
Safari: Function-level Power Analysis using
Automatic Instrumentation

Shinan Wang, Youhuizi Li, Weisong Shi
Department of Computer Science

Wayne State University
Detroit, Michigan

Email: shinan, huizi and weisong@wayne.edu

Lingjun Fan
Institute of Computing Technology

Chinese Academy of Sciences
Beijing, China

Email: lingjun@ict.com.cn

Abhishek Agrawal
Intel Corp.

Email: abhishek.r.agrawal@intel.com

Abstract—Resolving excessive power dissipation of modern
computer systems has become a substantial challenge. However,
few research projects have targeted on application power analysis
or application-aware power management, which becomes a rising
factor in energy efficient system design. In this paper, we describe
and implement an application function (subroutine call) level
profiler, Safari. It can be used to generate power profiles of
each function in an automatic manner. The experiment results
using NPB parallel benchmark suite show that Safari is able to
collect function level run-time information with overhead (16%
on average) comparable to gprof. The power profiling results can
be used for code optimization, power-aware scheduling, or even
computing resource billing for future research.

I. INTRODUCTION

Among all the factors that contribute to system opera-
tional costs, power dissipation and energy consumption are
fundamental in modern computer systems [1]. In addition,
power and energy affect technical evolvement, which includes
data center designs [2], enterprise level server designs, battery
life time on a smart phone [3], and circuit layouts on a
microprocessor [4].

Different from hardware and system design and analysis,
the impact of software on the power dissipation of a computer
system has been overlooked. In fact, as the user of hardware
resources, software has equivalent or even more effects on the
power dissipation of a whole system. For example, Pathak et
al. introduce a new type of bugs, energy bugs or ebug [3], on
smartphones. Their results show that 35% of energy bugs stem
from software, either OS or applications. Nevertheless, nar-
rowing down the root causes of ebugs to a software component
is one of the crucial steps to fix energy bugs. A recent study
shows that software bloats introduce excessive resource usage
in large software systems [5] as well. Better understanding of
software behavior associated with resource usage is crucial to
detect similar scenarios. In addition, workload phases provide
interesting information for performance optimization and they
are usually related to functions/methods [6]. Function level

This work is in part supported by US NSF grants CCF-0643521, CNS-
1205338, and the Introduction of Innovative R&D team program of Guang-
dong Province NO.201001D0104726115, and the Office of Vice President
Research of Wayne State University.

This work is done while Lingjun Fan stayed at Wayne State University as
a visiting student.

power profiling is supposed to reveal power behavior along
with resource usage information. These information would
help developers to understand and leverage power dissipation
in a computer system from a new angle. However, informa-
tion scarcity of dynamic power dissipation impedes develop-
ers’ ability to produce more energy-efficient software. Even
though the latest processors based on Sandy Bridge or Ivy
Bridge Architecture provide power information from hardware
counters, the power dissipation within each program block
is still unclear. In addition, power model based approaches
are still effective to estimate the power dissipation of other
components, such as memories.

Regardless of the potential influence of software on power
dissipation, its impact is usually underestimated. For example,
most profiling tools are used to measure performance rather
than power or energy. In addition, among the few available
tools that estimate power dissipation, most of them do not
consider the control flow of a program, which loses the insight
of the execution of a program. Given such scarce information,
it would be difficult for developers to evaluate or optimize the
power usage of their programs.

Run-time profiling techniques usually collect information
from profiling systems. Typically, in order to obtain more
detailed results, a profiling process generates overhead. Conse-
quently, a profiling process could disturb power measurement.
In addition, the inaccuracy due to overhead can be exaggerated
because the collected data for power profiling usually need
to be processed by power models. For example, Linear Re-
gression is a commonly used technique to generate estimated
power from collected run-time information [7]. Moreover, the
sizes of applications are growing rapidly, which posts more
challenges to analyze software power behavior.

In this paper, we propose a software function level power
profiling tool, Safari. The goal of Safari is to provide function
level power analysis while minimizing profiling overhead. In
order to use Safari, first, we compile a target application to
insert instrumentation code for each function. Then, run-time
information is collected for the resource usage during the
execution of functions. Finally, we apply an off-line analysis
based on a selected power model to generate function power
profiles. As a result, code “hot region” can be spotted for
further power optimization without hardware instrumentation.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

C
P

U
 P

o
w

e
r(

W
)

time(s)

IS BenchmarkCPU scale down for rank()

CPU full speed

CPU scale down for create_seq()

create_seq()

rank()
full_verify()

idle

()

()()()idleidle

Fig. 1. Power dissipation of IS.A on a Intel Core2 Quad 8200 processor.

The rest of the paper is organized as follows. We start the
paper by presenting a motivating example in Section II. In
Section III, the design considerations of Safari are described,
followed by the evaluation results shown in Section IV.
Related work is discussed in Section V. At last, we describe
future work and conclude the paper in Section VI.

II. MOTIVATING EXAMPLES

Usually different functions in a program have distinct power
behavior. For example, we retrieve the function profile of
IS.A benchmark from NPB 3.0 benchmark suite. There are
three major steps in IS.A: create_seq(), rank(), and
full_verify(). The power dissipation of IS.A is closely
related to the three major functions as shown in Figure 1.
We use two 0.005 Ohm current sense resistors(CSR) series
connected to the 12V cable from a standard ATX2.0 power
supply. The CPU current is measured by reading the voltage
on the resistors using NiDAQ 9205 unit and dividing the
resistor value. We can calculate CPU power dissipation using
the measured current and voltage value.

Given distinct power dissipation information along with
application execution, one of the usage of power profile is to
guide run-time power management. In this example, rank()
function, which produces approximate 0.15 Instructions Per
Cycle (IPC), is less CPU-bound during its execution (IPC
values are used broadly as CPU power model input [8]). There
are, therefore, chances that systems can provide more fine-
grained power management or scheduling schemes if resource
usage information can be retrieved beforehand. For example,
we are able to use DVFS to scale down CPU frequency from
2.34GHz to 2.00GHz during the execution of rank(). As a
result, we achieved 24% energy saving with 3% performance
loss. On the contrary, 10% energy saving is achieved with 10%
performance loss if we scale down CPU frequency during the
execution of create_seq(), which has a higher average
IPC value during its execution (around 0.6). In addition,
we observe multiplication operations are intensively used in
the source code of thecreate_seq() function, while the
rank() function mainly contains branch-prediction and data
movement operations. Hence, it is possible to utilize profiling
results to guide system power management in a fine-grained
fashion.

Based on this example, we observe that software character-
istic is an indispensable part to analyze the power dissipation
of a computer system. Safari attempts to accurately estimate
power dissipation of a function. Our rationale of using function
level profiling includes the following aspects: first, application
subroutine/functions are the basic units of executing some
tasks; second, it guarantees appropriate scale for optimization:
coarser than the instruction level yet finer than the process or
thread level; third, as the module design is a common method
to develop large scale software, function level power profiling
fits this pattern well.

III. METHOD

Given the fact that power dissipation of function invocation
is one of the major break points to understand software
dynamic power dissipation, it is worth developing a profiling
mechanism to generate function level power profile. The goal
of Safari is automatic power profiling based on per function
resource usage.

In order to achieve this goal, there are three major points
need to be considered. First, profiling overhead must be
minimized. Although functions can be treated as the basic unit
to generate a profile, a majority of functions only accomplish
tiny tasks, such as printing timestamps or reversing a string,
which hardly present any potential for optimization or tuning
in most cases. However, profiling them consumes as much
system resources as profiling major functions. For example,
a create_seq() function invokes randlc() millions of
times in the IS benchmark. As a result, instrumenting and
profiling randlc() function produces much more overhead
than profiling create_seq() along. Moreover, function
power behavior varies according to different input data and
execution paths. It is important for function level power pro-
filing to reflect those characteristics. Additionally, the core part
of power profiling is power models [9], which usually utilize
system information and Performance Monitoring Counters
(PMCs) as input. In this case, the collected information has to
be associated to each function in an application.

A. Overview

warm up a sampling period

1st group of functions Nth group of functions

a sampling period

an instrumented function

function body

profiling profiling

database (profiling results)

power

model

func: 0x23242341; avg. power: 34 w

Fig. 2. An overview of the profiling process.

The proposed profiling procedure is demonstrated in Fig-
ure 2. First of all, the execution of an application is divided
into different parts. During the warm-up period, no profiling

data are collected since usually only start-up activities are
executed during this period. The rest of execution is divided
into different sampling periods. During a sampling period,
only a certain number of selected functions are profiled. As a
results, functions are randomly grouped into several categories.
Only one instance of a function is profiled even the same
function can be executed more than once during the same
sampling period. Target function groups are switched as time
elapsed. Safari collects data exactly before and after a function
being executed. Off-line analysis generates power profile based
on a predefined power model. We will discuss the details of
the profiling procedure in the following sections.

B. Function Level Power Profiling

Instrumentation Automation To instrument an application,
there are two commonly used methods. One is to design a set
of APIs that controls the procedure of data collection at run-
time [8], [10]. The other approach is automatic instrumentation
using some available compilation tools, such as PIN [11].
In a considerable large program, there can be more than
ten thousands function prototypes. The goal of function level
power profiling is to locate the relative power hungry part of
source code. Each function block can be a candidate if we
treat the whole program as a black box, which means all of
them need to be considered. It takes excessive human efforts
if we instrument each function manually. As a result, we adopt
the second approach because of its simplicity to developers.
Whereas, automatic instrumentation has its disadvantage such
as it dose not distinguish major functions and trivial ones. If
we simply apply this technique, the profiling process could
cause unnecessary overhead. Safari adopts several techniques
to overcome this effect.

In the implementation of Safari, we use a func-
tion instrumentation utility designed for GCC compiler,
-finstrument-functions, to insert two profiling func-
tions that will be invoked at every entry and exit of each
function, namely, __cyg_profile_func_enter() and
__cyg_profile_func_exit() as illustrated in Figure 2.
At run-time, in addition to execute instructions in a normal
function body, two profiling functions are attached to the
both ends of a function to collect per thread resource usage
information.

Warm up Usually a system is not stable during the warm-
up phase of an application. For instance, buffers need to be
initialized. In order to get accurate profiling results, the data
collection for profiling starts after a warm up period as shown
in Figure 2. The total length of warm up depends on a specific
program and is tunable at start-up.

Overhead Reduction As described in the previous para-
graphs, in order to use automatic instrumentation properly,
the key issue is reducing instrumentation overhead. There
are two major concerns associated with function level power
profiling. First, a specific function can be invoked many times
during a relative short duration. This scenario affects not only
power profiling of the function itself but also other threads.
For instance, context switch or other system activities might

rise. Second, nested function calls will add more inaccuracy
to outsider ones. Automatic instrumentation in Safari is based
on insertion of two additional function calls at the entry and
exit of each function. If a function has many nested functions
calls, the collected model input can be misleading (dominated
by the inserted profiling functions).

The solution to the first problem is limiting the instrumen-
tation of same functions. If a function is invoked many times,
Safari only samples one instance in order to eliminate the over-
head of repeated profile. However, this method has a potential
problem: if the code path in this specific function is changed
due to different parameters or input of the function, the power
dissipation of this function will also change. We solve this
problem by using multiple records. In the implementation,
we use bloom filter [12] to record functions that have been
profiled. Before a function is to be profiled, Safari checks the
bloom filter first. This method is named Safari 1 in the rest
of the paper. We demonstrate this idea in Figure 2. During
a sampling period, the same function call is only profiled
once by checking the bloom filter. Although bloom filter is
able to control which function to be profiled, checking bloom
filter itself consumes system resources. Normally this part of
overhead is acceptable unless an application has extremely
high rate of function calls.

The total number of instrumented functions needs to be
controlled in order to solve the second problem. The overhead
produced by nested function calls can be reduced if only a
set of selected functions are profiled during a certain period,
which means other functions execute normally without pro-
filing. In addition, profiling module by module for a large
program (for example, an application might contain over
10,000 functions) is extremely useful in order to generate
accurate power profiling results. Figure 2 shows that only a
group of functions are profiled for several sampling periods.
By adjusting group sizes, overhead can be effectively reduced.
However, some functions might not get profiled if this method
is used. Commercial software, such as base station controller,
is deployed to run for a considerable long period (months or
years). Statistically, most of functions can be profiled in such a
setting. This strategy is refereed to as Safari 2 in the evaluation
part. Functions can be grouped alphabetically or according to
their addresses. By adjusting the group size and the total length
of the warm up period, Safari is able to generate power profile
for most of functions.

Multiple Records For a frequently invoked function, we
should profile it multiple times in order to generate correct
power profile because the code path of an application varies.
As aforementioned, a function is only sampled once in a
sampling period. The result can be inaccurate if the code path
changes afterward. The solution is to profile the same function
during different sampling periods as Figure 2 shows. Statisti-
cally, random sampling represents characteristics of the whole
sample space if the function has been invoked multiple times
and the execution is sufficient long (high confidence level).
For example, random sampling can be used to approximate
the percentage of a path occurrence of a function with “if” or

Souce Code

Instrumented

Program

Compilation

Function

Entrance/Exit

(warm up)

Is warm

up over?

Function

Entrance/Exit

(profiling)

Is this function

in the current

profiling group?

Clean up

bloom filter

Is this

sampling

period over?

Collect model input

data and add to

bloom filter

Is this function

has been profiled

in this sampling

period?

yesno

yes

no

no

yes

yes

no

Fig. 3. Run-time profiling and information collecting.

“switch” statement in it if the profiling process is sufficient
long.

Power Model In order to collect the input data for a power
model, the following aspects need to be considered. 1) avail-
ability: the input data should be easy to collect. Sometimes
system features constrain the data that are able to be sampled
for a system. For example, usually two PMCs values can be
collected simultaneously given the limited number of hardware
registers [13]. 2) complementary: the collected input data is
most useful when it covers a certain range of system events.
Given the fact that the total amount of data can be collected is
limited in order to reduce overhead, it is important to explore
the resource usage of a system as much as possible. For
instance, cache miss rate and bus transaction rate contains
some overlapping information because CPU retrieve data from
memory through bus if the data cannot be found in the last
level cache. In this paper, we use OS level metrics and some
commonly used PMCs as the model input:

• CPU utilization: it represents the average CPU usage
during the execution of a function. The value can be
retrieved from Linux PROC File System.

• Cache miss rate: it partially quantifies how frequently
memory has been used for read and write. The value can
be retrieved from PMCs.

• Context switch rate: we use the context switch rate to
estimate the overhead of running multiple processes in
a system and attribute it to the functions in threads,
during which context switches occurred. The value can
be retrieved from Linux procfs.

• Instruction per cycle (IPC): we use IPC values to cal-
culate the effectiveness of a CPU executing instructions
and consuming power. A strong relationship between
IPC and power dissipation has been revealed in several
articles [14], [8].

• CPU frequency: the frequency of CPU is directly linear
related to power dissipation. The value cane be retrieved
from cpufreq subsystem from Linux.

In order to construct a power model, usually a mathematical
method such as linear regression or nonlinear regression is
used. Given the model input, we use the following equation
to estimate power dissipation: P = a1× cpuu+a2× cache+
a3× cs+a4× ipc+ a5× cpuf +Pidle, where {a1 . . . an} are

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

sp.A cg.A ft.A mg.A

E
r
r
o

r
 R

a
t
e

Fig. 4. Estimation error rate of CPU power for different functions, the
function names are shown in Table I.

coefficients to be determined by a set of training benchmarks.
The power model is not the major concern of this paper. The
model can be substituted with other models.

The method is summarized in Figure 3. Given the source
code, 1) we compile to generate an instrumented version
of executable. The source code needs to be compiled with
-finstrument-functions option. 2) The compiled ob-
ject files are linked to a static library provided by Safari,
libsafari.lib. 3) Safari library collects run-time function
resource usage information. Inside the execution, there is no
information collected during the warm up period. Then, the
instrumented program determines if this function has been
profiled or not by checking the bloom filter during one
sampling period. In addition, functions are divided into groups
to reduce profiling overhead as well. The collected data are
the input of the power model.

IV. EVALUATION

We mainly evaluate the effectiveness of Safari and the
overhead introduced by function level power profiling. The
experiment platform contains a Intel Core 2 Quad 8200 CPU
with 6GB memory. The processor is able to work on two
frequencies, 2.00GHz and 2.34GHz. All the results in this
section are generated by setting CPU frequency to 2.34GHz.
We use a NiDAQ 9205 unit to record the CPU power dis-
sipation from the 4 pin power supply on the motherboard.
The original sampling rate is 1KHz. IIR low bandpass filter is
utilized to filter noise. Data are re-sampled at the rate of 50Hz.
We mainly use NPB3.0 benchmark OMP implementation as
the target applications.

First, we use Safari to sample CPU activities and produce
CPU power profiles. We utilize linear regression to construct
the power model based on training benchmarks. Power model
is not the major concern because Safari if flexible to use
different models and run-time information. In order to obtain
a stable external power measurement, we deliberately execute
the target functions in a infinite loop. The error rates are
demonstrated in Figure 4. The CPU power estimation has an
average error rate of 6.85% for the selected four benchmarks.

TABLE I
ACTIVITIES INSIDE THE FUNCTIONS.

Benchmark Function IPC CPU utilization Cache miss rate
SP.A compute rhs 1.33 97 1162.15
CG.A conj grad 1.28 98 1603.67
FT.A fftxyz 2.08 98 438.06

MG.A mg3p 1.45 99 1045.28

The detailed activities inside each function are shown in Ta-
ble I. The accuracy of the collected activities is closely related
to the system resolution. For instance, CPU utilization is
obtained from PROC File Systems, which usually utilize jiffy
as the basic unit. No correct information could be retrieved if a
function’s execution time is beyond that resolution. However,
this constraint does not affect most major functions.

Next, we measure the overhead introduced by Safari. Be-
cause Safari has two policies to reduce profiling overhead, (one
sample for a function inside a sampling period and different
function groups), we first only deploy the first mechanism,
Safari 1. Functions are not divided in Safari 1. The profiling
results are shown in Table II. The number of sampling periods
is also a factor affecting overhead since more samples for each
function can extend total execution time. Therefore, different
sampling periods are used in this evaluation. For example, the
column labeled with overhead (1/8) means that there are 8
sampling periods totally during the execution. In other words,
maximum 8 samples can be collected for each function during
application execution. The overhead is measured as execution
time when we explore profiling techniques.

As Table II shows, the overhead generated by Safari is
comparable with that of generated by gprof in most cases.
As expected, the overhead increases slightly as the number
of sample collected increases. Overall, the overhead generated
by OMP version of benchmarks is higher compared with SER
cases for both Safari and gprof because the contention of
recording information in one single file for multiple threads.
It is obvious that the overhead generated by BT and IS
benchmark is as high as 546% on average for SER and OMP
benchmarks. The root reason is because these two benchmarks
have extremely high function calls rates. On average, the
function call rates of BT and IS are 203 times higher than
that of the rest five benchmarks. The BT benchmark has nested
function calls that generate excessive overhead.

We deploy both Safari 1 and Safari 2 to reduce over-
head for BT and IS benchmarks, especially. The number of
sampling periods is denoted as n. We divide functions in a
workload into m groups, where m ∈ [1, n] ∧ n = am, a ∈ Z.
If m = 1, the effect of Safari 2 disappears. This setting
is for simplicity. The values of m and n are more flexible
if execution time is long enough. We evaluate Safari 2 on
BT and IS benchmarks with at most one sample is collected
for each function. The results are shown in Table III. For a
fixed m value, as the n increase, the total overhead increases
as well since more samples are collected. If n is fixed, the
total overhead drops as m doubled because trivial functions
might not be profiled with a bigger m value. However, major

functions in both benchmarks are profiled because they usually
iterate for more than one time.

TABLE III
PROFILING OVERHEAD WITH SAFARI 2.

Type Benchmark n/m 2 4

SER
BT

4 29.62% 26.45%
8 56.81% 42.32%

IS
4 16.86% 18.62%
8 24.30% 23.34%

OMP
BT

4 57.49% 45.65%
8 82.42% 54.21%

IS
4 14.14% 12.45%
8 28.4% 20.60%

In order to further measure the overhead, we let the pro-
gram to profile only one function repeatedly. The results are
used to compare with the execution time without profiling.
Besides, the aforementioned platform, we use Cavium 6300
evaluation board as an example of embedded system. The
board is equipped with six cnMIPS II processor cores, 4GB
DDR3 memory and some other co-processing units such as
compressor and encrypter. The results are shown in Table IV.
The profiling overhead means that functions are instrumented
and model input data is collected. To profile a function once
introduces about 0.8ms overhead on Cavium 6300 evaluation
board. While, if only instrumented without actually profiling
(for example, the program found the function is already
been profiled during a sampling period) consumes much less
overhead. Both of them is neglectable compared to a function
body conducting 512*512 matrix calculation which takes few
seconds. In addition, as we avoid frequent profiling for a given
sampling period, the overall overhead is under restrict control.

TABLE IV
PROFILING OVERHEAD

Platform Profiling
overhead
(sec)

Instrumentation
overhead (sec)

512*512 ma-
trix mcl (sec)

Cavium 6300 8 ∗ 10−4 5 ∗ 10−7 7.4
Intel Core 2 4 ∗ 10−4 2 ∗ 10−7 1.4

V. RELATED WORK

Software power dissipation is directly related to dynamic
power, which becomes an increasing portion under the context
of energy-proportional computing. However, only few research
projects focus on software power analysis.

Although system level power managements has effectively
been investigated in recently years, there is a realization that
software has dramatic impact on power dissipation. Therefore,
in-depth understanding software power dissipation becomes
one of the major consideration when designing power-aware
systems. Ge et al., propose PowerPack [10] to generate com-
ponent level power profile. This approach targets on the cluster
level. PowerPack provides APIs to synchronize external power
measurement and function execution of the target application.
However, manual instrumentation is inconvenient for large

TABLE II
PROFILING OVERHEAD WITH SAFARI 1.

Type Benchmark Overhead (8/1) Overhead (4/1) Overhead (2/1) Overhead (1) Overhead (gprof) Call rate (calls/sec)

SER

CG 9.89% 6.91% 6.18% 6.04% 1.03% 68989.07
MG 1.89% 0.52% 0.78% 0.31% 0.21% 99.26
FT 1.49% 1.00% 0.93% 0.65% 0.50% 2719.37
EP 0.45% 0.27% 0.05% 0.33% 0.47% 0.33
LU 1.08% 1.01% 0.98% 0.75% 0.35% 14591.35
SP 11.09% 10.89% 10.85% 10.72% 1.29% 102004.79
BT 288.94% 288.14% 287.27% 286.48% 5.36% 3706727.08
IS 908.28% 907.25% 905.39% 911.84% 15.23% 11158773.53

OMP
4 threads

CG 42.21% 21.04% 11.90% 18.28% 47.54% 38134
MG 72.36% 39.02% 24.64% 15.54% 2.67% 175.93
FT 41.44% 32.04% 33.77% 20.99% 21.24% 77491.14
EP 1.34% 1.32% 1.21% 0.94% 0.39% 0.17
LU 2.11% 2.10% 1.78% 1.55% 1.55% 6347.21
SP 3.66% 3.48% 3.33% 3.03% 1.93% 15996.28
BT 309.58% 298.44% 292.87% 284.51% 63.56% 4936017.01
IS 508.08% 499.23% 490.79% 495.19% 124.48% 2905743.91

scale applications. Hänig et. al, propose SEEP [15], which
uses symbolic execution to explore possible code paths and
entities in a program and to generate energy profile for specific
target platform. Instruction level energy profile is needed for
each platform in advance in order to generate energy profile
for a program.

Moreover, as the energy consumption and power dissipation
of a computer system stem from the interplay of hardware
and software, they must be considered equally important.
Bhattacharya et al. propose an analytical model to estimate
energy cost of software bloat on a specific platform [5].
The results show that reducing software bloat can achieve
as much as 40% energy saving. However, the study shows
both hardware and software need to be considered to improve
energy efficiency.

VI. SUMMARY

In this paper, we propose a function level power profiling
tool, Safari. It can be used to associate run-time resources
usage with the execution of application functions. Finding
the power hot spot is only the first step towards power-aware
programming. The experiment results show that Safari is able
to produce function level profiling with limited overhead (on
average 16% overhead if maximum one sample is collected for
each function). It can be used to connect application activities
to hardware for energy-efficient design, such as application
aware power management and fine-grained scheduling.

REFERENCES

[1] S. Reda, “Thermal and power characterization of real computing de-
vices,” Emerging and Selected Topics in Circuits and Systems, IEEE
Journal on, vol. 1, no. 2, pp. 76 –87, june 2011.

[2] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
Proceeding of the 38th annual international symposium on Computer
architecture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp. 319–
330. [Online]. Available: http://doi.acm.org/10.1145/2000064.2000103

[3] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
ser. HotNets ’11. New York, NY, USA: ACM, 2011, pp. 5:1–5:6.
[Online]. Available: http://doi.acm.org/10.1145/2070562.2070567

[4] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” SIGPLAN Not., vol. 44, pp. 205–216, March 2009.
[Online]. Available: http://doi.acm.org/10.1145/1508284.1508269

[5] S. Bhattacharya, K. Rajamani, K. Gopinath, and M. Gupta, “The
interplay of software bloat, hardware energy proportionality and
system bottlenecks,” in Proceedings of the 4th Workshop on
Power-Aware Computing and Systems, ser. HotPower ’11. New
York, NY, USA: ACM, 2011, pp. 1:1–1:5. [Online]. Available:
http://doi.acm.org/10.1145/2039252.2039253

[6] A. Georges, D. Buytaert, L. Eeckhout, and K. De Bosschere,
“Method-level phase behavior in java workloads,” in Proceedings
of the 19th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, ser. OOPSLA ’04.
New York, NY, USA: ACM, 2004, pp. 270–287. [Online]. Available:
http://doi.acm.org/10.1145/1028976.1028999

[7] W. Bircher, M. Valluri, J. Law, and L. John, “Runtime identification of
microprocessor energy saving opportunities,” in Low Power Electronics
and Design, 2005. ISLPED ’05. Proceedings of the 2005 International
Symposium on, aug. 2005, pp. 275 – 280.

[8] S. Wang, H. Chen, and W. Shi, “SPAN: A software power analyzer
for multicore computer systems,” Sustainable Computing: Informatics
and Systems, vol. 1, no. 1, pp. 23 – 34, 2011. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S221053791000003X

[9] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,
“Decomposable and responsive power models for multicore processors
using performance counters,” in Proceedings of the 24th ACM
International Conference on Supercomputing, ser. ICS ’10. New
York, NY, USA: ACM, 2010, pp. 147–158. [Online]. Available:
http://doi.acm.org/10.1145/1810085.1810108

[10] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W. Cameron,
“Powerpack: Energy profiling and analysis of high-performance systems
and applications,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 5, pp.
658–671, 2010.

[11] “Pin-A Binary Instrumentation Tool,” http://www.pintool.org/, Aug
2010.

[12] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362686.362692

[13] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Parallel Processing Workshops (ICPPW), 2010 39th International Con-
ference on, sept. 2010, pp. 207 –216.

[14] T. Li and L. K. John, “Run-time modeling and estimation of operating
system power consumption,” SIGMETRICS Perform. Eval. Rev., vol. 31,
no. 1, pp. 160–171, 2003.

[15] T. Hönig, C. Eibel, R. Kapitza, and W. Schröder-Preikschat, “Seep:
exploiting symbolic execution for energy-aware programming,” in
Proceedings of the 4th Workshop on Power-Aware Computing and
Systems, ser. HotPower ’11. New York, NY, USA: ACM, 2011, pp. 4:1–
4:5. [Online]. Available: http://doi.acm.org/10.1145/2039252.2039256

