CAVBench: A Benchmark Suite for Connected
and Autonomous Vehicles

Yifan Wang* '8, Shaoshan Liut, Xiaopei Wuf, Weisong Shif
*SKL of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China
TDepartment of Computer Science, Wayne State University, Michigan, USA
iPerceptIn, California, USA
§University of Chinese Academy of Sciences, Beijing, China
wangyifan2014 @ict.ac.cn, shaoshan.liu@perceptin.io, {xiaopei.wu, weisong} @wayne.edu

Abstract—Connected and autonomous vehicles (CAVs)
have recently attracted a significant amount of attention
both from researchers and industry fields. Numerous stud-
ies targeting algorithms, software frameworks, and appli-
cations on the CAVs scenario have emerged. Meanwhile,
several pioneer efforts have focused on the edge computing
system and architecture design for the CAVs scenario
and provided various heterogeneous platform prototypes
for CAVs. However, a standard and comprehensive ap-
plication benchmark for CAVs is missing, hindering the
study of these emerging computing systems. To address
this challenging problem, we present CAVBench, the first
benchmark suite for the edge computing system in the
CAVs scenario. CAVBench is comprised of six typical
applications covering four dominate CAVs scenarios and
takes four datasets as standard input. CAVBench pro-
vides quantitative evaluation results via application and
system perspective output metrics. We perform a series
of experiments and acquire three systemic characteristics
of the applications in CAVBench. First, the operation
intensity of the applications is polarized, which explains
why heterogeneous hardware is important for a CAVs
computing system. Second, all applications in CAVBench
consume high memory accesses bandwidth, so the system
should be equipped with high bandwidth memory or
leverage good memory bandwidth management to avoid
the performance degradation caused by memory band-
width competition. Third, some applications have worse
data/instruction locality based on the cache miss observa-
tion, so the computing system targeting these applications
should optimize the cache architecture. Last, we use the
CAVBench to evaluate a typical edge computing platform
and present the quantitative and qualitative analysis of the
benchmarking results.

I. INTRODUCTION

With the rapid development of computer vision, deep
learning, mobile communication and sensor technology,
the functions of vehicles are no longer limited to driving
and transportation, but have gradually become an intel-
ligent, connected, and autonomous system. We refer to
these advanced vehicles as connected and autonomous
vehicles (CAVs). The evolution of the vehicles has given
rise to numerous new application scenarios, such as
Advanced Driver Assistance Systems (ADAS) or Au-
tonomous Driving (AD) [1], [2], Internet of Vehicles

(IoV) [3] and Intelligent Transportation Systems (ITS)
[4], etc. Especially for ADAS/AD scenarios, many in-
dustry leaders have recently published their own au-
tonomous driving systems, such as Google Waymo [5],
Tesla Autopilot [6], and Baidu Apollo [7].

Under these scenarios, the CAVs system becomes a
typical edge computing system [8], [9]. The CAVs com-
puting system collects sensors data via the CAN bus and
feeds the data to on-vehicle applications. In addition, the
CAVs system is not isolated in the network, so the CAVs
will communicate with cloud servers [10], Roadside Unit
(RSU) and other CAVs to perform some computing tasks
collaboratively. Much research focusing on the edge
computing on CAVs from the application aspect have
emerged [11]-[13]. There have also been some pioneer
studies about exploring the computing architecture and
systems for CAVs. NVIDIA®DRIVE™PX2 is an Al
platform for autonomous driving that equips two dis-
crete GPUs [14]. Liu et al. proposed their computing
architecture for CAVs, which fully used hybrid hetero-
geneous hardware (GPUs, FPGAs, and ASICs) [15].
Unlike other computing scenarios, edge computing is
still a booming computing domain. However, to date, a
complete, dedicated benchmark suite to evaluate the edge
computing platforms designed for CAVs is missing, both
in academic and industrial fields. This makes it difficult
for developers to quantify the performance of platforms
running different on-vehicle applications, as well as
to systematically optimize the computing architecture
on CAVs or on-vehicle applications. To address these
challenges, we propose CAVBench, the first benchmark
suite for edge computing systems on CAVs.

CAVBench is a benchmark suite for CAVs computing
system performance. It takes six diverse real-world on-
vehicle applications as evaluation workloads, covering
four applications scenarios summarized in OpenVDAP:
autonomous driving, real-time diagnostics, in-vehicle
infotainment and third-party applications [16]. The six
applications that we have chosen are Simultaneous lo-
calization and mapping (SLAM), object detection, object

tracking, battery diagnostics, speech recognition and
edge video analysis. We collect four real-world datasets
for CAVBench as the standard input to the six applica-
tions, which include three types of data: image, audio,
and text. CAVBench also has two categories of output
metrics. One is application perspective metrics, which
includes the execution time breakdown for each applica-
tion, helping developers find the performance bottleneck
in the application side. Another is system perspective
metrics, which we called the quality of service-resource
utilization curve (QoS-RU curve). The QoS-RU curve
can be used to calculate the Matching Factor between
the application and the computing platform on CAVs.
The QoS-RU curve can be considered as a quantitative
performance index of the computing platform that helps
researchers and developers optimize on-vehicle applica-
tions and CAVs computing architecture. Furthermore,
we analyze the characteristics of the applications in
CAVBench. We observe the application information and
conclude three basic features of the applications on
CAVs. First, the CAVs applications types are diverse,
and the real-time applications are dominated in CAVs
scenarios. Second, the input data of CAVs applications
is mostly unstructured. Third, deep learning applications
in CAVs scenarios prefer end-to-end models. Then,
we comprehensively characterize the six applications in
CAVBench via several experiments. On a typical state-
of-the-practice edge computing platform, we have the
following conclusions:

e The operation intensity of applications in
CAVBench is polarized. The deep learning
applications have higher floating point operation
intensity because the neural networks are their main
workloads, which includes plenty of floating point
multiplications and additions. As for computer
vision applications, the algorithms rely more on
mathematical models, which contains lower floating
point operation intensity. Hence, the computing
platform in CAVs should contain heterogeneous
hardware for the different applications.

o Similar to the traditional computing scenarios, the
applications in CAVBench need high memory ac-
cess bandwidth. That will cause competition for
memory bandwidth when multiple applications are
running concurrently in real environments.

¢ On average, the CAVBench has a lower cache and
TLB miss rate, which means the applications in
CAVs scenarios have good data/instruction locality,
but for specific workloads, some applications have
one or two higher miss rates. Thus, the computing
systems targeting these applications should value
the optimization of the cache architecture and the
data/instruction locality to improve the application
performance.

Finally, we use the CAVBench to evaluate a typical
edge computing platform and present the quantitative
and qualitative evaluation results of this platform.

The remainder of this paper is organized as follows.
In Section II, we discuss the related work. Section III
summarizes the methodology for designing CAVBench
and presents the overview and detailed components of
CAVBench. In Section IV, we analyze the characteristics
of the applications in CAVBench from different views.
The experimental evaluation results of CAVBench are
illustrated in Section V. Finally, we conclude our work
in Section VI

II. RELATED WORK

CAVBench is designed for evaluating the performance
of the computing architecture and system of connected
and autonomous vehicles. In this section, we summarize
the related work from two aspects: the CAVs computing
architecture and system, and the benchmark suite related
to CAVs.

A. Architecture and System for CAVs

Junior [17] was the first work to introduce a complete
system of self-driving vehicles, which included type and
location of sensors, as well as software architecture
design [18]. Junior presented dedicated and compre-
hensive information about applications and a software
flow diagram for autonomous driving. However, Junior
provided less information about the computing system
on their self-driving vehicles.

Liu et al. proposed a computer architecture for au-
tonomous vehicles which fully used hybrid heteroge-
neous hardware [15]. In this work, the applications
for autonomous driving were divided into three stages:
sensing, perception, and decision-making. They com-
pared the performance of different hardware running
basic autonomous driving tasks and concluded some
rules to perform different tasks for dedicated hetero-
geneous hardware. Lin et al. explored the architec-
tural constraints and acceleration of autonomous driving
system in [19]. They presented a detailed comparison
of accelerating related algorithms using heterogeneous
platforms including GPUs, FPGAs, and ASICs. The
evaluation metrics included running latency and power,
which will help developers build an end-to-end au-
tonomous driving system that meets all design con-
straints. OpenVDAP [16] proposed a vehicle computing
unit, which contained a tasks scheduling framework
and heterogeneous computing platform. The framework
scheduled the tasks to specific acceleration hardware,
according to task computing characteristics and hard-
ware utilization. In the industrial field, there are sev-
eral state-of-the-practice computing platforms designed

for CAVs, such as NVIDIA®DRIVE™PX?2 [14] and
Xilinx®Zynq®UltraScale+™ZCU106 [20].

These projects can be regarded as pioneering research
in exploring the computing architecture and systems
for connected and autonomous vehicles from different
aspects. However, the evaluation method of these sys-
tems lacks uniform standards; all the research groups
chose application type and implementation from their
perspectives. Hence, it is challenging to evaluate and
compare these systems fairly and comprehensively.

B. Benchmark Suite Related to CAVs

There are many classic benchmark suites in the tradi-
tional computing field, such as BigDataBench [21] for
big data computing, Parsec [22] for parallel computing
and HPCC [23] for high-performance computing etc.
However, for the computing scenario in CAVs, the
benchmark research work is still at the beginning stage
and can be divided into two categories according to their
contents: datasets and workloads.

KITTI [1], [24] was the first benchmark datasets
related to autonomous driving. It comprised rich stereo
image data and 2D/3D object annotated data. According
to different data types, it also provided the dedicated
method to generate the ground truth and calculate the
evaluation metrics. KITTI was built for evaluating the
performance of algorithms in the autonomous driving
scenario, including but not limited to optical flow esti-
mation, visual odometry, and object detection. There are
some customized benchmark datasets for each algorithm,
such as TUM RGB-D [25] for RGB-D SLAM, PAS-
CAL3D [26] for 3D object detection and the MOTChal-
lenge benchmark [27], [28] for multi-target tracking.
These kinds of benchmark suites will help us choose
the implementations and datesets of CAVBench.

Another class of related benchmark suites used a set
of computer vision kernels and applications to bench-
mark novel hardware architectures. SD-VBS [29] and
MEVBench [30] both are system performance bench-
mark suites based on computer vision workloads in
diversified fields. SD-VBS assembled 9 high-level vision
applications and decomposed them into 28 common
computer vision kernels. It also provided single-threaded
C and MATLAB implementations of these kernels.
MEVBench focused on a set of workloads related with
visual recognition applications including feature extrac-
tion, feature classication, object detection and tracking,
etc. MEVBench provided single- and multi-threaded
C++ implementations for some of the vision kernels.
However, these two benchmarks are prior works in the
field, so they are not targeted toward heterogeneous plat-
forms such as GPUs. SLAMBench [31] concentrated on
using a complete RGB-D SLAM application to evaluate
novel heterogeneous hardware. It chose KinectFusion

[32] as the implementation and provided C++, OpenMP,
OpenCL and CUDA versions of key function kernels
for different platforms. The RGB-D cameras are more
suitable for indoor environments and the workload type
in SLAMBench is single. These efforts are a step in
the right direction, but we still need a comprehensive
benchmark which contains diverse workloads that cover
varied application scenarios of CAVs to evaluate the
CAVs system as we mentioned above.

III. BENCHMARK DESIGN

The objective of developing CAVBench is to help
developers determine if a given computing platform is
competent for all CAVs scenarios. This section presents
the methodology, overview, and components of our
CAVBench.

A. Methodology and Overview

Combined with the survey and analysis of the related
works on CAVs architectures and systems and existing
benchmark suites, we present our methodology for de-
signing CAVBench as shown in Figure 1. The computing
and application scenarios of connected and autonomous
vehicles are much different from the traditional domain.
First, we investigate the typical application scenarios of
CAVs. It is well-known that Advanced Driver-Assistant
Systems (ADAS) and Autonomous Driving (AD) have
already become a dominant application scenario of CAVs
[1], [18], [33], [34]. In addition to ADAS/AD, Open-
VDAP summarizes three other scenarios which are Real-
time Diagnostics (RD), In-Vehicle Infotainment (IVI)
and Third-Party Application (TApp) [16]. Thus, we focus
on the exemplary and key applications in each dominant
scenario.

The tasks in the ADAS/AD scenario can be divided
into three stages according to their functions: sensing,
perception, and decision-making [15]. Sensing tasks
manage and calibrate the various sensors around the
CAVs and provide reliable sensing data to upper-level
tasks. Perception tasks take the sensing data as the input
and output the surrounding information to the decision-
making tasks, which in turn generate a safe and efficient
action plan in real time. It can be seen that perception
is an important connecting link between sensing and
decision-making. The three main perception tasks are
simultaneous localization and mapping (SLAM), object
detection, and object tracking, which are all visual-based
applications. Many studies take them as the vital parts in
the autonomous driving pipeline [1], [19], [35]. Hence,
we chose these three applications in the ADAS/AD
scenario.

Vehicle system fault diagnostics and prognosis is
important for keeping vehicles stable and safe [36]. With
the development and widespread use of electric and

Scenarios:

: Autonf)mous. Dnvmg; Diverse and Key
* Real-time Diagnostics; ; CAVs Application
* In-Vehicle Infotainment;} $ Applications

* Third-Party Application; i

Typical CAVs
Application
Scenarios

e

Datasets:
» Image data;
¢ Audio data;
¢ Text data;

>+ Object Tracking;

1
Applications: i
* SLAM; E
* Object Detection;

1

Implementation:
* Open source;
—>» ¢« Diverse domains;
» Real production
environments;

CAVBench: A
! Benchmark
+ Vehicle Diagnostics; | Suite for CAVs
* Speech Recognition; !

» Edge Video Analysis i

Output Metrics:
* Apps perspective;
» System perspective;

Fig. 1. CAVBench Methodology.

hybrids vehicles, the health monitoring and diagnostics
of Li-ion batteries in these vehicles have received in-
creasingly more attention [37]. It is extremely important
to monitor and predict the battery status in a real-time
fashion, including multiple parameters of each battery
cell, e.g., voltage, current, temperature, and so on. Thus,
battery diagnostics will be the application chosen in the
RD scenario.

The In-Vehicle infotainment (IVI) scenario includes a
wide range of applications that provide audio or video
entertainment. Compared with manual interaction, the
speech-based interaction method reduces the distraction
of drivers and ensures driving safety [38], so motor com-
panies have increasingly begun to develop their own IVI
systems with speech recognition such as Ford® SYNC®
[39]. We choose speech recognition applications for the
IVI scenario.

There are some preliminary projects for the third-
party application scenario. PreDrivelD [40] is a driver
identification application based on in-vehicle data. It can
enhance vehicle safety by detecting whether the driver
is registered or not through by analyzing how a driver
operates a vehicle. A3 [41] is an edge video analysis
application which uses a vehicle onboard camera to
recognize targeted vehicles to enhance the AMBER alert
system. It is easier to acquire the data from an onboard
camera than the vehicle bus data, and edge video analysis
could well be a killer application for edge computing
[42], so we choose this kind of application for the TApp
scenario.

After selecting the six applications, we pay attention
to the implementation, data sets and output metrics for
the applications. The implementation of each application
should be state-of-the-art and representative, ensuring
that it can be deployed in a real production environment.
We provide real-world data sets for each application
which are open source or collected by ourselves to let
the applications have a standard input. To give the user

a complete understanding of the benchmark results, the
output metrics contain two categories: application per-
spective metrics and system perspective metrics. These
three parts (implementation, data sets and output metrics)
form the CAVBench and will be introduced in detail in
the next three subsections, respectively.

B. Implementation

The implementation we chose in CAVBench is shown
in Table I. The reasons for choosing these implementa-
tions are presented as follows.

1) SLAM: The simultaneous localization and map-
ping (SLAM) technique helps CAVs with real-time
building a map of an unknown environment and local-
izing themselves in the map. ORB-SLAM?2 provides a
stereo SLAM method, which has been ranked as the top
in KITTI benchmark datasets according to the accuracy
and runtime. ORB-SLAM?2 is more suitable for large
environments than monocular [47] and RGB-D SLAM
[48], so we chose it as the SLAM implementation. Figure
2 shows the ORB-SLAM?2 pipeline. The stereo image
stream is fed into the ORB extractor to detect feature
points and generate descriptions of the extracted feature
points. Then, the main thread attempts to match the
current descriptions with the prior map point to localize
and generate new keyframes. The local mapping thread
manages keyframes to create new map point. The loop
closing thread tries to detect and close trajectory loops
via the last keyframe processed by the local mapping
and creates the fourth thread to optimize a global map
by the full Bundle Adjustment (BA).

2) Object Detection: The visual object category
recognition and detection have always been a challenging
problem in last decade [49]. In recent years, the series
of algorithms based on Convolutional Neural Networks
(CNNs) have become one of the mainstream techniques
in the field of object detection [50], [51], especially in the
autonomous driving scenario [52]. Single Shot multibox
Detector (SSD) [43] and You Only Look Once (YOLO)

TABLE 1
OVERVIEW OF IMPLEMENTATION IN CAVBENCH

Scenario Application App Type Implementation Main Workloads Data Type Data Source
ADAS/AD SLAM Real-Time ORB-SLAM2 [40] ORB Extractor and BA Unstructured Image (Stereo)
ADAS/AD Object Detection Real-Time SSD [43] CNNs Unstructured Image (Monocular)
ADAS/AD Object Tracking Real-Time CIWT [44] EKF and CRF Model Unstructured Image (Stereo)
RD Battery Diagnostics Offline EVBattery LSTM Networks Semi-Structured ~ Text
VI Speech Recognition Interactive ~ DeepSpeech [45] RNNs Unstructured Audio
TApp Edge Video Analysis Interactive =~ OpenALPR [46] LBP Feature Detector Unstructured Image (Monocular)
ORB Main Thread plication dedicated to the autonomous driving scenario.
Extractor \ S In KITTI results, CIWT is not the most accurate, but it
Left Image tere'o Track Local X K
/1 Matching Map costs fewer computation resources and less processing
m oRB time than some algorithms ranked ahead of it. It is
Right Image more practical in the real-world environment than some
v offline [55] or single target tracking algorithms [56].
| Full BA |<—| Loop Closing |<—| Local Mapping | Figure 4 shows the overview of the CIWT pipeline.
Thread 4 Thread 3 Thread 2 CIWT uses a stereo image stream to fuse the observation

Fig. 2. Overview of the ORB-SLAM?2 Pipeline.

[53] are kinds of end-to-end CNNs model. Compared
with the R-CNN series [54], they do not hypothesize
bounding boxes or resample pixels or features for these
hypotheses, which improves the speed for detection and
is as accurate as the R-CNN series. The network struc-
ture of SDD is shown in Figure 3. SSD uses multiple
feature maps from the different stages of the network
to perform detection at multiple scales, which is more
accurate than the detection by one full connection layer
in YOLO. In a word, SSD has higher accuracy and
processing speed than other models; hence, we chose
SSD as the implementation for object detection.

- g
| =
E E o = = a
g g 5 § g H
S = S > =
e) 5 z S
b] - - a S
2‘ ;_ Z > > P
= = = o0
Q = S S 3 >
< Q © o S <
*I| 8
Input Image
300x300x3 - -
| Multiple Detector & Classifier |
| Non-Maximum Suppression (NMS) |
Fig. 3. Overview of the Single Shot MultiBox Detector Network

Structure.

3) Object Tracking: The main goal of object tracking
is to ensure that the vehicle does not collide with a
moving object, whether a vehicle or a pedestrian crossing
the road. We chose Combined Image- and World-Space
Tracking (CIWT) [44] as the implementation for object
tracking, which is an online multiple object tracking ap-

and estimate the egomotion. The observation fusion
includes 2D detection and 3D proposals. The tracking
process uses these results to generate tacking hypotheses
through the Extended Kalman Filter (EKF) and uses the
Conditional Random Field (CRF) model to select a high
score tacking hypothesis.

Observation

Fusion \
Hypothesis N Hypothesis
- / Generation Selection
Estimate Extended CRF Model

=i & Egomotion ;
Right Image Kalman Filter

Fig. 4. Overview of the Combined Image- and World-Space Tracking
pipeline.

4) Battery Diagnostics: The devices monitor and log
data is a kind of temporal data. Recently, some works
leverage Long-Short Term Memory (LSTM) networks
to perform failure prediction according to log data for
hard drives [57]. LSTM belongs to Recurrent Neural
Networks (RNNs), but it has better performance on
the long-term prediction task than RNNs. We use the
similar method to process EV battery data. We call
our implementation as EVBattery Diagnostics and the
process is shown in Figure 5.

20180228175910:
3.37,3.36,3.37, ...
20180228175920:
3.37,3.38,3.36, ...
20180228175930:
3.39,3.36,3.37, ...
20180228175940.
3.39,3.36, ...

Preprocess

Data L

Battery Monitor
data

LSTM Layer

Yt

Fig. 5. Overview of the EVBattery Diagnostics.

5) Speech Recognition: Voice service generally con-
sists of two steps: speech to text and text to intent,
with the former being the process of speech recognition.
DeepSpeech [45] is an end-to-end speech recognition
algorithm based on RNNs. The deep learning method
supersedes traditional processing stages in speech recog-
nition systems, such as those that have been hand-
engineered. Figure 6 shows the DeepSpeech network
structure. The first three and the fifth layers in Deep-
Speech have the basic NNs structure. The fourth layer
is a bi-directional recurrent layer which is used to
characterize the temporal correlation of the voice data.
The evaluation results show that DeepSpeech has less
latency and error rates than traditional methods based
on Hidden Markov Model (HMM) [58], especially in
noisy environments. Therefore, DeepSpeech is a suitable
implementation for speech recognition.

Forward

| AP |

_____ —_d

Bi-Directional fe5
Recurrent Layer 4

fel, fe2, fe3

Fig. 6. Overview of the DeepSpeech Network Structure.

6) Edge Video Analysis: As we mentioned above,
AMBER Alert Assistant (A3) is a typical edge video
analysis application that takes OpenALPR [46] as the
core workload to detect target vehicles in the video. The
OpenALRP pipeline is shown in Figure 7. OpenALRP
is a classic implementation of automatic license plate
recognition, including several typical computer vision
modules: LBP detector, image deskew and ORC. There-
fore, we chose OpenALPR as the implementation of
edge video analysis.

= Licen:
- cense Character Image
Plate .
N Analysis Deskew
Detection

Image LBP Detector

Character
Segment & OCR

Fig. 7. Overview of the OpenALPR Pipeline.

C. Datasets

To guarantee that the evaluation results are similar to
running in the real environment, we need to choose a
real-world, not a synthetic, dataset for each application.
Table II shows the basic information of the datasets we

TABLE I
THE SUMMARY OF DATASETS IN CAVBENCH

Application Datasets Data Size and Type
SLAM KITTI VO/SLAM | 21 sequences
Datasets [24] stereo grayscale
image
Object Detection KITTI Object | 7518 monocular
Detection Datasets | color image
[24]
Object Tracking KITTI Object | 28 sequences
Tracking Datasets | stereo color image
[24]
Battery Diagnostics EV Battery Moni- | 30 days battery
tor Data monitor data,
160000 rows
Speech Recognition Mozilla Corpus | 3995 valid human
[59] voice data
Edge Video Analysis | Images of Vehicles | 1000 monocular
with License Plates | color image

have chosen. It must be noted that we collected the
datasets of Battery Diagnostics and Edge Video Analysis
because of the lack of relative open source datasets or
some datasets did not meet our real-world requirements.

1) KITTI Datasets [24]: As mentioned in Section II,
KITTI provides rich, open source and real-world image
data for different autonomous driving applications. The
image characteristics varies, because each dataset fo-
cuses on one specific application. Each dataset contains
various traffic scenes which can evaluate the application
performance comprehensively.

2) EV Battery Monitor Data: There are few datasets
that provide vehicle battery monitoring data. We collect
the battery monitoring data of an electric vehicle in the
real environment for one month. Each record of the data
contains 60 items, such as voltage and temperature.

3) Mozilla Corpus [59]: The Mozilla corpus provides
3995 valid common voice files for testing. Each file is
a record in which a person reads a common sentence,
and records are collected by numerous people reading
different sentences. It must be noted that the Mozilla
corpus still has some limitations. It was collected in a
daily environment, so it may not contain words that are
used in the vehicular setting and may not have enough
background noise that is likely to be very common in a
vehicular environment.

4) Images of Vehicles with License Plates: The im-
ages in KITTI datasets could not meet the resolution
requirement of performing license plate recognition, and
some license plate datasets are not collected by a vehicle
onboard camera. Thus, we use the Leopard® LI-USB30-
ARO023ZWDRB video camera [60] with a 25mm lens
which was suggested by the Apollo project [7] to collect
image data in real traffic scenes. Each image we provided
contains at least one vehicle with its license plate.

D. Output Metrics

The Output metrics show quantitatively whether the
given hardware platform can be used for CAVs scenarios
or not. In CAVBench, the output metrics contain two
parts: application perspective metrics and system per-
spective metrics.

1) Application Perspective Metric: Like some tra-
ditional benchmark suites, the application perspective
metric shows the running time of each application.
For computer vision applications (ORB-SALM?2, CIWT,
and OpenALPR), we output the average latency for
each module in the applications, and we provide the
average and tail latency for deep learning applications
(SSD, EVBattery, and DeepSpeech). This metric helps
developers optimize the platform in term of applications.

2) System Perspective Metric: For the system per-
spective metric, we call it the quality of service-resource
utilization curve (QoS-RU curve). We evaluate the QoS
of each application under different system resource allo-
cations and draw the QoS-RU curve for each system re-
source (CPU utilization, memory footprint, and memory
bandwidth, etc.). Figure 8 shows an example of the QoS-
RU curve. We use the area under the curve of each sys-
tem resource to calculate the Matching Factor between
the application and the platform, indicating whether the
platform is suitable for the CAVs application. Following
is our approach to calculate the Matching Factor:

We denote the area under the curve of each system
resource as A;, and we take the weighted average of each
area as the Matching Factor M, as Equation 1 shows.

M= (w;- A;) (1)

The weight for each resource w; can be calculated by
Equation 2, in which the n is the number of system
resources we considered.

wp = (1=A)/ Y (1 - A4))
i=1

We notice that the w; is the normalized 1 — A;. If the
A; is large, the resource ¢ is relatively sufficient for the
application. Similarly, if the A; is small, the resource i
has the potential to be the bottle-neck of the platform.
Thus, the A; and its weight have opposite values, which
is why we chose the normalized 1 — A; as the weight.
A more detailed explanation of the output metrics will

be presented in Section V.

IV. BENCHMARK CHARACTERIZATION

In this section, we present the detailed description of
the experiments of our CAVBench workload characteri-
zation analysis.

e
3
T

e
Y
T

=
T

—®— CPU Utilization
~—&-— Memory Bandwidth
Memory Footprint
Disk I/0 Bandwidth
—— Network I/O Bandwidth

Quantity of Service

S
i
T

I I I I I I | | |]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resource Utilization Rate

<

Fig. 8. An example of QoS-RU Curve.

A. Overview

Before we did the characterization analysis exper-
iments, we first observed the information of the six
applications presented in Table I to conclude some basic
features of the applications in CAVs scenarios. The
observations are described as follows:

1) Real-Time Applications are Dominant: The ap-
plication types in the CAVs computing scenarios are
diverse, including real-time, offline and interactive. This
diversity corresponds to cloud computing and the big
data computing domain [21]. In contrast to traditional
computing fields, real-time applications are dominant in
CAVs, and they all belong to the ADAS/AD scenario.
Furthermore, the applications in other scenarios are
offline and interactive. That explains why ADAS/AD
applications always have the highest priority.

2) Unstructured Data Type: The input data type of
CAVs applications is mostly unstructured data. As we
mentioned above, CAVs is a typical embedded and edge
computing system, and it deploys various sensors to
collect information from the real physical world, and
uses the information (data) to execute computation tasks.
Therefore, the input data is generally unstructured, such
as images and audios. Even for vehicle monitor data, it
usually has little structural constraints, so we consider it
as semi-structured data. As for cloud computing, there
are still some classic workloads that use the structured
data, for example, the relational query operation.

3) End-to-End Deep Learning Workloads: According
to the classification of the main workloads in CAVBench,
we find that the workloads in CAVs all belong to
computer vision, machine learning, and the deep learning
domain because the main functions of the applications
in CAVs are detection, recognition, and prediction. In
addition, due to the limitation of latency, deep learning
workloads in CAVs choose end-to-end models, which
means that with the exception of deep neural networks,
there are no other processes between input and output;
this improves the running speed while not decreasing the
algorithm accuracy.

[Insights] These three observations can be regarded as
the basic characteristics of the applications in the CAVs

TABLE III
EDGE COMPUTING PLATFORM CONFIGURATIONS
Platform Intel Fog Node
CPU Intel Xeon E3-1275 v5
Number of Sockets 1
Core(s) per Socket 4
Thread(s) per Core 2
Architecture X86_64
L1d cache 4x32KB
L1i cache 4x32KB
L2 cache 4x256KB
L3 cache SMB
Memory 32GB SODIMM 3122 MHz
Disk 256GB PCle SSD

computing scenario. We can conclude some insights
regarding the CAVs computing system and applications
design. First, real-time applications have the highest
priority in real production environments, so the CAVs
system should contain a task scheduling framework to
ensure that the real-time applications can be allocated
with enough computing resources. Second, preprocess-
ing the unstructured data consumes more time, so a hard-
ware accelerator aimed at transforming the unstructured
data to structured will be a benefit to the performance
of the whole CAVs system. Third, the end-to-end deep
learning algorithm reduces the number and frequency
of data movements (main memory to GPUs memory),
decreasing the processing latency. Thus, this kind of
algorithm will be more suitable for CAVs applications.

B. Experiments Configurations

To obtain insights regarding application characteristics
in CAVBench, we ran the six applications in a typical
edge device, and use the Linux profiling tool Perf to col-
lect the behaviors of the applications at the architecture
level. We chose Intel® Fog Reference Design (FRD) as
the experiment platform, which has one Xeon® E3-1275
v5 processor equipped with 32GB DDR4 memory and
256GB PCle SSD. The processor has four physical cores,
and hyper-threading is enabled. Other detailed informa-
tion of the platform is shown in Table III. The operating
system is Ubuntu 16.04 with Linux kernel 4.13.0. The
deep learning applications are built on TensorFlow 1.5.0,
and some visual modules are implemented on OpenCV
3.3.1. To acquire the pure and original characteristics
of the applications, the platform is not equipped with
heterogeneous devices. Each application executes for
500 seconds, sequentially processing different data.

C. Operation Intensity

First, we analyzed the operation intensity of
CAVBench via the instruction breakdown of each ap-
plication in CAVBench. As shown in Figure 9, the
distribution of the instructions is diverse, even polarized.

The difference is mainly due to floating point instruction
(FL). The average proportion of floating point instruction
in CAVBench is 20.77%, and the average ratio of integer
instructions (Int) to FL is 24.44. However, for each
application, the minimum and maximum FL proportion
is 0.38% (CIWT) and 48.89% (SSD), and the minimum
and maximum Int/FL ratio is 0.63 (SSD) and 79.59
(OpenALPR). In addition, the average FL proportion for
BigDataBench, HPCC and Parsec are 2.12%, 24.11%,
and 18.25%, respectively. The instruction distribution
in CAVBench is similar to HPCC, Parsec according to
the average values, but the distribution is also polarized
when investigating specific applications in CAVBench.
In contrast, the distribution of each workload in the
traditional benchmark is comparable, such as the results
presented in BigDataBench [21].

In order to characterize the computation behaviors, we
calculated the ratio of computation to memory access
for each application, which represents the integer and
floating point operation intensity. As shown in Figure
10, the floating point operation (FLO) intensity of each
application in CAVBench is still polarized, and the mini-
mum and maximum values are 0.0079 (CIWT) and 5.46
(SSD),respectively, which differ by about three orders of
magnitude. As for integer operation (IntO) intensity, the
minimum and maximum values are 0.28 (CIWT) and
1.80 (SSD), and the IntO intensity for BigDataBench,
HPCC and Parsec are 0.52, 0.43 and 1.50, respectively.
Hence, the IntO intensity of CAVBench is almost in
the same order of magnitude as those of the other
benchmarks.

[Insights] According to operation intensity experi-
ments, we can draw an important conclusion: the op-
eration intensity of applications in the CAVs scenario
is polarized. Deep learning applications, such as SSD
and DeepSpeech, have higher floating point operation
intensity, which is similar to the workloads in the
high-performance computing domain. That is because
the neural networks are the main workloads in deep
learning applications, which includes a large number
of matrix operations, causing plenty of point operation

100%
90%
80%
70%

60%
50%
40%
30%
20%
10%
0% ot

o Integer
@aFP

o Branch
O Load

o Store

ORB-SLAM2

sSD

cawr

EVBattery
DeepSp

OpenALPR

BigDataBench

Fig. 9. Instruction Breakdown.

Integer Operations/Byte =@ Floating Point Operations/Byte

2,

7277277777

0.1

0.01

\
§
.
\
\

)
)
V72777777777
maniimnil]
al

=
pi

EVBattery
DeepSpeech

0.001

ORB-SLAM2
SSD

CIWT
OpenALPR
BigDataBench

Fig. 10. Integer and Floating Point Operation Intensity.

multiplications and additions. As for computer vision
applications, the algorithms rely more on mathematical
modeling, and the computation is not so high; thus,
they have lower floating point operation intensity. This
phenomenon explains why modern CAVs computing
platforms leverage heterogeneous hardware to accelerate
some tasks. The state-of-the-practice CPUs provide SSE,
AVX instructions for floating point operations, but the
performance does not yet match that of the GPUs.

D. Memory Behavior

Memory is a very important part of the computer sys-
tem; the memory wall problem exists in many computing
domains. Therefore, we further investigated the memory
behaviors of CAVBench. Our experiments included three
parts: memory bandwidth, memory footprint, and cache
behavior, which we discuss below:

Due to the restriction of the hardware function in the
processor, we cannot monitor memory access bandwidth
directly, so we use Perf tools to acquire the indirect
memory access bandwidth. The measuring method will
lead to some errors, but it can still help us analyze

14— CIWT
EVBattery
DeepSpeech
12k OpenALPR

10

1

I b

[J fillle
1 1 1 1ls il 1.1 I
ummﬂvmmﬁmm,mwmtnw,
|
!

ol 1 |

4 '_HHJ%A 7F ,Jy:v:‘\‘r:;»“ra:"%:,ﬁm”u‘ M.:jrﬂn e T
L el
. L8 ¥ !

ol

Memory Bandwidth (GB/s)
®

p= =

oL I AL L L L | i J] }
0 50 100 150 200 250 300 350 400 450 500 550
Time (s)

Fig. 11. Memory Access Bandwidth Behaviors.

the memory access behaviors of each application in
CAVBench.

The real-time memory access bandwidth of each ap-
plication is shown in Figure 11. The black line is the
memory access bandwidth upper limit of our experiment
platform, whose average value is 10.98GB/s. The ap-
plications in CAVBench sequentially process the data in
the same size and type, so they all have stable memory
access bandwidth, as shown in Figure 11. The minimum
bandwidth is 1.01GB/s (EVBattery), which is 9.20%
of the bandwidth upper limit, and the maximum value
is 6.57GB/s (SSD), which is 59.84% of the upper
limit. According to this observation, we can see that the
applications in the CAVs scenario have a high memory
access bandwidth, and the bandwidth may become the
bottleneck of the performance in the real environment.
When several CAVs applications run concurrently, they
will compete for memory access bandwidth resources,
leading to higher latency for each application. We
observe that the memory access bandwidth of ORB-
SLAM?2 has four peak values during the running time,
which reaches 7.21GB/s on average. This is due to the
loop closing module performing full BA when a loop is
detected in the trajectory. This kind of memory access
burst will cause interference in the performance of other
applications, especially the tail latency.

Furthermore, we investigated the resident memory
(memory footprint) behavior of CAVBench. The ex-
periment results are shown in Figure 12. Except for
ORB-SLAM?2, other applications have stable memory
footprint. As we mentioned above, the experiment plat-
form total memory is 32GB. With the exception of
ORB-SLAM?2, the lowest memory footprint is 0.061G B
(OpenALPR), which is 0.19% of total memory, and
the highest memory footprint is 1.17G B (DeepSpeech),
which is 3.66% of total memory. The reason for the
continued increment of ORB-SLAM?2 memory footprint
is the application continues to generate new map points
and the point data stores in the memory. The four jumps
of the memory footprint is also caused by the full BA,
which corresponds to the observation in memory access

35

—— ORB-SLAM2

3r [——ssp ~
a2 —— CIWT
Cast EVBattery
b DeepSpeech
£ OpenALPR /
g I
] |
=l
=15 /
7
5 fal
£ 1 __—— i
= I
= /

0577 .
—
0
0 50 100 150 200 250 300 350 400 450 500 550
Time (s)

Fig. 12. Memory Footprint Behaviors.

@L1I Misses EL2 Misses (L3 Misses

20
18
16
14
12
10

ERNS NN

T m %Hﬁ%

EVBattery DeepSpeech OpenALPR CAVBench

A —
CIWT

ORB-SLAM2

(a) Cache Behaviors

ZITLB Misses EDTLB Misses
0.6

05

04

03

02

0.1

EVBattery DeepSpeech OpenALPR CAVBench

o SN
SSD

(z7)

ORB-SLAM2

—

CIWT

(b) TLB Behaviors

Fig. 13. Cache and TLB Behaviors.

bandwidth experiment. The maximum memory footprint
of ORB-SLAM?2 is 3.07GB (9.59%). We can conclude
that the applications in the CAVs scenario consume less
memory footprint, and the large capacity memory is
available for the edge computing platform, so the CAVs
application performance will not be constrained by the
memory footprint.

Finally, we investigated the cache behaviors of
CAVBench to see that the memory hierarchy architec-
ture in the state-of-the-practice edge platform is proper
for CAVs applications. The cache behavior and TLB
behavior of each application are shown in Figure 13.
The CAVBench average L1i, L2 and L3 cache MPKI
(Misses Per Kilo Instructions) are 4.86, 5.44, and 2.51,
respectively, which are almost in the same order of
magnitude as HPCC (0.41, 5.59, and 4.22) and Parsec
(3.51, 7.25, and 3.37), respectively. The TLB behavior
of CAVBench is also similar to HPCC and Parsec. Ac-
cording to this observation, we find that the applications
in CAVBench have good data and instruction locality.
These characteristics differ from the big data computing,
which has a huge code size and deep software stack
leading to higher MPKI.

Focusing on specific applications, ORB-SLAM?2, EV-
Battery, and DeepSpeech have a higher MPKI than the
other three. The ORB-SLAMS have high L1i MPKI
and DTLB MPKI. We infer that this phenomenon is
still caused by the periodic loop detection operation and
irregular full BA operation. The loop closing module
queries the local map database periodically to detect the

potential trajectory loop. The DLTB has less capacity
to store all the page tables of the local map database,
causing the high DTLB miss rate, and the irregular
full BA operation interferes with the instruction locality,
increasing the L1i cache miss rate. As for EVBattery
and DeepSpeech, we infer that the RNNs structure leads
to a high cache miss rate. The convolution operations in
CNNs make the data and instruction localized, which is
why SSD does not have a high cache miss rate, but the
RNNSs do not have such convolution operations.

[Insights] According to the memory experiments, we
can draw some important conclusions: First, applications
in the CAVs scenario consume high memory access
bandwidth, which will be a performance bottleneck when
multiple applications run concurrently in real environ-
ments. Second, the memory footprint of each application
takes a very low proportion of the total memory in the
state-of-the-practice edge computing platform. Third, on
average, the applications in the CAVs scenario have good
data and instruction locality. This characteristic is similar
to the workload in high-performance computing and the
parallel computing domain. As for specific applications,
the SLAM and RNNs model based applications have a
higher probability to increase the cache and TLB miss
rate. Therefore, with the CAVs computing system paying
more attention to these applications, we should focus
on the optimization of the cache architecture and the
application data/instruction locality.

V. EVALUATION

We use the CAVBench to evaluate our typical edge
computing platform; its configurations are presented in
Section IV. The evaluation results are presented in this
section.

A. Latency Results

First, we present the application perspective metrics
(latency) of the platform in Figure 14. According to the
results, we find this platform has a good performance in
terms of the computer vision applications; the average
FPS (Frame Per Second) of ORB-SLAM?2, CIWT and
OpenALPR are 12.5, 6.67 and 8.83, respectively. The
processing speed of these applications is near-acceptable
in the real environment. Please note that the latency of
Mapping, Loop Closing, and Full BA is quite high, but
these modules are not executed for each frame, and they
run in different threads, so the latency of these functions
is negligible to the average latency.

However, the performance of deep learning applica-
tions is not as good as computer vision applications.
The FPS of SSD is only 2.55, which is unacceptable in
the real autonomous driving scenario, and the average
latency of EVBattery and DeepSpeech are 0.21s and
3.74s, respectively. The latency of DeepSpeech is much

1.41 6.87

1.4

1.2
a1
Z 0.8
.g 0.6
Z 0.

o |

: 0.06 0.

ORB Tracking Mapping Loop Full BA Mean
Extractor Closing
(a) ORB-SLAM2
0.12
0.1
0.1133
~ 0.08
5 0.0528
T K
£ 0.06
= 0.04 :|7
0.0111
0.02
0.0024 0.0002
0 —_— —
LBP Character Image OCR Mean
Detector Analysis Deskew

(c) OpenALPR

0.2
0.15
0.15
@
5 0.10
g 01 —ms
g
0.05 0.04
| 0.01 |_|
0
Egomotion Fusion Hypothesis Hypothesis Mean
Generation Selection
(b) CIWT
8 6.94
6
:m: 3.74
g4
=
2
039 045 0.21 031 |
0 F77A A e o]
SSD SSD (99%) EVBattery EVBattery DeepSpeech DeepSpeech
(99%) (99%)

(d) Deep Learning Applications

Fig. 14. Application Latency Results on Intel Fog Node.

longer than user-perceived QoS in an interactive system.
Because the input data source of EVBattery is text,
the data batch size is only one-hour monitor data, and
the neural networks scale is smaller (one layer LSTM),
so it has less running latency, which is enough for a
real environment. As for SSD and DeepSpeech, they
both have a deep and large-scale network structure, and
the input data source is image and audio (Unstructured
data). The platform is incompetent for these kinds of
applications since it is not equipped with heterogeneous
hardware to acceleration.

B. QoS-RU Curve Case Study

The application perspective metrics give the user an
overview of the platform performance when running
different applications. Furthermore, CAVBench provides
the system perspective metrics (QoS-RU) to calculate a
quantitative benchmarking result. We take ORB-SLAM?2
and SSD as the case study. According to the above
results, we set 10 FPS as the best QoS (QoS=1). The
QoS-RU curves of ORB-SLAM?2 and SSD are shown in
Figure 15. As for ORB-SLAM?2, the area under CPU uti-
lization (CPU), memory bandwidth (MEMBAND) and
memory footprint (MEMFOOT) curve are 0.84, 0.75,
and 0.93, respectively. The Matching Factor (MF) is
0.80. In SSD case, the area under CPU, MEMBAND,
and MEMFOOT curves are 0.09, 0.14, and 0.23, respec-
tively, and the MF is 0.15. The results correspond to the
application perspective metrics, but it is from the system
view and quantitative.

No doubt, if an application cannot reach the acceptable
QoS, the MF will be poor. Meanwhile, if the application

»

3 0.8 -
z
R 0.6
P
=l
z
Eo04rt
E
é —®— CPU Utilization
0.2 - —&— Memory Bandwidth
Memory Footprint
0e I I I I I I | I I |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resource Utilization Rate
(a) ORB-SLAM2
03
025 o @
@
2
£ 02
3
w
o
S 0.15 -
£
=}
E 01
2 —®— CPU Utilization
< 0.05 |- —&— Memory Bandwidth
Memory Footprint
0 I I I I | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resource Utilization Rate
(b) SSD
Fig. 15. QoS-RU Curves Case Study of ORB-SLAM?2 and SSD.

needs more system resources to reach high QoS, the MF
will decrease more. In the real production environments,
the on-vehicle applications run concurrently in one sys-
tem and compete for the system’s resources. Hence, the
high QoS application with less system resource con-
sumption will be preferable to CAVs computing systems.
That is why we consider system resource utilization
when calculating the Match Factor.

VI. CONCLUSION

CAVBench is the first benchmark suite for computing
system and architectures designed for connected and au-
tonomous vehicles targeting computational performance
evaluation. We chose four typical and dominate applica-
tion scenarios of CAVs, and summarized six applications
in these scenarios as the evaluation applications. After
that, we collected state-of-the-art implementation and
standard input datasets for each application and deter-
mined the output metrics of the CAVBench. We got
three basic features from CAVBench. First, the real-time
applications are dominated in CAVs scenarios. Second,
the input data is mostly unstructured. Third, the end-to-
end deep learning algorithm is more preferable for CAVs
computing system. Then, we ran a series experiments
to explore the characteristics of CAVBench, and con-
cluded three observations as follows. First, the operation
intensity of the applications in CAVBench is polarized.
Second, the applications in CAVBench all consume
high memory access bandwidth. Third, CAVBench has
a lower cache miss rate on average, but for specific
applications, the optimization of the cache architecture
and data/instruction locality is still important. According
to these features and characteristics, we presented some
insights and suggestions about the CAVs computing
system design or CAVs application implementation. Fi-
nally, we used the CAVBench to evaluate a typical edge
computing platform and presented the quantitative and
qualitative analysis of the benchmarking results.

We hope this work will be helpful to researchers and
developers who target the computing system or archi-
tecture design of connected and autonomous vehicles.
According to the insights proposed in this paper, our
future work will proceed from the following aspects.
First, we will focus on providing the CUDA and OpenCL
implementation of the CAVBench to support more het-
erogeneous platforms. Second, we will explore more
methodologies to evaluate the computing system in the
CAVs scenarios comprehensively, such as a benchmark
dedicating system memory behaviors. Third, we will
implement a full stack computing system for CAVs that
will be competent for all CAVs applications.

ACKNOWLEDGMENT

The authors are very grateful to the reviewers and our
shepherd Fan Bai for their constructive comments and
suggestions. We also would like to thank our colleague
Yongtao Yao, who provided the implementation of some
applications in CAVBench. This work is supported in
part by National Science Foundation (NSF) grant CNS-
1741635.

REFERENCES

[11 A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving? the KITTI vision benchmark suite,” in Com-
puter Vision and Pattern Recognition (CVPR), 2012 IEEE Con-
ference on. IEEE, 2012, pp. 3354-3361.

SAE International., “Taxonomy and definitions for terms related
to driving automation systems for on-road motor vehicles J3016,”
https://www.sae.org/standards/content/j3016_201609/, 2016.

M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles:
From intelligent grid to autonomous cars and vehicular clouds,”
in Internet of Things (WF-IoT), 2014 IEEE World Forum on.
IEEE, 2014, pp. 241-246.

G. Dimitrakopoulos and P. Demestichas, “Intelligent transporta-
tion systems,” IEEE Vehicular Technology Magazine, vol. 5,
no. 1, pp. 77-84, 2010.

Waymo, “Waymo Self-Driving Car.” https://waymo.com, 2018.
Tesla, “Tesla Autopilot: Full Self-Driving Hardware on All Cars.”
https://www.tesla.com/autopilot, 2018.

Baidu, “Apollo Open Platform,” http://apollo.auto/index.html,
2018.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3,
no. 5, pp. 637-646, 2016.

W. Shi and S. Dustdar, “The promise of edge computing,”
Computer, vol. 49, no. 5, pp. 78-81, 2016.

S. Liu, J. Tang, C. Wang, Q. Wang, and J.-L. Gaudiot, “A unified
cloud platform for autonomous driving,” Computer, vol. 50,
no. 12, pp. 4249, 2017.

G. Kar, S. Jain, M. Gruteser, F. Bai, and R. Govindan, “Real-
time traffic estimation at vehicular edge nodes,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing. ACM,
2017, p. 3.

K. Lee, J. Flinn, and B. D. Noble, “Gremlin: scheduling inter-
actions in vehicular computing,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. ACM, 2017, p. 4.
B. Qi, L. Kang, and S. Banerjee, “A vehicle-based edge com-
puting platform for transit and human mobility analytics,” in
Proceedings of the Second ACM/IEEE Symposium on Edge
Computing. ACM, 2017, p. 1.

NVIDIA Corporation, “NVIDIA DRIVE PX2: Scalable Al
platform for Autonomous Driving,” https://www.nvidia.com/en-
us/self-driving-cars/drive-platform, 2018.

S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot, “Computer archi-
tectures for autonomous driving,” Computer, vol. 50, no. 8, pp.
18-25, 2017.

Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and
H. Zhong, “OpenVDAP: An open vehicular data analytics plat-
form for CAVs,” in Distributed Computing Systems (ICDCS),
2018 IEEE 38th International Conference on. 1EEE, 2018.

M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov,
S. Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke
et al., “Junior: The Stanford entry in the urban challenge,”
Journal of field Robotics, vol. 25, no. 9, pp. 569-597, 2008.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kam-
mel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards
fully autonomous driving: Systems and algorithms,” in Intelligent
Vehicles Symposium (1V), 2011 IEEE. 1EEE, 2011, pp. 163—-168.
S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang,
and J. Mars, “The architectural implications of autonomous
driving: Constraints and acceleration,” in Proceedings of the
Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM,
2018, pp. 751-766.

Xilinx Inc.,, “Xilinx Zynq Ultrascale+ MPSoC ZCU106
Evaluation Kit,” https://www.xilinx.com/products/boards-and-
kits/zcul06.html, 2018.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang et al., “BigDataBench: A big data benchmark
suite from internet services,” in High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium
on. IEEE, 2014, pp. 488-499.

[2]

[3]

[4]
[5]
[6]
[7]
[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
Proceedings of the 17th international conference on Parallel
architectures and compilation techniques. ACM, 2008, pp. 72—
81.

P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F.
Lucas, R. Rabenseifner, and D. Takahashi, “The HPC Chal-
lenge (HPCC) benchmark suite,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing. Citeseer, 2006, p.
213.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: The KITTI dataset,” The International Journal of
Robotics Research, vol. 32, no. 11, pp. 1231-1237, 2013.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of RGB-D SLAM systems,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-
tional Conference on. 1EEE, 2012, pp. 573-580.

Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond PASCAL: A
benchmark for 3D object detection in the wild,” in Applications
of Computer Vision (WACV), 2014 IEEE Winter Conference on.
IEEE, 2014, pp. 75-82.

L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler,
“MOTChallenge 2015: Towards a benchmark for multi-target
tracking,” arXiv preprint arXiv:1504.01942, 2015.

A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler,
“MOT16: A benchmark for multi-object tracking,” arXiv preprint
arXiv:1603.00831, 2016.

S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “SD-VBS: The San Diego vision
benchmark suite,” in Workload Characterization (IISWC), 2009
IEEE International Symposium on. IEEE, 2009, pp. 55-64.

J. Clemons, H. Zhu, S. Savarese, and T. Austin, “MEVBench:
A mobile computer vision benchmarking suite,” in Workload
Characterization (IISWC), 2011 IEEE International Symposium
on. IEEE, 2011, pp. 91-102.

L. Nardi, B. Bodin, M. Z. Zia, J. Mawer, A. Nisbet, P. H. Kelly,
A. J. Davison, M. Lujan, M. F. O’Boyle, G. Riley et al., “Intro-
ducing SLAMBench, a performance and accuracy benchmarking
methodology for slam,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on. 1EEE, 2015, pp. 5783—
5790.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,”
in Mixed and augmented reality (ISMAR), 2011 10th IEEE
international symposium on. 1EEE, 2011, pp. 127-136.

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous
driving in urban environments: Boss and the urban challenge,”
Journal of Field Robotics, vol. 25, no. 8, pp. 425-466, 2008.
C. Berger and B. Rumpe, “Autonomous driving-5 years after
the urban challenge: The anticipatory vehicle as a cyber-physical
system,” arXiv preprint arXiv:1409.0413, 2014.

S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE
Micro, vol. 35, no. 6, pp. 60-68, 2015.

Y. Zhang, G. W. Gantt, M. J. Rychlinski, R. M. Edwards, J. J.
Correia, and C. E. Wolf, “Connected vehicle diagnostics and
prognostics, concept, and initial practice,” IEEE Transactions on
Reliability, vol. 58, no. 2, pp. 286-294, 2009.

J. Zhang and J. Lee, “A review on prognostics and health
monitoring of li-ion battery,” Journal of Power Sources, vol. 196,
no. 15, pp. 6007-6014, 2011.

J. Maciej and M. Vollrath, “Comparison of manual vs. speech-
based interaction with in-vehicle information systems,” Accident
Analysis & Prevention, vol. 41, no. 5, pp. 924-930, 2009.
Ford, “SYNC,” https://www.ford.com/technology/sync/, 2018.
G. Kar, S. Jain, M. Gruteser, J. Chen, F. Bai, and R. Govindan,
“PredrivelD: Pre-trip driver identification from in-vehicle data,”
in Proceedings of the Second ACM/IEEE Symposium on Edge
Computing. ACM, 2017, pp. 2:1-2:12.

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Enhancing AMBER
alert using collaborative edges: poster,” in Proceedings of the
Second ACM/IEEE Symposium on Edge Computing. ACM,
2017, p. 27.

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi,
M. Philipose, L. Ravindranath, and S. Sinha, “Real-time video
analytics: The killer app for edge computing,” Computer, vol. 50,
no. 10, pp. 58-67, 2017.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.
Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in
European conference on computer vision. Springer, 2016, pp.
21-37.

A. Osep, W. Mehner, M. Mathias, and B. Leibe, “Combined
image-and world-space tracking in traffic scenes,” in Robotics
and Automation (ICRA), 2017 IEEE International Conference on.
IEEE, 2017, pp. 1988-1995.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al.,
“Deep Speech: Scaling up end-to-end speech recognition,” arXiv
preprint arXiv:1412.5567, 2014.
OpenALPR Technology
http://www.openalpr.com, 2018.
R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-
SLAM: a versatile and accurate monocular SLAM system,” IEEE
Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015.
F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-
D mapping with an RGB-D camera,” IEEE Transactions on
Robotics, vol. 30, no. 1, pp. 177-187, 2014.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The PASCAL Visual Object Classes (VOC)
challenge,” International journal of computer vision, vol. 88,
no. 2, pp. 303-338, 2010.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” in
Advances in neural information processing systems, 2015, pp.
91-99.

Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-
scale deep convolutional neural network for fast object detection,”
in European Conference on Computer Vision. Springer, 2016,
pp. 354-370.

X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun,
“Monocular 3D object detection for autonomous driving,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 2147-2156.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2016, pp. 779-788.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmenta-
tion,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2014, pp. 580-587.

A. Geiger, M. Lauer, C. Wojek, C. Stiller, and R. Urtasun, “3d
traffic scene understanding from movable platforms,” IEEE trans-
actions on pattern analysis and machine intelligence, vol. 36,
no. 5, pp. 1012-1025, 2014.

D. Held, S. Thrun, and S. Savarese, “Learning to track at 100
fps with deep regression networks,” in European Conference on
Computer Vision. Springer, 2016, pp. 749-765.

F. D. dos Santos Lima, G. M. R. Amaral, L. G. de Moura Leite,
J. P. P. Gomes, and J. de Castro Machado, “Predicting failures in
hard drives with Istm networks,” in Intelligent Systems (BRACIS),
2017 Brazilian Conference on. 1EEE, 2017, pp. 222-227.

A. L. Maas, A. Y. Hannun, C. T. Lengerich, P. Qi, D. Jurafsky,
and A. Y. Ng, “Increasing deep neural network acoustic model
size for large vocabulary continuous speech recognition,” arXiv
preprint, 2014.

Mozilla, “Mozilla Corpus,”
2018.

Leopard Imaging Inc., “USB 3.0 Box Camera: AR023ZWDRB,”
https://leopardimaging.com/product/li-usb30-ar023zwdrb/, 2018.

Inc., “OpenALPR,”

https://voice.mozilla.org/en/data,

