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ABSTRACT
In the era of smart and connected communities, a video surveil-

lance system, which usually involves tens and thousands of video

cameras, has increasingly become a prominent component for the

public safety. In the current practice, when the video surveillance

system has a failure, the operation and maintenance team usually

spends a lot of time to identify and locate the failure, which can-

not guarantee real-time in a large-scale video surveillance system.

Meanwhile, the video data with a failure wastes amount of stor-

age space in the cloud. �e emergence of edge computing is very

promising in the preprocessing for source video data at an edge

camera, and video surveillance systems are one of the popular appli-

cations for edge computing. In this paper, we propose VU , a Video
Usefulness model for large-scale video surveillance systems, and

explore its application, such as early failure detection and storage

saving. �e VU model evaluates the usefulness of video data in a

real-time fashion and noti�es failures to end-users on the �y.

�is paper has three contributions: (1) a comprehensive video
usefulness model has been proposed. To the best of our knowledge,
this is the �rst work aiming to quality the video usefulness in a real
application; (2) real-time failure detection algorithms based on edge
computing and cloud computing are proposed to e�ciently improve the
mean time to repair (i.e., MTTR); (3) e�ective storage and bandwidth
saving schemes for large-scale video surveillance systems are proposed
and implemented.

Results from a university-wide surveillance system consisting of

2,960 cameras show that failures of video data in di�erent domains

are accurately detected by VU model. MTTR is largely shortened

by the fast detection algorithm in real time. �e video data with

the worst degree of VU is mostly discarded to reduce overload in

the network and save storage space in the cloud.
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1 INTRODUCTION
With the expansion of the city scale, public safety is essential for

urban stability [11]. Video surveillance systems [18] mostly provide

video evidence and recognition for criminal and civil cases [6].

Video surveillance systems have been essential to public safety

[16][11] monitoring for a large-scale city’s ecosystem. A large city

such as Beijing or London has about one million cameras deployed

[8]. Video cameras capture huge amounts of video data in the

manner of uninterruptedly operation for 7*24 hours. Intelligence

approaches (e.g., moving object detection [9] or behavior analytic

[19]) are proposed to process video data at back-end.

For a large-scale video surveillance system, there are two major

challenges: 1) How to e�ectively use the large-scale video data?

2) How to manage large-scale video surveillance systems when a

failure occurs in edge cameras, end-users, network, or cloud?

In current video surveillance systems, a majority of failures im-

pacting on usefulness of video data cannot be accurately identi�ed

and located in real time. Sta�s are employed to view these failures

from video image. �is method consumes a large amount of man-

power and time rather than meets needs of real-time surveillance.

A video camera with a failure can products useless video data which

is uploaded to cloud and wastes storage space before the failure is

detected. Currently, there is rarely e�ective method to handle the

useless video data.

Our Vision: To solve above problems, we �rstly propose a

Video Usefulness detection model for large-scale video surveil-

lance systems (VU for short) based on edge computing [17] and

cloud computing [1]. Edge computing has emerged along with the

development of applications [20][3][2] in the realm of IoT [13] and

IoE [14]. Real-time video analytic in a video surveillance system

[15][4] is one of the most prevalent use-cases for edge computing.

By this model, a detection system is designed to e�ciently identify

the component state of video surveillance systems and locate its

failure to shorten their mean time to repair (i.e., MTTR) [5]. Video

data with the lowest VU (useless video data) will not be uploaded to

cloud, which reduces burden on network bandwidths and improves

storage utilization in the cloud. �is paper has three contributions:
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(1) a comprehensive video usefulness model has been proposed. To
the best of our knowledge, this is the �rst work aiming to quality the
video usefulness in a real application;

(2) real-time failure detection algorithms based on edge computing
and cloud computing are proposed to e�ciently improve the mean
time to repair (i.e., MTTR);

(3) e�ective storage and bandwidth saving schemes for large-scale
video surveillance systems are proposed and implemented.

�e remainder of this paper is organized as follows. Section

II describes motivation for VU model study. �e VU model and

its exploration in three failure domains are presented in Section

III. Some use cases are analyzed in Section IV. Finally, we make a

conclusion for this work.

2 MOTIVATION
�ere are rich literatures on quality of video services, such as quality

of service (QoS) [7] and quality of experience (QoE) [12]. QoS focus
on video quality from the perspective of video service providers.

QoE includes manual interaction with the evaluation of video qual-

ity in cloud. �ese criteria hardly evaluate the usefulness of video

data.

Experiment are carried out in the video surveillance system with

2,960 cameras at Anhui University. Results show that video data

usually has QoS or QoE problem. We also �nd that the video data

meets QoS metrics and is clearly displayed; however, the useless

video data (e.g., obstacle problem) is continuously transmi�ed to

cloud, which largely overloads network and wastes storage space,

especially for high-resolution video (such as 4K) [10]. �e operation

and maintenance team spend a great deal of time locating failures

of useless video.

We are motivated to propose a video usefulness model (VU for

short) for large-scale video surveillance systems based on edge

computing and cloud computing. By edge computing, video data is

pre-processed and some failures can be located, which reduces the

burdens on network and optimizes video data storage in the cloud.

Deep-level usefulness evaluation can be carried out in the cloud.

�e useful video data is in real-time evaluated meanwhile the state

of video system is monitored under unmanned situation.

3 V IDEO USEFULNESS MODEL IN VIDEO
SURVEILLANCE SYSTEMS

3.1 VU Model
VU is the �rst model to characterize the usefulness of video data

comparing with QoS or QoE. �is model relates with edge com-

puting and cloud computing. Edge computing pre-processes video

data in cameras while cloud computing provides largely storage

and computing-intensive services at back-end.

Storage space occupied by video data depends on its usefulness.

In this paper, De1 represents the amount of video data from a single

camera will be stored in the cloud in the range of t ∈ [0,Ns ] seconds.

�e dp indicates the performance of video data transmission (MB/s).

During the interval between 0 and Ns seconds,De1 can be expressed
as

De1 =

t=Ns∑
t=0

(dp ∗ t ∗U (t )) (1)

where U(t) is the value of VU and can be referred as
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Figure 1: Failure Distribution in a Video Surveillance System.
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Figure 2: Evaluation Framework for VU model.

U (t ) =
{
1, ∆v > 0

0, ∆v ≤ 0
while t ∈ (ti , ti+1) (2)

where ∆v is referred as the usefulness boundary of video data

under scenarios, when ∆v > 0, the video data is useful and uploaded
to cloud. ∆v ≤ 0, the video data is useless and has low VU values. To

this problem, two methods are designed in this paper. Firstly, video

data transmission from cameras is directly terminated according to

values of VU. Secondly, its VU value is sent to end-users for further

decision on video data.

3.2 Failure Domain in VU Model
Given experiment from the platform of video surveillance systems

in Anhui University, we �nd that failures in this platform are mainly

distributed in three scenarios de�ned as VU failure domains one of
which has diverse types of failures for video data in the VU model.

We present failures in three VU domains (see Fig.1). In Fedдe
domain, the basic component is a camera. Police equipment and

operation and maintenance team make up the Fuser domain. Meta-

data services (MS for short) and data services (i.e., DS) make up the

Fcloud domain. Failure in Fedдe domain (see Fedдe i in Table 1),

Fuser domain (see Fuser i in Table 2), Fcloud domain (see Fcloud i
in Table 3) indicates a failure exists in an camera, an end-user, and

a cloud service, respectively. Detail for a failure is described as

followings.

3.3 Exploration of VU Evaluation Framework
and Method

We provide the detail of evaluation framework and methods for VU

in video surveillance systems.

3.3.1 VU Evaluation Framework. VU values for video data in

a domain are measured based on video data content. Evaluation
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Table 1: Failure in Fedдe Domain.

Fedдe Failure Type Description

Fedдe 1
Camera o�ine Edge camera without Internet

connection.

Fedдe 2
White screen Full white screen with no images.

Fedдe 3
Green screen Full green screen with no images.

Fedдe 4
Black screen Full black screen with no images.

Fedдe 5
Blurred screen Fuzzy exists in blurring image

with in screen.

Fedдe 6
Pa�ern screen Full pa�ern screen with images.

Fedдe 7
Arti�cial shelter Screen covered by an object, e.g.,

bags, daubing cover screen.

Fedдe 8
Natural occlusion Natural objects occlusion,

e.g., cameras occluded by leaf.

Fedдe 9
Abnormal characters Abnormal characters in the image.

Fedдe 10
Dark image Screen with dark portion.

Fedдe 11
Flicker screen Image �ickering in full screen.

Fedдe 12
Rotary failure in pan/tilt Pan/tilt in cameras cannot rotate.

Fedдe 13
Self-test failure Failure in power-on-self-test.

Fedдe 14
Pre-position failure Camera pre-position failure.

approaches employed in this model include background extraction,

image contrast, and etc.

VU evaluation framework (see Fig.2) is composed of cameras,

end-users, and cloud. In Fig.2, a part of failure-detection methods

(e.g., fuzzy degree estimation) require edge computing to evaluate

VU values. Results are sent to cloud and end-users, respectively.

Edge detection handles useless video data using VU values and

decisions are made by end-users.

Some failures (occlusion, pa�ern, and etc.) cannot be completely

identi�ed at the edge. A part of detection work can be pre-processed

at the edge and intermediate results are sent to cloud, where the

�nal results are obtained. Similar to edge, cloud handles video data

with lower VU and then sends the decision to end-users. �e VU

degree for video data is fed back to the edge, which handles useless

video data or noti�es end-users.

Based on this framework, Failure detection schemes are designed

to evaluate the degree of VU for video data.

3.3.2 VU EvaluationMethod. By the above VU evaluation frame-

work, experiments are carried out to detect di�erent failures in three

domains. It mentioned that these failures are classi�ed accoring to

large-scale video data from about 2,960 edge cameras.

(1) VU model of video data in Fedдe Domain
�ere are fourteen failures (see Table I) in VU model for video

data in Fedдe domain. �ese failures are detected by four methods

in this section.

∆Type-1 Fedдe 2
, Fedдe 3

, Fedдe 4
, Fedдe 5

:

Fedдe 2
(white screen), Fedдe 3

(green screen), and Fedдe 4
(black

screen) make full screen without images into the white, green,

and black mode, respectively. �e colors of most pixels have high

similarity to their neighbors, which are easily measured by the

color histogram. By edge computing, color histogram method is

applied to measure the degree of VU for video data with above

failures. Useless video data is unnecessarily uploaded to cloud.

Fedдe 5
(blurred screen) causes the video fuzzy with di�erent levels,

which is evaluated by the fuzzy degree estimation based on edge

computing. When the VU degree is higher than reference ones, the

camera stops sampling and notify end-users to handle the video

data.

∆Type-2 Fedдe 6
, Fedдe 7

, Fedдe 8
, Fedдe 9

, Fedдe 10
, Fedдe 11

:

Fedдe 6
(pa�ern screen), Fedдe 7

(arti�cial shelter), Fedдe 8
(nat-

ural occlusion), and Fedдe 9
(abnormal characters) make full use

Table 2: Failure in Fuser Domain.

Fuser Failure Type Description

Fuser 1 End-user o�ine End-user without Internet

connection.

Fuser 2 Image lagging Latency in data transmission

between cameras and end-users.

Fuser 3 GIS mark failure Failures in GIS (Geographic

Information System) for an camera.

Fuser 4 Timestamp failure Time stamp in video image

mismatches that in operating system.

of edge computing at an edge camera and cloud computing in the

cloud. �e former is employed in pre-processing and the la�er is

used in post-processing. At the edge, we apply background ex-

traction method into pre-processing for video data based on edge

computing. Intermediate results are uploaded to cloud and end

results is obtained by means of deep learning library based on

cloud computing. �e detection system in cloud outputs VU values

for video data with Fedдe 6
, Fedдe 7

, or Fedдe 8
failure. VU values

lower than reference ones are sent to the detection system at edge

to handle video data. While VU values near to reference ones are

sent to end-users to make decision.

Video data with Fedдe 10
(dark image) or Fedдe 11

(�icker screen)

is detected using deep learning library and results of VU are pro-

cessed by edge cameras or end-users as the same methods men-

tioned above.

∆Type-3 Fedдe 12
, Fedдe 13

, Fedдe 14
:

Fedдe 12
(rotary failure in pan/tilt), Fedдe 13

(self-test failure),

and Fedдe 14
(pre-position failure), relate to the camera state. �is

state detection is con�gured in the so�ware stack at cameras. If

one of these failures occurs, the detection system captures it and

noti�es end-users. Video data with Fedдe 13
and Fedдe 14

cannot be

uploaded to cloud, which alleviates network burden and improves

storage in the cloud.

Last but not the least, Fedдe 1
(edge camera o�ine) is the one of

the most important failures. �e evaluation method for this failure

is implemented in a detection system in the cloud or end-users.

�ere are two failures in network connection, i.e., disconnection

and problematic connection. Although feedback of TCP/IP data

package is a basic method, the detection processing varied with

di�erent failures.

For network disconnection, the detection system in the cloud

or at end-user sends a data packet to a camera and waits for a

response packet. When response overtime is detected, network

disconnection is reported to end-user. In problematic connection,

when the response data package arrives, the serial number of which

is compared with that in request one. When the serial number of the

packet in response packet is zero or has the same value to request

ones, the network with the edge has a problem connection. Finally,

the prompt for Fedдe 1
is sent to end-users as well.

(2) VU model of video data in Fuser Domain
For end-users, there are four failures (see Table II). For Fuser 3

and Fuser 4, an image is sampled while the current timestamp in

the operating system is recorded at once. By methods of character

recognition and extraction on the image, GIS and timestamp are

obtained from the current image. Fuser 4 is displayed and is sent to

end-users when the timestamp on the detected image is inconsistent

with that in operating system. �e local detection system sends a

request including this camera’s IP address (position encoding value)

to that in the cloud. �is detection �nds GIS from a database using
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Table 3: Failure in Fcloud Domain.

Fcloud Failure Type Description

Fcloud 1
Cloud server o�ine Cloud server without Internet

connection.

Fcloud 2
Video lagging Latency in data transmission

between cameras and cloud.

Fcloud 3
Video lost Video data cannot store in cloud.

the receiving IP address. �e item is considered as (IP (key)|Position

encoding value (key)|Address|…) in this database. Appropriate GIS

is returned to the detection system in user end.

For Fuser 2 (video lagging), this failure is caused by the network

latency, which can be detected according to the time interval be-

tween the request data packet being sent to an edge camera (or

cloud) and receiving the response data packet. In addition, the

metric of packet loss ratio, which is used in QoS to evaluate real-

time video data, is calculated according to the average number of

response data packets and latency.

For Fuser 1 (end-user o�ine), this failure is similar to those in

Fedдe 1
(such as disconnection and problematic connection) by

means of feedback of TCP/IP data package. Please refer to the

Fedдe 1
in Type-A for more details.

(3) VU model of video data in Fcloud Domain
�ese failures (see Table III) happen in the cloud. In a video

surveillance system, cloud stores video data and provides history

video query services for special a�airs. �ere are so huge amounts

of video data in the cloud that man-management is extremely inef-

�cient. A simple failure of video data is hardly found and noti�ed

to end-users in real-time. �en video data with low VU values (use-

lessness) from failure is continually stored in the cloud. A�erward,

the service of historical video data can be seriously a�ected.

Fcloud 1
exists in two kinds of network connection, i.e., from a

camera to cloud and from an end-user to cloud. �ese detections

are con�gured in edge-device level and end-user level, respectively.

Fcloud 1
(i.e., cloud server o�ine) has two types of failures (i.e.,

disconnection and problematic connection) are similar to those in

Fedдe 1
or Fuser 1 using feedback of TCP/IP data package. We use

the detection system at an edge camera as an example to illustrate

about Fcloud 1
. Please refer to the Fedдe 1

in Type-A for more

details.

Fcloud 2
(video data lagging) is much di�cult to be detected

than that in Fuser 2 (image lagging). Because the video data in

Fuser domain is sent to users rather than stored in the cloud. Video

data with lagging failure is found when end-users searched it again,

which is accepted in criminal cases. �erefore, we designed a system

in the cloud to check network latency which is expressed as the

duration between sending a request packet to a camera and the

point of receiving the response packet. �e metric of a packet loss

ratio is used to measure QoS for video data. VU for video data is

lower when the value is smaller than reference one. Fcloud 3
(video

lost) is incurred by packet loss.

3.4 Discussion
�e proposed VU model was derived and inspired by large-scale

video surveillance system; however, the proposed model can be

easily adjusted for other video systems, given that the three domains

are very generic.

4 EXPERIMENTS
To verify the credibility of the VU model, we carried out experi-

mental explorations for the video surveillance system with 2,960

edge cameras at Anhui University. Among these cameras, there are

2,734 edge cameras just being on-line and 226 video cameras cannot

absolutely work because of failures. Otherwise, the video data from

these online 2,734 video edges still have usefulness, which can be

detected by our VU model.

4.1 Experiment Setup
Using the framework in Fig.2, we set up an evaluation system to

measure the VU values for video data in the video surveillance

system at Anhui University. In the cloud, we employ Microso�

Cognitive Services with powerful cloud computing resources as

cloud-based data processing in detection systems. We con�gure an

edge computing server to simulate the data processing at cameras.

4.2 Use Cases
Five use cases are evaluated by the VU model. From experiments,

failures in di�erent domains are detected and the degree of VU are

sent to end-users in real time. �e mean time to repair (i.e., MTTR)

is largely shortened. Meanwhile, the video data with a low VU

values is unnecessary uploaded to the cloud, which saves storage

space for useful video data.

Case 1: Fedдe 3
(green screen)

Algorithm 1 Green screen detection.

1: procedure Histogram
2: Dim img As Image

3: Dim max, maxs, sum As FLOAT

4: Dim h bin, s bin As INTEGER

5: Upload image img

6: Find img’s maximum pixel max

7: Find the point of max ( h bin,s bin )

8: SUM =the sum of all the pixel of img

9: MAXS =the sum of around the point of max 16 points

10: if MAXS /SUM > 0.7 then
11: Output (“Dominant color percentage MAXS /SUM“)

12: Output (“Full Screen with same color,and Full-Screen Error! “)

13: StoraдeV ideo(NO SEND2CLOUD, CAMERA IP )
14: end if
15: end procedure

We select green screen failure (see Fig.3(a)) in a camera. �e color

histogram method is applied in the detection system using edge

computing simulated at an edge server. Results of VU indicated by

domain color percentage in the video can be measured by the color

histogram method. Video data with failures cannot be uploaded to

cloud. �en it alleviates overload on network and achieves storage

saving in the cloud. �e pseudo-code is presented in Algorithm 1.

It is noted that StorageVideo() is employed to send the video

data or VU values with failure to cloud or end-users.

Case 2: Fedдe 5
(blurred screen)

Video data with blur (see Fig.3(b)) is also detected by the detec-

tion system implemented at the edge. Results are sent to end-users.

�e pseudo-code is listed in Algorithm 2.

Case 3: Fedдe 8
(natural occlusion)

�is failure is handled by the collaboration of edge computing

and cloud computing. Video data with occlusion (see Fig.3(c)) can

be detected by background extraction at the edge and similarity
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Figure 3: Failures detection in VU model taking Fedдe 3
(Green screen), Fedдe 5

(Blurred screen), Fedдe 8
(Natural occlusion) for example.

Algorithm 2 Blurred screen detection.

1: procedure IsFuzzy
2: Dim image As Image

3: Dim FD As FLOAT

4: Upload image

5: Compute image fuzzy degree FD

6: if FD > 0.000131 then Output (”�e picture is blury! ”)

7: else Output (“�e picture is not blury! “)

8: end if
9: StoraдeV ideo(SEND2CLOUD, CAMERA IP )
10: end procedure

Algorithm 3 Natural occlusion detection.

1: procedure ImageSimilarity
2: Dim img, img1 As Image

3: Dim idg As FLOAT

4: Upload video test.mp4

5: Upload correct image img1

6: Extract background img1 from test.mp4 using edge computing

7: Send img1 to cloud detection

8: Compare the similarity of two images based on pixel using cloud computing

9: idд =the similarity of two image from cloud detection

10: if idg > 15 then Output (”A portion screen has occlusion! ”) ����

11: end if
12: if idg >= 30 then Output (”�e screen has full occlusion!”)

13: end if
14: StoraдeV ideo(NO SEND2CLOUD, CAMERA IP )
15: end procedure

 
The timestamp error and the right one is 2017-4-10 

 
GIS(“新区北门出口”) is error and the right one is “新
区西门出口” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Fuser 3 (GIS mark failure).

comparison methods in the cloud. Results of VU for video data

are fed back to edge. If the value of VU for video data is lower

than the threshold, the detection system stops uploading video data

and sends warning to end-users. Storage utilization in the cloud is

optimized and the failure is located in real-time to shorten MTTR

(see Algorithm 3).

Case 4: Fuser 3 (GIS mark failure)
In this case, we measure VU values for the video data with

Fuser 3 failure at end-users (see Fig.4). �is failure is sent to end-

users to modify it. �e edge camera sends a request for GIS based

on its IP to a detection system in the cloud. GIS, which is found

Algorithm 4 GIS mark failure detection.

1: procedure GIS
2: Dim img As Image

3: Dim loc, loc1 As STRING

4: Capture Image img from camera

5: Recognize location (loc) from img and record the IP address of the camera

6: Notify the camera’s IP to cloud detection system

7: Acquire the correct location (loc1) by the camera’s IP in cloud

8: if loc ! =loc1 then Output (”�e camera’s location is incorrect! ”)

9: end if
10: StoraдeV ideo(SEND2CLOUD, CAMERA IP )
11: end procedure

by the detection in the cloud using IP address, is fed back to the

camera. Comparing GIS with that in image, Fuser 4 failure can be

obtained (see Algorithm 4).

Case 5: Fedдe 1
(edge camera o�line)

Algorithm 5 Edge camera o�ine detection.

1: procedure NetworkOffline

2: Dim m As FLOAT

3: m = Function(Send a test data packet to the detected camera)

4: �en return the value of packet loss ratio

5: if m ==0 then // response over time

6: Output (“�e network is disconnect! “)

7: else(More incoming response packets of has the same serial)

8: Output(”the network has problematic connection! ”)

9: end if
10: StoraдeV ideo(SEND2CLOUD, CAMERA IP )
11: end procedure

Fedдe 1
failure is detected by a detection system in cloud or end-

users. Take a network failure in cloud for example, the detection

system sends a test data packet to a camera and waits for the

response packet. When the response time is found to be overtime,

the network is regarded as disconnection. �e detection system

receives response data packets; however, these serial numbers in

packets have the same value meaning that the network connection

is problematic. Finally, the message of Fedдe 1
is sent to end-users

as well (see Algorithm 5.)

5 PRELIMINARY RESULTS
Use cases above indicate that VUmodel provides real-time detection

for failures in cameras, end-users, or cloud. Is VU model be�er or

worse, e.g., its accuracy, performance, and storage saving? In this

section, we present the accuracy, performance, and storage saving

of methods in VU model based on a part of failures in the video

surveillance system.
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Figure 5: Accuracy, Performance, and Storage saving of failure detection in VU model.
Accuracy evaluation is to verify the accuracy of methods in

the VU model. �is test is exempli�ed by Fedдe 3
(green screen),

Fedдe 5
(blurred screen), and Fedдe 8

(natural occlusion). We di-

vided the experimental results into four kinds:

State1: A failure is detected as the failure one

√
.

State2: A failure is misdetected as the normal one ×.

State3: A normal one is detected as the normal one

√
.

State4: A normal one is misdetected as the failure one ×.

From Fig. 5(a), the methods in VU model have high accuracy

rate, 0.77, 0.77, 0.97 in state1 and 0.92, 0.71, 0.80 in state3 (accurate

evaluations) for Fedдe 3
, Fedдe 5

, and Fedдe 8
, respectively, which

is much higher accuracy than those in state2 and state4 (inaccurate

evaluations).

Performance evaluation (see Fig.5(b)) takes the case of Fedдe 8

(natural occlusion). It is one of collaborative detection methods in

VU model based on edge computing and cloud computing. Results

of baseline present the time (25s) consumed by the human opera-

tion. �e method in our VU model achieves about 800% per cent

improvement (2.778s).

Storage saving evaluation uses Fedдe 4
(black screen) as an

example. �ere is a failure of black screen occurs during the normal

video data stream. �e existing approaches upload the video data

with this failure (about 26 MB in Fig.5(c)) and store it in the cloud.

However, the portion of video data with failure of black screen

is removed from the video data by means of VU model’s method,

which employes edge computing in the camera. Storage saving for

video data in the cloud can be achieved by around about 31 percent.

6 SUMMARY
In this paper, we �rstly proposed the Video Usefulness model

(named as VU model) for large-scale video surveillance systems by

edge computing and cloud computing. �e VU model can e�ec-

tively use video data to �nd a failure in edge cameras, end-users,

cloud, or network to manage large-scale video surveillance systems.

By the VU model, we summary three failure domains with failures,

which are used to evaluate video data uselessness. VU model is

veri�ed in the following two aspects. Firstly, the mean time to

repair (i.e., MTTR) is improved by the real-time failure detection

algorithms based on edge computing or cloud computing. Secondly,

useless video data is directly handled by the edge rather than being

uploaded to cloud; meanwhile storage saving is achieved.
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