perceived latency for
dynamic and personalized content since user requests
are now intercepted by edge servers, which dynamically
assembles appropriate responses instead of being for-
warded to origin servers.

CONCA builds on the infrastructure provided by such
efforts but differs from them in focusing on orthogo-
nal issues that are currently beyond their scope. First,
unlike the server-oriented focus of the above solutions
(e.g., permitting application logic to be shifted to edge
servers), CONCA focuses on intermediary cache-level
support. This focus is complementary to that adopted by
content distribution networks and is worthwhile pursu-
ing because it provides the advantage that cache policies
can be better tailored to the supported user base. The
encoding of user preferences for prefetching and docu-
ment layout envisioned in CONCA personal assistants is
an example of this. However, supporting caching of dy-
namic and personalized content in intermediate caches
requires a well-defined interface for exchanging informa-
tion between servers and caches that continues to main-
tain content rights with the server, which is something
that the above efforts have not needed to look at. Second,
CONCA emphasizes the notion of per-user cache state,
using it as the basis for managing sharing and prefetch-
ing of personalized content as well as coping with no-
madic users. Current commercial products provide lit-
tle support for this category of users. Finally, CONCA
makes explicit the linkages between multiple transcoded
versions of the same logical object in a cache. This per-
mits us to efficiently maintain consistency among these
versions, and is something that as far as we know is not
supported in either of the products mentioned above.

Dynamic content generation and delivery The
CONCA notion of splitting up a dynamically generated
and personalized document into sharable and personal-
ized components to improve cache effectiveness builds
upon previous work done both at the server-side [4, 5, 45]
and at the cache [3, 11, 30, 39, 33] to enable efficient
generation and delivery of dynamic content.

Representative examples of server-side mechanisms in-
clude data update propagation (DUP) [4], fragment-

based page generation [5], and the class-based page clas-
sification scheme used in the Cachuma page caching sys-
tem [45]. The common thread uniting each of these
mechanisms is that they all maintain dependence infor-
mation between dynamically generated pages and the un-
derlying data (typically fields in a database). This ex-
plicit dependence information enables servers to cache
or incrementally update previously generated dynamic
pages, reducing the cost of generating dynamic content.
maintaining its consistency (at caches). CONCA extends
such server-side work by proposing similar functional-
ity in cache nodes (away from the server) where depen-
dence information not only reduces the cost of maintain-
ing consistency for dynamic content [42] but also facili-
tates reuse of fragment objects among multiple users to
reduce access costs of personalized content as well.

Researchers have also suggested extending cache-side
functionality to better handle dynamic content generation
and caching. Active Cache proposed by Cao et al. [3] and
more recently the Gemini system proposed by Myers et
al. [33] require web servers to provide both content and
specialized code (applets in Active Cache, Java classes in
Gemini) that can be executed by proxy caches to produce
a new version of a cached document. This mechanism
in effect requires content providers to relinquish control
over part of the application logic, leading one to question
whether such schemes will see widespread use. CONCA
is closer in spirit to two other efforts, which retain con-
trol of application logic with the content provider instead
relying upon additional information about the document
structure. Douglis et al. in their HPP work [11] propose
separating a document into a cacheable static portion and
a dynamic portion that must be obtained on every access.
Mikhailov and Wills recently proposed content assem-
bly techniques [30], which enable construction of pages
from individal components cached in proxy caches closer
to users with future access to similar pages being able to
share components from previous ones. In both cases, the
primary goal is to reduce the amount of dynamic content
that must be retrieved from the origin server. CONCA
takes a more general view of such mechanisms, relying
upon richer document templates and user-supplied per-
sonal assistants to additionally support personalization,
transcoded content delivery for multiple devices, and no-
madic access.

Transcoding There is a large amount of prior work on
transcoding architectures [15, 18, 32, 35, 41], infrastruc-
tures for their effective deployment [16, 24, 34, 36, 37],
and lightweight protocols, such as IETF’s ICAP [19]
and W3C consortium’s SOAP [6]. CONCA intends to
leverage several of the underlying ideas in these works.
However, a notable difference in CONCA is the attempt
to reuse intermediate objects along the transcoding path

and integrate them into caching architectures. The lat-
ter is also what distinguishes our work from previous
work on consistency protocols for web caches [21, 27,
42], and on object location and request forwarding ser-
vices in the context of distributed web caching architec-
tures [12, 14, 26, 43, 44]. CONCA extends current sup-
port for transcoded versions in commercial server plat-
forms such as IBM WebSphere by allowing caching and
reuse of transcoded versions as well as providing more
flexible transcoding paths (e.g., those that span multiple
cache nodes).

Prefetching The CONCA architecture also makes ex-
tensive use of prefetching, which has been demonstrated
to be an efficient mechanism for reducing web access la-
tency. As noted by several researchers [13], there are
three distinct prefetching scenarios: prefetching between
clients and servers, between clients and proxies, and be-
tween proxies and servers [25]. Prefetching in CONCA
can also happen between two caches (proxies) and dif-
fers from its traditional use in being driven by the user
context and information about the latter’s content access
preferences as captured in the personal assistant.

7 Conclusions and Future Work

This paper has presented a distributed proxy cache ar-
chitecture called CONCA that provides support for con-
sistent caching of transcoded content to address prob-
lems arising from two growing trends: (a) dynamic, per-
sonalized nature of content; and (b) web access “on-
the-move” using mobile resource-constrained devices.
CONCA reflects our belief that caching architectures
need to be closely integrated with additional information
from servers and users to effectively support future re-
quirements.

To better quantify the benefits resulting from reusing
sharable objects in dynamically generated and personal-
ized content, we intend to instrument active web sites to
collect usage statistics. This information will help drive
the development of a prototype of the CONCA system.

Acknowledgments

We thank the anonymous reviewers for helping us im-
prove this paper. This research was sponsored by
DARPA agreements F30602-99-1-0157 and N66001-00-
1-8920; by NSF grants CAREER:CCR-9876128 and
CCR-9988176; and Microsoft. The U.S. Government is
authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained
herein are those of the authors and should not be inter-
preted as representing the official policies or endorse-
ments, either expressed or implied, of DARPA, Rome

Labs, SPAWAR SYSCEN, or the U.S. Government.

References
[1] G. Barish and K. Obraczka. World wide web caching:

Trends and techniques.IEEE Communications Magazine
Internet Technology Series, May 2000.

[2] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and
M. Rabinovich. Web proxy caching: The devil is in the
details. InProceedings of ACM SIGMETRICS Internet
Server Performance Workshop, June 1998.

[3] P. Cao, J. Zhang, and K. Beach. Active cache: Caching
dynamic contents on the web. InProc. of IFIP Int’l Conf.
Dist. Sys. Platforms and Open Dist. Processing, 1998.

[4] J. Challenger, A. Iyengar, and P. Dantzig. A scalable sys-
tem for consistently caching dynamic web data. InPro-
ceedings of Infocom’99, March 1999.

[5] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and
P. Reed. A publishing system for efficiently creating dy-
namic web content. InProceedings of INFOCOM’00,
March 2000.

[6] W3C Consortium. Simple object access protocol (soap)
1.1. Inhttp://www.w3.org/TR/SOAP/, 2000.

[7] I. Cooper, P. Gauthier, J. Cohen, M. Dunsmuir, and
C. Perkins. The web proxy auto-discovery proto-
col. In http://www.wrec.org/Drafts/draft-cooper-webi-
wpad-00.txt, November 2000.

[8] Digital Island Corp. http://www.digitalisland.com/.
[9] IBM Corp. Websphere platform. In

http://www.ibm.com/websphere.
[10] D. E. Culler and J. P. Singh.Parallel Computer Architec-

ture: A Hardware/Software Approach, chapter 12. Mor-
gan Kaufmann, Inc., 1998.

[11] F. Douglis, A. Hario, and M. Rabinovich. HPP:HTML
macro-pre-processing to support dynamic document
caching. InProceedings of USITS’97, 1997.

[12] L. Fan, P. Cao, J. Almeida, and A. Border. Summary
cache: A scalable wide-area web cache sharing protocol.
In Proceedings of ACM SIGCOMM’98, 1998.

[13] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetching
between low-bandwidth clients and proxies: Potential and
performance. InProceedings of ACM SIGMETRICS’99,
1999.

[14] A Distributed Testbed for National Information Provi-
sioning. http://www.ircache.net/cache/.

[15] A. Fox, S. Gribble, Y. Chawathe, and E. A. Brewer.
Adapting to Network and Client Variation Using Infras-
tructural Proxies: Lessons and Prespectives.IEEE Per-
sonal Communication, August 1998.

[16] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti.
CANS:Composable, Adaptive Network Services Infras-
tructure. InProc. of the 3rd USENIX Symposium on In-
ternet Technologies and Systems (USITS), March 2001.

[17] X. Fu, W. Shi, and V. Karamcheti. Automatic deploy-
ment of transcoding components for ubiquitous, network-
aware access to internet services. Technical Report
TR2001-814, Computer Science Department, New York
University, March 2001.

[18] S. D. Gribble and et al. The Ninja Architecture for Ro-
bust Internet-Scale Systems and Services.Special Issue
of IEEE Computer Networks on Pervasive Computing,
2000.

[19] ICAP Protocol Group. ICAP: the internet content adapta-
tion protocol. Inhttp://www.i-cap.org/icap/media/draft-
elson-opes-icap-01.txt, February 2001.

[20] W3C XSL Working Group. http://www.w3.org/style/xsl/.

[21] J. Gwertzman and M. Seltzer. World-wide web cache
consistency. InProceedings of the 1996 USENIX Tech-
nical Conference, January 1996.

[22] Akamai Technologies Inc. Edgesuite services. In
http://www.akamai.com/html/en/sv/edgesuiteover.html.

[23] Akamai Technologies Inc. http://www.akamai.com/.

[24] E. Kiciman and A. Fox. Using Dynamic Mediation to
Intergrate COTS Entities in a Ubiquitous Computing En-
vironment. InProc. of the 2nd Handheld and Ubiquitous
Computing Conference (HUC’00), March 2000.

[25] T. M. Kroeger, D. E. Long, and J. C. Mogul. Exploring
the bounds of web latency reduction from caching and
prefetching. InProceedings of the USITS’97, 1997.

[26] J. Kubiatowicz and etc. OceanStore: An architecture
for global-scale persistent storage. InProc. of the AS-
PLOS’00, November 2000.

[27] D. Li and D. R. Cheriton. Scalable web caching of fre-
quently updated objects using reliable multicast. InPro-
ceedings of the USITS’99, October 1999.

[28] I. Lipkind, I. Pechtchanski, and V. Karamcheti. Object
views: Language support for intelligent object caching in
parallel and distributed computations. InProc. of OOP-
SLA’99, November 1999.

[29] U. Manber, A. Patel, and J. Robison. Experience with
personalization on Yahoo! Communications of ACM,
43(8):35–39, August 2000.

[30] M. Mikhailov and C. E. Wills. Change and relationship-
driven content caching, distribution and assembly. Tech-
nical Report WPI-CS-TR-01-03, Computer Science De-
partment, WPI, March 2001.

[31] J. C. Mogul, F. Douglis, a. Feldmann, and B. Krishna-
murthy. Potential Benefits of Delta-Encoding and Data
Compression for HTTP. InProc. of the 13nd ACM SIG-
COMM’97, September 1997.

[32] R. Mohan, J. R. Simth, and C.S. Li. Adapting Multimedia
Internet Content for Universal Access.IEEE Transactions
on Multimedia, 1(1):104–114, March 1999.

[33] A. Myers, J. Chuang, U. Hengartner, Y. Xie, W. Zhang,
and H. Zhang. A secure and publisher-centric web
caching infrastructure. InProc. of the IEEE INFO-
COM’01, April 2001.

[34] A. Nakao, L. Peterson, and A. Bavier. Constructing End-
to-End Paths for Playing Media Objects. InProc. of the
OpenArch’2001, March 2001.

[35] Brian D. Noble.Mobile Data Access. PhD thesis, School
of Computer Science, Carnegie Mellon University, 1998.

[36] B. Raman, R.H. Katz, and A. d. Joseph. Universal In-
box: Providing Extensible Personal Mobility and Service
Mobility in an Integrated Communication Network. In
Proc. of the Workshop on Mobile Computing Systems and
Applications (WMSCA’00), December 2000.

[37] P. Reiher, R. Guy, M. Yavis, and A. Rudenko. Auto-
mated Planning for Open Architectures. InProc. of Ope-
nArch’2000, March 2000.

[38] J. Wang. A survey of web caching schemes for the in-
ternet. ACM Computer Communication Review (CCR),
29(5), October 1999.

[39] C. E. Wills and M. Mikhailov. Studying the impact of
more complete server information on web caching. In
Proc. of the 5th International Workshop on Web Caching
and Content Distribution (WCW’00), 2000.

[40] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. Karlin, and H. M. Levy. On the scale and perfor-
mance of cooperative web proxy caching. InProc. of
17th ACM Symposium on Operating Systems Principles
(SOSP), 1999.

[41] M. Yavis, A. Wang, A. Rudenko, P. Reiher, and G. J.
Popek. Conductor: Distributed Adaptation for complex
Networks. InProc. of the Seventh Workshop on Hot Top-
ics in Operating Systems, March 1999.

[42] J. Yin, L. Alvisi, M. Dahlin, C. Lin, and A. Iyengar. Engi-
neering server driven consistency for large scale dynamic
web services. InProceedings of the WWW10, 2001.

[43] L. Zhang, S. Michel, K. Nguyen, A. Rosenstein, S. Floyd,
and V. Jacobson. Adaptive web caching: Towards a new
global caching architecture. InProc. of the 3rd Interna-
tional WWW Caching Workshop, June 1998.

[44] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry:an in-
frastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, Computer
Science Division, UC Berkeley, April 2001.

[45] H. Zhu and T. Yang. Class-based cache management for
dynamic web content. InProceedings of INFOCOM’01,
April 2001.

