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HIt-UaV: a high-altitude infrared 
thermal dataset for Unmanned 
aerial Vehicle-based object 
detection
Jiashun Suo  1,2, Tianyi Wang3, Xingzhou Zhang3 ✉, Haiyang Chen1,2, Wei Zhou1,2  
& Weisong Shi4

We present the HIT-UAV dataset, a high-altitude infrared thermal dataset for object detection 
applications on Unmanned Aerial Vehicles (UAVs). The dataset comprises 2,898 infrared thermal images 
extracted from 43,470 frames in hundreds of videos captured by UAVs in various scenarios, such as 
schools, parking lots, roads, and playgrounds. Moreover, the HIT-UAV provides essential flight data 
for each image, including flight altitude, camera perspective, date, and daylight intensity. For each 
image, we have manually annotated object instances with bounding boxes of two types (oriented 
and standard) to tackle the challenge of significant overlap of object instances in aerial images. To the 
best of our knowledge, the HIT-UAV is the first publicly available high-altitude UAV-based infrared 
thermal dataset for detecting persons and vehicles. We have trained and evaluated well-established 
object detection algorithms on the HIt-UaV. Our results demonstrate that the detection algorithms 
perform exceptionally well on the HIT-UAV compared to visual light datasets, since infrared thermal 
images do not contain significant irrelevant information about objects. We believe that the HIT-UAV will 
contribute to various UAV-based applications and researches. The dataset is freely available at https://
pegasus.ac.cn.

Background & Summary
Unmanned Aerial Vehicle (UAV)-based object detection algorithms are widely used for various domains such as 
forest inventory1, mapping applications2, traffic monitoring3, and humanitarian relief4. With the rapid develop-
ment of deep learning5 and edge computing6, UAVs can now load edge computing devices to run artificial intelli-
gence (AI) algorithms, thereby increasing their value in the aforementioned applications. Motivated by the rapid 
development of object detection, several general datasets such as PASCAL VOC7, MSCOCO8, and ImageNet9 
have been proposed to support algorithm training and evaluation. However, unlike natural environments, aerial 
images contain more object instances due to the wider view, bringing more significant challenges. Table 1 shows 
the average quantity of object bounding boxes per image for general datasets and the HIT-UAV10. Compared 
to general datasets, the HIT-UAV10 contains a higher average quantity of object bounding boxes. Figure 1a,b 
use samples from the COCO and VisDrone datasets to show the differences between natural and aerial images.

Many datasets of aerial perspectives have been introduced to help improve the detection performance of 
algorithms. The Stanford11, UAV12312, CARPK13, VisDrone14, and AU-AIR15 datasets were introduced with 
visual light images. The ASL-TID16, BIRDSAI17, FLAME18, DroneRGBT19, DroneVehicle20, and Salient Map21 
datasets were introduced with thermal infrared images. The Salient Map dataset contains pedestrian and vehicle 
objects because the authors found there is no publicly available thermal dataset for detecting pedestrians and 
vehicles from the perspective of UAVs.

However, although many datasets have been introduced for object detection on UAVs, there are many chal-
lenges in this field:
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•	 Limited application range. Several extant UAV-based datasets only comprise visual light images, which limits 
their use during night-time operations and raises privacy concerns. As shown in Fig. 2, infrared thermal 
cameras offer distinct advantages over visual light cameras for night-time imaging. Additionally, Fig. 3 shows 
a sample image from the HIT-UAV10, wherein persons are represented as white blocks devoid of any personal 
appearance, clothing, or gender information, thus ensuring complete protection of individual privacy.

•	 Insufficient record information. Numerous UAV-based datasets lack critical flight information, such as alti-
tude and camera perspective, thereby precluding researchers from investigating pertinent issues, such as the 
influence of these factors on detection accuracy. Table 2 shows the record information of different datasets.

•	 Non-diversified data distribution. Many UAV-based datasets focus on a narrow range of aspects, such as synthetic 
scenes12,17, low altitudes12,13,16,21, single scenes11,16, or specific object categories13,18–20. The limitations of synthetic 
scenes and low altitudes are highlighted in Fig. 4, which illustrates their drawbacks using sample images. More-
over, focusing on a single scene or object category restricts the applicability of the datasets in various scenarios, 
such as object detection in multiple scenes and detecting multiple object categories. To provide a comprehensive 
understanding of the current UAV-based infrared thermal datasets and their drawbacks, Fig. 1c–h are presented.

To overcome the aforementioned challenges, we present the HIT-UAV10 dataset. The HIT-UAV10 comprises infra-
red thermal images collected to expand the application range of UAVs at night. To facilitate research on diverse issues, 
such as the impact of UAV flight altitude and camera perspective on object detection accuracy, the HIT-UAV10 records 
crucial information, including flight altitude, camera perspective, daylight intensity, and image shooting date. Figure 3 
shows a sample image and the recorded information of the HIT-UAV10. Covering a wide range of aspects, including 
higher altitudes (ranging from 60 to 130 meters), different camera perspectives (ranging from 30 to 90 degrees), 

Dataset Avg. Bbox

PASCAL VOC (2007 + 2012 version) 2.89

MSCOCO (2014 training + validation set) 7.19

ImageNet (2017 training set) 1.37

HIT-UAV 8.59

Table 1. The average bounding box (Avg. Bbox) quantity of general datasets and the HIT-UAV.

Fig. 1 The samples of different datasets.
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Fig. 2 The sample images captured by visual light and infrared thermal cameras under the same flight altitude 
and camera angle at night. The infrared thermal image readily identifies car and bicycle objects, while the visual 
light image faces difficulty in doing so. The results demonstrate the superior performance of infrared thermal 
cameras in enabling UAVs to perform tasks more effectively during nighttime operations.

Time: night                      Date: 15.01.2021
Altitude: 100m                Camera perspective: 50
Weather: no rain

Fig. 3 A sample image and recorded information of the HIT-UAV.

Dataset Data type
Object 
annotation

Visual 
data Altitude

Camera 
perspective

Infrared 
thermal

Stanford11 real yes yes no no no

UAV12312 synthetic/real yes yes no no no

CARPK13 real yes yes no no no

VisDrone14 real yes yes no no no

AU-AIR15 real yes yes yes no no

ASL-TID16 real yes yes no no yes

BIRDSAI17 synthetic/real yes yes no no yes

FLAME18 real no yes no no yes

DroneRBGT19 real yes yes no no yes

DroneVehicle20 real yes yes yes yes yes

Salient Map21 real yes yes no no yes

HIT-UAV10 real yes yes yes yes yes

Table 2. The record information of different datasets.
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various scenes (such as schools, parking lots, roads, and playgrounds), and different common object categories  
(such as persons, cars, bicycles, and vehicles), the HIT-UAV10 aims to increase data distribution for various tasks.

The dataset comprises 2,898 infrared thermal images extracted from 43,470 frames in hundreds of videos, and 
all frames were collected in public and desensitized. To promote effective use of the dataset on different tasks, the 
HIT-UAV10 provides two types of annotated bounding boxes for each object in the images: oriented and stand-
ard. The oriented bounding box solves the issue of significant overlap between object instances in aerial images, 
while the standard bounding box facilitates efficient use of the dataset. The HIT-UAV10 includes five object 
categories, namely Person, Car, Bicycle, OtherVehicle, and DontCare, with a total of 24,899 annotated objects. 
The DontCare category includes objects that could not be accurately categorized by the annotators (as further 
detailed in the Methods section). The dataset comprises 2,029 training images, 579 test images, and 290 valida-
tion images. To evaluate the HIT-UAV10, we trained and tested the well-established object detection algorithms, 
namely YOLOv422, YOLOv4-tiny, Faster R-CNN23, and SSD24, using the dataset. The results show that compared 
to other visual light datasets, the algorithms exhibit exceptional performance on the HIT-UAV10, indicating the 
potential of infrared thermal datasets to improve object detection applications in UAVs significantly. Further, 
we conducted an analysis of the performance of YOLOv4 and YOLOv4-tiny at different altitudes and camera 
perspectives, yielding insightful observations to aid users in their understanding of UAV-based object detection.

To the best of our knowledge, the HIT-UAV10 is the first publicly available high-altitude UAV-based 
infrared thermal dataset for detecting persons and vehicles. The HIT-UAV10 has the great potential to ena-
ble several research activities, such as (1) the application range of infrared thermal cameras in object detection 
tasks, (2) the feasibility of UAV-based search and rescue missions at night, (3) the relationship of flight altitude 
and object detection precision on UAVs, (4) the impact of camera perspective for UAV-based object detection.

Methods
The UAV platform selected for image capture was the DJI Matrice M210 V225, which costs approximately 10,000 US 
dollars. The setup of the DJI Matrice M210 V2 used is detailed in Table 3. The DJI Zenmuse XT2 camera26 was loaded 
on the UAV to capture the images. The DJI Zenmuse XT2 camera features a FLIR longwave infrared thermal cam-
era with a thermal infrared camera resolution of 640 × 512 pixels and a 25 mm lens, as well as a visual camera that 
captures 4 K videos and 12MP photos. The cost of the DJI Zenmuse XT2 camera is approximately 8000 US dollars.

The dataset generation pipeline comprise four stages: video capture, frame extraction and data cleaning, 
object annotation, and dataset generation.

Fig. 4 The sample images from synthetic scenes, low-altitude real scenes, and high-altitude real scenes. 
Synthetic scenes often lack the lighting variations and details present in real scenes, which can result in poorer 
detection performance when models trained on synthetic scenes are applied to real scenes. Compared to low-
altitude perspectives, high-altitude perspectives can detect more objects and enable UAVs to scan a larger area. 
Additionally, flying at higher altitudes allows UAVs to access areas with tall buildings, making high-altitude 
datasets advantageous for practical tasks. These advantages highlight the importance of high-altitude datasets in 
expanding the application of UAVs in real-world scenarios.

Dimensions Unfolded, 883 × 886 × 398 mm; Folded, 722 × 282 × 242 mm

Diagonal Wheelbase 643 mm

Weight Approx. 4.8 kg (with two TB55 batteries)

Max Takeoff Weight 6.14 kg

Max Payload 1.34 kg

Max Angular Velocity Pitch: 300°/s, Yaw: 120°/s

Max Ascent Speed 16.4 ft/s (5 m/s)

Max Descent Speed (vertical) 9.8 ft/s (3 m/s)

Max Speed S-mode/A-mode: 73.8 kph (45.9 mph); P-mode: 61.2 kph (38 mph)

Max Flight Time (with two TB55 batteries) 34 min (no payload); 24 min (takeoff weight: 6.14 kg)

Table 3. DJI Matrice M210 setup.

https://doi.org/10.1038/s41597-023-02066-6


5Scientific Data |          (2023) 10:227  | https://doi.org/10.1038/s41597-023-02066-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Video capture. We captured videos under varying conditions, including schools, parking lots, roads, play-
grounds, and more. The flight altitude ranged from 60 to 130 meters, and the camera perspective ranged from 
30 to 90 degrees. We conducted flights during both day and night time. For each video, we recorded the flight 
altitude, camera perspective, flight date, and daylight intensity.

Frame extraction and data cleaning. There is a slight variation in image features between consecu-
tive video frames, making most frames unsuitable for improving the performance of object detection model. 
Although many datasets reserve full frames to train detection models, this approach does not address the lim-
ited feature distribution problem. Fortunately, the HIT-UAV10 provides a sufficient number of original frames  
(43,470 frames) to ensure a wide distribution of features. The frame resolution is 640 × 512, bit depth is 8, and 
the average compression rate is 21.059%. To filter adjacent frames that have little difference, we sampled an image 
every 15 frames (since the video refresh rate is 7 FPS), resulting in 2,898 infrared thermal images.

Object annotation. We annotated the objects in the dataset using two types of bounding boxes: standard 
and oriented. The standard bounding box is represented as (xc, yc, w, h), where (xc, yc) denotes the center coor-
dinate and w and h denote the width and height of the bounding box, respectively. However, accurately labeling 
objects in aerial images from the perspective of UAVs can be challenging. To address this issue, we used θ-based 
oriented bounding box27 to label object instances. The oriented bounding box is represented as (xc, yc, w, h, θ), 
where θ denotes the oriented angle from the horizontal direction of the standard bounding box. As shown in 
Fig. 5a, the overlap of standard bounding boxes can be significant, making it difficult for state-of-the-art object 
detection algorithms to distinguish them well. Using oriented bounding boxes accurately annotates the objects 
and solves this issue, as shown in Fig. 5b. Note that the bounding box on the boundary is standard because the 
oriented bounding box cannot exceed the edge. One drawback of oriented bounding boxes is that few native 
object detection algorithms support training with them. To help users utilize the dataset, we provide both ori-
ented and standard bounding box annotation files.

We performed manual annotation of oriented object bounding boxes for all images using a modified version 
of the LabelImg tool. Difficult and truncated object instances were also labeled. Three individuals were involved 
in the annotation process, and each annotation was verified by the others. To facilitate the use of the dataset, we 
developed a tool to convert oriented bounding boxes to standard bounding boxes. The conversion method is as 
follows: First, we obtained the minimum and maximum x and y coordinates (xmin, xmax, ymin, ymax) of the oriented 
bounding box. Then, we used (xmin, xmax, ymin, ymax) as the boundary to obtain the standard bounding box, where 
the center coordinate was calculated as xc = (xmin + xmax)/2 and yc = (ymin + ymax)/2, and the width and height 
were calculated as w = xmax−xmin and h = ymax−ymin, respectively.

Dataset generation. We developed a dataset generation tool with functions that include XML and JSON 
label file generation and dataset splitting. The original images were organized into different folders based on flight 
data, and the tool generated XML and JSON label files corresponding to each image. To facilitate object detection 
model training, we split the dataset into training, test, and validation sets with a ratio of 70%, 20%, and 10%, 
respectively, using the Hold-out method28.

Data records
The dataset is available at Zenodo10.

Folder structure and recording format. We offer two types of annotation files for users: XML files based on 
the VOC dataset format and JSON files based on the MS COCO dataset format. Both of these formats are commonly 
used benchmarks for object detection in computer vision. The top-level folder of our dataset includes four subfolders: 
normal_json, normal_xml, rotate_json, and rotate_xml. The normal_json and normal_xml folders contain annotation 
files with standard bounding boxes in JSON and XML formats, respectively. On the other hand, the rotate_json and 
rotate_xml folders contain annotation files with oriented bounding boxes in JSON and XML formats, respectively.

Fig. 5 The samples of the standard bounding box, oriented bounding box, and DontCare object. Oriented 
bounding boxes have a smaller overlap than standard bounding boxes. In the (c), the red box represents the 
DontCare object. It is difficult to accurately identify whether the objects in this area are people or not.

https://doi.org/10.1038/s41597-023-02066-6
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The image files are named according to the following format: T_HH(H)_AA_W_NNNNN, where T indicates the 
shooting time (0 for day, 1 for night), HH(H) indicates the flight altitude (ranging from 60 to 130 meters), AA denotes 
the camera perspective (ranging from 30 to 90 degrees), W indicates the weather condition (only images captured 
under no rain conditions were included in the dataset), and NNNNN denotes the serial number of the image.

properties. The annotated object categories include four types that highly appear in rescue and search 
missions: Person, Car, Bicycle, OtherVehicle. In addition, we labeled unrecognizable objects, namely DontCare, 
because many objects cannot identify specific types by annotator in high aerial images. As shown in Fig. 5c, the 
red box represents the object of DontCare. In this object area, it is difficult to accurately identify if they are per-
sons. Therefore, the DontCare can point out easily confused objects in the image.

Figure 6a shows the distribution of annotations across object categories. The main object for the rescue mis-
sion (Person) appears more than other objects. Additionally, the presence of a substantial number of Car and 
Bicycle objects makes the HIT-UAV10 suitable for a wide range of common tasks. To enhance the versatility of the 
dataset for high-altitude missions, flight altitudes were recorded in intervals of 10 meters, ranging from 60 to 130 
meters. This information is depicted in Fig. 6b. The camera perspectives were also recorded in increments of 10 
degrees, varying from 30 to 90 degrees, as shown in Fig. 6c. Infrared thermal images have a significant difference 
between day and night due to the higher background temperature during the day. As shown in Fig. 7, the infrared 
thermal image during the night is easier to identify the objects than during the day because the background tem-
perature of the night is lower than the day. To increase the diversity of the dataset, infrared thermal images were 
collected both during the day and night, as presented in Fig. 6d. Figure 6e,f present the distribution of instances 

Fig. 6 The data distribution of the HIT-UAV.
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with varying categories across flight altitudes and camera perspectives, respectively. The average pixels of dif-
ferent categories across flight altitudes are depicted in Fig. 8a. Theoretically, the average pixel size is expected to 
decrease with increasing altitude, since higher altitudes result in smaller object sizes. However, for the category 
of OtherVehicle, the fluctuations are large due to its limited number of instances, which leads to the influence of 
truncated objects on the results. The average pixel of the remaining categories generally decreases with altitude, 
though there may be slight fluctuations due to the difference in image coverage at different altitudes and angles. 
The average pixel of categories across camera perspectives is shown in Fig. 8b, where it is observed that the average 
pixel size increases initially and then decreases with increasing angle. This is due to the fact that objects become 
more prominent with reduced vision, but their visible surface area decreases with greater angles. Figure 9 illus-
trates these visual changes.

technical Validation
We trained four well-established object detection algorithms, namely YOLOv4, YOLOv4-tiny, Faster-RCNN, 
and SSD, using the HIT-UAV10. The dataset consisted of 2,029 training images, 290 validation images, and 579 
test images. The experiments were performed on an RTX 2080Ti GPU. YOLOv4 and YOLOv4-tiny were trained 
using the Darknet framework, while Faster-RCNN (with a ResNet-101 backbone) and SSD-512 were trained 
using the MMDetection29 framework. The pre-trained models for YOLOv4 and YOLOv4-tiny were obtained 
from official sources. The training process was performed for a maximum of 10,000 steps, with a batch size 
of 64 and subdivision of 16. The learning rate was set to 0.0013 and was multiplied by 0.1 at steps 8000 and  
9000. The weight decay and momentum were set to 0.949 and 0.0005. For Faster-RCNN and SSD, the official 
ResNet-101 and VGG16 models were used as pre-trained models. The maximum number of epochs was 32, with 
a batch size of 16. The learning rate was set to 0.02 and had a warm-up ratio of 0.001, with a warm-up iteration of  
500. The weight decay and momentum were set to 0.9 and 0.0001.

Table 4 presents the precision of the aforementioned models on the HIT-UAV10 test set, as well as the pre-
cision of YOLOv4 and YOLOv4-tiny trained on the COCO dataset and the highest accuracy (attained by 
RRNet) on the VisDrone-2019 challenge30. Our observations indicate that the Average Precision (AP) value 
for the category of Person is significantly lower when using YOLOv4-tiny on the HIT-UAV10. This discrep-
ancy may be attributed to the lower detection capability of YOLOv4-tiny for small objects in comparison to 
other models. Additionally, the AP for the category of OtherVehicle is subpar, which may be due to the cate-
gory imbalance issue. The SSD-512 model exhibits improved performance in the imbalanced category. In the  
VisDrone-2019 challenge, the highest precision of 55.82% mean Average Precision (mAP) was achieved by the 
RRNet method. However, the official YOLOv4 model achieved 65.7% mAP on the COCO dataset, surpassing 
RRNet in the VisDrone challenge. This indicates that aerial image information is more complex than that of natural 
images. Finally, for the HIT-UAV10, YOLOv4 achieved an mAP of 84.75%, indicating the following observations:

Fig. 7 The samples of the night and day images.

Fig. 8 The average pixel of categories across flight altitudes and camera perspectives.
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•	 Infrared thermal images effectively filter out extraneous information, leading to improved object 
identification.

•	 Infrared thermal images facilitate the outstanding performance of common detection models with limited 
image data, due to the easily recognizable features of the objects in such images. The HIT-UAV10 has the 
potential to facilitate the detection of vehicles and persons by UAVs.

We used YOLOv4 and YOLOv4-tiny as samples to study the relationship and impact of altitude and camera 
perspective on UAV-based object detection. The categories of Person and Car were selected for this experiment, 
as the categories of OtherVehicle and Bicycle have a limited number of objects in the HIT-UAV10. A limited 
number of objects would result in fluctuations in statistical results. The results of the study are shown in Fig. 10.  
The following observations and insights have been gleaned from the results:

•	 The AP of YOLOv4 demonstrates stability within a certain range, suggesting that variations in altitudes and 
angles do not significantly impact the detection performance of robust algorithms.

•	 The AP of YOLOv4-tiny for the Person category tends to decrease with increasing altitude. This decrease is 
observed in three stages, ranging from 60 m to 80 m, 80 m to 90 m, and 100 m to 130 m, suggesting that the 
detection performance of lightweight algorithms is significantly impacted when objects fall outside of a cer-
tain size range. Higher altitudes provide a wider field of view, enabling UAVs to cover larger areas within the 
same flight time. In some UAV tasks, such as person rescue, users may need to weigh the trade-off between 
detection precision and altitude to achieve optimal performance.

•	 The AP of YOLOv4-tiny for the Person category first increases and then decreases with increasing camera 
angle. This result highlights the impact of the visible surface of objects on detection precision. At 90 degrees, 
as shown in Fig. 9c, individuals appear as points, making them more challenging to identify compared to 
when viewed at 50 degrees. As a result, it is crucial for users to choose the appropriate camera perspective 
when performing object detection tasks.

The sample detection results of the YOLOv4 model trained on the HIT-UAV10 are shown in Fig. 11. The results 
demonstrate that the model effectively recognizes objects in infrared thermal aerial images. We hope the HIT-UAV10 
can promote the development of drone-based object detection tasks.

Usage Notes
The HIT-UAV10 is available at https://pegasus.ac.cn. Users can download the dataset to train object detection algo-
rithms. The VOC and MS COCO dataset is a widely used benchmarks for object detection. We provide the label files 
with VOC and MS COCO format. Users can easily use the HIT-UAV10.

Fig. 9 The sample images taken at 80 meters with varying camera perspectives. At 30 degrees, objects in the far 
distance appear smaller due to the wider field of view. Conversely, at 50 degrees, objects appear larger. However, 
at 90 degrees, objects once again become smaller due to the reduction in the visible surface area of objects.

Model Dataset Person AP (%) Car AP (%) Bicycle AP (%) OtherVehicle AP (%) mAP@0.50 (%)

YOLOv4 HIT-UAV 89.88 (TP = 2370, FP = 346) 92.64 (TP = 1241, FP = 166) 86.48 (TP = 696, FP = 158) 69.99 (TP = 26, FP = 8) 84.75 (TP = 4333, FP = 678, 
FN = 447)

YOLOv4-tiny HIT-UAV 16.86 (TP = 214, FP = 50) 83.61 (TP = 1080, FP = 226) 51.9 (TP = 398, FP = 182) 49.17 (TP = 14, FP = 7) 50.38 (TP = 1706, FP = 465, 
FN = 3074)

Faster-RCNN HIT-UAV 75.5 95.6 86.4 46.8 76.8

SSD-512 HIT-UAV 85.6 96.3 86.0 74.4 85.6

YOLOv4 COCO \ \ \ \ 65.7

YOLOv4-tiny COCO \ \ \ \ 40.2

RRNet VisDrone-2019 \ \ \ \ 55.82

Table 4. The Average Precision (AP) of the baseline models.
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The HIT-UAV10 was collected in a diverse range of environments, including schools, parking lots, roads, and 
playgrounds. This allows for the application of trained object detection models to these scenarios as well as other 
environments through the generalization capabilities of deep learning. Researchers can use the HIT-UAV10 to 
train object detection models to research the application range of infrared thermal in different object detection 
tasks. Additionally, the trained models have the potential to be employed in UAV-based search and rescue mis-
sions during nighttime to evaluate their feasibility.

Code availability
The data processing code is available in the tools folder of https://pegasus.ac.cn. The code is written in Python. The 
functions of the tools are as follows: (1) The tools/devtoolkit/labelTransformer.py is to convert oriented bounding 
boxes to standard bounding boxes and generate the dataset, (2) The tools/devtoolkit/visualization.py is to visualize 
images with bounding boxes, (3) The tools/output/voc2yolo.py is to generate the label files with the YOLO format 
to help users train the YOLO, which is the representative object detection algorithm.

Received: 28 September 2022; Accepted: 13 March 2023;
Published: xx xx xxxx

Fig. 10 The Average Precision (AP) of categories in the HIT-UAV test set.

Fig. 11 The sample results of YOLOv4 detection.
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