
 In Cloud, Do MTC or HTC Service Providers Benefit from

the Economies of Scale?
Lei Wang1, Jianfeng Zhan1, Weisong Shi2, Yi Liang3, Lin Yuan1

1Institute of Computing Technology, Chinese Academy of Sciences
2Department of Computer Science, Wayne State University

3Department of Computer Science, Beijing University of Technology
{wl, jfzhan}@ncic.ac.cn, weisong@wayne.edu, yliang@bjut.edu.cn, yuanlin@ncic.ac.cn

ABSTRACT

Cloud computing, which is advocated as an economic platform for

daily computing, has become a hot topic for both industrial and

academic communities in the last couple of years. The basic idea

behind cloud computing is that resource providers, which own the

cloud platform, offer elastic resources to end users. In this paper,

we intend to answer one key question to the success of cloud

computing: in cloud, do many task computing (MTC) or high

throughput computing (HTC) service providers, which offer the

corresponding computing service to end users, benefit from the

economies of scale? To the best of our knowledge, no previous

work designs and implements the enabling system to consolidate

MTC and HTC workloads on the cloud platform and no one

answers the above question. Our research contributions are three-

fold: first, we propose an innovative usage model, called dynamic

service provision (DSP) model, for MTC or HTC service

providers. In the DSP model, the resource provider provides the

service of creating and managing runtime environments for MTC

or HTC service providers, and consolidates heterogeneous MTC

or HTC workloads on the cloud platform; second, based on the

DSP model, we design and implement Dawningcloud, which

provides automatic management for heterogeneous workloads;

third, a comprehensive evaluation of Dawningcloud has been

performed in an emulatation experiment. We found that for

typical workloads, in comparison with the previous two cloud

solutions, Dawningcloud saves the resource consumption

maximally by 46.4% (HTC) and 74.9% (MTC) for the service

providers, and saves the total resource consumption maximally by

29.7% for the resource provider. At the same time, comparing

with the traditional solution that provides MTC or HTC services

with dedicated systems, Dawningcloud is more cost-effective. To

this end, we conclude that for typical MTC and HTC workloads,

on the cloud platform, MTC and HTC service providers and the

resource service provider can benefit from the economies of scale.

Keywords
Many task computing, high throughput computing, cloud

computing, service providers, economies of scale

1. INTRODUCTION
Many-task computing (MTC) can deliver much large numbers of

computing resources over short period of time to accomplish

many computational tasks [1], and high throughput computing

(HTC) can deliver large amounts of processing capacity over long

period of time [1]. Traditionally, many small or medium

organizations tend to purchase and build dedicated cluster

systems (DCS) to provide computing services for MTC or HTC

applications. We call this usage model the DCS model and the

corresponding system the DCS system. The DCS model prevails

in MTC and HTC communities, and the organization owns a

small or medium-scale cluster system and deploys the specific

runtime environment for MTC or HTC workloads. With the full

control, the administrators of the DCS system manage the

affiliated user accounts and configure the related management

policies for the specific runtime environment, such as scheduling

or resource management policies. However, there are also two

shortcomings of the DCS model: first, the total cost of ownership

(TCO) is high, which includes the cost of power, manpower,

equipment depreciation, etc; second, for peak loads, the DCS

systems can not provide enough resources, while lots of resources

are idle for normal loads.

Recently, as resource providers or infrastructure providers [2],

several pioneer computing companies are advocating

infrastructure as a service [2]. For example, as a resource provider,

Amazon [3] has provided elastic computing cloud (EC2) service

to offer outsourced resources to end users at the granularity of

XEN [4] virtual machines. A new term cloud is used to describe

this new computing paradigm. Cloud is a large pool of easily

usable and accessible virtualized resources, which can be

dynamically reconfigured and typically exploited by a pay-per-use

model [6]. Though a cloud system may imply geographically

distributed cluster systems [8], in this paper, when we refer to a

cloud platform, it indicates a centralized cluster system.

In this paper, we want to focus the key issues to the success of

cloud computing: for small or medium organizations, can we

consolidate their MTC and HTC workloads on a large cloud

platform? And on the cloud platform, do MTC or HTC service

providers benefit from the economies of scale?

Previous efforts [5] [7] have validated the possibility of running

HPC applications on cloud platforms. However, to the best of our

knowledge, previous efforts fail to resolve the above issues in

several ways. First, there are two proposed usage models for cloud

computing in MTC or HTC community. Deelman et al. [10]

propose that each staff of an organization (end use) directly leases

virtual machine resources from EC2 in a specified period for

running applications, and we call this usage model the direct

resource provision (DRP) model and the corresponding system the

DRP system. In DRP, each end user rents resources from the

resource provider directly. Our experiment results show that the

DRP system will lead to high peak resources consumption, and

raise challenge for the capacity planning of system. Evangelinos et

al. [5] propose that the organization as a whole rents resources

with the fixed size from EC2 to create a virtual cluster system that

is deployed with the queuing system, like OpenPBS, for HTC

workloads. We call this usage model the static service provision

(SSP) model and the corresponding system the SSP system. In SSP,

a service provider as a whole leases the resources with fixed size

from the resource provider, deploys a PBS-like queuing system

and provides job-execution services for end users. Our experiment

results show that for typical workloads, the SSP system leads to

high resource consumption because of its static resource

management policy.

Second, previous efforts fail to propose the enabling system with

the autonomic management mechanism to facilitate the resource

provider to consolidate MTC and HTC workloads: EC2 [3]

directly provides resources to end users, and relies upon end

user’s manual management of resources; EC2 extended services:

RightScale [5] provides automated cloud computing management

systems that helps you create and deploy only Web service

applications that run on the EC2 platform; Irwin et al. [20] [13]

propose a prototype of service oriented architecture for resource

providers and consumers to negotiate access to resources over

time. However, no previous effort proposes the autonomic

management system to consolidate MTC and HTC workloads.

Third, Armbrust et al. [2] in theory show the workloads of Web

service applications can benefit from the economies of scale of

cloud computing system. Our previous work, Phoenixcloud [12]

[21], shows the consolidation of Web service applications and

parallel batch jobs can decrease the total resource consumption

from the perspective of the resource provider. However, no

previous work answers this key question: do MTC or HTC service

providers benefit from the economies of scale?

On the Dawning 5000 cluster system, which is ranked as top 10 of

Top 500 super computers in November, 2008 [14], we design and

implement an innovative system Dawningcloud. With the

enabling Dawningcloud system, the organization does not need to

own a DCS system, and instead, the resource provider is

responsible for managing and monitoring a cluster-base cloud

platform, creating the specific runtime environment for a MTC or

HTC service provider, and dynamically provisioning resources to

runtime environments; the administrator of an organization, as the

proxy of a service provider, manages its runtime environment with

the full controls and provides MTC or HTC service to its end

users; as end users, the staffs in the organization use the web

portal of the runtime environment to submit and manage their

MTC or HTC applications.

The contributions of our paper can be concluded as follows:

First, in cloud, we propose a new usage model, called dynamic

service provision (DSP) model. Similar to DCS and SSP model,

service providers in the DSP model can fully control their

runtime environments; and unlike the SSP and DCS models,

service providers can dynamically resize the resources according

to the workload status.

Second, based on the DSP model, we design and implement an

innovative system, Dawningcloud. Dawningcloud creates runtime

environments on the demand for MTC or HTC service providers,

and automatically provisions resources to runtime environments.

Thirdly, we conduct a comprehensive evaluation of the DSP

model with the enabling system: Dawningcloud. Our experiments

show that using Dawningcloud, MTC and HTC service providers

benefit from the economies of scale. In our experiments, for

typical MTC workload,Montage workflow, and typical HTC

workload traces, NASA iPSC trace and SDSC BLUE trace, in

comparison with the DRP system, Dawningcloud saves the

resource consumption maximally by 46.4% (HTC) and 74.9%

(MTC) for the service providers, and saves the total resource

consumption by 29.0% for the resource provider; in comparison

with the SSP and DCS systems which have the same performance,

Dawningcloud saves the resource consumption maximally by

32.5% (HTC) for the service providers, and saves the total

resource consumption by 29.7% for the resource provider,

moreover, Dawningcloud is more cost-effective than the DCS

system through the cost analysis of two real cases. This result

implies that Dawningcloud can achieve the economies of scale for

the resource provider, and MTC or HTC service providers can

benefit from the economies of scale in cloud.

The organization for the rest of the paper is as follows: Section 2

describes the proposed DSP model; Section 3 gives out the design

and implementation of Dawningcloud; Section 4 systematically

compare Danwingcloud with the other system: SSP, DCS and

DRP; Section 5 summarizes the related work; Section 6 draws the

conclusion and discusses the future work.

2. THE DSP MODEL
In this section, we proposed the DSP model: first, we describe the

roles in a cloud platform; second, we introduce the details of the

DSP model; third, we conclude the distinguished differences of

the DSP model from the DRP,SSP and DCS models.

2.1 Three Players in a Cloud
We propose three roles in the cloud platform: the resource

provider, service providers and end users.

Resource provider: the resource provider owns a cloud platform,

and offer outsourced resources, such as Amazon.

Different from EC2 of which the resource provider directly offers

resources to ends user, we propose another role, the service

provider, which acts as the proxy of an organization. The service

provider leases the resources from the resource provider and

provides computing service to its end uses. The staffs in the

organization play the role of the end user. In a typical cloud

platform, there are only one resource provider, several service

providers and their affiliated end users.

2.2 DSP Details
In the DSP model, the resource provider is responsible for

managing the cloud platform, creating the specific runtime

environment for a MTC or HTC service provider, and

provisioning resources to runtime environments. In the rest of this

section, we introduce the usage pattern of the DSP model.

As shown in Figure 1, the usage pattern is described as follows:

1) A service provider specifies its requirement for runtime

environment (RE), including types of workloads: MTC or HTC,

size of resources, types of operating system, and then requests the

resource provider for creating the customized RE. In our technical

report [25], we have given out a description model for describing

the diversities of requirements of different service providers.

2) The resource provider creates the RE for the service provider

according to its requirement. Section 3.1.3 will reports the

lifecycle management mechanism.

3) After the RE is created, the service provider can manage his

RE with the full controls, such as creating accounts for end users.

4) End users use their accounts to submit and manage MTC or

HTC applications in the RE.

3.control

5) When the RE is providing services, according to the current

workload, the RE can automatically negotiate resources with the

proxy of the resource provider to resize the provisioned resources

of the RE by leasing more resources or releasing idle resources.

6) If the service provider wants to terminate his computing service,

the service provider will inform end users to backup. End users

can backup their data to the storage server provided by the

resource provider. And then the service provider will destroy

accounts of the end users' in the RE.

7) The service provider confirms the resource provider that the RE

is ready for destroying.

8) The resource provider destroys the specified RE and withdraws

the corresponding resources.

2.3 The Distinguished Differences of the DSP

Model
Table 1 summarizes the differences of DCS, SSP, DRP and DSP

usage models.

Table 1. The comparison of different uage models

 DCS SSP DRP DSP

resource property local leased leased leased

runtime environment stereo-

typed

stereo-

typed

 no

offering

created on

the demand

resources provision

for RE

 fixed fixed manual flexible

There are two main distinguished differences of the DSP model

from the other models.

First, in the DSP model, on the cloud platform the resource

provider can create the specific runtime environment on the

demand for the MTC service provider or the HTC service

provider. This property does not hold true for the DRP model. In

the DRP model, there is no runtime environment which

automatically provides resource management for MTC or HTC

workloads, and each end user directly obtains the resources from

the resource providers. In the SSP model, the service provider is

limited in that he requests the resources with the fixed size and

deploys a batch queuing system for HTC workloads. In the DCS

model, a service provider owns the resources locally, and provides

stereotyped MTC or HTC RE.

Second, in the DSP model, the service provider can dynamically

resize the provisioned resources of the runtime environment. The

property does not hold true for the DRP, SSP and DCS models. In

the DRP model, each end user manually requests or release

resources from the resource provider. In the SSP model, the

organization as a whole obtains the resources with the fixed size

from the resource provider. In the DCS model, the service

provider purchases and builds a dedicated cluste system with the

fixed size.

3. Enabling System: Dawningcloud
To provide MTC and HTC services, different organizations have

different research and developing periods, and their workloads

may vary in the same period. We argue that on a cloud platform,

the consolidation of different workloads of MTC and HTC may

achieve the economies of scale for the resource provider. So,

based on the DSP model and our previous Phoenixcloud system

[12] [21], we design and implement an enabling system,

Dawningcloud, for the resource provider to consolidate MTC and

HTC workloads.

In this section, we introduce two most important features of

Dawningcloud: first, how to create a runtime environment on the

demand for a MTC or HTC service provider on a cloud platform?

Second, we propose an automatic resource management

mechanism for coexisting runtime environments of different

service providers.

3.1 Creating Runtime Environment on the

Demand for MTC or HTC Workloads

3.1.1 The Requirement Differences of MTC and HTC

Runtime Environments
Since there are diversities of MTC workloads [1] and HTC

workloads, in this paper, we take a typical MTC workload,

Montage workflow [23], and a representative HTC workload,

batch jobs, to present the design of MTC and HTC runtime

environments. Montage workflows are introduced as a typical

MTC workload in the work of Ian Foster [1], and batch jobs are

also presented as the representative HTC workloads in the condor

project [19]. In the Dawningcloud design, we consider three

requirement differences of runtime environments between MTC

and HTC workloads as follows:

1) The usage scene: the aim of HTC is designed for running

parallel/sequential batch jobs; the aim of MTC is designed

for running scientific workflows, like Montage workflow [1].

2) The application characteristic: MTC applications [1] can be

decomposed to a set of small jobs with dependencies, whose

running time is short; while batch jobs in HTC are

independent and the running times of jobs are varying.

3) The evaluation metric: HTC service providers concern the

job’s throughput over long period of time; while MTC

service providers concern the job’s throughput over short

periods of time.

3.1.2 The Layered Architecture of Dawningcloud
As shown in Figure 2, we present a layered architecture for

Dawningcloud: one is the common service framework (CSF) and

the other is the thin runtime environment (TRE). The concept of

TRE [21] indicates that the common sets of functions for different

runtime environments are delegated to the CSF, and a TRE only

implements the core functions for the specific workload.

5.negotiate

resources

3.manage

8.destroy

6.destroy accounts

4.submit/manage

applications

End users Service
providers

 1.request

Resource
provider

2.create

7.confirm

Runtime
environments

Figure 1. The usage pattern of DSP.

The CSF is an integrated management framework which provides

basic services for the TREs. The major functions of the CSF are

responsible for managing the lifecycle of TREs, for example

creating, destroying TREs, and provisioning resources to TREs in

terms of nodes or virtual machines. The main services of the CSF

[21] are as follows:

The resource provision service is responsible for providing

resources to different TREs.

The lifecycle management service is responsible for managing the

lifecycle of TREs.

The deployment service is a collection of services for deploying

and booting operating system, the CSF and TREs.

The virtual machine provision service is responsible for creating

or destroying virtual machine, which is based on XEN.

The process management service is responsible for starting,

signaling, killing, and monitoring parallel/sequential tasks.

The agent is responsible for downloading the required software

package, starting or stopping service daemon.

In the Dawningcloud, we implement two types of TREs: MTC

TRE and HTC TRE.

In HTC TRE, we only implement three services: the HTC

scheduler, the HTC server and the HTC web portal. The HTC

scheduler is responsible for scheduling the user's job through

scheduling policy. The HTC server is responsible for dealing with

users' requests, managing resources, loading jobs. The HTC web

portal is the GUI through which end users submit and monitor

HTC applications.

In MTC TRE, we implement four services: the MTC scheduler,

the MTC server, the trigger monitor and the MTC web portal. The

function of the MTC scheduler is similar to the HTC scheduler.

Different from the HTC server, the MTC server needs to parse the

workflow description model, which are inputted from the MTC

web portal, and output a set of small jobs with dependencies, and

then submit jobs to the MTC scheduler for scheduling according

to the dependencies constraints. Besides, a new service, named

the trigger monitor, is responsible for monitoring the trigger

condition of workflows, such as the changes of database’s record

or files, and notifying the changes to the MTC server to drive the

running of jobs in different stages of a workflow. The MTC web

portal is also much more complex than that of HTC, since it needs

to provide a visual editing tool for end users to represent different

workflows.

Figure 3 shows a typical Dawningcloud system, of which a MTC

TRE and a HTC TRE reuse the CSF.

3.1.3 The Lifecycle Management of TREs
The CSF is responsible for managing the lifecycle of a TRE. We

introduce this feature taking a MTC TRE as an example. The

lifecycle management of a MTC TRE is as follows:

1) As shown in Figure 4, the initial state of a MTC runtime

environment is inexistent. The service provider uses the web

portal of the CSF to apply for a new MTC TRE. The web portal of

the CSF sends the requesting information to the lifecycle

management service of the CSF.

2) The lifecycle management service validates the information. If

the requesting information is valid, it marks the state of new MTC

TRE as planing.

3) The lifecycle management service sends the message of

deploying TRE to agents of the CSF on the related nodes, which

requests the deployment service to download the required

software package of the MTC TRE. After the new MTC TRE is

deployed, the lifecycle management service marks its state as

created.

4) The lifecycle management service sends the configuration

information of the new MTC TRE to the resource provision

service of the CSF.

5) The lifecycle management service sends the message to agents

to start the components of the new MTC TRE, including the MTC

server, the MTC scheduler, the trigger monitor and the MTC web

portal.When the MTC server is started, the command parameters

will tell it what configuration parameters should be taken. Then

the lifecycle management service marks the state of the new MTC

TRE as running.

6) The new MTC TRE begins providing service to end users. End

users use the MTC web portal to submit their applications.

7) According to the load status, the MTC server dynamically

requests or releases resources from or to the resource provision

service.

8) If the service provider uses the web portal of CSF to destroy

his MTC TRE, the web portal of the CSF sends the destroying

information to the lifecycle management service; the lifecycle

management service validates the information and destroys the

MTC TRE through prompting end users to backup data, stopping

the related daemons and offloading the related software packages.

3.2 The Automatic Resource Management

3.2.1 Dynamic Resource Negotiation Mechanism
We present the dynamic resource negotiation mechanism in the

Dawningcloud as follows:

1) The service provider can specify his requirement for resource

management in the resource management policy, which defines

the behavior specification of the server in that the server resizes

Common Service Framework

Thin Runtime

Environment

Thin Runtime

Environment

Figure 2. The framework of Dawningcloud.

apply

deploy destroy

start

Inexistent Planning

Created Running

Figure 4. The lifetime of a TRE.

...

...

...

...

...

...

 MTC TRE

 HTC TRE

HTC server

CSF

HTC scheduler

MTC Server

MTC scheduler

Trigger

Monitor

Figure 3. Coexisting MTC and HTC runtime environments.

resource to what an extent according to what criterion.

According to the resource management policy, the MTC or HTC

server decides whether and to what an extent resizes the resource

according to the current workload status, and then sends the

requests of obtaining or releasing resources to the resource

provision service.

2) The resource provider can specify his requirement for resource

provision in the resource provision policy, which determines

when the resource provision service provisions how many

resources to different TREs in what priority. According to the

resource provision policy, the resource provision service decides

to assign or reclaim how many resources to or from the TRE.

3) The resource provision service notifies the negotiation result to

the server. At the same time, for each assigned or reclaimed node,

the setup policy is triggered, and the resource provision service

requests the lifecycle management service to do the setup work,

such as wiping off the operating system or doing nothing. The

setup policy determines when and how to do the setup work, such

as wiping off the operating system or doing nothing.

3.2.2 Resource Management and Provision Policies
In this section, we propose resource management and provision

policies for MTC and HTC service providers, respectively.

3.2.2.1 The Resource Management Policy for HTC
We propose the resource management policy for HTC service

provider as follows:

There are two kinds of resources provisioned by the runtime

environment: initial resources and dynamic resources. Once

allocated to the TRE, initial resources will not be reclaimed by the

resource provision services until the TRE is destroyed. On the

contrary, dynamic resources assigned to the TRE may be

reclaimed by the resource provision service.

(1) At the startup, the HTC service provider will request initial

resources.

We define the ratio of obtaining resources as the ratio of the

accumulated resource demands of all jobs in the queue to the

current resources owned by a HTC TRE. When requesting to

create a runtime environment, the service provider will set a

threshold ratio of obtaining resources. For a TRE, when the

current ratio of obtaining resources exceeds the threshold ratio, it

implies that many jobs need to be queued unless the server can

request more resources.

(2-1) the server of the HTC TRE scans jobs in queue per minute.

If the ratio of obtaining resources exceeds the threshold ratio of

obtaining resources, the HTC server will request the dynamic

resources with the size of DR1 as follows:

DR1=the accumulated resources demand of all jobs in the queue

– the current resources owned by the TRE.

(2-2) if the resource provision service allocates enough resources

to the HTC server. The server registers a timer, once per hour, to

check idle resources. If there are idle resources with the size equal

with or more than the value of DR1, the server will release the

resources with the size of the DR1 to the resource provision

service.

(3-1) the server of the HTC TRE scans jobs in queue per minute.

If the ratio of the resource demand of the present biggest job in

the queue to the current resources owned by a TRE is greater than

one and the ratio of obtaining resources does not exceed the

threshold ratio of obtaining resources, the server will request the

dynamic resources with the size of DR2 as follows:

DR2= the resources needed by the job with the largest resources

demand – the current resources owned by the TRE.

When the ratio of the resource demand of the present biggest job

in the queue to the current resources owned by a TRE is greater

than one, it indicates that if the server does not request more

resources, the present biggest job may not have enough resources

for running.

(3-2) if the resource provision service allocates enough resources

to the server. The server registers a timer, once per hour, to check

idle resources. If there are idle resources with the size equal with

or more than the value of DR2, the server will release the idle

resources with the size of the DR2 to the resource provision

service.

3.2.2.2 The Resource Management Policy for MTC
The resource management policy of MTC service providers differs

from that of HTC service providers from two aspects. First, the

server scans jobs with different intervals. An HTC server scans

jobs in queue per one minute, while an MTC server scans jobs in

queue per three seconds. This is because MTC tasks often run

over in seconds. Second, when the MTC server calculates the

accumulated resource demands of all jobs in queue or the resource

demand of the present biggest jobs, it refers to each job in queue

that constitutes workflows. However, for HTC, the server refers

to independent jobs in queue.

3.2.2.3 The Resource Provision Policy for MTC and

HTC
We propose a simple resource provision policy for MTC and HTC

as follows:

First, the resource provision service provisions enough initial

resources to the TRE at the startup of the TRE.

Second, when the server of a TRE requests dynamic resources, the

resource provision service either assigns enough resources to the

server or rejects if the resource provision service has no enough

resources.

Third, when the server of a TRE releases dynamic resources, the

resource provision service will passive reclaim all the released

resources.

4. PERFORMANCE EVALUATION
In this section, to answer the key question: do MTC or HTC

service providers benefit from the economies of scale, we choose

three workloads from three different organizations, of which there

are only one resource provider, two organizations providing HTC

CSF

TRE

Lifecycle
management service

Resource
provision service

 Server

Resource

management policy

Resource

provision policy

Setup policy

Figure 5. Dynamic resource negotiation mechanism.

services and one organization providing MTC service. The

resource provider respectively chooses Dawningcloud, the DRP,

SSP and DCS systems to provide computing service. We will

compare Dawningcloud with the SSP, DRP and DCS system.

4.1 Evaluation Method
The period of a typical workload trace is often weeks. To evaluate

the system, many key factors have effects on the experiment

results, and we need do many times of time-consuming

experiments. So we use the emulatation method to speedup

experiments.

Figure 6, Figure 7 and Figure 8 respectively show the emulated

Dawningcloud, DRP, SSP and DCS systems.

For all emulated systems, the job emulator is used to emulate the

process of submitting jobs. For HTC workload, the job emulator

generates jobs by reading the trace file, and then submits jobs. For

MTC workload, the job emulator reads the workflow file,

generates each job that constitutes workflows and their

dependencies between each job, and then submits jobs according

to the dependency constraints. We speed up the submission and

completion of jobs by a factor of 100.

In comparison with the real Dawningcloud system, our emulated

system of Dawningcloud for three service providers and one

resource provider maintains the resource provision service, two

HTC servers, one MTC servers, and three schedulers, while other

services are removed, as shown in Figure 6.

As shown in Figure 7, our emulated DRP system only includes

the resource provision service and the job emulator, since in the

real system, each end user of three organizations directly leases

resources from the resource provider, like EC2.

As shown in Figure 8, our emulated SSP and DCS systems

include two HTC servers, one MTC server and three schedulers.

We remove the resource provision service because the service

provider in the SSP model obtains all resources with the fixed size

from the resource provider once the runtime environment is

created and three service providers in the DCS model owns the

fixed resources. So the emulated systems do not need to reflect the

interactions between service providers and the resource provider.

4.2 Workloads
For MTC, we choose a typical workload, Montage workflow [23],

which is an astronomy workflow application, created by

NASA/IPAC Infrared Science Archive for gathering multiple

input images to create custom mosaics of the sky. The workload

generator can be found on the web site [15], and the workload file

includes the task name, run time, inputs, outputs and the list of

control-flow dependencies of each job. The chosen Montage

workload includes 1,000 tasks and the average execution time of

tasks is 11.38 seconds.

We choose two typical HTC workload traces from [17]. The

utilization rate of all traces in [17] varies from 24.4% to 86.5%.

We choose one trace with lower load: the NASA iPSC trace and

one trace with higher load: the SDSC BLUE trace. The NASA

trace is lower load with 46.6% utilization, while the BLUE trace

is higher load with 76.2% utilization. The scales of NASA trace

and BLUE trace are respectively 128 and 144 nodes, which are

popular in small organizations.

The SDSC BLUE trace is of two weeks from Apr 25 15:00:03

PDT 2000. In the first half of the trace, the job arrived

infrequently; in the second half of the trace, the job arrived

frequently. The NASA iPSC trace is of two weeks from Fri Oct 01

00:00:03 PDT 1993 and the arrived jobs varied each day.

4.3 Evaluation Metrics
We choose the number of completed jobs in a certain period [16]

to evaluate the performance metric of the HTC service providers;

and we choose tasks per second [1] to reflect the performance

metric of the MTC service providers. For a service provider, we

choose the resource consumption in terms of node*hour to

evaluate the cost. In the DRP system, there is no role of the

service provider, so we calculate the accumulated resource

consumption of all end users for a workload. For the DCS system,

since the service provider owns the resources, we calculate the

resource consumption of the service provider as the product of the

configuration size of the DCS system and the period of the

workload.

For the resource provider, we choose the total resource

consumption in terms of node*hour to evaluate the economies of

scale. In addition, we specially care about the peak resource

consumption, which is a key factor in capacity planning for a

resource provider.

4.4 Experiment Design and Configuration
Since the workload traces are obtained from the platforms with

different configurations. For example, NASA iPSC is obtained

from the cluster system with each node composed of one CPU;

SDSC BLUE is obtained from the cluster system with each node

composed of eight CPUs. In our experiments, we scale workload

traces with different values to the same configuration of which

each node owns one CPU.

 MTC RE

 HTC RE

HTC RE

HTC Server

HTC Server

HTC Scheduler

Job emulator

HTC Scheduler

MTC Server

MTC Scheduler

Figure 8. The emulated SSP and DCS system.

Resource Provision Service

Job emulator

Figure 7. The emulated DRP system.

Figure 6. The emulated Dawningcloud.

 MTC TRE

 HTC TRE

HTC TRE

HTC Server

HTC Server

HTC Scheduler

Job Simulator

Resource Provision Service

HTC Scheduler

MTC Server

MTC Scheduler

Job emulator

http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_blue/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_blue/index.html

The configurations of the experiments are as follows:

1) The scheduling policy: for Dawningcloud, SSP and DCS

system, we choose the first fit scheduling policy for HTC. The

first-fit scheduling algorithm scans all the queued jobs in the order

of job arrival and chooses the first job, whose resources

requirement can be met by the system, to execute. For MTC

workload, firstly we generate the job flow according to the

dependency constraints, and then we choose the FCFS (First

Come First Served) scheduling policy. The DRP system takes no

scheduling policy, since all jobs run immediately without queuing.

2) The time unit of leasing resources: Because when the resource

provider assigns or reclaims nodes, it will trigger the setup work,

such as wiping off operating system, or deploying software, for

cloud systems, we set a quit long time unit: one hour to decrease

the management overhead. This factor is same for Dawningcloud,

the SSP and DRP systems. In fact, EC2 also charge resource with

this time unit. The DCS system does not need this factor, since the

service provider owns resources.

3) The configurations of the runtime environment in the SSP and

DCS systems: since the maximal resource requirements of the

NASA and BLUE traces are respectively 128 and 144 nodes, we

respectively set the configurations of the runtime environment for

NASA and BLUE traces as 128 and 144 nodes. For the Montage

workload, because the accumulated resource demand in most of

the running time is 166 nodes, we set the configurations of the

runtime environment as 166 nodes to improve the throughputs in

terms of tasks per second.

4) For Dawningcloud, we choose the resource management and

provision policies stated in Section 3.2.2. The resource

management and provision policies of the SSP and DRP systems

are simple. The DRP system depends on each end user’s manually

requesting and releasing resources. The runtime environment in

the SSP system obtains or releases the resources with the fixed

size as a whole at the startup and finalization of the RE.

4.5 Experiment Results

4.5.1 Dawningcloud’s Parameters Setting
In the Dawningcloud, there are two tuning parameters for resource

management and provision policies, one is the initial resources,

which is represented as B, and the other is the threshold ratio of

obtaining resources, which is represented as R.

Figure 9. Resource consumption and the number of completed

jobs VS. different parameters setting for BLUE trace.

Resource consumption is in term of node*hour.

Figure 10. Resource consumption and the number of

completed jobs VS. different parameters setting for NASA

trace. Resource consumption is in term of node*hour.

For HTC workloads, we tune two parameters through changing B

from 10 to 80, and R from 1.0 to 2.0. Figure 9 and Figure 10

show the effect of different parameters on two different workload

traces. To save the resource consumption and improve the

throughputs, we choose B80_R1.5 as the final configuration for

BLUE trace and B40_R1.2 as the final configuration for NASA

trace.

Figure 11. Resource consumption and tasks per second VS.

different parameters setting for Montage workload. Resource

consumption is in term of node*hour.

For MTC workload, we tune two parameters through changing B

from 10 to 80 and R from 2 to 16. Figure 11 shows the effect of

different parameters on the Montage workload. To save the

resources consumption and improve the throughputs, we choose

B10_R8 as the final configuration for the Montage workload.

4.5.2 The Evaluation Metric of Service Providers
Table 2, Table 3 and Table 4 summarize the experiment results of

two HTC service providers and one MTC service providers with

Dawningcloud, the SSP, DCS system and DRP systems. The

percent of the saved resources are obtained against the resource

consumption of the DCS system.

Table 2. The metrics of the service providers for NASA trace

configuration number of

completed

jobs

resource

consumption

saved

resources

DCS system 2603 43008 /

SSP system 2603 43008 0

DRP system 2603 54118 -25.8%

Dawningcloud 2603 29014 32.5%

Table 3. The metrics of the service provider for BLUE trace

configuration number of

completed

jobs

resource

consumption

saved

resources

DCS system 2649 48384 /

SSP system 2649 48384 0

DRP system 2657 35838 25.9%

Dawningcloud 2653 35201 27.2%

Table 4. The metrics of the service provider for Montage

configuration tasks per

second

resource

consumption

saved

resources

DCS system 2.49 166 /

SSP system 2.49 166 0

DRP system 2.71 662 -298.8%

Dawningcloud 2.49 166 0

For the DCS and SSP systems, they have the same configurations

with the only one difference of which the service providers in the

DCS system own resources while the service providers in the SSP

system lease resources, so they gain the same performance.

However, the service providers in these two systems have

different total cost of ownership, and we will compare two real

cases in Section 4.5.5.

For the NASA trace and the BLUE trace, in comparison with the

DCS/SSP system, the service providers in the Dawningcloud

saves the resource consumption maximally by 32.5% and

minimally 27.2%, and at the same time gains the same or better

throughputs. This is because the service providers in the

Dawningcloud can resize resources according to the workload

status, however the service providers in the DCS/SSP systems

owns or leases the resources with the fixed size.

For the NASA trace and the BLUE trace, in comparison with the

DRP systems, Dawningcloud can save the resource consumption

maximally by 46.4% for the service providers. This is because

Dawningcloud's dynamic resource negotiation and queuing based

resource sharing mechanisms lead service providers to decrease

the resource consumption. On the other hand, in DRP, each end

user directly obtains the resources from the resource provider, this

result in that DRP consumes more resources than Dawningcloud,

but it can gain the same or better throughputs.

For the NASA trace and the BLUE trace, in our experiments, the

DRP system achieves the similar resource consumption as

Dawningcloud for BLUE workload trace, but consume more

resource for NASA workload trace, because that the job arriving

frequency of NASA workload trace are smooth among days, the

queuing mechanism of Dawningcloud can maintain steady

resource utilization, which lets the Dawningcloud save more

resources than the DRP system; But the job arriving frequency

and system load of BLUE workload trace fluctuate dramatically,

which lets the resource utilization of Dawningcloud fluctuate too,

leads to Dawningcloud and the DRP system have similar resource

consumption.

For MTC workload, Dawningcloud has the same performance of

the DCS/SSP system for the service provider. Because that the

resource management and provision policies of Dawningcloud

will dynamically adjust the resources size of the RE according to

the accumulated resource demand of jobs in queue, which is same

as the chosen configurations of the RE in the DCS/SSP system, as

we explained in Section 4.4. After the initial running of Montage

trace, Dawningcloud adjusts the resources size of the RE to the

configurations of the RE in the DCS/SPP system, result in that

Dawningcloud has the same performance as that of the DCS/SSP

system for the service provider.

For MTC workload, Dawningcloud saves the resource

consumption by 74.9% of that of the DRP system for the service

provider. This is because the required resources of end users will

be provisioned immediately in the DRP system and the peak

resource demand of MTC workload is high. At the same time, we

choose the time unit of leasing resources as one hour.

4.5.3 The Metric For Resource Provider
Figure 12 and Figure 13 show the experiment results for the

resource provider with Dawningcloud, the SSP, DRP and DCS

systems.

Figure 12. Total resource consumption of the resource

provider. Y-axis is in terms of node*hour.

Figure 13. Peak resource consumption of the resource

provider. Y-axis is in term of nodes per hour.

For the DCS and SSP systems, they have the same performance

for the resource provider.

For the resource provider, Dawningcloud saves the total resource

consumption by 29.7% of that of the DCS/SSP system. In the

DCS/SSP system, the service providers lease or purchase

resources with fixed size, which need to meet the largest-sized

jobs' requirement at least. In contrast, in the Dawningcloud, the

service providers can start with the small-sized resources and

dynamically resize the provisioned resources in the case of the

large-sized jobs execution or the heavy workload handing. Hence,

the total resource consumption of the resource provider in the

DawningCloud is less than that in the DCS/SSP system when

serving for the workloads consolidated from all the service

providers. The peak resource consumption of Dawningcloud is

1.06 times of that of DCS/SSP system, because of DCS/SSP

system’s static resources configuration.

For the resource provider, Dawningcloud saves the total resource

consumption by 29.0% of that of the DRP system, the peak

resource consumption of Dawningcloud is only 0.21 times of that

of the DRP system. Because the required resources will be

provided immediately in the DRP system, the total resource and

peak resource consumption of the DRP system are more than

Dawningcloud.

4.5.4 Management Overhead
For the DRP and Dawningcloud systems, allocating or reclaiming

nodes or VMs will trigger the setup action, e.g. wiping off

operating system or data, so it will incur the management

overhead for the resource provider. We use the accumulated size

of adjusting nodes, obtained or released by service provider, to

evaluate the management overhead.

Figure 14 shows the accumulated size of adjusting nodes. We can

observe that the SSP system has the lowest management overhead,

since it obtains or releases resources only at the starup and the

finalization of the RE. Dawningcloud has smaller accumulated

size of adjusting nodes than that of the DRP system, since the

initial resources will not be reclaimed until a runtime environment

is destroyed.

In our real test, the total cost of adjusting one node is 15.743

seconds. Excluding wiping off OS, adjusting one node includes

the operation of stopping and uninstalling previous RE packets,

installing and starting new RE packets. The average overhead of

Dawningcloud for resource provider is approximately 341

seconds per hour. The management overhead of Dawningcloud is

accepted.

Figure 14. The accumulated size of adjusting nodes. Y-axis is

in terms of nodes.

4.5.5 Total Cost Ownership of the Service Provider

in the SSP and DCS Systems
In this section, we compare the total cost ownership (TCO) of a

service provider in the SSP and DCS systems.

For the DCS system, we take a real case from the grid lab of

Beijing University of Technology, which is deployed in 2006. The

DCS system is composed of 15 nodes, and each node has 2*2

GHZ CPU, 4 GB memory and 160 GB DISKs; the depreciation

cycle of system is 8-year; the total capital expenses (CapEx) of

DCS is 120,000$. Among the operation expenses, the total

maintenance cost afforded to the company is 30,000$. The energy

and space cost of the DCS is about 1,600$ per month.

For the SSP system, we choose the pricing of Amazon's EC2

Service [3] as the pricing meter. The configuration of one EC2

instance is: 2G CPU, 1.7 GB memory and 140 GB DISK; the

price of the EC2 service is 0.1$ per instance * hour and 0.1$ per

GB inbound transfer * month.

We calculate the TCO per month of the service provider in the

DCS system as follows:

 TCOdcs= (CapEx depreciation) + OpEx (1)

The TCO of the service provider in the DCS system is 3,160$ per

month.

We calculate the TCO per month of the service provider in the

SSP system as follows:

 TCOssp = (Total Instance Cost) + (Inbound transfer Cost) (2)

In order to match the configuration of the DCS system, we choose

30 EC2 instances for the service provider in the SSP system. The

total cost of the instances is: 30day *24hours *30instances

*0.1$ =2160$. From the system log, we can know that he average

data transfer per month is less than 1000 GB, so the upper cost of

inbound transfer is: 1000*0.1=100$. For the SSP system, the

TCO of the service provider is 2,260$ per month, which is only

71.5% of that of the DCS system.

4.5.6 Analysis
Now we answer the question raised at the beginning of the paper.

Do MTC or HTC service providers benefit from the economies of

scale on the cloud platform?

We have two conclusions: first, from the perspectives of service

providers, comparing with the DCS system, SSP is more cost-

effective, this is because service providers have the same

performance, but the TCO of the service providers in the SSP

system is less than that in the DCS system.

Second, with the dynamic resource management mechanism and

policies, Dawningcloud outperform another two cloud solutions:

SSP and DRP from the perspectives of service providers and the

resource provider.

Thus, we can conclude: with the enabling system: Dawningcloud,

MTC or HTC service providers benefit from the economies of

scale on the cloud platform

5. RELATED WORK
There are two proposed usage models for cloud computing in

MTC or HTC community. Deelman et al. [10] propose each staff

of an organization to directly lease virtual machine resources from

EC2 in a specified period of running applications. Our experiment

results show that the system leads to high peak resources

consumption, and raises challenge for the capacity planning of

system. Evangelinos et al. [5] propose that the organization as a

whole rents resources with the fixed size from EC2 to create a

virtual cluster system that is deployed with the queuing system,

like OpenPBS, for HTC workloads. In this model, a service

provider as a whole leases the resources with the fixed size from

the resource provider, deploys a PBS-like queuing system, and

provides job-execution services for end users. Our experiment

results show that this system leads to high resource consumption

because of its static resource management policy.

Previous efforts fail to propose the enabling system with the

autonomic management mechanism to facilitate the resource

provider to consolidate MTC and HTC workloads: EC2 [3]

directly provides resources to end users, and relies upon end

user’s manual management of resources; EC2 extended services:

RightScale [5] provides automated cloud computing management

systems that helps you create and deploy only Web service

applications that run on EC2 platform; Irwin et al. [20] [13]

propose a prototype of service oriented architecture for resource

providers and consumers to negotiate access to resources over

time. However, these previous efforts seldom propose the

autonomic management system to consolidate MTC and HTC

workloads.

Armbrust et al. [2] in theory show the workloads of Web service

applications can benefit from the economies of scale of cloud

computing system. Our previous work, Phoenixcloud [12] [21],

shows the consolidation of Web service applications and parallel

batch jobs can decrease the total resource consumption from the

perspective of service providers and the resource provider.

However, no previous work answers this key question: do MTC or

HTC service providers benefit from the economies of scale?

Resource management are widely researched in the context of

cloud computing and grid computing. In the context of cloud

computing, the work [20] of Duke University designs the Winks

scheduler to support a weighted fair sharing model for a virtual

cloud computing utility. The goal of the Winks algorithm is to

satisfy these requests from a resources pool in a way that

preserves the fairness across flows; in grid computing, the work

[22] proposes the algorithm for scheduling mixed workloads in

multi-grid environments, whose goal is to minimize the task's

turnaround time in grid environment. However, we focus the mix

workloads of MTC and HTC, which are not concerned by

previous work.

6. CONCLUSION AND FUTURE WORK
In this paper, we have answered two related key questions to the

success of cloud computing: for small or medium organizations,

can we consolidate their MTC and HTC workloads on a large

cloud platform? And on the cloud platform, do MTC or HTC

service providers benefit from the economies of scale? Our

contributions are three-fold: first, we have proposed the dynamic

service provision (DSP) model in cloud computing. In the DSP

model, the resource provider can create the specific runtime

environments on the demand for MTC or HTC service providers,

and the service provider can dynamically resize the provisioned

resources of the runtime environment. Second, based on the DSP

model, we design and implement an enabling system,

Dawningcloud, which provides automatic management for

heterogeneous MTC and HTC workloads. Third, our experiments

proved that for typical MTC and HTC workloads, on the cloud

platform, MTC and HTC service providers and the resource

service provider can benefit from the economies of scale.

In the near future, we will focus on building a more generalized

formal framework to model n resource providers provisioning

resources to m service providers of heterogeneous workloads.

With the support of this framework, we investigate the optimal

resource management and scheduling policies in the context of

cloud computing.

7. REFERENCES
[1] Ioan Raicu1, Ian Foster.2008.Many-Task Computing for

Grids and Supercomputers. In Proceedings of the first

workshop on Many-Task Computing on Grids and

Supercomputers(MTAGS08)

[2] Michael Armbrust, Armando Fox.2009.Above the clouds: A

Berkeley View of cloud Computing.Technical Report.

[3] EC2. http://aws.amazon.com/ec2/

[4] XEN. http://www.xensource.com/

[5] Constantinos Evangelinos, Chris Hill.2008.cloud computing

for parallel Scientific HPC Applications: Feasibility of

running Coupled Atmosphere-Ocean Climate Models on

Amazon’s EC2. In Proceedings of the first workshop on

cloud Computing and its Applications(CCA08)

[6] Luis Vaquero, Luis Rodero-Merino.2009. A break in the

clouds: towards a cloud definition. ACM SIGCOMM

Computer Communication Review Volume 39, Issue 1,

January 2009.

[7] Simson Garfinkel. 2007. Commodity Grid Computing with

Amazon's S3 and EC2. Login: The USENIX Magazine,

February 2007, Volume 32, Number 1.

[8] Benny Rochwerger, David Breitgand.2009. The Reservoir

model and architecture for open federated cloud computing.

IBM Journal of Research and Development, Vol. 53, No.4,

2009.

[9] Mayur Palankar, Adriana Iamnitchi.2008.Amazon S3 for

Science Grids: a Viable Solution? In Proceedings of the First

International Workshop on Data-Aware Distributed

Computing (DADC08).

[10] Ewa Deelman, Gurmeet Singh.2008.The Cost of Doing

Science on the cloud: The Montage Example. In Proceedings

of ACM/IEEE SC08.

[11] Derrick Kondo,Bahman Javadi.2009.Cost-Benefit Analysis

of cloud Computing versus Desktop Grids.18th International

Heterogeneity in Computing Workshop(hcw09)

[12] Jianfeng Zhan.2008.Phoenix cloud: Consolidating Different

Computing Loads on Shared Cluster System for Large

Organization. In Proceedings of the first workshop on cloud

Computing and its Applications(CCA08)

[13] David Irwin, Jeffrey Chase. 2006. Sharing networked

resources with brokered leases. In Proceedings of USENIX

'06.

[14] Top500. http://www.top500.org/lists/2008/11

[15] WorkflowGenerator:

http://vtcpc.isi.edu/pegasus/index.php/WorkflowGenerator

[16] Kris Gaj, Tarek El-Ghazawi.2002.Performance Evaluation of

Selected Job Management Systems. In Proceedings of 16th

IPDPS, pp.260-260.

[17] Parallel Workloads Archive:

http://www.cs.huji.ac.il/labs/parallel/workload/

[18] RightScale: http://www.rightscale.com/

[19] Miron Livny, Jim Basney. 1997. Mechanisms for High

Throughput Computing, SPEEDUP Journal, Vol. 11, No. 1,

June 1997.

[20] Laura Grit, Jeffrey Chase. 2008. Weighted fair sharing for

dynamic virtual clusters. In Proceedings of SIGMETRICS

2008, pp. 461-462.

[21] Jianfeng Zhan, Lei Wang, Weisong Shi. 2009. Phoenixcloud:

Provisioning Heterogeneous Runtime Environments for

cloud Computing. Technical Report.

[22] Mark Dan, Dan Geiger. 2006. Scheduling Mixed Workloads

in Multi-grids: The Grid Execution Hierarchy. In

Proceedings of 15th HPDC, pp. 291-302.

[23] Montage Project: http://montage.ipac.caltech.edu.

http://www.xensource.com/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.rightscale.com/
http://www.informatik.uni-trier.de/~ley/db/conf/sigmetrics/sigmetrics2008.html#GritC08
http://www.informatik.uni-trier.de/~ley/db/conf/sigmetrics/sigmetrics2008.html#GritC08
http://montage.ipac.caltech.edu/

