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Abstract of applications [11]. In this paper, we argue that peer-

We are witnessing two trends in Web content access: {@P€er caching system is a very interesting application,
increasing amounts of dynamic and personalized wesgpecially with the following two trends of Web content
content, and (b) a significant growth in “on-the-move®CCess: (a) increasing amounts of dynamic and personal-
access using various mobile resource-constrained d&&d Web content, and (b) a significant growth in “on-the-
vices by nomadic users. Web caching and the contmﬂ\_’e" access using various mobile resource-constrained
distribution network (CDN) are popular solutions for imdevices.
proving Web access latency and have the effect of movinghese trends point to a situation where a user would
content closer to the client. However, these solutions ty@ve ubiquitous access to content, but require that con-
ically do not work well with dynamically generated antent be efficiently delivered to the user irrespective of lo-
personalized contenflranscodings a popular solution cation, and in a form most suited to the user’'s end de-
to resolve server-client mismatches (device heterogeviee. Web caching and the content distribution network
ity), but is unable to benefit from caching in general. (CDN) are two popular solutions for improving Web ac-
These trends necessitate revisiting the traditional Weess latency and have the effect of moving content closer
caching and CDN approaches. In this paper, we prie the client. However, in the last five years, we have wit-
posed Tuxedo, a peer-to-peer caching system, that coxessed the fast growth of dynamic and personalized Web
plements to existing hierarchical-based Web caching fe@ntent [29], observing that both Web caching and CDN
efficient delivery of Web content and value-added edypically do not work well with those content [5, 10, 24].
services. Tuxedo allows multiple caches (peers) to &fanscodings a popular solution to resolve server-client
ficiently share not only original Web documents, bmismatches (device heterogeneous), butis unable to ben-
also computing resources for transcoding (by sharirgdit from caching in general.

transcoded versions) and other value-added edge serobject compositiorapproach [19, 23] proposed re-
vices. The novelty of Tuxedo includesaataptive neigh- cently is very promising in handling the first trend, which
bor set algorithnfor different Web servers, andféer- observes that despite multiple requests for the same site
archical cache digesor sharing of transcoded versiongesulting in different content at document granularity,
and value-added services. Together, these two protoggisre exists substantial opportunity for reuse at the sub-
contribute to the scalable and decentralized featuresdcument level (at the granularity of individual objects

the Tuxedo system. making up the overall document). Transcoding and
. applying other value-added edge services at the proxy
1 Introduction cache to suit the client’s end device based on user prefer-

Peer-to-peer systems have increasingly become a hoerees and user access patterns are efficient techniques to
search topic [15, 17, 21, 28]. However, in the comddress the second trend, as exploited by CONCA-like
text of peer-to-peer (P2P) computing, most of the rproxy caches [12, 19]. Although some pessimistic ob-
search projects focused on routing algorithms and effervations about cooperating caching were demonstrated
cient query search mechanisms. Currently, major ap\Wolman et al.'s work [24], in this paper we argue that
plications of peer-to-peer systems are music file sharihgse solutions for the two trends together hold the poten-
[7, 9, 14] and instant messengers [13, 27]. Although thal of both document sharing (e.g., document template
technology is promising, we still face the barrier of lacknd shareable objects) and computing resource sharing



(e.g., trascoded versions and other services) among ndelivery of dynamic and personalized content to users
tiple caches (peers). who access the content by using diverse devices and con-

In this paper, we proposed Tuxedo, a peer-to-pa@ction technologies. CONCA attempts to exploit reuse
cache system, as an alternative to existing hierarchialthe granularity of individual objects making up a docu-
based Web caching for efficient delivery of Web comrent, improving user experience by combining caching,
tent and value-added edge services. The novelty ppéfetching, and transcoding operations as appropriate.
Tuxedo includes aadaptive neighborhood set algorithm To achieve its goals, CONCA relies on additional in-
for different Web servers, and l@erarchical cache di- formation from both servers and users. All content sup-
gestfor sharing of transcoded versions and value-addalted by servers in CONCA architecture is assumed to
services. In comparison to Napster's centralized dirde associated with a “document template” which can be
tory servers [14] and Gnutella’s massive message floeadpressed by formatting languages such as XSL-FO [26]
ing [7], the approach adopted in the Tuxedo is more scat-edge-side include (ESI) [23]. Given this information,
able and completely decentralized. CONCA node can efficiently cache dynamic and per-

The remainder of the paper is organized as followsonalized content by storing quasi-static document tem-
Section 2 describes briefly the CONCA proxy cachplates and reusing sharable objects among multiple users.
which is the building block of the Tuxedo system. Thigloreover, based on the preference information provided
design and scalability analysis of Tuxedo architecturelg users, a CONCA cache node delivers the same content
presented in Section 3. Section 4 discusses the reldtedifferent users in a variety of formats using transcod-
work in this area and finally the current status and sefg and reformatting.

eral challenging issues are listed in Section 5. Figure 1 shows the logical organization of cache stor-
age, which consists of two separate porticstsaredand

2 Background personalized The shared portion contains static content

2.1 End-to-End is Not Enough (e.g., objects associated with the URMw.nyu.edu )

According to the end-to-end arguments [18], most of tﬁ‘gd the sharable §ubset Qf dynamic content (e.g., the TV
Ilihchannel associated with the URhy.yahoo.com ).

intelligence has been deployed at the end systemsT lized ) h both
the Internet. However, the rapid proliferation of Inter- e personalized portion stores the per-user state, bot

net users and increasing web traffic have led to a Iotf81E home us_lers as weLI_ as otr;]er (r}%madlc) users fwho
load on the origin servers and thereby led the conteft® temPorarl y uslmg t IS cac he'. h 'S gonglsftsa) (.
providers to adopt techniques that disseminate the |6Q8 users perSf)na a_ssmtan_t, which contains |r_1 ormation
on origin servers. The deployment of caching proxi@?om the user’s profile, deV|ce§, and transcodlng prefer-
and surrogates makes the first step by moving contenf B5€S: ) downloaded personalized objects, aoji({n-

the edge of the network. The rising demand for Interntgfmed'ate) transcoded versions of these objects. Note

services induces the idea of using existing caching pr(BQZflt although the figure shows transcoded versions of all

ies for more than simply accelerating the delivery of Weoéjjec:)s asbtl)elng srt]ored_ln per-u;er storage, 'g %energl we
content. They seem to provide a viable location to depl t{} eha edtob§ are :nterme late transcode versmr;ls
additional services. This implies a change in the current e shared objects. In response to a user request, the

Internet model where the client and the server are the t9\?0Che first looks up the perspnal asgistant associated \_Nith
end-points of communication and the introduction of “iﬁhe user _to dete_rmlne the objects of interest, th_en acquires
telligent” networks where intermediaries could proceg%e missing objects, transcodes them as required, and fi-

certain requests and responses [2]. This suggests tha{]ﬁ'ué( dell\_/ers to the user a document assembled from the
jyarious pieces.

Internet will no longer be a mere data transfer network; ) o
more and more functionalities can be injected into theThe CONCA proxy cache is the building block of the

network along the data path, ranging from the netwoﬂ%r-Oposed Tuxedo caching system, augmenting with func-

layer, such as active networks [22], to application-layéif,malities such as neighbor discoyery and resource shar-
such as CANS infrastructure [6]. ing among adaptive number of neighbors.

2.2 CONCA Proxy Cache 3 Architecture

CONCA (COnsistentNomadicContentAccess) [19] is Different from the hierarchical-based proxy caching ar-
a proposed edge architecture for the efficient caching amitecture, Tuxedo is an overlay network which charac-
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Figure 1: Detailed structure of a CONCA cache node, showing shared and personalized portions of the cache.

terizes itself by using efficient neighborhood propagation
and adaptive neighborhood mechanism for different Web

servers, and by using a hierarchical cache digest to SIOr& < shown in right part of Figure 2, each tuxedo node

mfr?rmat:onbrlelatjed to tra_mscodtled conter:jt or reTuIts rﬂfaintains a neighbor table which keeps the information
ot _er valuable e' g¢e serwceg. Also, Tuxe 0 eémploys p%‘@arding peer id (IP address) and a pointer to the peer
notion of reputationto deal with security and trust con

information. Table 1 lists an example of all information
CErns among peers. that a peer cache maintained, including latency, band-
width, availability of transcoded versions and results of
other services (e.g. language translated file is available
To ensure that neighborhood propagation is scalable, ounot), etc.
approach includes the following four steps:

3.1 Neighborhood Propagation

Since each node (peer) maintains its own neighbor ta-
Stepl each peer (CONCA proxy cache) configures it's ble and receives query only once, it saves the network
upper-level cache as it’s neighbor. from flooding effect. However, based on the informa-
Step2 each time when a peer makes request to its neightion collected through piggyback technique only, it is
bor node and when the neighbor node sends responsga 14 decide the value of latency/bandwidth between
a neighbor table (information related to peers address

latency, bandwidth, transcode services, etc.) is piggy-jfhes‘e two new peers, and this is one of the challeng-

backed along with HTTP request/response header. Noth'd issues we are focusing currently. In our initial ap-
that some optimizations, e.g., diffing, are used to reducdroach, the latency between the local cache and a new

the network traffic. added neighbor is calculated as the sum of two laten-
Step3 after receiving the neighbor table from other peers,cies (upper limit) as explained in the following example.
the local Tuxedo cache filters out neighbor informationConsider a scenario where A is neighbor of B with la-
from HTTP header and inserts it in local neighbor tab|etencyLAB, and C is neighbor of B with latency ¢
according to some performance metrics, such as IatencNOW B tries to piggyback C's information to A. While

or bandwidth. . . Y STV .
Step4 periodically each peer sends request to these neig inserting C's information in AS neighbor table, the la

bors to obtain accurate values for piggy-backed neighbo ency between A and C can be calculated M? =

data and update neighbor table with fresh values. If the lal-AB + Lsc. For the bandwidth, we take the minimum
tency ( or bandwidth) between the local cache and neighaSBac = min(Bag, Bpc). However, when we update
bor is too long (or small for bandwidth), local cache will these peer information (executing step 4), we can re-sort
remove this neighbor from it's neighbor table. out the elements of neighbor table with fresh values.
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Figure 2: Two tables maintained at each Tuxedo cache node: server table and neighbor table.

PeerAddress | Latency (second) Bandwidth (MBps)| ImageResize LanguageTranslation Reputation
141.217.16.181 4.00 100.00 true false 0.98
141.217.16.182 6.00 110.25 true true 0.72
141.217.16.183 6.50 124.35 false true 0.83
141.217.16.184 11.00 97.62 false true 0.98

Table 1: An example of 4 neighborhood information maintained at one Tuxedo cache node.

3.2 Adaptive Neighbor Set used to update the server table information. In our cur-

One of the challenging problems in peer-to-peer infra_f?—”t design, we maintain two or.dered neigh_bortables that
tructure is to find neighbors (peers) and maintain their ifidexed by latency and bandwidth respectively.
formation. In addition to the neighbor table as describedConsider a scenario where proxy cacdheeceives a

in last section, each Tuxedo node also maintains serigguest from a client to get Web content framww.
table for different Web server, as shown in the left pafyz.com . A can then contact one of his neighbBr

of the Figure 2. Server table keeps two-piece of informid- € [1,m]), where P; denotes theth neighbor in the
tion: (1) a pointer (integer number) to the neighbor tabigighbor setyn is the number of his neighbor set. If
and (2) original server information (latency/bandwidththe size of the required content is small (latency is dom-
The pointer associated with each Web server depicts iif@nt), cacheA will select/prefer a neighbor which has
specific neighbor set of this Web server. For examinimum latency. From Figure 2, cackewill choose
ple, as shown in Figure 2, the pointer of web servér. Consider the other scenario in which the requested
www.xyz.com is 3, which points out that it's neighborcontent is a large media file (bandwidth is dominant), in
set consists of the first three neighbors (P1,P2,P3). Théde caseA might choose/prefer a neighbor that has max-
neighbors are chosen because their latencies to this caghen bandwidth available.

node are less than that of original server latency (11 sedo generalize this, let us assume the file siz8,iand

in this case). Later, the local cache can make a requ&ss a configurable threshold (intermediate size to decide
to any of these neighbors to get the requested contevtiether entries in the neighbor table should sort in terms
Each Tuxedo node maintains the update of neighbor ¢éatency or bandwidth). Using,, andLs; to denote

ble information by periodically polling or piggyback upfatencies between local cache and peand Web server
dating from these neighbors. A similar approach can peB,, and B, to denote bandwidth between local cache



and peeri and Web servey, respectively, the Web sitethat deal with different scenarios by considering latency,

J's neighbor vectoi/s, can be defined as, bandwidth, valuable edge services, reputation, and com-
putation time.
{P;lwhere L,,, < Ly;;i € [1,n]}, S<X; We propose to use hierarchical cache digesap-
Vs, = proach to maintain consistency and share content among

{Pi|lwhere B, > Bs;;i € [1,n]}, S>X  multiple peer caches. Our approach includes two parts.

First, each peer maintains a digest that depicts what kind

By using the above technique we can choose a ne'ghgloéervices it supports in addition to original content. We
vector for each Web server dynamically/adaptively. OB?an to use a bit vector method [3] to store this infor-

can consider_latehcy for normal Web sites, and SWiF%tion. Second, a cache digest is maintained for each
over_to choosmhg h'glh bandW|dth_neh|ghbor? for media 'Bervice supported by this cache, using the Bloom filter
tensive sites where arge bqndW|dt IS pre erred.i __algorithm [1]. The algorithm has been successfully used

Note that our adaptive neighbor set approach is d'ﬁ‘ﬁ’i'cache digest algorithms proposed in [4, 16]. For each

entfrom the app_roa_ch usedin Squirrel caching [8]’Whiggrvice supported by the cache, the corresponding di-
was build on a distributed hash table and did not take theq syoreq the information about which transcoded con-

bandwidth or latency into consideration for different W nt (by applying this specific service) is available in this

S|te|s.b|0ur 'glt'i}l_ rgsulti shor\]/v _that our a[;proach IS MO che. As such, this will support the reuse of transcoded
scalable and efficient than t €ir approach. versions resulting from different valuable edge services.
In peer-to-peer networks, peers are join an_d Iea\_/e_ fF—‘?.Irthermore, based on these digestease-basedp-
quently_. Soitis w_nportant to. keep track of this det'V'%roach can be used to maintain consistency among re-
To des!gned proficient caching system we believe trh%te replica and origins. The right portion of Figure 2
reputat!on factor should pe conS|der§d. Tuxedo coughcbwS a example, where all peers support image resiz-
reputitlon for each peer 'T the chJIII.()er]rjg/r:narlmer.l Wh?ﬁ'g service and language translation service, and the di-
Eeer blcontagtr?ny p(‘ajer_ocatel_ In his/her loca ge'ggésts for the availability of resized images and translated
or table, and that noae 1s notlive (’or not r’espon ) C8Bntent are stored separately in the table. As shown in
be counted as false hit. Such node’s (peer’s) reputatign + o 1, it sets the flague or false depending
should be decrease by somepercentage as a Ioenal%pon the availability of such service. For example, from

and we can update the such information in local nei%—e table we see pedd1.217.16.181  has provided
bor table. So next time peer A can take reputation faCE?fmage resize service éincé flég is sariE

into consideration while requesting the content from such
malicious peer and able to find other trustworthy peers3.4  Scalability Analysis

3.3 Transcoded Content and Edge Services  we argue that the proposed peer-to-peer caching archi-
As an extended version of CONCA, Tuxedo suppotscture, Tuxedo, is highly scalable. It helps achieve scal-
computing resource sharing by using transcoding aadgility in many ways. First, by storing the peer’s informa-
other edge services at other peers. Currently Tuxddm locally it reduces the amount of search requests that
adopts a simple approach to decide whether cached cthigyuser needs to send out in order to locate Web con-
of transcoded content should be accessed from neightters, which leads to reduction in response time (latency)
or it should perform transcoding locally. Let's considexs well as diminish the network traffic. Second, adaptive
Thotrans @S COmputation time to get a cached copy (neeighborhood is a scalable way to solve the increasing
transcoded)]},.ns @S computation time to fetch a cachedumber of neighbors, and it is a completely decentral-
copy (transcoded version), then such values can be ¢ad approach. Moreover, Tuxedo supports asymmetric
culated asT},otrans = Z?:ll L; + Teony andTyqns = relationship between peers, for example, Peer A can be a
Z?il L;, whereh; equals the number of hops for origneighbor of Peer B, while Peer B may not be a neighbor
inal copy, hy equals the number of hops for transcoded Peer A. Third, the memory space requirement for our
copy, L; is the latency for hop, andT,,,. is time re- approach is small enough to keep all of data structure in
quired to convert content specific to user’s end device lmemory, which augments the scalability of system. Us-
cally. Based on the value df,otrans and Ti-qns, ONE ing Table 1 as an example, it stores information related to
can establish a connection with the preferred peer. YWeer id, latency, available bandwidth, availability of im-
are also investigating efficient techniques to select a page resize service and language translation service, and



reputation percentage of peers. We observed that to store sending requests periodically (batch jobs) or by the

such information for 4 peers it requires around 1 KB of
memory space. So, we can store 1000 neighbors infor-
mation by utilizing 1 MB of memory space. Also, the
memory space required by the server table is also very
small (less than 100 bytes), so Tuxedo can support more
than one million Web sites (100 MB) very easily. Fi-
nally, the piggy-back based information update protocol
also enhances the scalability of Tuxedo. o

4 Related Work

Our work on Tuxedo builds upon a large body of related
work in the general area of Web caching and peer-to peer
system. Here we will discuss only two recent efforts that
share similar goals and approaches.

Backslash [20] is a content distribution system based
on peer-to-peer overlay and used for those who do not
expect consistently heavy traffic (flash crowds) to their
sites. While Tuxedo focuses on the scalability and re-
source sharing among peer-to-peer proxy caches, level™
aging the browser caches on the client machine to form
a peer-to-peer cache , such as Squirrel [8] and Browser-
Aware Proxy Server [25], is another approach to improve
scalability and performance. However, in their imple-
mentation, the proxy server maintains the index file of
data objects of all clients’ browser caches. So, it's not
a totally decentralized concept and may lead to a single
entry point failure. We are maintaining such an index file
on each peer's machine so that they can directly locate
other peers who already have these data objects in their
cache. Moreover, both Backslash and Browser-Aware
Proxy Server do not provide mechanisms for transcod-
ing or any other valuable edge services.

5 Current Status and Future Work
5.1 Current Status

At present, we have done a simulation-based proof-of-
concept of Tuxedo system, including neighbor propaga-
tion and adaptive neighbor set algorithm. We plan to in-

piggy-back technique. But this is not efficient for
dynamic updates of information. For example, in-
formation retrieved by piggybacked approach do not
reflect the actual value (bandwidth, latency), e.g.,
triangle problem described in section 3.1. To inves-
tigate a proficient method to get such information is
a challenging research issue.

Supporting multiple servers: The adaptive neigh-
bor set algorithm works fine for the Web site which
has only one centralized server. However, with the
prevalence of distributed server farms, application
server providers, and content distribution network,
the latency and bandwidth from one web site may
experience different values at different time, which
makes the server table in Tuxedo cache node un-
stable. Handling this issue is another aspect of our
future work.

Optimization of computation and communica-
tion: Transcoding operations are often time con-
suming, therefore the cache node may sometimes
have to decide between (re)transcoding an object
locally and fetching the transcoded object from a
neighbor cache, even when the original version is
available locally. Similar issues crop up in trying
to decide between fetching content from a cache
node connected with a slow link that already has
the content in transcoded form, versus fetching it
from a cache node reachable via a faster link but
where one has to spend time transcoding the con-
tent. More generally, it is possible to treat the
fetch and transcode operations as components along
the path, each with their cost and effect on re-
sponse time or throughput. Therefore, the tradeoff
between computation and communication becomes
an optimization problem, with the objective being
minimization of response time or maximization of
throughput.

tegrate it into CONCA proxy cache, which is under d??eferences

velopment at Wayne State University.
5.2 Future Work
During the simulation of Tuxedo protocols, we encoun-

tered several challenging issues that will be the focus &4
our future efforts.
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