HACK: A Health-based Access Control Mechanism
for Dynamic Enterprise Environments

Chenjia Wang
Department of Computer Science
Wayne State University
chenjia.wang @wayne.edu

Abstract—Current access control schemes focus on the user
and their rights and privileges relating to the access to both
initiating functionality and accessing information. This approach,
while appropriate with respect to access control for the user,
misses a very important aspect - the software itself. In this
paper, we propose HACK, a health-based, adaptive access control
scheme, that provides for both the machine and its software to
act on behalf of the users during access. Paramount is that the
software itself is included as part of the access control determi-
nation. The health of software can be determined when the user
attempts to create a new process executing that software. HACK
checks its own information about the software to determine its
health and can also ask neighboring machines on the network
running the same software to provide a health status. Lastly,
HACK adapts the access control based on the behavior of the
software in response to certain events.

Index Terms—Computer Security, Access Control, Health.

I. INTRODUCTION

With the growth of heterogeneity in the mobile computing
environment, secure access is becoming more challenging in
design.[5] Laptop, notebook, tablet, and pocket computers, and
other mobile computing devices, have been widely used in the
enterprise environment but the attention paid to the challenge
of securing the computing environment is far from enough.
Actually, according to the Redefining Personal Computing
with Virtual Computing talk given by Professor Lam in 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 78% use personal computers for
work and 43% use work computers for personal use. [3] In the
logical perspective, access control decides whether to grant the
access right of the object to the principal and in the paper [4],
Lampson et al. propose the concepts, protocols and algorithms
for access control in distributed systems. The security level of
the existing access control mechanisms are either lower than
the expectation, which causes the existence of potential risk, or
extremely higher than it should be, which has seriously limited
the privileges of the user. The conventional role-based access
control and rule-based access control mechanisms seem to be
unqualified to meet the new requirements posed by the mobile
computing environment. Even the extended access control
mechanisms of them, such as temporal role-based access
control (TRBAC) [1] which supports periodic role enabling
and disabling and temporal dependencies among such actions,
and generalized role-based access control (GRBAC) may also

Kevin P. Monaghan
Department of Computer Science
Wayne State University
kpmonaghan @wayne.edu

Weisong Shi
Department of Computer Science
Wayne State University
weisong @wayne.edu

have some difficulties to face the challenge. Team-based access
control (TBAC) is another access control mechanism and
the extension access control mechanism of it, the C-TMAC
[2] would collect the contextual information including time
of access, the location from which access is requested, the
location where the object to be accessed resides, transaction-
specific values that dictate special access policies, and so on.
However, it does not touch on the key component of the
contextual information of the client machine which we believe
is the health state of the machine. Under this situation, a new
adaptive and secure mechanism for access control is highly
demanded.

In this paper, we propose HACK, a health-based, adaptive
access control scheme. Our approach with HACK is unique in
the following ways: we focus on the health of the machines
with respect to access control, not the security credentials or
privileges of the user; our approach utilizes both a local and
community-based check for health, i.e. the status of software is
determined not only by the machine running the software but
also by its neighboring community; and lastly, our approach
is adaptive, i.e. events that take place can alter the state of
the machine and can dynamically alter the health of software
and therefore its access control. Our key contributions are
in the detection of malicious software using a hash of the
file contents, the determination of software behavior by a
community check, and in the adaptive behavior of the machine
based on current state and healthy-based access control events.
The remainder of the paper is organized as follows. The design
of HACK is presented in Section 2. Section 3 describes the
implementation of HACK and the performance evaluation is
detailed in Section 4. Sections 5 and 6 cover discussion and
related work, respectively. Finally,the conclusion is presented
in section 7.

II. DESIGN

The design of HACK provides for a means to ensure the
program that is attempting to be executed is valid, that the
location from which it is run is appropriate and makes sense,
that the program being run is the one that was accepted
as being safe, and that the neighboring community agrees
with the safety of the program. All these things affect the
health of the machine and the machines it is connected to
on the network. The design also takes into account the state

of the machine and the different events that can take place
and change that state. It must provide a means to identify
the programs and their locations which are considered safe
and acceptable to execute. And lastly it must provide a way
to ask its neighboring community about the reference for a
newly created process if the local machine cannot validate the
program by itself.

A. Overview of HACK

In order to provide an adaptive capability, the states of the
machine and the events that can take place on the machine to
change those states must be identified. The states of the ma-
chine are simply: healthy,intermediate healthy and unhealthy.
The healthy state signifies that no adverse events have taken
place which would have degraded the state of the machine. The
intermediate healthy state signifies that one or more adverse
events have taken place which degraded the health and state
of the machine. The unhealthy state signifies that one or
more adverse events have taken place which further degraded
the health of the machine sufficiently where an administrator
might be called in, the processes terminated on the machine,
or the machine powered down to preclude the negative state
from propagating on the network. The no state state signifies
a starting point for configuration assuming the administrator
does not want to start a machine in a particular state. This is
indicative of the machine earning its health rating every time
it starts.

The events that can take place on the machine are: bad
path, bad hash, bad process from neighbor, and no event. The
unhealthy process event signifies that an unhealthy process
has been identified, independent of whether or not it has
been terminated. The bad path event signifies that a process
with an appropriate name has been executed from a path not
associated to that program. For example, this translates to
someone executing calc.exe or notepad.exe on the Microsoft
Windows platform but from a directory not associated to the
operating system or its programs. The bad hash event signifies
that a program was run with an acceptable name from a known
location but that the bytes that make up that program do not
match up with ones recorded when the program was deemed
safe. The bad process from neighbor event signifies that a
neighbor within the community deemed a program as unsafe.
Lastly, the no event event basically signifies any event for
which a state change is not required.

1) Name, Path and Hash based Malicious Software Detec-
tion: In order to detect a malicious piece of software, several
things must take place. First, the event of when a new process
is created must be captured. Second, the name and path of that
process must be determined and checked against a master list
of allowable processes and their associated locations. Third,
the actual executable code from the process is hashed to check
against the master list to determine whether or not the binary
file has been changed or tampered with since the hash was
initially calculated.

In order to identify when a new process is created, a hook or
call-back function is called to the operating system registering

a function in HACK to call when a new process is created. This
allows the capture of the event when the process is actually
created, loaded, and executed in memory. It is important to
note that HACK places a hook into the operating system in
order to identify the event when the process is created, loaded,
and executed in memory. This is in contrast to identifying the
creation of a new process after it is loaded into memory and
executing, which allows for the possibility of the newly created
process to cause damage before HACK can be notified and,
if appropriate, the software terminated in the case where it is
malicious.

Once a new process is created, HACK is notified of its
creation via the operating system call-back function and de-
termines its name and path. The path of the executable of
the process is important because it identifies from where the
process was executed, or said another way, which specific
program was executed. If the process name and path match
an entry in a list of safe processes, the check continues. If
not, the process is deemed malicious and terminated.

Now that the process name and path match an entry in
a list of safe processes, HACK reads the executable code
into memory and performs a hash check against it. If the
hash matches the value in the list of safe processes, the
check continues. If not, the process is deemed malicious and
terminated since it must have been tampered with considering
the hash of its executable code no longer matches a known
hash of a safe version of the software.

Once the name, path, and hash of the executable code of
the process have all been checked, if the state of the system is
healthy, the process is allowed to load and execute unabated. If
the state of the system is intermediate , the next step is taken:
to check the maliciousness of the process with your neighbors.
When the state is less than healthy, its always a good policy
to ask the neighbor.

2) Community-based Malicious Services Checking: De-
pending on the state of the machine, community-based ma-
licious services checking can take place. Community-based
checking provides the ability to ask a neighboring machine,
henceforth referred to as a neighbor, if they consider the
process healthy. If only a single neighbor is asked, then their
sole input can provide the determination of the health of the
newly created process. If more than one neighbor is asked, a
vote can take place to provide the determination of the health
of the newly created process.

3) Adaptive Healthy-based Access Control (upgrading and
downgrading): An adaptive access control method allows for
the ability to change the response to the same security events
based on the state of the machine. For example, if event A
occurs, e.g. a new process is created, and the state of the
machine is state B, e.g. healthy, then HACK will allow the
process to execute unabated. However, if the identical event
occurs but the state of the machine is state C, e.g. intermediate
which is the status after some suspicious process has been
found then HACK may initiate a community-based check to
determine whether or not to terminate the process.

As events occur, the state of the machine can change.

The simplicity of the design of HACK is that the state
machine module only requires that you register which event
took place. Recall the allowable events are: bad path, bad
hash, bad process from neighbor, and no event. So as events
take place, HACK registers that event with the state machine
module and it performs all the rule checking itself and, if
appropriate, can also initiate state machine change. This allows
the actual events that take place as the user initiates requests
to execute various processes to adaptively change the state of
the machine, i.e. the health of the machine is upgraded (to a
better health) or downgraded (to a worse health).

B. Detailed Design of HACK

The three main portions of HACK, malicious software
detection, community-based checking, and adaptive behavior
are all designed as their own modules. This provides for ease
of maintenance, minimizes the propagation of defects, and
reduces complexity.

1) Malicious Services Checking: Even computers within
the Local Area Network (LAN) may experience different
processes and the information of their experience is helpful
to detect a new malicious process. It is also easy to exchange
information among the computers within LAN. The transmis-
sion method used in HACK to exchange information is based
on multicast which does not consume too much bandwidth
on the network. Assume a new process is created and that a
community-based check is initiated. The details of this check
will be discussed in next section.

When the community-based check begins, it will send the
information on the newly created process, i.e. name, path, and
hash value, to its neighbors. Next we introduce three kinds of
neighbors: random neighbors, most trustworthy neighbors, and
nearest neighbors. Random neighbors are named after the way
we choose the neighbors, which, not surprisingly is at random.
Most-trustworthy neighbors are those computers which have
experienced the initiation of the most new processes and
therefore the health reference from them is more reliable.
Nearest neighbors are those neighbors that are closest to the
machine that requested the community-based check. Once
the neighbors receive the information, they will check the
information with their own white-list of processes. If the
neighbor has seen this process before and it does not have
any suspicious behavior, it will send back the reference as
being good. If the neighbor has not seen this process before,
it will send back the reference as being bad. Depending on
the response, the machine which started the community-based
check will respond differently. If the reference was good, the
process would be allowed to continue running unabated. If
the reference was bad, then the process would be terminated
immediately.

2) Adaptive Protocol: In order to ensure adaptive behavior
with respect to security events, HACK uses a state machine
with a straightforward interface where events (bad path, bad
hash, bad process from neighbor, and no event) are simply
registered when they take place. Given that HACK is notified
when a new process is created, HACK registers these events as

—_-Down grade

Intermediate
Healthy

Fig. 1.

State Transfer Diagram.

they take place. The state machine will automatically change
state based on the rules identified. For example, if the machine
is in the state healthy and the event bad process from neighbor
takes place, the state of the machine is automatically changed
to intermediate healthy. These rules are easily configured. The
state machine changes state based on current state and security
event. This state machine can easily be altered to provide
different behavior given current state and security event. Figure
1 shows the default state machine as defined by HACK.

III. IMPLEMENTATION

We implmented HACK on Microsoft Windows XP, service
pack 2 and the programming language used for HACK is C++
. The HACK component contains both the client and the server
(with respect to community-based checking).

A. Overview

Figure 2 presents the working environment for our HACK
project. From the figure we can find that, HACK can handle
heterogeneous environment which includes PDA, laptop and
desktop. Actually, figure 3 is a typical snapshot of the mobile
computing environment. HACK is composed of 3 modules:
client sensor module, client access control module and server
module. Actually, each machine is playing both the role of
server and client. The relations and the function included in
each module are presented in figure 3.

B. Client Sensor Module

The client sensor module basically has 2 functions including
hash/path based malicious software detection and community-
based malicious services checking function. Hash/path based
malicious software detection is designed and implemented as
follows: Both hash and path checks are based on the white-
list we created for them. In the white-list, we would have the
information for allowed process. The information is composed
of the process name, default path and the hash value based on
its content. The path check is aimed to judge whether a newly
created process has the exact path as it displayed on the white-
list. As for the hash check function, SHA-1 (Secure Hash
Algorithm) which is safer than MD5 and produces a message
digest that is 160 bits long is used to calculate the hash value
for the newly created process. Based on the hash value stored

Neighbor

8 &

In: Request for reference
Out: Reference

Neighbor

In: Request for reference
Out: Reference ‘

(D

In: Request for reference -
Out: Reference

In: Reference
Out: Request for
reference

Neighbor Path/Hash Check Client Machine

State Transfer

Fig. 2. Overview of Hack Design.

1.Hash/path based
malicious software
check function
2.Community-based >
malicious services checking
function.

1. Process termination
function

2. Health state tranfer
function

Client Sensor
Module

Client Access Control
Module

Server Access Control

Server Access
Control
Module

Fig. 3. 3 modules of HACK.

in the white-list, it is easy to tell whether the newly created
process is the same one which is allowed to be running on
the machine. Hash/path based malicious software detection
function is within the client machine in which the process
has started. In another word, it is a local-check function.

Different from the hash/path based malicious software
detection, the community-based malicious service checking
function is a network-based check function. Figure 4 is the
diagram for the community-based malicious service checking
function.

From figure 4, it is obvious that each users machine would
either request for others reference or give reference. As
we mentioned before, the communication between them is
implemented by multicast. The request would be sent to all the
neighbors within the subnet and all the neighbors would return
their reference to the machine which started the multicast.
However, not all the references would be considered for the
starting machine to make the final decision on the judgment
of the newly created process. Only the references from the
most-trustworthy neighbors would be taken. So actually not
only the references was sent back but also the metadata of the
neighbors would be returned. In detail, the metadata includes

Request/Reference

uoq Request/Reference

Request/Reference

Request/Reference

I Request/Reference

Request/Reference

Fig. 4.
function.

Diagram for the community-based malicious service checking

the IP address of the neighbors as well as the number of the
process it has seen. As long as the starting machine receives all
the reference, it would pick up the references from the most-
trustworthy neighbors and decide the next action it should take
from which the client access control module starts.

C. Client Access Control Module

The two functions included in the client access control
module are: 1.)Termination of process function 2.)Health
state transfer function. Once the client machine finished the
hash/path based malicious software detection and community-
based malicious services check, it will carry out the termina-
tion of process function if necessary or the health state transfer
function.

For the termination of process function, it will kill the
process if it meets the following requirements: 1.) the process
has the same name as one of the allowed process but has a
different path. It is quite common that the malicious process
would try to pretend to be a normal common process while its
path is totally different from the normal one. 2.) the process
has the same name and path as the normal process but its
hash value is different from the one on the whitelist. Even the
process has the same name and path as the normal process,
sometimes the digest of it may have a difference from the
one on the whitelist. Thus, the hash check demonstrates its
importance in helping us to identify the malicious software or
service. Using the SHA1 algorithm, the client access control
module would generate a 160 digit value for each process
and based on the comparison with the one on the white-
list, it would let the administrators know whether the content
has been modified.3.) the last scenario which would leads to
the termination function is that the name of the process is
not on the white-list and the reference from the trustworthy
neighbors are bad. It is obvious that in this scenario there are 2
requirements before the module finally terminates the process
and the second one is not based on the judgment from the
local machine.

As for the health state transfer function, we have defined 3
states for each machine which are healthy, intermediate healthy
and unhealthy. Based on each name, it is easy to guess that

the machine in the healthy state would have most priorities in
the access and unhealthy state would have very limited or no
access. The intermediate healthy state is the state we would
put emphasize on. Differ from most access control mechanism
which either allow or do not allow access, the intermediate
state enable the administrator to observe a certain process for
a while before taking any further action. Actually, the transfer
or upgrade/ downgrade can also be automatically implemented
by HACK itself. As long as it meets the policy we have set for
the HACK, the state of the client machine would be transferred
or maintained by the client access control module.

IV. PERFORMANCE EVALUATION

In this section, we present the experimental evaluation of
our HACK system. The evaluation experiment is composed of
two parts. First, the validation test of the function of HACK.
Second, the overhead of HACK. In the validation test, we
will use several cases to test the Path/Hash malicious software
detection, Community-based malicious services checking and
Adaptive health-based access control function as we designed.
As for the overhead, we will test the delay of the execution
of HACK for Path/Hash Malicious software detection and
Community-based malicious services checking. The exper-
iments were running on the environment as follows. Four
desktops with Windows Professional Service Pack 2 and the
hardware configuration is Intel Pentium4 2.6 GHz, 512 MB
memory, 80G harddisk.

A. Validation Test

The validation test is designed to test all three function we
proposed. We started the test with the validation of Path/Hash
Malicious software detection. In this test, we used Microsoft
Paint program as the 1st case. It is on our white-list with
all the information of it including name of this process, path
and hash value. We started our HACK program first. After its
initialization, we are ready to start the test. We try to execute
the MS paint and our client sensor module intercepted the
execution of MS paint. It searched the white-list for MS paint
and since it is on the white-list, the program displayed it is on
the white-list. Then it compared the path and hash value of
the process and they are correct. So it will let MS paint run
without any further action and the state is still healthy.

The 2nd case is to use the Calculator program which is in
the Accessories folder of Windows as the testing object. We
created a shortcut of it and linked it to another program so
once it was executed , it lead to another program. By doing
so, it would have a different hash value. In the test, HACK
correctly found out the different hash value and terminated
the application. Also, the state of the machine was transferred
from Healthy to Intermediate Healthy which means Adaptive
health-based access control also worked properly.

Then we tested the Community-based malicious services
checking. We randomly picked up a machine among those 4
machines and removed the information of Wordpad application
from its white-list. So once we tried to execute the Wordpad
on it, the HACK intercepted and it could not find it on its local

1 2 3 Average
Valid Path and Hash | 15.0 ms 15.0 ms 16.0 ms 15.3ms
Invalid Path/Hash 3440ms | 297.0ms | 187.0ms 276.0 ms

Fig. 5. Overhead of Path/Hash Malicious Software Detection.

white-list, therefore, the Community-based malicious services
checking started. It sent out the request to verify the Wordpad
application and its neighbors received the request. They sent
back the reference and since it was on the white-list of other
machines, the reference was Good. So the machine which sent
out the request allowed Wordpad to continue running and no
transfer occured.

The final case was used to verify whether HACK could take
corresponding action once it received the reference as Bad
from its neighborsWe used EdittPlus Text Editor as the object.
The information of it was not on any machine and none of
them has run this one before. So it should not be found on the
white-list and all the reference from the neighbors should be
’bad’. In the test, after we try to execute the EditPlus program,
the HACK intercepted it. It could not find it on the white-
list so it sent out the request. The neighbors received it and
they could not verify it either so they send back Bad. HACK
then terminated the application and transferred the state from
Healthy to Interme

B. Performance Overhead

The overhead of Path/Hash Malicious software detection
is calculated from the beginning of the attempted execution
of the application to the end of the corresponding action has
been taken. From the table we can see that HACK would not
cost an obvious overhead and the reason why the overhead is
much bigger once the application has an invalid path/hash is
that HACK would invoke another program to kill the process
which could take sometime.

The overhead of Community-based malicious services
checking includes the time once the request was sent out until
the time the reference received by the machine which sent
out the request. It is clear in the table that there is no big
difference whether we test on three or four machines and both
of them were small. So we believe we could deploy HACK
on more machines with almost no increase in overhead and a
more trustable reference due to the increase in the number of
neighbors.

1 2 3 Average

3 machines 16.0 ms 31.0ms 15.0ms 20.7ms

4 machines 16.0 ms 16.0 ms 31.0ms 21.0ms
Fig. 6. Overhead of Community-based Malicious Services Checking.

V. DISCUSSION

The current HACK approach may still be at risk if the ma-
licious program can develop corresponding evasion technique
and inevitably, the design may still have some deficiency. In
this section, we are going to discuss about the potential risk
and the countermeasures.

A. How to secure the HACK while it is running on the top of
the client machines

So far, HACK is running on the client machines as an
application and thus if the malicious programmers are aware
of the existence of HACK, they may attempt to modify the
key component or even subvert the whole system. Currently,
the most likely method they would use includes modifying the
white-list and falsifying the reference from the neighbors in
community based check.

1) Modifying the white-list: Since we would push the
white-list to each client machine and let them do the com-
parison by reading the white-list stored locally, one possible
approach to distort the judgment of HACK is to modify the
content of the white-list. The malicious program could locate
the path and folder of the white-list and modify the informa-
tion which is related to its own. If they could successfully
update the white-list based on their demand then the HACK
would make a wrong judgment and instead of terminating the
malicious application, it would allow the current malicious
application to be run on the local client machine.

The solution to this kind of distortion could either be
implemented by generating a hash value for the white-list
itself, storing it in the server to eliminate the possibility for the
malicious program to get access to it and whenever a white-list
based comparison is executed, the hash value of the white-list
would be checked. Thus, we could ensure that the white-list is
always trustable. It would be easy to implement this approach
but it would be at the cost of the increased delay.

2) Falsifying the reference from the neighbors in community
based check: Another possible approach to distort the judg-
ment of HACK is to intercept and falsify the reference from the
neighbors. Besides the local hash/path checking, community-
based check is also utilized here to help HACK to detect
the malicious application. Thus, another method to affect the

validity of HACK is to falsify the reference. Although it would
be hard to modify the reference from the neighbors without
access to the source code, it is possible that the malicious
program could try to intercept the reference sent back from
the neighbors and modify it from Bad to Good by which it
would make itself appear to be a normal process already run
on a certain machine.

However, it would be difficult for the malicious program
to intercept the message since it could only intercept the
reference either from the most-trustworthy neighbor when it
created the reference or falsify it when the reference reaches
the machine which starts the community-based check. To
intercept it in the most-trustworthy neighbor, the malicious
application needs to be able to know where the neighbor is and
locates the buffer which we are using. This would be extremely
hard to implement. Although it would be relatively easier to
modify the reference directly in the client machine which starts
the community based check, it still would be difficult for it to
implement this.

3) False Positive and False Negative: Although HACK
performed well among all the scenarios we have designed in
the evaluation part, there is still possibility that HACK would
make false positive or false negative. For the false positive,
we are concerned about the update for each application which
could cause the change of the content and trigger the false
positive of HACK. Another possible inducement to false
positive would be moving a certain application to a different
location which would cause the HACK to falsely terminate the
application due to the policy we have set. The solution to this
problem would be the synchronization of the update of white-
list. Once an update has been released or the application has
been relocated in another folder, the white-list needed to be
updated with corresponding information. Although we have
not implemented this in the HACK, it would be our future
work to include this as part of the whole system.

For the false negative, the possible situations would be
those we have discussed in the former section which includes
Modifying the white-list and Falsifying the reference from
the neighbors in community based check by the malicious
application. So we are not going to repeat it here.

VI. RELATED WORK

The two popular access control mechanism in the enter-
prises environment are centralized access control mechanism
and decentralized access control mechanism. It seems that
there is no right answer which one is better and pretty much
work has been done for these two mechanisms. HACK is more
decentralized access control mechanism since each machine
itself has the Client Sensor Module and Client Access Control
Module which would limit their access to certain resource.

Also, access control constrains what a user can do directly,
as well as what programs executing on behalf of the users are
allowed to do. In this way, access control seeks to prevent
activity that could lead to breach of security.Thus, several
kinds of access control mechanisms have been proposed from
this perspective such as Role-based Access Control (RBAC)

introduced by Sandhu etc [6]in Rolebased access control
models, Distributed Role-Based Access Control (I(RBAC) and
Temproal-RBAC(extension of RBAC). Team-based Access
Control (TMAC) and its extension C-TMAC which extends
TMAC by using general contextual information are another
two examples[7]. Our HACK system is different from the
previous work on the concept of health-based access control.
We introduce the 3 states (Healthy, Intermediate Healthy and
Unhealthy States) of the machines to grant different access
privilege. It is adaptive and more flexible. Especially for the
intermediate healthy state, we allow the administrator to mon-
itor the machine in the intermediate state for a while before
taking any action which might be improper. Also, different
from the most access control mechanism, the Community-
based malicious services checking has been proposed and
implemented here which enables the communication between
certain machines to provide a more reliable reference for
the detection of access control instead of just following the
static policy or white/blacklist pushed to each machine. Thus,
we believe HACK is more reliable for dynamic enterprise
environments.

Existing access control schemes are specific to authentica-
tion and authorization of the user and the privileges, and as
such, are insufficient to provide for and ensure the security
of the machine itself. Malicious software can exist unnoticed
and reek havoc on systems. We propose HACK, a health-
based access control scheme, that fills the gap between existing
access control schemes and the need to ensure the health of
the machine. HACK provides for the identification of a new
process, ensuring that new process is on a white-list, ensuring
that the content of the process has not been compromised.
As well, HACK provides for a community-based check to
ask neighboring machines their input on the health of a new
process. Finally, HACK provides for adaptive behavior by
allowing different events to change the state of the machine
and ultimately its behavior specific to allowing a new process
to execute or terminating it.

VII. CONCLUSION

Existing access control schemes are specific to authentica-
tion and authorization of the user and the privileges, and as
such, are insufficient to provide for and ensure the security
of the machine itself. Malicious software can exist unnoticed
and reek havoc on systems. We propose HACK, a health-
based access control scheme, that fills the gap between existing
access control schemes and the need to ensure the health
of the machine. HACK provides for the identification of a
new process, ensuring that new process is on a white-list and
that the content of the process has not been compromised.
As well, HACK provides for a community-based check to
ask neighboring machines their input on the health of a new
process. Finally, HACK provides for adaptive behavior by
allowing different events to change the state of the machine
and ultimately its behavior specific to allowing a new process
to execute or terminating it.

ACKNOWLEDGMENT

The authors would like to thank Nardina Mein, Tung
Nguyen, Shinan Wang, Rod Fiori, James Wurm and Mike
Dobson for their technical help in this paper. Chenjia Wang
was supported by the generous support from the School of
Library and Information Science.

REFERENCES

[1] E. Bertino and P. Bonatti. Trbac: A temporal role-based access control
model. In ACM Transactions on Information and System Security, page
191C223, August 2001.

[2] C. Georgiadis, I. Mavridis, G. Pangalos, and R. Thomas. Flexible team-
based access control using contexts. In ACM Symposium on Access
Control Models and Technologies, Chantilly, USA, May 2001.

[3] M. Lam. Redefining personal computing with virtual computing. In 2009
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, Mar. 2009.

[4] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in
distributed systems: Theory and practice. ACM Transactions on Computer
Systems, 10(4):265-310, Nov. 1992.

[5] H. Lufei, W. Shi, and V. Chaudhary. Adaptive secure access to remote

services. In SCCO08, 2008.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access

control models. In IEEE Computer, page 38C47, February 1996.

[7] P. Sudame and B. Badrinath. Transformer Tunnels: A Framework for
Providing Route-Specific Adaptations. In Proc. of the USENIX Technical
Conf., New Orleans, Louisiana, June 1998.

[6

[t

