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Abstract

Distributed file systems have been extensively stud-
ied in the past, but they are still far from wide accep-
tance over heterogeneous network environments. Most tra-
ditional network file systems target the tight-couple high-
speed networks only, and do not work well in the wide-area
setting. Several communication optimization techniques
are proposed in the context of wide-area file systems, but
these approaches do not take into consideration the file
characteristics and may instead introduce extra comput-
ing overhead when the network condition is good. We en-
vision that the capability of providing adaptive, seamless
file access to personal documents across diverse network
connections plays an important role in the success of fu-
ture distributed file systems.

In this paper, we propose to build an adaptive dis-
tributed file system which provides the “ClosE and Go,
Open andResume” (Cegor) semantics across heteroge-
neous network connections, ranging from high-bandwidth
local area network to low-bandwidth dial-up connec-
tion. Our approach relies on a set of new techniques
for managing adaptive access to remote files, including
three components:system support for secure, transpar-
ent reconnectionat different places,semantic-view based
cachingto reduce communication frequencies in the sys-
tem, and type-specific communication optimizationto
minimize the bandwidth requirement of synchroniza-
tions between clients and servers.

1. Introduction

We have witnessed unprecedented growth in the number
of mobile users, mobile devices, and connection technolo-
gies. This trend is enabling the vision of a pervasive com-
puting paradigm where users have network access any-
time, anywhere. For example, a well-traveled laptop user
might use half a dozen different networks throughout the
course of a day: a cable modem from home, a wide-area
wireless on the commute, a wired Ethernet at the office,
a Bluetooth network in the car, and a wireless, local-area

network at the airport or the neighborhood coffee shop.
It is now substantially easier to access public informa-
tion from anywhere with the emergence of the World Wide
Web (WWW). However, secure remote access to personal
files and data after reconnection at other places still re-
mains painful and cumbersome, which consists of three
steps: (1) retrieve the files using secure file transfer tool,
(2) work on the local file, and (3) write it back to remote
file server using secure file transfer mechanism. Although
we can access remote files by using telnet or some remote
desktop tools [5], the poor network performance is quite
frustrating and inconvenient.

Network and distributed file systems have been exten-
sively studied in the past, but they are still far from wide
deployment across diverse network connection technolo-
gies. Most traditional network file systems target the tight-
couple high-speed network only, and do not work well
in the wide-area setting [2, 3, 10]. Several communica-
tion optimization techniques are proposed in the context of
wide-area file systems [13, 15, 23], but these approaches
do not take into consideration the file characteristics and
may instead introduce extra computing overhead when
the network condition is good. The objective of this pa-
per is to build an adaptive distributed file system which
provides transparent “ClosE andGo, Open andResume”
(Cegor) semantics across heterogeneous network environ-
ments, ranging from high-bandwidth local area network to
low-bandwidth dial-up connection.

There are three challenging issues in building an adap-
tive distributed file system: (1)trustnessThe new environ-
ment to which the user has connected is untrusted in gen-
eral, and so does the remote client to the file server; (2)di-
versityDiverse network connection technologies on which
the distributed file systems operate demand thatadapta-
tion should be the first-class option during the design;
(3) transparencyA transparent reconnection mechanism
which provides “close and go, open and resume” experi-
ence [8] is of great importance to the wide acceptance of
a distributed file system. However, these issues receive lit-
tle assistance from today’s operating systems or Internet
protocols.



Our approach relies on a set of new techniques for man-
aging adaptive access to remote files. This includes
three components:system support for secure, transpar-
ent reconnectionat different places,semantic-view based
cachingto reduce communication frequencies in the sys-
tem, and type-specific communication optimizationto
minimize the bandwidth requirement of synchroniza-
tions between clients and servers. Specifically, the contri-
butions of the Cegor file system include:

• A transparent reconnection mechanism, which pro-
vides the client the same connection view as the last
connection. View credentials are used to authenticate
remote clients.

• An adaptive lease-based reconcile consistencyto ac-
commodate heterogeneous network environments.
The number of reconciliations between clients and
servers are adapted based on current client connec-
tion technology.

• A semantic view based zooming protocolwhich ef-
ficiently maintains the consistency between multiple
intermittent clients and the file server. The adaptive
zooming protocol has the potential to adjust commu-
nication frequencies of clients.

• A novel memory cache replacement policythat uses
the observed semantic distance between files to im-
prove replacement decisions.

• An adaptive type-specific communication optimiza-
tion schemeto minimize communication bandwidth
requirements of messages without introducing any
extra network round-trips.

The above techniques will be incorporated into a prototype
implementation called Cegor based on OpenAFS [25],
which is an open source implementation of the AFS sys-
tem [10]. Note that the Cegor system is built targeting for a
small collaborative group of co-workers, typically in aca-
demic research group or business project group. However,
it is also designed to scale for large number of such groups.

The rest of the paper is organized as follows. Section 2 de-
picts the detailed design of Cegor, including three major
components: secure, transparent reconnection, semantic-
view based caching, and type-specific communication op-
timization. Related work is discussed in Section 3. Finally,
current status and future work are presented in Section 4.

2. Design of Cegor File System

We first briefly describe an overview of our approach.
Given this summary, the rest of this section presents au-
thentication and transparent reconnection, semantic view
based caching, adaptive type-specific communication op-
timization and some preliminary results.

2.1. Overview of Our Approach

Our objective is to build an adaptive file system which pro-
vides the “ClosE andGo, Open andResume” (Cegor) se-
mantics across diverse network connections. Our approach

to build the Cegor file system consists of three compo-
nents:secure and transparent reconnection, semantic view
based caching, andadaptive type-specific communication
optimization.

Our approach for secure and transparent reconnection for
mobile users is based on the notion of connection view
and a home-based authentication protocol. The connec-
tion view of a client is a snapshot of current connections
between the client and the file server (Section 2.2.1). Af-
ter reconnecting from another place, Cegor will automat-
ically rebuild all existing connections between the client
and the server based on credentials embedded in connec-
tion view (Section 2.2.2), and maintain consistency based
on semantic views (Section 2.3.1).

We view the problem of performance optimization in
a distributed file system as two sub-problems:reduc-
ing the number of messages (bandwidth saving)and
reducing bandwidth consumption of update messages (la-
tency reduction). Our approach for the first sub-problem
is based on client-side file caching and a relaxed con-
sistency model. The core idea behind our approach is
the notion of “semantic view”, which depicts the cur-
rent file view of client cache (Section 2.3.1). We propose a
semantic view based reconcile consistency protocol (Sec-
tion 2.3.2). Based on this model, two optimizations,
shadow cache and adaptive zooming protocol(Sec-
tion 2.3.3) andsemantic-distance based cache replace-
ment (Section 2.3.4) are proposed to further reduce the
number of messages.

We address the second sub-problem by proposing atype-
specific differencingtechnique. Our preliminary results
show that different file types have different characteristics,
which motivate us to apply different optimization tech-
niques against them. To adapt to different connections and
diverse computing overhead of different differencing al-
gorithms, we propose a dynamic adaptive scheme to auto-
matically negotiate the communication protocol between
clients and servers (Section 2.4).

2.2. Secure and Transparent Reconnection

The major security concern of an adaptive distributed file
system with nomadic support isclient request authenti-
cation and authorization, which addresses the problem of
the distribution and enforcement of access rights to clients.
This is especially important when nomadic clients are con-
nected from other administrative domains, such as airports
and hotels.

2.2.1. Client Request Authentication and Authoriza-
tion In NFS, a server needs to add an entry in its file ex-
port configuration file (e.g.,/etc/exports ) to allow a
directory accessible by other machines (based on their IP
addresses). Later, the server controls accesses to this di-
rectory based on this file. In a nomadic setting, in which a
client usually gets an IP address from a new environment



dynamically, this IP address based exporting mechanism
is inflexible for transparent access. Moreover, the userid
based authentication over a wide-area network is vulnera-
ble. Therefore, an IP-independent, userid-independent au-
thentication and authorization approach is required to sup-
port transparent remote access. Although the self-certified
file name approach shares the same goals as ours [20], our
approach are completely different.

We introduce the concept ofconnection view (CV)to sup-
port secure access and transparent reconnection over het-
erogeneous network environments. Logically, a connec-
tion view is the snapshot of all connections between a
client and a file server when disconnecting. Each connec-
tion view has a view credential which includes the access
key of this client’s view root (e.g., the mount point of this
client), current working path(s) of related processes run-
ning on the client, file read-write rights, and related file-
read keys and file-write keys. The connection view cre-
dential will be used for reconnection authentication later.

The file server (actually file owner) controls read-write
rights of files (including directories) by assigning file-
access keys [12]. Logically, each file has two keys:file-
read keyandfile-write key. Since it is impractical to have
two distinct keys for each file within one connection view,
we propose a general approach for key derivations from
the root key of a view, as described in the following.

Consider a connection viewCVi, and let the file-read key
and file-write key of the root beKro and Krw. Let m
be some node (file or directory) within the connection
view, and letname(m) return the name of nodem, and
parent(m) return the node id ofm’s up directory. The file
access keys for nodem, Krom

andKrwm
, are derived as

follows:

Kr(o|w)m
=

{
Kr(o|w) : if m is root

H(name(m)|Kparent(m)) : otherwise

where,H(.) is a one way hash function, which is com-
putationally infeasible to invert. We intend to use SHA-
1 [1] for this purpose. Note that, the keys of all files and
directories within the connection view can be derived from
the root key by default. However, in some circumstances,
the server may want to restrict the access rights of some
files or directories from some users. In this case, it is easy
for the server to assign a separate sub-root key for these
files or directories, and the keys associated with children
of the directories will be derived in the same way as be-
fore. File-access keys distribution is accomplished by in-
troducing another key named as thekey-lock key. The key-
lock key is a pre-determined key for this file server, which
can be distributed to legal file clients by any out-of-band
security means. During the initial mounting procedure, the
file-access keys of the root directory will be piggybacked
to the client, encrypted by the shared key-lock key.

It is easy to authenticate client requests given the key
derivation algorithm. Let us assume that a secure chan-

nel has been constructed between a (remote) client and a
file server no matter where the client being, any request for
a filesystem operation will be verified using the appropri-
ate request credential (RC). To prevent the replay attacks,
a request credential includes three parts: a random gener-
ated noncen, a timestampt, andH(Kr(o|w)|n|t), where
Kr(o|w) is the appropriate file access key. This form of cre-
dential prevents the eavesdropping of the key and assures
the server that the requester does possess the proper key.

Cegor provides an adaptive authentication policy to ad-
dress the diverse security requirements. For example, in
a local area network which supports Kerbores [24], the ac-
cess control can be implemented by Kerbores. However,
when the client connects to a different Kerbores domain,
a connection view based authentication protocol will be
used, as discussed in the following.

2.2.2. Transparent ReconnectionIt is straightforward
to support secure and transparent reconnection given the
notion of the connection view and the view credential. Be-
fore the disconnection, the client creates a reconnection
credential by hashing the value of his connection view, and
sends this credential back to the server. Later, this connec-
tion credential is used by the HAP protocol to authenticate
the requested client. After that, the client part of the Ce-
gor system will automatically mount the filesystem and set
the current working path(s), and create multiple shell win-
dows (if necessary) at the client side. To improve the per-
formance, modifications made by other clients during this
period are proactively send to the client side by Cegor.

2.3. Semantic View Based Caching

The central idea of Cegor is using adaptive caching tech-
niques to amortize the heterogeneity of network tech-
nologies. We borrow the idea ofwhole-file cachingfrom
AFS [15], but we provide another layer of abstraction —
semantic view— to make the system adaptive.

2.3.1. Semantic ViewThe semantic view of a client is
defined as the snapshot of all files and directories stored
in the client cache, including names and attributes (also
known as metadata). Semantic views provide Cegor with
the essential ability to maintain consistency between client
and server and to optimize communication.

Logically, a semantic view includes three parts:files and
their attributes, directories and their attributes, and se-
mantic distance of these files and directories. Each file is
associated with a six-element tuple:
< fileID, op, rw, Vlast,D,N >, wherefileID is the
unique file identifier in the Cegor system;op is used to
describe the current status of the file, with its three pos-
sible valuesaccess, cacheandshadowed(the discuss of
shadowed cache is detained to next section);rw represents
the access control to this file by this client; Versioning is
used in Cegor to maintain consistency and reduce com-
munication overhead,Vlast is the last version number at



the end of this session. A session is defined as the inter-
val between two synchronization points between the client
and the server;D is the digest of file content, calculated
by SHA-1 function [1];N is the set of files whose seman-
tic distance to this file is less than a predefined distance
threshold (Dthreshold).

Cegor treats directories in the same way as files, however,
the closest neighbor set of a directory is defined as the set
of directories whose directory semantic distance to this di-
rectory is less than a predefined value. The notion of se-
mantic distance between two files is defined as the life-
time semantic distance, i.e., the overlap time of the ac-
cesses to any two files, borrowed from original work of
SEER [16]. We extend this notion to support directory se-
mantic distance, which is defined as the average file se-
mantic distance between all files within two directories:
DAB = 1

NA×NB

∑NA

i=1

∑NB

j=1 dij , whereNA, NB are the
number of files in each directory. If there is no semantic re-
lationship between two files, the semantic distance is de-
fined as the maximum distanceDmax.

2.3.2. Reconcile Consistency ProtocolTo support “al-
ways on” connectivity, the consistency protocol of Cegor
includes three parts: (1) normal operation; (2) stop opera-
tion; and (3) resume operation. We will describe them sep-
arately in this section.

Normal operation During the normal operation between
clients and servers, Cegor adopts an adaptive lease based
approach. The lease time of each client is negotiated at
the beginning of connection setup and determined by the
current connection speed. During the course of two re-
newals, all file operations except an open file missing are
performed locally. When the lease time expires, the client
needs to send back his semantic views to the server, to-
gether with all the file and directory changes made dur-
ing the last session. To save the communication overhead,
the last semantic view of each client is maintained at both
sides so that only the difference between the new semantic
view and the last semantic view needs to be sent across the
network. After the server gets the new semantic view from
the client, it will check the current status of all files and di-
rectories, and send back the modifications that were made
by other clients. We propose a novel consistency model
calledreconcile consistencyin Cegor for maintaining co-
herence between multiple clients and servers.

The reconcile consistency is motivated by the following
example: assume there are two files,A andB, shared by
two clients,C1 and C2. AssumeC1 cachesA, and C2

caches bothA andB. Suppose thatC2 updatesA andB,
and then reconciles with the server. The server now knows
about both new versions. IfC1 wants to reference bothA
andB without an intervening reconciliation amongC2’s
reconciliation, it will see the old versionA (cached) and
new version ofB. Therefore, clientC1 sees updates out-
of-order. We believe that it is very important for the Ce-

gor system to provide consistent in-order updates for each
client. Continuing with the previous example, when client
C1 wants to accessB, the server should send back an old
version that should be visible toC1 after the last reconcil-
iation. Therefore, we have the following definition:

Reconcile Consistency: A client needs to reconcile with the
file server when its lease is expired. Between two reconcilia-
tion events, all the local cache missing in the client will be
served with the corresponding latest version, which chronolog-
ically happened before its last reconciliation. It is the reconcile
consistency that guarantees this client will see the new version of
all files by the next reconciliation.

Reconcile consistency assures that the modifications made
by one client A are guaranteed to be visible to another
client B within at most two rounds of reconciliation —
one is between A and the server, the other is between B
and the server. In other words, the maximum delay be-
tween a write operation from one client to a read opera-
tion of another client is between 0 and(Ti + Tj), where
Ti andTj are the current lease time of clienti andj re-
spectively. We believe that this is an acceptable delay in
a distributed system. To reduce the communication over-
head further, the server will not send back clienti’s recent
modifications of those files whose operating mode is in
accessstatus at clienti. Reconcile consistency eliminates
the requirement to maintain read and write token holders
at the server side for providing tight consistency, used by
Sprite [26] and Echo [9].

Cegor supports multiple-readers/single-writer semantics
based on a modified optimistic concurrency control strat-
egy. Similar to the conventional Unix file system, exclu-
sive file locks are used to prevent multiple writers concur-
rently modifying a file. However, if a user has the read-
write right (in its last semantic view) and wants to mod-
ify this file in the middle of a reconciliation session, Ce-
gor allows the user to optimistically start modifying be-
fore obtaining the exclusive file lock,thus deferring the
file lock acquisition to the next synchronization point. Al-
though there are certain risks of modification conflicts, we
believe this is rarely happens based on previous conflict
analysis on AFS [15] and Ficus [27].

Stop operation Because both the server and the client
have no idea of how long it will take before the next re-
connection, it is better for the client to send back all the
modifications that he has made since the last synchroniza-
tion and release all file locks it has occupied. Cegor forces
a synchronization between the disconnecting client and the
server even though the lease remains effective. All files in
access operating mode at the client need to be synchro-
nized, and all exclusive file locks should be released.

Resume operationAfter successfully reconnecting based
on the mechanisms described in Section 2.2.2, Cegor ne-
gotiates a new specific lease timeTlease for this new con-
nection based on the estimated bandwidth and latency be-



tween client and server. Also, the client-side of Cegor
needs to synchronize with the server to get the last ver-
sion of all files in its local cache based on this client’s last
semantic view.

2.3.3. Shadow Cache and Adaptive Zooming Protocol
During the procedure of reconciliation in the basic Ce-
gor consistency protocol, the modifications made by other
clients must be synchronized to satisfy the reconcile con-
sistency requirement. However, this is not adaptive enough
for heterogeneous network environments. In this subsec-
tion, we propose an adaptive zooming protocol based on
a new concept of shadow cache to optimize the adaptabil-
ity of Cegor.

The basic idea behind shadow cache is motivated by the
fact that if a local cached file is changed frequently by
other clients but not accessed by a local client for some-
time, it is better to remove it from local cache. On the
other hand, it is better to keep it in the memory cache to re-
duce the future communication bandwidth. For example, if
this file is accessed again, we can fetch the difference be-
tween this version and the latest version from the server
instead of fetching the whole file. To solve this conflict-
ing requirement, we propose to split a traditional mem-
ory cache into two parts:regularandshadow. The shadow
cache is used to keep those files that are evicted because
of temporary infrequent access. Later, when these files in
the shadow cache are accessed again, it needs to be revali-
dated with the server immediately before it is returned .

Based on the idea of shadow cache, we propose two adap-
tive zooming approaches to exchange files between the
regular cache and the shadow cache. When a client has a
low bandwidth connection, a multiple-decrease (zoom out)
and single-increase (zoom in) of its semantic views will
be adopted during the view zooming procedure. Single-
increase means that only the accessed file itself will be
added from the shadow cache to the regular cache (shad-
owed files are accessed again), while multiple-decrease
means that multiple related files plus the selected file will
be evicted from the regular cache. On the contrary, a
single-decrease (zoom out) and multiple-increase (zoom
in) approach is used for clients with a high-bandwidth net-
work connection. The closest neighbor set of each file
(based on semantic distance and their access history) is
used to choose corresponding files for zooming in/out. If
all the files belonging to a directory are zoomed out to
shadow cache, the whole directory will be zoomed out,
too. As such, the dynamic zooming in/out protocol pro-
vides the Cegor file system with the ability to adapt to dif-
ferent network connections.

2.3.4. Caching Replacement AlgorithmIn Cegor, the
whole local disk can be used as a cache to hold the tem-
porary files, making the cache size effectively infinite and
the cache replacement less important. However, the ever-
increasing performance gap between memory and disk

drives the adoption of in-memory cache, which is very im-
portant to file operations. We propose a semantic-based
cache replacement algorithm in the Cegor system [30].
The basic idea is to catch the inter-file relations and intra-
file relations.

2.4. Type-Specific Communication Latency Opti-
mization

In addition to reducing the number of messages, we pro-
pose an adaptive type-specific differencing scheme to re-
duce the inherent communication latency associated with
each update message in Cegor.

A differencing algorithm computes the difference be-
tween two files, ideally producing a small “delta”. Several
projects have used differencing to build systems that re-
duce network bandwidth requirements by exploiting com-
monality between files, such as delta-encoding for Web
documents [21] and email files [6], and block-based tech-
niques for file synchronization [23, 35] and distributed
shared memory systems [4, 11].

The rationale of our approach is to treat different types
of files with different differencing techniques. This idea
is based on two observations: (1) previous results show
that the communication latency can be optimized by us-
ing different differencing techniques, and (2) the files in a
file system usually have a variety of characteristics, such
as program source codes, email, microsoft documents, im-
ages, and latex files etc. We motivate our work by briefly
describing three representative algorithms.

Delta-encoding (Delta) was first proposed by Mogulet al.
in the context of HTTP traffic [21]. This approach could
dramatically reduce network traffic in cases where a client
and a server shared a past version of a Web page.Fix-
sized blocking (Blockfix) was used in the Rsync [35] soft-
ware to synchronize different versions of the same data. In
this approach, files are updated by dividing both files into
fix-sized chunks. The client sends digests of each chunk
to the server, and the server responds only with new data
chunks.Vary-sized blocking (Blockvaried) was proposed
in LBFS [23] for further reducing traffic. The idea behind
LBFS is that of content-based chunk identification. Files
are divided into chunks, demarcated by points where the
Rabin fingerprint [29] of the previous 48 bytes matches
a specific value. This tends to identify a portion even af-
ter insertions and deletions have changed its position in the
file. LBFS then computes a digest of each chunk and sends
them to the server, which maintains a database of chunks
from all local files. The server responds to the client with
bits for new chunks. The client then sends new chunks to
the server.

Although both fix-sized and varied-sized blocking allow
the system to identify bandwidth saving similarity across
(arbitrary) files, its three-way chunk negotiation protocol
results in extra overhead, which motivates us to propose a



general client-side approach to eliminate the overhead of
the three-way protocol. In our approach, when a modified
file wants to be sent back to the server, the client always
creates a difference between the last version and this ver-
sion using a specific differencing algorithm best suited for
this kind of files. The difference will then be sent to the
server instead of the whole new file. In comparison to the
LBFS and Rsync, the client-side approach would dramat-
ically reduce the number of messages between clients and
servers.

There are three factors that determine the success of dif-
ferencing mechanisms:file similarity identification, com-
putation overhead, and delta size (communication over-
head). Several projects have already found that there are
great similarity between files in a file system [6, 19], even
for files that are not directly related. In our approach, to
make the operations of client-side differencing completely
local, the last version of this file, which is held at both
sides, will always be chosen for difference computation.

We build a simulator to compare the efficiency and over-
head of the above three algorithms, with five different
type of inputs: source code (source ), images (image ),
Web document (web), Microsoft word documents (doc ),
and latex files (latex ). Figure 1 shows the compari-
son of computing overheads and bandwidth savings of
four algorithms. For comparison purposes, the correspond-
ing overhead of direct communication (with compres-
sion/decompression) is shown in Figure 1 as well, denoted
by direct .

Regarding the latter two factors, our preliminary results
show that different algorithm have different computation
overhead and bandwidth saving for different type of files.
For example,delta is the best optimization algorithm
for Web documents. Fingerprint-based vary-sized block-
ing technique has the potential to reduce the bandwidth
requirement for most documents except images, but it al-
ways has large computing overhead. Therefore, when the
network is very slow this algorithm is useful so that the
bandwidth saving can amortize its high computing over-
head. In our preliminary work [17], we evaluated the to-
tal latency of these algorithms in the context of differ-
ent network, including dial-up, modem, wireless network,
and wired LAN. We found that it is necessary to have an
adaptive strategy for communication optimization in a dis-
tributed file system.

2.4.1. Similarity Identification The key to the success
of client-side differencing algorithms described above is
similarity identification, i.e., how to identify files similar to
a write back file candidate. Our solution is to classify files
into five different categories (as shown in Figure 1) based
on their characteristics, and handle them in the specific ap-
propriate differencing algorithm. The semantic view based
protocol proposed in Section 2.3.1 guarantees that the last
version of each file is always available in both sides in Ce-

gor system. For those files with no previous version and
are missing in the first access, a recipe-based protocol will
be applied [34].

One of the problems of using versioning is in determin-
ing how long to keep individual versions. In our design,
although only the last version need be kept, the version-
ing problem comes from the fact that multiple clients may
have different version views of different files. Therefore,
multiple versions for the same file maintained by the server
should be clean up periodically by a garbage collector
based on the reconcile consistency.

2.5. Fault Tolerance and Scalability

Unlike NFS, Cegor introduces states at the server side,
such as the last connection view credential and the last se-
mantic view of each client. By doing so, fault tolerance
becomes an important concern in our design. If we ex-
amine the design of Cegor carefully, we find that most of
the states maintained by Cegor aresoft-state. That is, even
those states are lost (e.g., reboot after server crash), the
whole system keeps running with a little latency penalty
during restarting. For example, if the server loses the last
semantic view of one client, the client can generate a com-
plete view (instead of a difference between current view
and the last view) and send it to the server. After receiv-
ing the complete view, the server checks all the files and
directories included in the semantic view against their cur-
rent states on the server, and sends back a view difference
to the client. Furthermore, the reconcile consistency model
releases the server from keeping the copy of all callback
promises [31] in Cegor, and makes it more fault tolerant
than AFS.

The objective of Cegor is to provide consistent adaptive
file access to either a single person or a small collab-
orative group. The mechanisms that we have discussed
should help the server to scale to medium numbers of
users as well. For example, the soft state of server design,
semantic-view based caching, and type-specific differenc-
ing algorithm all help reduce the load of the server. Ce-
gor can also automatically benefit from the server replica-
tion techniques to address availability and scalability, such
as xFS [2].

3. Related Work

There is a great deal of prior work in distributed and
wide-area file systems, and is too much to be surveyed
here [3, 10, 14, 23] and connection mobility [18, 33].
Instead of discuss all of them, we concentrate on those
projects that share one or more of the following goals
with Cegor:authentication, wide-area file systems, discon-
nected operation, caching and prefetching, andcommuni-
cation optimization.

Authentication Authentication between (remote) clients
and file servers has been addressed in several systems [3,
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Figure 1. A comparison of different differencing algorithms over five difference types of docu-
ments: (a) computing overhead, (b) bandwidth requirements.

10]. NFS provides security by relying mainly on authenti-
cating RPCs. Security in AFS is based on Kerberos [24],
which requires that an AFS user must be part of the same
Kerberos realm as the remote file server, thus limiting its
deployment on wide-area settings. Cegor proposes to use
view credentials to authentication users, and use file ac-
cess keys to control the file access permissions.

Wide-area File SystemsAFS [10], LBFS [23], Fluid
replication [13], CASPER [34] and SFSRO [7] are the
closest systems to Cegor in terms of the intended environ-
ment. Most of the previous systems focus on scalability,
security and/or availability issues by self-managed repli-
cation and caching. However, Cegor takes the adaptabil-
ity as the first-class design option. Cegor’s type-specific
communication optimization is motivated by LBFS’s idea
of sharing blocking among multiple files to reduce band-
width requirements, but Cegor extends this idea to handle
files in a type-specific way.

Disconnected OperationDisconnection and weakly con-
nection have been addressed in several file systems, such
as Coda [15], Bayou [28], and Ficus [27]. Although dif-
ferent in the design details, these systems share the idea of
supporting localized operations during disconnection by
accurately hoarding files to local machine as much as pos-
sible. Unlike these previous efforts, the goal of Cegor is to
support clients who have continuous “always on” but het-
erogeneous connections. Furthermore, system support for
transparent reconnection and conflict resolution is an im-
portant feature proposed in Cegor.

Communication Optimization Rsync [35] synchronizes
different versions of the same data by using fix-sized
chunks for communications. LBFS [23] takes this a step
further by reusing the data chunks across multiple similar
files (including multiple versions of the same file). As de-
scribed in Section 2.4, Cegor classifies the data into several
categories and adopts different optimization techniques for

storage and communication optimizations. Also, Cegor’s
adaptive approach considers the tradeoff between commu-
nication and computation.

4. Current Status and Future Work

In this paper, we proposed to build an adaptive distributed
file system which provides the “close and go, open and
resume” semantics across heterogeneous network connec-
tions, ranging from high-bandwidth local area network
to low-bandwidth dial-up connection. Our approach re-
lies on a set of new techniques for managing adaptive ac-
cess to remote files, including three components:system
support for secure, transparent reconnectionat different
places,semantic-view based cachingto reduce communi-
cation frequencies in the system, andtype-specific commu-
nication optimizationto minimize the bandwidth require-
ment of synchronizations between clients and servers.

Currently, we have implemented several key parts of
the whole file system, such as home-based authenti-
cation protocol [32], semantic-distance based cache
replacement [30], and adaptive communication optimiza-
tion [17]. Our next step is integrating these modules
together into a Cegor prototype, and evaluated in a con-
trolled emulator-based environment using Andrew Bench-
mark [10] and distributed file traces [22, 30] at the first
stage. We also plan to conduct a comprehensive compar-
ison between Cegor and other start-of-the-art distributed
file systems, such as NFS [3], AFS [10], CODA [15], and
LBFS [23].
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