
800 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

VU: Edge Computing-Enabled Video Usefulness
Detection and Its Application in Large-Scale

Video Surveillance Systems
Hui Sun , Weisong Shi , Fellow, IEEE, Xu Liang, and Ying Yu

Abstract—In the era of smart and connected communi-
ties, video surveillance systems, which typically involve tens to
thousands of cameras, have increasingly become prominent com-
ponents for public safety. In current practice, when a failure
occurs in a video surveillance system, the operation and mainte-
nance teams usually spend a substantial amount of time locating
and identifying the failure; hence, the fast online response can-
not be guaranteed in a large-scale video surveillance system.
Meanwhile, the video data that contains potential failures con-
sumes bandwidth that could be used for useful video data. The
useless video will waste the scarce bandwidth in the network
and storage usage in the cloud. The emergence of edge com-
puting is highly promising in video preprocessing with an edge
camera. A video surveillance system is a killer application for
edge computing. In this article, we propose an edge computing-
enabled video usefulness (i.e., VU) model for large-scale video
surveillance systems. We also explore its application, e.g., early
failure detection and bandwidth improvement. According to the
usefulness of the video data, the VU model can locate a failure
and send it to end-users on the fly. In this article, our goals
are threefold: 1) proposing a comprehensive VU model. To the
best of our knowledge, this is the first work to explore the fea-
sibility of the VU model and to determine VU values in a real
application; 2) reducing the mean time to detection (i.e., MTTD)
efficiently via edge computing-enabled fast online failure detec-
tion approaches; and 3) relieving the network bandwidth for
large-scale video surveillance systems. Our experimental results
demonstrate the approaches in VU model accurately detect fail-
ures that were collected from a video surveillance system with
approximately 4000 cameras. The MTTD is substantially short-
ened by the fast online detection approaches. The video data with
the worst VU values is mostly discarded to lessen overload of the
network.

Index Terms—Cloud computing, edge computing, video
surveillance systems, video usefulness (VU).

Manuscript received February 16, 2019; revised June 6, 2019, June 25,
2019, and July 25, 2019; accepted August 12, 2019. Date of publication
August 20, 2019; date of current version February 11, 2020. This work was
supported in part by the National Natural Science Foundation of China under
Grant 61702004, in part by the Key Technology Research and Development
Program of Anhui Province under Grant 1704d0802193, in part by the Natural
Science Foundation of Anhui Province under Grant 1708085QF160, in part
by the Natural Science Research Projects at Higher Institutions in Anhui
Province under Grant KJ2017A015, and in part by the Anhui University
Funding for Doctoral Research under Grant J01003214. (Corresponding
author: Weisong Shi.)

H. Sun, X. Liang, and Y. Yu are with the School of Computer and
Science, Anhui University, Hefei 230012, China (e-mail: sunhui@ahu.edu.cn;
ahu_lx@163.com; yingyu@stu.ahu.edu.cn).

W. Shi is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202 USA (e-mail: weisong@wayne.edu).

Digital Object Identifier 10.1109/JIOT.2019.2936504

I. INTRODUCTION

W ITH the expansion of a city’s scale, public safety is
essential for urban stability [1], [2]. Numerous video

surveillance systems [3] have been ubiquitously deployed
throughout cities and surroundings, e.g., streets, office build-
ings, etc. These linked devices are essential to the public
security for a large-scale city’s ecosystem. For example, a
large-scale city such as Beijing or London has approximately
one million cameras deployed [4]. In a large-scale video
surveillance system, a key challenge is the elimination of use-
less video on the fly to store high-quality video data from
cameras while maintaining low data storage usage.

A camera captures huge amounts of video data and sends
it to the cloud nonstop in 24/7 mode. The compression and
encoder techniques [5], [6] are used to preprocess video
data. Intelligent approaches (e.g., content analysis [7], moving
object detection [8], and action analysis [9]) are utilized in the
cloud. According to a study by Seagate Technology LLC [10],
566 petabytes (PB) of data is generated each day by new video
surveillance cameras that are installed worldwide in 2016. This
daily data volume is expected to reach 3500 PB by 2023.

How to efficiently manage the large-scale video surveillance
system if a failure occurs in one of its components is a primary
challenge. Addressing the challenge is essential to improve the
efficiency of large-scale video data in the best way.

In a video surveillance system, many failures that impact
the video usefulness (VU) cannot be timely detected. Large
staffs are employed to monitor and detect these failures, such
as quality of service (i.e., QoS) [11] and quality of user experi-
ence (i.e., QoE) [12] failures from video streams. This failure
detection approach is error-prone and expensive. In addition,
it prolongs the mean time to detection (MTTD) [13].1 A
large workforce is expensive but still cannot realize fast online
detection goals and has an unacceptably large MTTD. A cam-
era with a failure produces video data that may be useless and
is uninterruptedly uploaded to the cloud, which aggravates the
overload in the network and wastes storage usage in the cloud
before the failure is detected.

A. Problem Statement

In this article, we intend to answer the following questions.

1The MTTD is defined as the average latency in detecting a failure in a
video stream in this article.

2327-4662 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1811-1318
https://orcid.org/0000-0001-5864-4675


SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 801

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Failures in a video stream. Normal video versus videos with four
types of failures: 1) normal (a) versus occlusion failure (b); 2) normal (c)
versus tilt failure (d); 3) normal (e) versus blurring failure (f); and 4) normal
(g) versus brightness failure (h).

1) What is the state-of-the-art failure status in the large-
scale video surveillance systems?

2) How can a failure in the video data be detected on the
fly to avoid incurring the cost of storing useless video
data?

3) How can these failure detection approaches be deployed
using the edge computing model?

We study the video content in a video surveillance system
at Anhui University. In Fig. 1(b), video data with an occlusion
failure exhibits satisfactory QoS metrics in the network with-
out failures (e.g., delay and packet loss); however, the video
content is useless for video analytics. It is inefficient for end-
users to identify the occlusion failure in video data. The video
data with no error in the QoS will be uploaded to the cloud;
however, this will waste network bandwidth and storage usage
in the cloud. Video data with a blurring failure [see Fig. 1(f)]
exhibits a poor QoE, which interferes with the users’ deci-
sions regarding its content and behavior. Useless video data
aggravates overload in the network.

To identify possible failures in a large-scale surveillance
system, we leverage a commercial detection system that is
based on the cloud computing model to study MTTD for fail-
ures in the video surveillance system of Anhui University. The
system can detect up to 12 types of failures.2 Without loss of
generality, we measure the MTTDs of four, eight, and 12 types
of failures using the 800 sampled cameras in the surveillance
system. Two types of network distance from the cloud to a
camera are considered: the H4- and H8-hop network distances.
The notation H4 indicates that the number of hops from the
cloud to a camera satisfies 1 ≤ hops ≤ 4, while the notation
H8 indicates 4 < hops ≤ 8 is satisfied.

In Fig. 2, the MTTDs for detecting four, eight, and 12 types
of failures from 800 cameras with H8 [see Fig. 2(a)] and H4
[see Fig. 2(b)] hop distances are presented. The MTTD of a
failure increases as the number of cameras increases because
the increased amount of video data increases the amount of
computation that is performed in the cloud, which increases
the time cost. Similar results are obtained for these cameras
with the H4-hop distance in Fig. 2(b). The MTTD for the
same number of failures is lower than that in Fig. 2(a), but
the variation trend of MTTD is identical. In addition, all the

2These failures include occlusion, offline, flicker, video lost, blurring, color
cast, brightness, freeze, noise, jitter, scene change, and angle deviation.

(a) (b) (c)

Fig. 2. MTTDs of 4, 8, and 12 failures for cameras with (a) H8-hop and
(b) H4-hop network distances. Fig. 2(c) presents the MTTDs of 12 failures
for 450 cameras with the H4-hop (H4_450 for example) and H8-hop network
distances.

MTTDs increase as more failures are detected from 450 cam-
eras with the H4 and H8-hop distance [see Fig. 2(c)], although
the MTTD is much smaller with H4 hops distance than that
with H8-hop distance. The results demonstrate that the cloud-
based approaches consume substantial computing resources
for detecting failures in video data.

Summary: The results demonstrate that QoS or QoE prob-
lems commonly occur in video data. We observe an interesting
phenomenon: video data satisfies QoS metrics, but the video
content is useless due to an angle deviation failure or an obsta-
cle failure in the camera. The useless video data is yet sent to
the cloud as well. With high-resolution video data (e.g., 4K
resolution) [14], this is highly wasteful of both the network
bandwidth and storage usage in the cloud [15]. We conclude
that the massive number of cameras and a long surveillance
time render the detection of a failure in the large-scale video
surveillance system scarcely possible as its scale is increased.
The detection may be false due to human subjectivity, which
poses new challenges in operations and maintenance teams.
In addition, the cloud manages a large amount of video data
with failures, which burdens the network and wastes storage
usage in the cloud. To the best of our knowledge, there are
few effective approaches to handling useless video data on the
fly. A failure may occur in an edge camera, an end-user, the
network, or a cloud server in a video surveillance system.

B. Our Vision—Video Usefulness

To address the above issues, we design a VU model for
detecting a failure in a video surveillance system intelligently.
The objective of the VU model is threefold: 1) analyzing video
data from an edge camera and a data package from a network
node (router or switch) in a fast online fashion; 2) detect-
ing a failure efficiently via intelligent methods on the fly; and
3) sending prompt alarm messages of a failure to the oper-
ations and maintenance team and helping them recover it as
fast as possible. Therefore, we employ edge computing [16] in
this model for a large-scale video surveillance system. Edge
computing has emerged along with the development of appli-
cations [17]–[19] in the realm of the Internet of Things (i.e.,
IoT) [20] and Internet of Everything (i.e., IoE) [21] in recent
years.

To the best of our knowledge, we are the first to propose an
edge computing-enabled failure detection framework for VU

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



802 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

(a) (b) (c)

Fig. 3. Edge computing-enabled VU-based video surveillance system. Fig. 3(a) presents failures types observed in a large-scale surveillance system. Fig. 3(b)
shows three failure domains (i.e., the Fedge domain in edge cameras, the Fuser domain in end-users, and the Fcloud domain in the cloud center) in a video
surveillance system, which are divided according to the failure types. Fig. 3(c) illustrates three VU (i.e., VU) frameworks, namely, edgeVU, userVU, and
cloudVU for detecting failures of the video stream in three failure domains. VU, EC, DS, and MS denote VU, edge computing, a data server, and a meta-data
server, respectively.

in video surveillance systems. This framework fully utilizes an
edge computing paradigm to detect a failure and shorten the
MTTD. It is an efficient method for saving bandwidth in the
network and improving the utilization of video storage in the
cloud. The VU model, which is deployed in edge cameras,
end-users, network nodes, and cloud servers, can detect the
state of any part of a video surveillance system and locate a
failure on the fly. VU aims at realizing the following goals.

1) Early detecting a failure (or VU) in a video stream to
shorten the MTTD for a failure.

2) Relieving the burden on the data transmission in the
network and reducing the storage usage of useless video
data.

In summary, the VU model efficiently preprocesses video
streams according to its VU value. Video data that correspond
to lower VU values need not be uploaded to the cloud, which
reduces the burden in the network and improves the video
storage usage in the cloud.

C. Contributions

Our main contributions in this article are as follows.
1) We explore a city-scale video surveillance system and

identify three failure domains: a) the edge failure
domain; b) the end-user failure domain; and c) the cloud
failure domain. For each domain, we classify 17, 4, and
3 types of failures, respectively, one of which impacts
the useful content of video streams [see Fig. 3(a)].

2) According to the failures in domains, we propose an
edge computing-enabled VU model. VU empowers edge
nodes of the network with computing capability for
performing failure detection on the fly. VU filters use-
less video data in nodes to avoid network overload
and improve the cloud storage usage. VU supports

the usefulness of video for accurate video analytics in
large-scale video surveillance systems [see Fig. 3(b)].

3) To detect failures in domains, we implement a fast-
online edge computing enabled failure detection frame-
work for studying VU in which several approaches
of video/image processing are designed and migrated
down to the edge node. This framework aims at detect-
ing a failure in each node using edge computing [see
Fig. 3(c)]. Then, early failures are accurately detected
in real time to improve the MTTD.

4) We devise a failure-aware and dynamic adjustment (i.e.,
FADA) scheduling strategy for dynamically reorder-
ing the frequencies of failure detection approaches to
tradeoff the consumption of computing resources and
the performance of MTTD in the edge computing
environment.

II. FAILURES AND FAILURE DOMAINS IN VIDEO

SURVEILLANCE SYSTEMS

In this section, we explore failures that impact the usefulness
of video data in a video surveillance system with approx-
imately 4000 cameras at Anhui University. We classify the
various failures into three groups, one of which is defined as
a failure domain in the system [see Figs. 3(a) and (b)]. We
propose a VU framework [see Fig. 3(c)] for detecting failures
via several lightweight image processing approaches.

Failure Types [See Fig. 3(a)]: A video surveillance system is
typically composed of cameras at the edge, video servers in the
cloud, end-users, and the network. An edge camera acquires
a video stream which is stored in a cloud server; then, video
data is presented to an end-user. A failure in any component
impacts on the usefulness of the video streams. To enclose
failures in the system, we spent approximately eight months
studying the video streams from approximately 4000 sampled

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 803

cameras in the large-scale video surveillance system platform
at Anhui University. Video data is characterized in terms of
three qualities: 1) satisfactory QoS (or QoE); 2) poor QoS; and
3) useless content. For satisfactory QoS, video data is available
for monitoring scenarios and further video data analytics. A
satisfactory-QoS video may have useless content. For example,
the content of a video from an illegal-angle camera cannot be
used in video analytics. Video data with poor QoS cannot be
used for further video analytics.

In an empirical case, a natural occlusion failure occurs,
in which the camera screen is obstructed by bags, leaves,
or wire. An end-user approach can detect a screen change
failure in which a scene is incorrectly changed to another
scene. In a video loss failure, video data are lost in a
cloud server. We collected video data with 24 types of fail-
ures in three failure domains in a video surveillance system,
see Fig. 3(a).

Failure Domains [See Fig. 3(b)]: We explored 24 fail-
ures which occurred in four components in a realistic video
surveillance system, i.e., edge cameras, the cloud center, end-
users, and the network. According to the location of each
failure, we define a component with multiple failures as a
failure domain. Therefore, we define three failure domains,
namely, the Fedge domain, the Fcloud domain, and the Fuser
domain in a video surveillance system in Fig. 3(b). Failures
on edge cameras constitute the Fedge domain. Failures in cloud
servers (e.g., meta-data servers and data servers) and con-
nected network nodes are grouped together to form the Fcloud
domain. The end-user domain, which is composed of end-
user nodes and failures, is referred to as the Fuser domain. We
explore 17, 4, and 3 types of failure in the Fedge, Fuser, and
Fcloud domains [see Fig. 3(a)], respectively. Any failure in one
of these domains can impact the VU.

III. VIDEO USEFULNESS DEFINITION

As discussed above, the usefulness of a video depends on
whether a failure occurs on each node in the three failure
domains. We propose a VU model to study a failure and its
impact on the amount of video data in a video surveillance
system.

Our VU model detects the usefulness of the video data on
any node in a video surveillance system. In the cloud, the
amount of video data is largely determined by its usefulness.
Thus, we define the VU in terms of the amount of video in
a video surveillance system. The amount of useful video data
is defined as follows.

Definition 1: The amount of useful video data is the size of
the useful and failure-free portion of the entire video stream,
which is transmitted to the cloud and stored in a data server
over a period of time.

In a video surveillance system, let V represents the amount
of video data which is captured from a camera in the time
interval [1, NT ], where the times are expressed in seconds.
Video data that are uploaded to a storage server in the cloud
cross many edge nodes. Let di be the amount of video data
from the eth camera in the ith unit time. In the range [1, NT ],

the amount of video data is expressed as follows:

Ve =
i=NT∑

i=1

(di). (1)

The di video data will be transmitted along the path between
the eth camera and the server in the cloud; therefore, it is
assumed that there are Mnode nodes in the path. VU is referred
to as VU value (or the degree of VU) in this article. U(j)
indicates the usefulness value of the video data in the jth node
(e.g., an edge camera and a router in the network) per unit time
in a video surveillance system. Then, we have

U(j) ∈ [0, 1] (2)

where U(j) = 0 denotes that the video data in the jth node
is useless and cannot be uploaded to the cloud. Otherwise,
U(j) = 1 denotes that the video data is useful and is uploaded
to the cloud.

A value that is between zero and one is compared with a
reference value that has been empirically set by the operations
and maintenance teams. It must be noted that U(j), which
denotes the VU value of video data di on the jth node, is used
to evaluate the VU. This metric is expressed as follows:

U(j) =
{

u, �v > 0
0, �v ≤ 0

(3)

where j ∈ [1, Mnode] and �v refers to the usefulness boundary
of the video data which depends on the cases. The parameter
u, which corresponds to the value of VU and satisfies u ∈
(0, 1], is determined based on the difference between the VU
value and the user-defined reference, i.e., �v = |vtest − vRef|.
If �v > 0, the video data from a node is useful for users.
Therefore, a portion of the useful video data, the ratio of which
is equal to u, is uploaded to the upper-level node from the
lower-level node. Otherwise, if �v ≤ 0, the video data corre-
sponds to a lower degree of VU than the reference value and
the video data is useless and is directly discarded. The value
of u, which is empirically set by the operations and mainte-
nance teams, is qualified in each failure detection approach
(see Section IV). In this article, the value of u is set to one in
each detection approach in our experiments.

Through all nodes in the video surveillance system, the real
amount of video data in the video data di from the eth camera
is expressed as follows:

Di = di ×
j=Mnode∏

j=1

U(j) (4)

where Mnode denotes the number of nodes in the path of the
video data between a camera and a cloud server. Di denotes
the amount of video data in the cloud.

Then, the amount of useful video data that are captured
from the eth camera and stored in the cloud is represented as
follows:

Vu
e =

i=NT∑

i=1

(Di) =
i=NT∑

i=1

⎛

⎝di ×
j=Mnode∏

j=1

U(j)

⎞

⎠ (5)

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



804 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

where Vu
e is the amount of useful video data that is stored in

the cloud from the eth camera in the time range [1, NT ].
Let S be the number of cameras in the video surveillance

system. The amount of video data Vu
t is given as

Vu
t =

e=S∑

e=1

(
Vu

e

) =
e=S∑

e=1

⎛

⎝
i=NT∑

i=1

⎛

⎝di ×
j=Mnode∏

j=1

U(j)

⎞

⎠

⎞

⎠ (6)

where Vu
t is the amount of useful video data stored in the

cloud from the S number of cameras in the video surveillance
system during [1, NT ] seconds.

In this article, the two methods are designed for handling
video uselessness in a video surveillance system. First, edge
devices directly terminate video data transmission to the cloud
according to the VU value. Second, the VU value is sent to
end-users for a further decision. The absolute value of v, which
is denoted as |v|, represents a boundary value of VU for the
video data. It divides the VU into various degrees. The value
of |v| is dependent on failure detection approaches.

IV. FAILURE DETECTION FRAMEWORK

In a video surveillance system, video streams with failures
can cause useless content, which burdens the network band-
width and wastes storage usage in the cloud. Currently, a video
failure is detected by examining video data in the cloud, which
requires substantial time and computing resources.

Our proposed failure detection framework [see Fig. 3(c)]
employs an edge computing paradigm in edge nodes to analyze
the VU in a video surveillance system. Prior work [16] defined
the “edge” as any computing and network resources along the
path between data sources and cloud data centers. The design
of a failure detection framework is determined by the avail-
able computing resources for detection approaches in three
domains, such as computing resources that are equipped inside
the device, newly incorporated computing units, and local (or
no-additional) computing resources in the cloud and end-user.
These resources are referred to as edge computing units and
provide computing capabilities for edge nodes, e.g., edge cam-
eras, network nodes, end-users, and cloud servers. Therefore,
this framework preprocesses video streams or network pack-
ets to early detect a failure in each edge node along the path
between a camera and a cloud server.

For example, a camera cannot conduct failure detection
because of its limited computational capability. Thus, we then
configure an edge computing-based camera (i.e., EC camera),
which includes an edge computing unit and a camera that is
connected to a router, as shown in Fig. 3(b). A software stack
is deployed on an edge computing unit which preprocesses the
video streams before it is uploaded to the cloud.

In this article, we designed three types of frameworks to
detect failures for VU by using different computing resources
above, i.e., edgeVU, cloudVU, and userVU frameworks. An
additional computing unit connected to edge nodes by a
router enriches the computation capability of the computing
resources-limited devices, e.g., cameras, router, etc. An edge
computing resources-based framework is called edgeVU [see
Fig. 3(c)] in this article. The cloudVU and userVU frameworks

use local computing resources to perform failure detection in
the cloud and end-user, respectively. The former, which is
deployed in a cloud server and use its computing resources, is
called cloudVU. The userVU framework is designed in an end-
user device. In addition, an end-user device also uses edgeVU
to detect failures, e.g., scene change, video lagging, etc. Details
of edgeVU, cloudVU, and userVU frameworks are listed as
below.

A. EdgeVU Framework

The edgeVU framework depends on both additional hard-
ware and software, as illustrated in Fig. 3(b), because an edge
camera is a computing-resource-limited device. Many embed-
ded hardware platforms, which provide computing power, are
employed as edge computing units in this framework, e.g.,
Raspberry Pi V3 [22], Intel Movidius [23], and NVIDIA
Jetson TX2 [24]. Besides, we employ a lightweight real-time
operating system as an edge computing-oriented operating
system (i.e., eRTOS). A VU detector, which is a user-level
module, transfers messages to/from eRTOS through applica-
tion interfaces (APIs). A VU Library module includes several
detection approaches. In the edge camera domain, the edgeVU
captures video data from a camera using the Capturing Module
and executes failure detection approaches to determine the VU
in various ways. For example, network packets are detected by
the Decoder Module. The Threshold Adjustment module sets
parameters for a detection approach at different resolutions.
The detection results (e.g., latency and accuracy) are recorded
by a Result Profiler module. The Control Message module
analyzes the result and makes a decision on whether to adjust
the camera, router, or others nodes. Meanwhile, the results
are packed as a message by the VU Protocol Handler mod-
ule and sent to a VU server (i.e., VU server) in the cloud. A
VU server, which receives VU values from the Result Profiler
Module and monitors the status of the framework on each
edge node, stores log files of VU values in the cloud. An end-
user accesses the VU server and searches for the VU value
of the data in a node. In addition, the VU server pushes new
versions of failure detection approaches onto an edge node in
the online mode according to the requirement of failure detec-
tion. Developers design customized software in the function
module.

B. CloudVU and UserVU Frameworks

The cloudVU framework is deployed in the cloud domain
(e.g., data and meta-data servers) and the userVU framework
is installed in the end-user domain (e.g., personal comput-
ers, police vehicles, and mobile phones). The two frameworks
have the same structure and detect failure video data by using
local computing resources in a cloud server (e.g., data cen-
ter) or a mobile phone, which is sufficient for satisfying the
requirements of the detection approaches in the VU library.

The approaches in the VU library are reconfigured for
detecting a failure. For example, in the edge domain, the VU
is highly important; thus, the detection approaches for video
data are installed in the edgeVU framework. Video data after

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 805

the edge domain is considered to be normal. However, the fail-
ure may occur when data packet transmits among the network,
data server, and a meta-data server. Therefore, the detection
approaches should be reconfigured in the cloud or the end-
user domain. To record the VU values of the three domains,
all detection results from the Result Profiler Module are sent
to a VU server in the cloud.

In summary, an edge computing paradigm-enabled VU
framework aims at detecting a failure on the fly by using video
data or network packets on edge nodes in the edge computing
model (not cloud computing model) in a video surveillance
system. Video failure detection framework, which is based on
the edge computing network, is considered a killer application
for edge computing.

V. FAILURE DETECTION APPROACHES AND

FADA SCHEDULING

We built upon several lightweight approaches for detect-
ing video failures in three domains, which differ in terms of
the associated failure detection approaches. Edge computing-
enabled analysis approaches are applied to video streams.
The results are sent to a VU server in the cloud and end-
users are notified. Detection modules handle useless video
and decide whether to send the video to the cloud but a por-
tion of the decisions will be made by users. First, we present
several lightweight detection approaches in three domains in
Sections V-A1–V-A3. Then, we proposed a scheduler, namely,
FADA for determining the optimal detection interval for failure
detection approaches and realize a high-performance failure
detection framework.

A. Failure Detection Approaches in Domains

Several failure detection approaches are designed and
deployed in each domain.

1) Failure Detection in the Fedge Domain:
a) Solid color screen and freeze frame detection: Solid

color screen failures include Fedge_2 (white screen), Fedge_3
(black screen), and Fedge_4 (green screen), which are presented
in Fig. 3(a). The failure is manifested as a solid color screen
because video transmission stops for a period of time. These
approaches are utilized in edge computing-enabled cameras
due to their lower cost in terms of computing resources. A
detection approach searches for solid color images in video
streams and calculates the duration. Fedge_5 (freeze frame)
occurs when the last image frame is repeated or no frame
arrives for a long time.

An RGB image is converted to a grayscale image, and the
gray values of all the pixels are considered. The differences in
the gray values among the pixels correspond to the variability
degree of the image. If the screen is solid, the differences in
the gray values among the pixels are very small. A threshold
gray variance value [25] is set for pixels in an image with a
solid color failure. This failure is detected by comparing the
threshold value with the variance for pixels in the image. For
Fedge_5, the variance of the interframe difference is calculated
for comparison with a reference. The N subsequent frames
are detected to confirm this failure. The time stamp in a video

stream with a freeze failure is unchanged, whereas it is variable
in a static scene for a normal image.

b) Noise detection: A noise failure (Fedge_6) is a ran-
dom variation of the brightness or color information in an
image. Gaussian noise [26] has a probability density func-
tion that is equal to a normal distribution. Salt-and-pepper
noise [27], which is defined as impulsive noise, is charac-
terized by dark pixels in bright regions or bright pixels in
dark regions of a video. The absolute values of the gray dif-
ferences between a pixel and its neighboring pixels in eight
directions are employed to determine whether the test video
contains noise. When the minimum value exceeds a thresh-
old, this pixel is a noise point. A Gaussian-type membership
function is used. The pixel is a noise pixel if the correspond-
ing value of the membership function [28] is smaller than a
reference value. Then, the noise density is estimated from the
number of noise points. The test video contains noise when
the value exceeds a reference value.

c) Blurring failure (Fedge_7): A blurred image has
reduced sharpness and deformations of edges. It resembles
a video that is viewed through a translucent screen. The
test image is divided into blocks for edge detection [29].
The image sharpness (S for example) is calculated based
on the fuzzy probabilities of these small blocks. This fail-
ure is detected by comparing the value of S with a reference
value.

d) Angle deviation and scene change detection: For an
angle deviation failure (Fedge_12), both the test and reference
images at the edge are used as input parameters of speeded-up
robust features function (SURF) [30]. Feature points in the two
images are calculated. The two sets of feature points are con-
figured to be parameters of the BruteForceMatcher function
and the set of matching-point pairs between the two images;
for example, pi(xi, yi) and pj(xj, yj) are a pair of matching
points. The offset of and Euclidean distance between the two
matching points can be calculated as �pi = |pi(xi) − pj(xj)|
and �pj = |pi(yi) − pj(yj)|, respectively. We then calculate
dist(pi, pj). A pair of matching points in the angle deviation is
counted when the three values all exceed their corresponding
reference values. When the number of angle-deviation match-
ing points exceed a reference value, the test image has an
angle deviation failure.

In addition, a scene change failure [see Fuser_1 in Fig. 3(a)]
occurs when a normal scene incorrectly changes. This failure
is detected via a similar method to the angle-deviation failure
detection method using a different threshold.

e) Flicker screen detection: Frames fi−1, fi, and fi+1 are
extracted from the video stream to calculate two variances of
the interframe difference between two adjacent frames [25]. A
flicker failure (Fedge_9) is detected by comparing the difference
between the two variances with the reference value.

f) Color cast detection: An image that has been extracted
from the video is converted into the Lab color space [31].
For an image with a color cast failure, the mean values in
dimension a and b deviates from the original one and the
variance is small. This feature is helpful for obtaining the color
cast factor, which is used to determine whether a failure has
occurred.

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



806 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

g) Abnormal brightness detection: A test RGB image
is converted into the hue, saturation, intensity (HSI) color
space [32]. The number of pixels in the image for which
exceeds a threshold is calculated. If the ratio of the number of
these pixels to the total number of pixels in the image exceeds
a reference value, an abnormal brightness failure (Fedge_11) is
detected. Then, the HSI method, which reflects the saturation
and brightness in an image, detects the failure Fedge_11.

h) Image jitter detection: A jitter failure (Fedge_8) results
from the horizontal lines of images being randomly displaced
due to the corruption of synchronization signals or electro-
magnetic interference in transmission. The same method as
for angle deviation detection [see (4) in Section V-A1] is
employed for the detection of this failure.

i) Video occlusion detection: For an occlusion failure
(Fedge_13), a background image that corresponds to a refer-
ence value is extracted from the video in the first 2 s. An
image from the subsequent 2 s of video is extracted and its
interframe difference with the background image is calculated
to obtain a foreground image [33]. After the image processing
corrosion expansion operation, the area of the new image is
defined as img1Area. By region growing [34], the area of the
block of maximum area in the foreground image (maxArea in
short) is calculated according to img1Area. Let SCALE be the
ratio of maxArea to img1Area. The variance of the region that
corresponds to maxArea and the same region of the current
image is denoted as VAR. If SCALE > T1 and VAR > T2
(T1 and T2 are reference values), there may be an occlusion
failure in the image. The single image that is extracted from
the subsequent 2 s of video data is processed via the above
steps. The video has an occlusion failure if occlusion failures
are detected in consecutive 24 frames.

j) API-based failure detection: Failures Fedge_14 ∼
Fedge_17 are detected by the APIs in cameras that are provided
by the manufacturers.

For Fedge_14, the pan/tilt module in a pan-tilt-zoom (PZT)
camera fails to work. Fedge_15 is an initial failure in the power-
on-self test. Fedge_16 exists in the position encoded for a
camera. The position that is encoded number, which is dis-
played on an LED screen, represents an edge camera and
provides convenience in retrieving its video for users. The
digital number is recorded by the detection system for com-
parison with the correct number in the local storage device.
In a surveillance equipment box failure (i.e., Fedge_17), the
equipment box is unlocked. The detection framework reads the
register status in a camera using its APIs for PTZ, self-testing,
the number in LED, and the equipment box.

k) Edge camera connection detection: For Fedge_1, two
types of failure occur in the network, i.e., disconnection and
problematic connection. Using the feedback of a TCP/IP data
packet, the detection approaches vary according to the failure
in this case.

For a disconnection failure, the detection module, which
is deployed in the cloud or the end-user domain, sends
test data packets to a targeted edge camera and waits for
the response. If the detection framework determines that the
allowed response time has been exhausted, the network discon-
nection is reported to an end-user. If response packets arrive,

the detection approach identifies the serial numbers of the
data packets and compares them with the configured serial
numbers of the request packets. When the serial number of a
response packet is zero or is the same as that of a request data
packet, the network is connected but has a problem. This case
is classified as a problematic connection failure. Finally, the
prompt for Fedge_1 is sent to the end-users or stored in the VU
server.

2) Failure Detection in the Fuser Domain: There are four
types of failure in this domain. Computer vision techniques are
also used in the end-user domain because end-users browse
video clips and images.

a) Video lag detection: The network latency causes a
video lag failure (see Fuser_2), which is detected according to
the time interval between a request data packet being sent to an
edge camera (or a cloud server) and the response packet being
received. In addition, the packet loss ratio for fast online video
is calculated from the average number of response packets and
the latency.

b) Mosaic failure detection: A mosaic failure (Fuser_3)
occurs due to the low quality of the transmission data in the
network. Images can be dropped in a low-quality network,
which is defined as mosaic failure. To detect this failure,
we employ a mosaic-square reference model for perform-
ing model matching after sobel edge detection for a test
image [35]. In the image, the number of a right angle is
calculated for comparison with a reference value.

c) End-user connection detection: The detection method
for failure Fuser_1 is similar to that for Fedge_1, which detects
disconnections and problematic connections using the feed-
back of TCP/IP data packets. A detection approach in the VU
library that is deployed in the edge or the cloud domain sends
a test data packet to an end-user and waits for a response
packet. The status of the end-user offline (Fuser_1) notifies the
end-users in other ways and is stored in the VU server, please
refer to the section on Fedge_1 detection.

3) Failure Detection in the Fcloud Domain: It is difficult
for humans to manage large-scale video data and timely detect
failures online in the cloud. If a failure occurs in a cloud server,
video service is impaired when the historical video is applied.
Three detection approaches are designed for locating failures
in the cloud.

a) Cloud server connection detection: Fcloud_1 [see
Fig. 3(a)] occurs in two types of network connection: 1) from
an edge camera to a cloud server and 2) from an end-user node
to a cloud server. The detection system is configured at an edge
or an end-user domain, respectively. For this problem, dis-
connection and problematic connection are detected by using
the feedback from TCP/IP data packets, similar to Fedge_1 (or
Fuser_1).

b) Video lag and loss detection: A video lag failure is
discovered when an end-user looks up a video, which is unac-
ceptable in time-sensitive criminal cases. Detection approaches
in the VU library check the network latency in the cloud. The
latency refers to the duration from a request packet being sent
to an edge camera to the arrival of the response data packet.
The packet loss ratio is used to measure the number of data

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 807

Fig. 4. Workflow of failure detection approaches using FADA in edge
computing-enabled VU systems. The black solid line and the red dashed line
represent the data stream and the control stream, respectively, in each failure
domain.

packets for video data. When the value is lower than a refer-
ence value, the usefulness of the video is low. Fcloud_3 (video
loss) is caused by a severe packet loss.

B. FADA Scheduling Scheme

According to the failure detection approaches that are
described above, we present three types of workflows of failure
detection approaches in the edge, cloud, and end-user failure
domains, as shown in Fig. 4. In each workflow, we propose a
scheduler, namely, FADA. FADA schedules failure detection
approaches according to the frequency of failure occurrence.
Then, FADA sends the results to a VU server in the cloud
if the network is available. Otherwise, the results are tem-
porarily stored in the local device. In addition, FADA adjusts
the frequencies of failure detection approaches and configure
the optimal detection time interval for failures. The detection
interval for a failure detection approach refers to the time
interval between the detection of two consecutive failures of
the same type.

In the edge model, the high frequencies of the failure detec-
tion approaches improve the MTTD. However, the edge device
still cannot afford the cost of energy consumption due to its
limited resources. Thus, it is important to design a schedul-
ing scheme that dynamically adjusts the frequencies of failure
detection approaches to balance the MTTD and the frequency.

In FADA, the frequency of failure detections depends
strongly on the time interval between applications of the same
detection procedure. Initially, the time interval between two
failure detections using the same procedure predefined. It is
supposed that the first detection procedure for the jth failure
starts at t(j,i) and the same detection procedure is performed
again at t(j,i+1). Let us suppose that the current time interval
between the two applications of the same failure detection
approach is TD. If we have

(
t(j,i+1) − t(j,i)

)
< TD (7)

Algorithm 1 FADA Scheduling
1: procedure FREQUENCY

2: TD ←the time interval for each failure detection in the edge, cloud and user
domain.

3: sum← the times of consecutive failure
4: sum1← the times of consecutive normal
5: tag← the flag of the approach
6: Sa←the sequence of the approaches (F1, F2, F3, . . . , Fmax)
7: Subscript max: the number of detection approaches in an domain.
8: while true do
9: Runing Sa

10: tag←the flag of F1
11: if Fj prompt camera failure then
12: OutPut("Video Surveillance failure")
13: Waiting for repair
14: sum1←0
15: if tag == the flag of Fj then
16: sum++
17: else
18: sum←0
19: tag←the flag of Fj
20: end if
21: if sum > 3 then
22: TD ← TD/2
23: set the Fj as the first approach
24: end if
25: else
26: sum←0
27: sum1++
28: if sum1 > 3 then
29: TD ← TD×2
30: end if
31: end if
32: end while
33: end procedure

the occurrence frequency of this failure is high. When the same
failure is consecutively detected NRef1 times (e.g., NRef1 = 3 in
FADA), FADA increases the frequency of the failure detection
and adjusts the detection approach for the jth failure as the first
detection procedure among all failure detection approaches,
namely, the time interval between two failure detections is
shortened. We then redefine the time interval as follows:

TD = TD/2. (8)

Hence, the frequency of the jth failure detection is doubled.
Meanwhile, we readjust the frequencies of other failure detec-
tions. Other failures may occur in the same case; therefore, the
adjustment of the frequency of this failure detection improves
the probability of detecting failures in real time.

Otherwise, no failure is detected in video streams; and this
case is repeated NRef2 times (e.g., three times in this arti-
cle). Then, the time interval between the two failure detections
using the same procedure increases and the frequency of fail-
ure detection decreases, e.g., TD = 2 × TD. If the following
three detection procedures do not detect failures; then, the time
interval between two failure detections is set to (2×TD) until a
failure is detected. Details are shown in Algorithm 1. In addi-
tion, the interval time between two application of two failure
detection approaches in a round is also increased to improve
the MTTD.

In summary, the FADA scheduling scheme can realize two
goals: 1) finding a failure fast online in a tradeoff frequency in
the edge model with the limited resources and 2) improving the
MTTD and the frequency for failure detection via the FADA
scheduling strategy. We evaluate the performance of FADA in
terms of the MTTD, the frequencies at which the detection

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



808 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

approaches are applied, and the energy consumption. Details
of the evaluation are presented in Section VI-G.

VI. EXPERIMENT AND EVALUATION

The benefits of the edge computing-based VU model in
a video surveillance system are examined to answer the
following questions.

Q1: Why can the VU model accurately evaluate the VU?
How does the VU model work?

Q2: Why can the VU model early and efficiently detect a
failure in a video surveillance system and shorten the MTTD?
How dose the VU model work?

A. Accuracy of the VU Model

In the dataset, the number of true- (or false-) positive and
negative test data items (images or video clips) are counted.
The binary classification tradeoff [36] is used to evaluate the
accuracies of detection approaches. We classify the detection
results into two categories, i.e., normal and failure. The VU
model detects categories approximately and the classification
results are listed as follows.

True Positive (TP): A failure video data item is correctly
detected as a failure

√
.

False Negative (FN): A failure video data item is mistakenly
detected as a normal ×.

True Negative (TN): A normal video data item is correctly
detected as a normal

√
.

False Positive (FP): A normal video data item is mistakenly
detected as a failure ×.

It is supposed that the dataset contains N (i.e., N = (I+O))
data items. I and O represent the number of true failure and
normal data items, respectively. Four types of accuracy ratios
(i.e., efficiency, precision, recall, and specificity) are employed
to evaluate the accuracy degree of the detection approaches in
the VU model. The efficiency (E) is the difference between
the test value and the true one for a detection approach. This
metric measures how close a test value is to the true value. E is
defined as E = ((TP+ TN)/N)× 100%. The precision (P) is
the repeatability of successive measurements under the same
conditions. It is the positive predictive value for evaluating
how the test values are close to each other and; is defined
as P = (TP/(TP+ FP))× 100%. The recall (true acceptance
rate, R), which is the fraction of true failure video data items
in the dataset that are detected as failure items, is expressed as
R = (TP/I)× 100%. The specificity (true rejection rate, S) is
the fraction of true normal video data items in the dataset being
detected as normal items. S is defined as S = (TN/O)×100%.

In this article, we select 100-failure and 60-normal data
items. We have I = (TP+ FN) = 100 and O = (TN+ FP) =
60. Without loss of generality, we use two parameters, i.e., TP
and TN, in the experiments.

B. Experimental Setup

1) Evaluation Dataset: In the experiment, the dataset is
collected from a realistic video surveillance system that has
approximately 4433 IP cameras at Anhui University. In addi-
tion to 4232 cameras online cameras, there are 201 cameras

that are unable to run, which is attributed to: 1) failure of a
charge-couple device (CCD) in a camera; 2) CMOS imaging
sensor damage; and 3) a camera being past its useful life. In
the video data from 4232 online cameras, failures occur, such
as occlusion and flicker. Because each IP camera is installed
in a distinct location, there are 4232 types of scenes in video
streams. We spent approximately six months collecting video
clips and images with various failures from various scenes in
the video surveillance system. According to realistic failures
in the video streams, we designed a dataset that includes two
types of video data, i.e., video clips and images. Each video
clip or image, which is called a test item, can be classified
as normal or a failure. There are ten types of failures (see
Table I) that can occur in the dataset. These items are real-
istic candidates and hand-segmented video clips or images in
various scenes. A failure is detected by preprocessing video
clips, such as angle, freeze frame, jitter, occlusion, or flicker.
Meanwhile, an image is preprocessed to analyze whether a
blur, brightness, color cast, solid color, or noise failure occurs.
For a failure test, we select 160 test candidates (items) includ-
ing 100-normal and 60-failure clips or images, each of which
contains a different scene. The number of failure data items in
the entire set of 160 test candidates is configured as the distri-
bution of failure items (e.g., 60 data items for angle deviation
failure) in Table I. A data item in a scene has four resolutions,
i.e., 1920× 1080, 1280× 720, 720× 576, and 352× 288. The
date items in the dataset have a wide variety of sizes, such as
approximately 1.7 MB to 9.6 MB for video clips and 2.4 KB
to 1.5 MB for images.

Our goals of designing the dataset are twofold: 1) classify-
ing video streams failures in a large-scale video surveillance
and 2) evaluating failure detection approaches (or algorithms)
in our proposed VU detection framework in terms of accu-
racy and MTTD on the dataset. In addition, we hope that
this dataset will be helpful for researchers in evaluating the
reliability of video surveillance systems.

2) Experimental Environment: According to failures, we
classify the data items in the dataset for VU detection into ten
groups. We conducted two types of experiments, i.e.: 1) basic
evaluation and 2) scalability evaluation. To evaluate the basic
accuracy of VU, we use 160 test video data items, including
video clips or images to evaluate this metric in Section VI-C.
We employ 100, 300, 500, and 700 cameras in the test for
MTTD. In the scalability evaluation (Section VI-D), we extend
the test dataset to approximately 4000 data items. We compare
the VU platform with a real-world commercial failure detec-
tion platform that is provided by Uniview Corporation.3 Six
typical failure detection approaches (see B, C, D, F, H, and
I in Table I) are considered in this test. This failure detection
system is deployed in a real scenario at Anhui University.

Currently, no camera has an edge-computing unit; there-
fore, we build an edge computing-enabled camera platform
using Raspberry Pi V3 (i.e., RPi V3). RPi V3 is equipped
with a 1.2 GHz, 64-bit quad-core ARMv8 CPU. The test
dataset is stored in a device on the RPi V3 testbed. We
employ lightweight OpenCV 4.0 to implement the detection

3Uniview is an IP video surveillance cameras company in China.

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 809

TABLE I
FAILURES AND DISTRIBUTION IN THE EVALUATION

(a) (b) (c) (d)

Fig. 5. Accuracy of failure detection approaches (see Table I) with four resolutions. TPe (TPc) and TNe (TNc) denote that the TP and TN results for ten
failure detection approaches in the VU library in the two models. Subscripts e and c represent the edge- and cloud-based models, respectively. (a) 1920×1080.
(b) 1280× 720. (c) 720× 576. (d) 352× 288.

approaches. The RPi testbed is wired to the cloud. This cloud
platform is emulated by six processors and 8 GB of memory
in a Dell PowerEdge R730 server.

We conduct extensive experiments for evaluating the
performance of the edge computing-based VU model (edge
model in short) and comparing it with that of the cloud
computing-based model (i.e., cloud model) in terms of accu-
racy and MTTD. MTTD is the sum of the transfer time and
the execution time which is referred to as the latency. The
edge computing-enabled component captures video data from
a camera and detects the failure. The transfer time is relatively
small in the edge model.

C. Performance Evaluation

In the edge domain, Fedge_14 (PZT failure), Fedge_15 (self-
test failure), Fedge_16 (position encoding failure), and Fedge_17
(surveillance box failure) are detected via API-based meth-
ods. Failures of the offline (for an edge, an end-user, and
a cloud server) and the image (or video) lags are measured
via the network detection. The detection approach for scene
changes is the same as that for angle deviations. Thus, we
evaluate the remaining detection approaches in terms of accu-
racy and MTTD in the VU model. White screen, black screen,
and green screen failures have the same features and turn into
a single-model screen without images; they are referred to
as solid color screen failures. Then failures (see Table I) are
detected by the VU model.

In the edge model, these failure detection approaches are
applied in parallel; then the VU values are sent to the VU
server and the operations and maintenance teams. The MTTD
of a detection approach is significantly smaller than that in
the cloud model. Video with a low degree of VU need not be
uploaded to the cloud, thereby reducing the use of storage in
the cloud.

1) Accuracy of the VU Model Evaluation: According to
parameters in Section VI-A, we conduct experiments to eval-
uate the accuracy of the VU model in terms of accuracy of
the failure detection approaches. According to Figs. 5 and 6,
the metrics for validating the accuracy of a failure detection
approach include TP and TN. The efficiency, precision, recall,
and specificity (E, P, R, and S for short) are used to evaluate
the degree of accuracy.

a) Basic accuracy: Two basic metrics, namely, TP and
TN, are used to evaluate the accuracy of failure detection
approaches. In the dataset, there are 160 data items (images or
video clips) with 100-failure and 60-normal data items for each
failure-detection approach test at each resolution. Resolutions
of 1920 × 1080, 1280 × 720, 720 × 576, and 352 × 288
for data items are used in the experiments. A video clip or an
image, the size of which varies with the resolutions, consumes
various amounts of computing resources and yields various
degrees of accuracy. Fig. 5 presents the accuracy metrics (TP
and TN in the edge and cloud models. For example, TPe and
TPc represent the number of TP data items in the edge and
cloud models, respectively.

The TP and TN values for the edge and cloud models are
higher than those in Fig. 5(a)–(d). The results demonstrate
high accuracies of the detection approaches in the VU model.
For a failure detection approach, a larger sum of TP and TN
corresponds to a more accurate detection approach. We have
(TP + FN) = 100 and (TN + FP) = 60. The real number of
failure and normal data items are 100 and 60, respectively.
The closer that the sum of TP and TN is to 160, the more
accurate the detection approach is. Considering blurring fail-
ure detection as an example [see Fig. 5(a)], the TPe (or TPc)
is 100 and TN is smaller than 60; hence, all failure data
items are correctly detected. Similar results are presented in
Fig. 5(b)–(d).

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



810 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

(a) (b) (c) (d)

Fig. 6. Accuracy degree of failure detections at four resolutions. Ee (Ec), Pe (Pc), Re (Rc), and Se (Sc) denote the efficiency, precision, recall, and specificity,
respectively, of a failure detection approach in the edge (cloud) model. (a) 1920 × 1080. (b) 1280 × 720. (c) 720 × 576. (d) 352 × 288.

According to Fig. 5(a)–(d), TP and TN exhibit similar phe-
nomena at the four resolutions, e.g., abnormal brightness, color
cast, freeze frame, solid color, video occlusion, and flicker
screen. These values for failure detection approaches regard-
ing blurring screen and noise become worsen as the resolution
of the images or video clips decreases. The same detection
approach is used for image jitter and angle deviation, which
is based on feature extraction (see Section IV). The two fail-
ure detections results have the same trends in terms of TP
and TN. Higher accuracy is realized at a higher resolution. In
addition, the values of TP and TN are 100 and 60, respec-
tively, for mosaic failure detection in the edge and cloud
models.

b) Degree of accuracy evaluation: In this test, we ana-
lyze the accuracy degrees of detection approaches in the VU
model in terms of the efficiency (E), precision (P), recall (R),
and specificity (S) in edge and cloud models. Subscripts e and
c of Ee and Ec denote the edge model and the cloud model,
respectively. The ideal value for each metric is 100%.

At each resolution, the values of E, P, R, and S for abnormal
brightness, freeze frame, solid color failure, and screen flick
are mostly no less than 99.0% in Fig. 6. The results demon-
strate a high degree of accuracy for these failure detection
approaches.

With a low resolution, the values of detection for angle
deviation, blurring, image jitter, and noise become smaller
than those for the high resolution. For example, E, P, R, and
S of the image jitter detection are much worse, i.e., 80.6%,
80.5%, 91.0%, and 63.3%, respectively, for the edge model
and 82.5%, 81.0%, 94.0%, and 63.3% for the cloud model at
352 × 288 resolution. At 1920 × 1080 resolution, the value
of E, P, R, and S is 84.4%, 94.1%, 80.0%, and 91.7% for edge
model and 85.6%, 94.3%, 80.0%, and 91.7% for cloud model,
respectively.

In addition, each value of E, P, R, or S for a mosaic failure-
based detection approach is 100% at all four resolutions in
both models.

2) MTTD of VU Model Evaluation: This test aims at val-
idating the early detection performance of the VU model.
The cloud model-based detection approaches are conducted
on video data from cameras to the cloud. However, VU-
based detection approaches are performed in an edge node
without video transmission. Thus, the MTTD for the edge
computing-enabled failure detection approaches of the VU
model is smaller than that in the cloud model, see Fig. 7.

We conducted two tests to evaluate the MTTDs of failure
detection approaches. Type-1: The failure detection approaches
are all performed in the edge model; and Type-2: The failure
detection approaches are all performed after uploading the test
data items in the cloud model.

MTTD depends strongly on the sizes of the data items and
the video resolution. A large-size or high-resolution data item
requires more time for failure detection in video streams. In
this article, we use video clip- and image-based data items
to evaluate MTTD because a video clip is larger than an
image. As listed in Table I, five failure detection approaches
are based on video clips and five failure-detection approaches
use images. Without loss of generality, we use the image-
based brightness and the video clip-based flicker detection
approaches to evaluate the MTTDs of VU at the four-type
resolutions. The MTTD is the sum of the transfer time and
the execution time.

Fig. 7 shows the MTTD for brightness failure (C) and flicker
(J) in Table I. The number of data items is configured as 100,
300, 500, and 700, which emulates the images or video clips
from cameras. In the edge model, the transfer time is small
because the test data items are locally handled without being
uploaded to the cloud. The detection approaches are conducted
in EC cameras in parallel. For failure C detection, the trans-
fer time is 0.09 s, 0.03 s, 0.02 s, and 0.01 s at resolutions
of 1920 × 1080, 1280 × 720, 720 × 576, and 352 × 288,
respectively. This metric increases to 9.46 s, 2.94 s, 2.13 s, and
0.80 s for the video clip-based detection approach for failure J.

The transmission time and execution time depend strongly
on the sizes of test video clips and the images in the cloud-
model. The transfer time accounts for the most of the total
time in this model. For a 1280 × 720-resolution test, the trans-
fer time for the image-based brightness detection is 146.1 s,
440.0 s, 712.5 s, and 991.5 s for 100, 300, 500, and 700
data items in the cloud model. The video clip-based flicker
detection exhibits 2229.3 s, 6688.0 s, 11146.7 s, and 5605.3 s
latency in data transmission for 100, 300, 500, and 700 data
items, respectively. In addition to the sizes of the data items,
the execution time also depends on the number of processors.
The execution time for the brightness detection is 3.0 s, 1.6 s,
and 1.2 s using two, four, and six processors, respectively. But
the video clip-based detection costs 136.3 s, 77.5 s, and 54.2 s
using two, four, and six processors, respectively. However, the
edge model spends about 0.4 s on conducting failure detection
in distributed cameras in parallel. This advantage is observed

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 811

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. MTTDs of failures C (abnormal brightness) and J (flicker screen) in the edge and the cloud models with four resolutions. The result is specified as
(Failure type : Resolution) in this figure. For example, (C : 1920 × 1080) denotes the MTTD of the abnormal brightness failure detection under a resolution
of 1920 × 1080. The c and e in x_c_x and e_x represent the cloud and edge models, respectively. In the cloud model, the MTTD consists of the transfer
time from a camera to the cloud (such as 2_c_trans) and the execution time (e.g., 2_c_exec) of failure detection. In the edge model, MTTD consists of
the execution time (i.e., e_exec) and transfer time (such as e_trans); however, the latter is much smaller than the former. In the cloud model, we configure
two-processor, four-processor, and six-processor modes and use them to study the MTTDs of failure detection approaches in a cloud server. Notation 4_c_exe
denotes that the testbed is configured with 4 processors for failure detection in the cloud model. (a) C : 1920 × 1080. (b) C : 1280 × 720. (c) C : 720 × 576.
(d) C : 352 × 288. (e) J : 1920 × 1080. (f) J : 1280 × 720. (g) J : 720 × 576. (h) J : 352 × 288.

in the image- and video clip-based detection approaches in this
model. For example, the MTTD reaches 1769.5 s (30542.4 s),
1753.9 s (29590.1 s), and 1749.2 s (29353.5 s) for image-
based (video clip-based) detection using two, four, and six
processors, respectively, for 700 data items.

In addition, the transmission and execution time for a fail-
ure detection reduces as the resolution decreases. Considering
the brightness detection using two processors as an exam-
ple, the MTTD for the 700-camera data items reduces to
165.4 s (158.4 s for transmission and 7.0 s for execution),
523.2 s (511.5 s for transmission and 11.7 s for execution),
1009.9 s (991.5 s for transmission and 18.4 s for execu-
tion), and 1769.5 s (1737.1 s for transmission and 32.4 s
for execution) at resolutions of 352 × 288, 720 × 576,
1280 × 720, and 1920 × 1080, respectively. This trend also
is also observed in the flicker detection.

D. Scalability Evaluation

We compare the scalability of the VU-based failure detec-
tion framework to that of a commercial cloud-based failure
detection system. In a real-world video surveillance system,
the commercial failure detection system, which is a cloud
model, is deployed by Uniview Company at Anhui University.
As discussed above, there are more than 4000 cameras on the
campus. We create data items from 2000, 3000, and 4000 cam-
eras to evaluate the scalability of VU in the terms of accuracy
and MTTD.

We compare the accuracy between the VU and Uniview
platforms in Fig. 8(a). In the 2000-camera case, the sum of
TP and TN from detection for six failure (i.e., B, C, D, F,
H, and I) is close to 2000 when a detection approach has a
high accuracy. In this test, TPu and TPVU are 324 and 337,

(a) (b)

Fig. 8. (a) Accuracy and (b) MTTD for detection approaches in both the VU
and Uniview platforms. We select six types of failure detection approaches,
i.e., B (Blurring), C (Abnormal Brightness), D (Color Cast), F (Freeze Frame),
H (Occlusion), and I (Flicker). TNu and TNVU represent the number of TN
test data items. There are 2000, 3000, and 4000 test data items (cameras).
VU denotes the MTTD of our detection approaches in the VU library and
u_2000 is the MTTD of a failure detection in the 2000-camera case.

respectively. Similarly, the value of TNu is smaller than that in
TNVU. (TN+ TP) in the VU-based detection system is larger
than that in the Uniview platform. Thus, the VU-based detec-
tion approaches are more accurate than those in the Uniview
platform. The same trend exists in 3000- and 4000-camera
cases. To handle video data from cameras with various reso-
lutions, the detection approaches are automatically configured
with satisfactory parameter values during failure detection.

In addition, we study the MTTDs of six failure detection
approaches, see Fig. 8(b). We compare the longest MTTD of
a detection approach in VU with that of the realistic Uniview
platform. The longest MTTD of a detection approach for each
of the six failures is tested by using the highest-resolution
data items that are evaluated in Fig. 7. We find that the
longest MTTD for each detection approach is smaller than
that in Uniview platform. The VU-based MTTD decreases as

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



812 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

Fig. 9. Costs of video storage usage improvement in the VU-based frame-
work. We employed 168-h (a week) test video data in the experiment.
Notation 352× 288_noVU represents the video data is resolution 352× 288
and VU-based failure detection framework is not used. While the symbol
352×288_VU means that the VU-based failure detection framework processes
resolution 352× 288-based video.

the solution of an image or video clip decreases. Thus, VU-
based detection approaches also have also superior scalability
in terms of MTTD compared with the Uniview platform.

E. Storage Usage Improvement in the VU Model

This experiment evaluates the advantages of the VU frame-
work in terms of the improvement of video storage usage in the
cloud. In the video surveillance system at Anhui University,
we collect one week of continuous video data from a camera
at four resolutions (i.e., 352 × 288, 720 × 576, 1280 × 720,
and 1920× 1080). The failure types in the video streams are
arbitrary. Without loss of generality, the test data includes five
configured types of failure, namely, solid color, blurring, color
cast, freeze, and flicker, which are detected via failure detec-
tion approaches in the VU-based framework to reduce the
video storage cost in the cloud. In addition, we configure two
test platforms: 1) with the VU-based framework and 2) with-
out the VU-based framework (noVU in short). Useless video
data with a low VU value is directly discarded in the first
framework but continually stored in the second framework.
Both frameworks record the total amount of video data in the
cloud every 2 h.

In Fig. 9, the results demonstrate that the noVU-based video
data linearly increases with a slope of approximately one over
time at the four resolutions. In comparison, the increment trend
in VU-based storage usage cost of video data obviously fluctu-
ates and decreases with time due to the discarding of useless
video. The VU-based slopes of the curves at the four res-
olutions change with time. This is attributed to the variable
failure data volume with time. The results at the 1920× 1080
resolution demonstrate that the video data volume at peri-
ods of 24 h, 36 h, 72 h, and 84 h increase slightly, while
the change in video storage cost is substantial between 96
h and 132 h. For example, the rate of change is close to
one. Meanwhile, similar trends are observed at other reso-
lutions. For total video data that are stored in the cloud during
7×24 h, we find that the noVU-based video data volume is
51.88 GB, 133.94 GB, 175.14 GB, and 350.67 GB at resolu-
tions of 352× 288, 720× 576, 1280× 720, and 1920× 1080,
respectively. The VU-based video data volume decreases by up

to 63.9%, 64.2%, 54.6%, and 55.9%, respectively, compared
to the noVU framework.

From the experimental results, we observe two phenomena.
1) The Growth Trend of the Video Data Volume in the

Cloud: In the VU-based framework, the growth rate
of the storage usage of the data volume in the cloud
can vary over time; hence, this framework is considered
an elastic storage framework. However, the growth rate
of video data in unit time will not exceed that in the
noVU-based framework. It can be seen that the network
bandwidth that is required for video transmission per
unit time will reduce based on the VU framework (see
Section VI-F).

2) The Total Amount of Video Data in the Cloud: The VU-
based total video storage usage costs are substantially
reduced, which decreases the storage usage of failure
data and improves the utilization of video storage space.

F. Bandwidth Usage Improvement in the VU Model

In Section VI-E, we have found that the VU-based frame-
work filtered useless video data in video streams which is
transmitted to the cloud from cameras. This method improves
storage utilization in the cloud. It is supposed that the band-
width cost of video data per unit time reduces. Then, the VU
model also saves network bandwidth by preprocessing failure
in video streams. This article aims at evaluating the advantages
of VU model in terms of bandwidth cost improvement. We
select two types of video streams (i.e., failure and normal) with
four resolutions (such as 352 × 288, 720 × 576, 1280 × 576,
and 1920 × 1080) from the dataset in Section VI-E. The length
of each test video streams is 10 min. The failure video streams
contain solid color, blurring, color cast, freeze, and flicker.
For failure video, there are 3551, 3647, 3090, and 3337 fail-
ure frames in the 10-min video streams with 15 000 frames
at resolutions of 352 × 288, 720 × 576, 1280 × 576, and
1920 × 1080.

At the edge node, Raspberry Pi3 in Section VI-B2 are
employed to capture video streams, perform VU-based fail-
ure detection, and push video data to the cloud. The default
network bandwidth on RPi3-based platform is 1000 Mb/s and
TCP protocol is used in the data transmission. A Dell R730
server in Section VI-B2 is used to receive the video data from
the edge node. The data volume transferring to the cloud and
the processing time and transfer time on the network are used
to calculate the average bandwidth. The results are listed in
Table II.

In the noVU-based framework, the bandwidth for video
data with normal or failure presents high occupation, such as
among 0.8 MB/s ∼ 1.2 MB/s. This reason is that the entire
video data is transmitted to the cloud without data process-
ing at the edge, which costs bandwidth in the network. As
listed in Table II, the bandwidth for normal data demonstrates
a low because the latency of data processing is caused by the
module of a failure detection in the VU model. However, the
bandwidth exhibits a small change and the impact is mini-
mal, lowing than 0.1 MB/s. For failure video, the VU-based

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 813

TABLE II
NETWORK BANDWIDTH IMPROVEMENT IN THE VU-BASED FRAMEWORK

framework reduces the bandwidth cost than that of the noVU-
based framework. For example, the bandwidth decreases by
approximately 37.1%, 60.1%, 62.9%, and 44.5% at resolutions
of 352 × 288, 720 × 576, 1280 × 720, and 1920 × 1080,
respectively. The failure detection module in the VU model
lengthens the procedure of data processing at an edge node;
and then, the average bandwidth cost is around 0.1 MB/s.
However, the bandwidth of video streams is improved in the
VU model because the failure video data which are detected
and discarded by failure detection approaches in the VU,
which improves bandwidth in the network.

In summary, the bandwidth cost of useless video data
reduces, which largely saves bandwidth in the VU-based video
surveillance system. These failure detection modules in the VU
framework slightly increase the latency of data processing at
the edge, which impairs the real-time in applications. However,
the failure detection approaches reduce useless video data and
bandwidth cost in the network.

G. FADA Scheduling Scheme in the VU Model

In this section, we perform experiments to validate the ben-
efits of FADA scheduling scheme in VU model. FADA aims at
realizing an overall tradeoff among the MTTD, the frequency
of failure detection approaches, and the energy consumption
(or cost), which are test metrics in this test. According to
the details of FADA in Section V-B, the time interval for
two applications of the same detection approaches for fail-
ure is 10 s (i.e., TD = 10 s) in this test. FADA adjust the
detection approach for the failure, which is continually con-
ducted three times, to the first place. Meanwhile, the time
interval between two applications of the same failure detection
approach is reduced by half, which increases the frequency of
failure detection and warns people to handle the failure. Thus,
FADA promptly detects failures to shorten the MTTD; how-
ever, it increases the energy consumption. Otherwise, FADA
enlarges the time interval between the two applications of the
same detection procedures if no failure in the video stream.
This case reduces the detection frequency and, hence, the
energy consumption.

In the experiment, we use three types of test video clips, i.e.,
normal video clips, failure video clips, and mixed normal and
failure video clips. The latter two include five types of fail-
ures, i.e., solid color, color cast, blurring, freeze frame, and

(a) (b)

(c)

(d)

(e)

Fig. 10. Test video clips in the evaluation of FADA scheduling scheme. The
symbol fvc denotes a failure video clips-based test data item with several types
of failure. In this test, we configure three types of failure video clips, such
as fvc_1, fvc_2, and fvc_3. The nvc represents normal video clips without
failure. The mvc indicates the video clips mixed with normal and failure.
(a) fvc_1. (b) fvc_2. (c) fvc_3. (d) nvc. (e) mvc.

TABLE III
EVALUATION ON FADA SCHEDULING SCHEME

flicker, is listed. As listed in Table III, we configure three fail-
ure video clips, namely, fvc_1, fvc_2, and fvc_3, see Fig. 10.
We configure the test video items with various sizes and failure
sequences for the following reasons: 1) solid color, color cast,
and blurring are detected by using video clips while failure
detection approaches employ images to detect freeze frame
and flicker and 2) the scheduling order of failure detection
approaches in FADA is determined by the sequence of fail-
ure in video streams. Then, the failure time interval in the
subsequent procedure of failure detection will be influenced
as well.

Fvc_1 with failure video aims at evaluating three test met-
rics under FADA and noFADA scheduling in the VU model.
The results demonstrate that the FADA-based VU improves
MTTD and increases energy consumption and the frequency
of detection approach. This is because FADA first sched-
ules an approach for a failure that has continually occurred
three times. Meanwhile, the time interval for this detection
approach will be reduced by half. Then, the frequency of
failure detection is increased by FADA to 43 from 25 and
the energy consumption increases by up to 27.1%. In addi-
tion, the MTTD decreases than that of noFADA. In nvc with
normal video, FADA decreases the frequency of application
of failure detection approaches and energy consumption but
increases the MTTD compared with noFADA. If no failure
detection approach in the VU model detects a failure in three
successive applications, the time interval between the same

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



814 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

two approaches is doubled. FADA reduces the frequency of
failure detection approaches; thereby enlarging MTTD and
lowering energy consumption. For the mixed failure and nor-
mal video (i.e., mvc), the test metrics depends on the sizes
of the normal and failure video clips. The results demonstrate
that energy consumption and MTTD in FADA are reduced
by approximately 5.0% and 32.8%, respectively, compared to
noFADA. The main reason is that FADA schedules detection
approaches more frequently for portions of failure video clips
compared to the normal video clips. Although the energy cost
of failure video in FADA is higher than that in noFADA, the
energy cost is much smaller. For the normal-video test, the fail-
ure detection approaches are applied fewer times compared to
noFADA; however, the energy cost in FADA is much higher
than that of noFADA due to the larger number of failure detec-
tions. For fvc_1, fvc_2, and fvc_3, we observe that FADA has
more failure detections than noFADA, which increases energy
consumption but reduces MTTD. Thus, FADA outperforms
noFADA on the video stream with various failure sequences.

In summary, the FADA scheduling scheme improves
MTTD, the frequency of failure detection approaches and
energy consumption under various failure-type and failure-
sequence cases, compared to noFADA.

VII. RELATED WORK

In this section, we present related work on: 1) quality of
video services, which is evaluated subjectively and objectively;
2) edge computing in video-analytics applications; and 3) this
article on VU.

A. Quality of Video Services

Surveillance video data has become the largest source
of video data and the amount of available data is grow-
ing exponentially in big multimedia data. Video surveillance
systems are impacted by distortion or artifacts in the video
signal. Video data is lost in transmission. These effects neg-
atively impact the QoS [11] or the QoE [37] of a video data
system. Rich literature about the evaluation quality of video
services predominately focuses on QoS and QoE. QoS and
QoE, between which an interdependent relationship exists, are
applied to measure the quality of video services.

QoS is defined by the International Telecommunication
Union as the collective effect of service performances, which
determine the degree of satisfaction of a user with the service,
which is specified in Recommendation E.800 [38]. From the
technical perspective, QoS parameters, which are mostly used
in the realm of video service, are considered as measurement
metrics for video services that are offered by providers. QoS
metrics are typically defined in terms of network service met-
rics, such as the error rate, bit rate, throughput, transmission
delay, round trip time, and loss ratio. These video distortions
are mostly related to the loss of compression and encoders for
video data in edge cameras. Methods of QoS measurement
not only require a reference for the rare video data but also
use an extra control channel to measure the quality of video
service [39]. However, the QoS methods are insufficient for

measuring the overall surveillance video quality, because they
consider only the packet loss and the delay.

QoE [40] typically considers the quality of video services
from the user perspective. QoE evaluations mainly include
three types of methods, i.e., subjective, objective, and hybrid.
A subjective QoE method [41] is one of the most reliable
methods for determining the perception of a user. Several
evaluation subjects provide the results of a subjective experi-
ment as the individual scores, which are used to calculate the
mean opinion score (MOS) [42] which is specified in ITUT
Recommendation P.800 [43] and has emerged as the most pop-
ular descriptor for media quality. The subjective approach is
characterized by the workforce and time consumptions. This
measurement cannot guarantee video services assessment;
therefore, this method is not widely used in the measure-
ment of video services. Objective QoE approaches [44] use
algorithms to measure the quality of video services by col-
lecting technical parameters from the network. As a result,
the evaluation can be performed fast online; however, the
human perception could influence the accuracy of the results.
Compared with the methods above, a hybrid approach [45],
which combines the subjective and objective approaches,
assesses QoE fast and reduces the time and human resources
costs.

Several approaches to evaluate video quality [41], [46]
according to its spatial and temporal characteristics. The for-
mer requires too much time and computing resources. The
latter is used by the resource-limited edge nodes to prepro-
cess video data. Video quality assessment models [47], [48] are
classified into three types, e.g., full-reference (FR), reduced-
reference (RR), and no-reference (NR). FR methods [49], [50]
compare original images (high quality) to the candidate images
whose quality is to be evaluated. This approach must access
the original images as references. An edge camera has lim-
ited storage space and cannot store entire original images.
RR methods [51], [52] use partial features information that
is extracted from the original images to evaluate the distorted
image. NR methods [53], [54], which do not utilize the original
images, use information from the pixel domain and the bit-
stream of an image/video to perform video quality assessment.
These methods perform real-time video quality assessment on
a resource-limited platform. The hybrid method for video qual-
ity assessment is fully applicable to a wide variety of failures
in video clips and images.

B. Edge Computing

Edge computing [55] (which is similar to fog comput-
ing [56], [57] and cloudlet [58]) is a new computing model
that has emerged with the proliferation of the IoE in recent
years. In the IoE era, a huge volume of data will be generated
by things that are immersed in our daily lives, and hundreds
of applications will be deployed at the edge to consume these
data. The term edge in edge computing refers to all comput-
ing and network resources along the path between data sources
and the cloud. Fast online video analysis in a video surveil-
lance system [59], [60] is one of the most prevalent use-cases
for edge computing. Cloud computing [61], [62], as the de

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 815

facto centralized big data processing platform, is insufficient
for supporting a video surveillance system in the IoE era due
to: 1) the inability of the computing resources that are available
in the centralized cloud to keep up with the explosively grow-
ing computational requirements of massive video data from
edge-based cameras; 2) the longer user-perceived latency that
is caused by the data movement between edge cameras and
the cloud; 3) the privacy and security concerns of data owners
in the edge; and 4) the energy constraints of the edge devices.
These issues in the centralized big data processing era have
pushed the horizon of a new computing paradigm, namely,
edge computing, which calls for processing data at the edge
of the network [63].

As discussed above, QoS mostly focuses on video qual-
ity from the perspective of video service providers. QoE
emphasizes that manual interaction is involved in the eval-
uation of video quality in the cloud. Hence, large volumes
of useless video are transferred to the cloud, which aggra-
vates the network bandwidth. These evaluation criteria are not
sufficiently comprehensive for evaluating VU.

This article focuses on: 1) image/video processing and
2) edge computing. For image/video processing, we migrate
tasks of image/video processing-based failure detection
approaches in the cloud model to the edge nodes in which
video failures are detected via the edge computing model.
These edge computing-based failure detection approaches real-
ize high real-time performance for video preprocessing, save
bandwidth in the network, and reduce the amount of useless
video that is stored in the cloud. For edge computing, this
article, to the best of our best knowledge, is the first work
to employ edge computing in the field of image/video fail-
ure detection, the framework of which is called VU. The
edge computing paradigm enables edge nodes to perform
image/video processing, which improves the performance of
failure detection and satisfies real-time demands for large-
scale video surveillance systems. Our proposed VU analytics
for a large-scale video surveillance system is a well killer
application of edge computing [64].

In summary, we propose a VU framework for analyzing
video quality and usefulness in an unmanned mode on the fly.
VU, which combines video/image processing and edge com-
puting, employs edge computing to preprocess video streams
and to detect failures in the video on edge nodes. VU reduces
the bandwidth of video transmission to the cloud and optimizes
video storage in the cloud.

VIII. DISCUSSION

The proposed VU model is derived from and inspired
by useless video streams in large-scale video surveillance
systems. The objectives of the VU model include: 1) early
detecting failures in any part of a video surveillance systems
on the fly via video analytics; 2) promptly filtering video data
with failures to reduce the network bandwidth overload and
improve the storage usage in the cloud; and 3) efficiently
and accurately analyzing useful video streams using suitable
resources. Therefore, the proposed model is easily adjusted
for other video systems, since the three domains are highly

generic. The detection methods with satisfactory applicabil-
ity and feasibility are still employed in other video systems,
which have cameras, end-users, network, or cloud servers.

In this article, we only apply the VU model to video surveil-
lance systems. The application that we consider is one of the
populations. In addition, we believe that VU model and detec-
tion approaches for failures in video streams will be helpful in
other video service systems, such as the vehicle video recorder
in a general or intelligent connected vehicle system.

In this article, we implemented VU framework that uses
two types of computing resources: 1) additional computing
resources for edge nodes (e.g., camera or router) and 2) local
computing resources in the end-user and the cloud server. We
employed and designed several lightweight image processing
algorithms, which require low computing resources yet fulfill
the accuracy requirements for failure detection. Therefore, we
employed a Raspberry Pi V3 platform as the computing unit
in video processing for an edge camera. Our VU framework
can also be implemented by using deep learning-based meth-
ods on high-computing resources platforms (e.g., GPU [24],
FPGA [65], and AI chip [66]). These methods are commonly
used for computing-intensive tasks, which require high-power
consumption. Deep learning methods that are based on Jetson
boards may be suitable for applications of object detection
algorithms, recognition, behavior analytics, and tracking. In
addition, similar and extended approaches, e.g., deep learn-
ing methods, which are outside the scope of this article, will
be further studied for more sophisticated applications in our
future work.

IX. CONCLUSION

In this article, we proposed a video usefulness model,
namely, the VU model, for large-scale video surveillance
systems, that is based on edge computing and cloud com-
puting. The VU model aims at not only effectively using the
large-scale video data to detect failures that are distributed
among edge cameras, end-users, the cloud, and the network
but also managing large-scale video surveillance systems.
According to the VU model, we summarize three types of fail-
ure domains in which numerous failures occur, which are used
to evaluate the usefulness of video data. In our experiments,
the VU model is evaluated in the following two aspects. First,
these fast online failure detection approaches, which are based
on edge computing or cloud computing, efficiently improve the
MTTD. Second, the most useless video data (e.g., video data
with a black screen) is directly handled by the edge devices
rather than being uploaded to the cloud. Thus, the bandwidth
of the network will not be wasted, and storage savings will be
realized in the cloud.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their work
on this article.

REFERENCES

[1] T. D. Räty, “Survey on contemporary remote surveillance systems for
public safety,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40,
no. 5, pp. 493–515, Sep. 2010.

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



816 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 2, FEBRUARY 2020

[2] A. Kumbhar, F. Koohifar, I. Güvenç, and B. Mueller, “A survey on
legacy and emerging technologies for public safety communications,”
IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 97–124, 1st Quart.,
2017.

[3] S. W. Smith, “Video surveillance system,” U.S. Patent 6 757 008, Jun. 29,
2004.

[4] T. Huang, “Surveillance video: The biggest big data,” Comput. Now,
vol. 7, no. 2, pp. 82–91, 2014.

[5] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636,
Jul. 2003.

[6] M. Uhrina, J. Frnda, L. Sevcik, and M. Vaculik, “Impact of H.264/AVC
and H.265/HEVC compression standards on the video quality for 4K
resolution,” Adv. Elect. Electron. Eng., vol. 12, no. 4, pp. 905–908, 2014.

[7] N. Dimitrova, H.-J. Zhang, B. Shahraray, I. Sezan, T. Huang, and
A. Zakhor, “Applications of video-content analysis and retrieval,” IEEE
Multimedia, vol. 9, no. 3, pp. 42–55, Jul./Sep. 2002.

[8] K. A. Joshi and D. G. Thakore, “A survey on moving object detection
and tracking in video surveillance system,” Int. J. Soft Comput. Eng.,
vol. 2, no. 3, pp. 44–48, 2012.

[9] B. Yogameena and S. P. Krishraj, “Synoptic video based human crowd
behavior analysis for forensic video surveillance,” in Proc. Int. Conf.
Adv. Pattern Recognit., 2015, pp. 1–6.

[10] M. R. Future. Video Surveillance Storage Market Research Report—
Forecast to 2023. Accessed: Feb. 10, 2019. [Online]. Available: https://
www.marketresearchfuture.com/reports/video-surveillance-storage-
market-5848

[11] M. S. Hossain, “QoS-aware service composition for distributed video
surveillance,” Multimedia Tools Appl., vol. 73, no. 1, pp. 169–188, 2014.

[12] M. Li and C.-Y. Lee, “A cost-effective and real-time QoE evaluation
method for multimedia streaming services,” Telecommun. Syst., vol. 59,
no. 3, pp. 317–327, 2015.

[13] T. T. Collipi and D. F. Harvey, “Method and apparatus for analyzing
surveillance systems using a total surveillance time metric,” U.S. Patent
7 436 295, Oct. 14, 2008.

[14] T. Kon, N. Uchida, K. Hashimoto, and Y. Shibata, “Evaluation of a seam-
less surveillance video monitoring system used by high-speed network
and high-resolution OMNI-directional cameras,” in Proc. IEEE Int. Conf.
Netw. Inf. Syst., 2012, pp. 187–193.

[15] A. Osuna, “IBM system storage N series and digital video surveillance,”
Adv. Mater. Res., vols. 953–954, pp. 1113–1116, 2010.

[16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[17] Q. Zhang, Z. Yu, W. Shi, and H. Zhong, “Demo abstract: EVAPS:
Edge video analysis for public safety,” in Proc. Edge Comput., 2016,
pp. 121–122.

[18] N. Chen, Y. Chen, Y. You, H. Ling, P. Liang, and R. Zimmermann,
“Dynamic urban surveillance video stream processing using fog com-
puting,” in Proc. IEEE 2nd Int. Conf. Multimedia Big Data, 2016,
pp. 105–112.

[19] N. Chen, Y. Chen, S. Song, C.-T. Huang, and X. Ye, “Poster abstract:
Smart urban surveillance using fog computing,” in Proc. IEEE/ACM
Symp. Edge Comput., 2016, pp. 95–96.

[20] S. Li, L. Da Xu, and S. Zhao, “The Internet of Things: A survey,” Inf.
Syst. Front., vol. 17, no. 2, pp. 243–259, 2015.

[21] A. B. Mutiara. Internet of Things/Everythings (IoT/E). Accessed:
Feb. 10, 2019. [Online]. Available: https://www.researchgate.net/
publication/292607382_Internet_of_ThingsEverythings_IoTE

[22] R. Pi. (2017). Compute Module Development Kits Now Available!
Accessed: Dec. 14, 2018. [Online]. Available: https://www.
raspberrypi.org/blog/compute-module-development-kits-now-available/

[23] Intel. (2018). Intel R©MovidiusTM Neural Compute Stick. Accessed:
Dec. 14, 2018. [Online]. Available: https://software.intel.com/en-
us/movidius-ncs

[24] NVIDIA. (2017). Nvidia Jetson Systems—The AI Solution for
Autonomous Machines. Accessed: Dec. 14, 2018. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems
-dev-kits-modules/

[25] L. Sendur and I. W. Selesnick, “Bivariate shrinkage with local variance
estimation,” IEEE Signal Process. Lett., vol. 9, no. 12, pp. 438–441,
Dec. 2002.

[26] T. Barbu, “Variational image denoising approach with diffusion porous
media flow,” Abstract Appl. Anal., vol. 2013, no. 1, p. 8, 2013.

[27] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading,
MA, USA: Addison-Wesley, 2010.

[28] M. A. Khanesar, E. Kayacan, M. Teshnehlab, and O. Kaynak, “Analysis
of the noise reduction property of type-2 fuzzy logic systems using a
novel type-2 membership function,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 41, no. 5, pp. 1395–1406, Oct. 2011.

[29] J. Gao and N. Liu, “An improved adaptive threshold canny edge detec-
tion algorithm,” in Proc. Int. Conf. Comput. Sci. Electron. Eng., vol. 1,
2012, pp. 164–168.

[30] H. Dong and D. Y. Han, “Research of image matching algorithm based
on surf features,” in Proc. Int. Conf. Comput. Sci. Inf. Process., 2012,
pp. 1140–1143.

[31] M. Kohn, “Method for analyzing images and for correcting the values
of video signals,” U.S. Patent 6 683 982, Jan. 27, 2004.

[32] N. S. P. Kong and H. Ibrahim, “Color image enhancement using bright-
ness preserving dynamic histogram equalization,” IEEE Trans. Consum.
Electron., vol. 54, no. 4, pp. 1962–1968, Nov. 2008.

[33] Á. Bayona, J. C. SanMiguel, and J. M. M. Sanchez, “Comparative eval-
uation of stationary foreground object detection algorithms based on
background subtraction techniques,” in Proc. IEEE Int. Conf. Adv. Video
Signal Based Surveillance, 2009, pp. 25–30.

[34] J. Tang, “A color image segmentation algorithm based on region
growing,” in Proc. Int. Conf. Comput. Eng. Technol., vol. 6, 2010,
pp. 634–637.

[35] J. N. Sarvaiya, S. Patnaik, and S. Bombaywala, “Image registration
by template matching using normalized cross-correlation,” in Proc. Int.
Conf. Adv. Comput. Control Telecommun. Technol., 2009, pp. 819–822.

[36] J. H. Saltzer and M. F. Kaashoek, Principles of Computer System
Design: An Introduction. Burlington, MA, USA: Morgan Kaufmann,
2009.

[37] P.-H. Wu, J.-N. Hwang, J.-Y. Pyun, K.-M. Lan, and J.-R. Chen, “QoE-
aware resource allocation for integrated surveillance system over 4G
mobile networks,” in Proc. IEEE Int. Symp. Circuits Syst., 2012,
pp. 1103–1106.

[38] “General aspects of quality of service and network performance in
digital network, including ISDN,” ITU, Geneva, Switzerland, ITU-
Recommendation I.350, 1993.

[39] M. Vranješ, S. Rimac-Drlje, and K. Grgić, “Review of objective video
quality metrics and performance comparison using different databases,”
Signal Process. Image Commun., vol. 28, no. 1, pp. 1–19, 2013.

[40] K. Piamrat, C. Viho, J.-M. Bonnin, and A. Ksentini, “Quality of expe-
rience measurements for video streaming over wireless networks,” in
Proc. Int. Conf. Inf. Technol. New Gener., 2009, pp. 1184–1189.

[41] T. Tominaga, T. Hayashi, J. Okamoto, and A. Takahashi, “Performance
comparisons of subjective quality assessment methods for mobile video,”
in Proc. Int. Workshop Qual. Multimedia Exp., 2010, pp. 82–87.

[42] R. C. Streijl, S. Winkler, and D. S. Hands, “Mean opinion score
(MOS) revisited: Methods and applications, limitations and alternatives,”
Multimedia Syst., vol. 22, no. 2, pp. 213–227, 2016.

[43] “Mean opinion score (MOS) terminology,” Int. Telecommun. Union,
Geneva, Switzerland, ITU-Recommendation 800.1, 2003.

[44] Q. Huynh-Thu and M. Ghanbari, “The accuracy of PSNR in predicting
video quality for different video scenes and frame rates,” Telecommun.
Syst., vol. 49, no. 1, pp. 35–48, 2012.

[45] S. Winkler and P. Mohandas, “The evolution of video quality measure-
ment: From PSNR to hybrid metrics,” IEEE Trans. Broadcast., vol. 54,
no. 3, pp. 660–668, Sep. 2008.

[46] M. Roitzsch and M. Pohlack, “Video quality and system resources:
Scheduling two opponents,” J. Vis. Commun. Image Represent., vol. 19,
no. 8, pp. 473–488, 2008.

[47] Z. Wang, G. Wu, H. R. Sheikh, E. P. Simoncelli, E.-H. Yang, and
A. C. Bovik, “Quality-aware images,” IEEE Trans. Image Process.,
vol. 15, no. 6, pp. 1680–1689, Jun. 2006.

[48] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective
video quality assessment methods: A classification, review, and
performance comparison,” IEEE Trans. Broadcast., vol. 57, no. 2,
pp. 165–182, Jun. 2011.

[49] T. N. Pappas, R. J. Safranek, and J. Chen, “Perceptual criteria for
image quality evaluation,” in Handbook of Image & Video Processing.
Amsterdam, The Netherlands: Elsevier, 2000, pp. 669–684.

[50] K. Manasa and S. S. Channappayya, “An optical flow-based full refer-
ence video quality assessment algorithm,” IEEE Trans. Image Process.,
vol. 25, no. 6, pp. 2480–2492, Jun. 2016.

[51] Z. Wang, H. R. Sheikh, and A. C. Bovik, “Objective video quality
assessment,” Handbook Video Databases Design Appl., vol. 17, no. 5,
pp. 1041–1078, 2003.

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: VU: EDGE COMPUTING-ENABLED VU DETECTION AND ITS APPLICATION IN LARGE-SCALE VIDEO SURVEILLANCE SYSTEMS 817

[52] C. G. Bampis, P. Gupta, R. Soundararajan, and A. C. Bovik, “SpEED-
QA: Spatial efficient entropic differencing for image and video quality,”
IEEE Signal Process. Lett., vol. 24, no. 9, pp. 1333–1337, Sep. 2017.

[53] H. R. Sheikh, A. C. Bovik, and L. Cormack, “No-reference qual-
ity assessment using natural scene statistics: JPEG2000,” IEEE Trans.
Image Process., vol. 14, no. 11, pp. 1918–1927, Nov. 2005.

[54] M. T. Vega, C. Perra, F. De Turck, and A. Liotta, “A review of predictive
quality of experience management in video streaming services,” IEEE
Trans. Broadcast., vol. 64, no. 2, pp. 432–445, Jun. 2018.

[55] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[56] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the Internet of Things,” in Proc. 1st Ed. MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[57] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proc. Workshop Mobile Big Data, 2015,
pp. 37–42.

[58] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing,” J.
Netw. Comput. Appl., vol. 59, pp. 46–54, Jan. 2016.

[59] H. D. Park, O.-G. Min, and Y.-J. Lee, “Scalable architecture for an
automated surveillance system using edge computing,” J. Supercomput.,
vol. 73, no. 3, pp. 926–939, 2017.

[60] A. Chowdhery, P. Bahl, and T. Zhang, “Bandwidth efficient video
surveillance system,” U.S. Patent 20 170 078 626, Mar. 2017.

[61] B. Hayes, “Cloud computing,” Commun. ACM, vol. 51, no. 7,
pp. 9–11, Jul. 2008. Accessed: Feb. 10, 2019. [Online]. Available:
http://doi.acm.org/10.1145/1364782.1364786

[62] M. Armbrust et al., “A view of cloud computing,” Int. J. Comput.
Technol., vol. 4, no. 2, pp. 50–58, 2013.

[63] M. Satyanarayanan et al., “Edge analytics in the Internet of Things,”
IEEE Pervasive Comput., vol. 14, no. 2, pp. 24–31, Apr./Jun. 2015.

[64] G. Ananthanarayanan et al., “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67,
Apr./Jun. 2017.

[65] Y. Shan, “ADAS and video surveillance analytics system using deep
learning algorithms on FPGA,” in Proc. IEEE 28th Int. Conf. Field
Program. Logic Appl. (FPL), 2018, pp. 4465–4650.

[66] I. Stoica et al. A Berkeley View of Systems Challenges for AI. Accessed:
Feb. 10, 2019. [Online]. Available: https://arxiv.org/pdf/1712.05855.pdf

Hui Sun received the Ph.D. degree from Huazhong
University Science and Technology, Wuhan, China,
in 2014.

He is an Assistant Professor of computer sci-
ence with Anhui University, Hefei, China. His cur-
rent research interests include computer systems,
edge computing, performance evaluation, nonvolatile
memory-based storage systems, file systems, and I/O
architectures.

Weisong Shi (F’16) received the B.S. degree in com-
puter engineering from Xidian University, Xi’an,
China, in 1995, and the Ph.D. degree in computer
engineering from the Chinese Academy of Sciences,
Beijing, China, in 2000.

He is a Charles H. Gershenson Distinguished
Faculty Fellow and a Professor of computer science
with Wayne State University, Detroit, MI, USA. His
current research interests include edge computing,
computer systems, energy-efficiency, and wireless
health.

Prof. Shi was a recipient of the National Outstanding Ph.D. Dissertation
Award of China and the NSF CAREER Award. He is an ACM Distinguished
Scientist.

Xu Liang was born in 1994. She is currently pur-
suing the M.S. degree with Anhui University, Hefei,
China.

Her current research interests include computer
systems, edge computing, failure detection, and
video surveillance systems.

Ying Yu was born in 1996. She is currently pursu-
ing the M.S. degree with Anhui University, Hefei,
China.

Her current research interests include edge com-
puting, computer systems, intelligent video analyt-
ics, and storage systems.

Authorized licensed use limited to: Wayne State University. Downloaded on February 13,2020 at 02:03:34 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


