
MobileEdge: Enhancing On-board Vehicle
Computing Units using Mobile Edges for CAVs

Lin Wang∗, Qingyang Zhang∗, Youhuizi Li†, Hong Zhong∗ and Weisong Shi‡
∗School of Computer Science and Technology, Anhui University, Hefei, China, 230601

†Key Laboratory of Complex Systems Modeling and Simulation, Hangzhou Dianzi University, Hangzhou, China, 310018
‡Department of Computer Science, Wayne State University, Detroit, MI, USA., 48202

{linwang, qingyang}@thecarlab.org, huizi@hdu.edu.cn, zhongh@ahu.edu.cn, weisong@wayne.edu

Abstract—As the rapid growth of connected and autonomous
vehicles (CAVs) and 5G intensifies, more third-party applications
are increasingly being deployed on CAVs. They not only improve
user experience but also provide more helpful services, for
example, enhancing public safety by recognizing criminals in real-
time videos. Current CAVs prefer to process collected data on
the vehicle to avoid long transmission latency and extra network
cost. However, due to the limitations of the on-board vehicle
computing unit (VCU) and increasing use of computing-intensive
in-vehicle applications, the burden of on-board VCU has sharply
increased, which may affect driving safety. In particular, for
existing vehicles on the road, adding more computing devices
is a challenge if not impossible due to cost concerns. Inspired by
edge computing, we propose a novel platform, MobileEdge, to
enhance the computing capability of the unchangeable on-board
VCU, which leverages mobile devices as edge nodes, e.g., the
passengers’ smartphones, by offloading computing tasks to them
for collaboratively computing. Moreover, MobileEdge provides
the dynamic management of mobile devices, monitoring device
status and interfaces for customizable task offloading strategies
and eventually achieves optimal task scheduling. We build a
prototype to demonstrate the designed platform and evaluate
three task offloading strategies which were implemented based
on the developed interfaces. The results show that MobileEdge
significantly reduces the application response latency. Compared
with the baseline which does not employ task offloading, the
response latency is almost near real-time when more comput-
ing resources are available. In addition, the proposed shortest
response latency strategy outperforms the best overall task
scheduling among the three strategies.

Index Terms—edge computing; vehicular data analysis; dis-
tributed computing; connected and autonomous vehicles.

I. INTRODUCTION

As the connected and autonomous vehicles (CAVs) technol-

ogy becomes more mature, drivers are gradually liberated from

driving vehicles and have more idle time to do other things,

which stimulates the development and application of third-

party CAV applications. By utilizing various on-board sensors

(e.g., dash camera, lidar, etc.), these applications greatly im-

prove the user experience and make the CAVs smarter [1].

However, according to a report from Intel [2], a CAV in

2020 will generate 4TB of data per day. Uploading such a

large volume of data to the cloud leads to long transmission

latency and extra cost of communication/bandwidth, which is

insufferable and expensive for owners. For example, assuming

the average uploading speed of the current 4G/LTE cellular

network is 20 Mbps, it will take about 20 days to upload 4 TB

Fig. 1. The overview of edge-based solutions for future CAVs.

data to the cloud. Thus, current CAVs (such as Baidu’s Apollo

[3] and Waymo [4]) chose to process data on their on-board

vehicle computing units (VCUs). Aside from the demands

of native applications, ever-increasing third-party applications

will also consume a lot of vehicle computing resources, most

of which leverage a variety of computation-intensive computer

vision based or machine learning based algorithms [5] [6],

increasing the burden on on-board VCUs. Hence, it is a big

challenge for future CAVs to guarantee the driving safety

and satisfy the requirements of both native applications and

various third-party applications at the same time. Further, the

capability of today’s VCUs is not as powerful as expected,

and adding other high-performance computing devices, such

as NVIDIA Drive PX 2, is very expensive and impractical,

especially for existing vehicles on the road.

Inspired by the emergence of edge computing [7], [8]

(also known as fog computing [9], cloudlet [10]), which

enables the computation to be performed on the network

edge devices/nodes in proximity to the data source so that

applications’ response latency and bandwidth cost can be

reduced, the following two solutions have been developed

to enhance the computing capability of VCUs. As shown in

Figure 1, the first solution is envisioned by the Open Vehicular

Data Analytics Platform (OpenVDAP) [1]. The on-board VCU

470

2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)

978-1-7281-2583-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPADS47876.2019.00073

can offload the computation to the base stations/roadside units

and other vehicles using Vehicle-to-RoadSideUnit and Vehicle-

to-Vehicle communication [11], such as DSRC or future 5G,

respectively. In this solution, the base stations/roadside units

and vehicles are performing the role of edge nodes. Note

that this is also mentioned in the Vehicle Ad-hoc Network

(VANET) [12]. The second solution is the Inside Vehicle part

in Figure 1. The on-board VCU can also integrate all devices

inside a vehicle, such as the mobile devices (i.e., smartphones
and tablets) carried by passengers, which are widely used and

have an increasingly powerful computing capability. In this

case, the mobile devices act as the edge nodes to provide

extra computing resources for the on-board VCU. However,

existing platforms do not support the collaborations of the on-

board VCU and mobile devices very well. The widely-used

container based or virtual machine based approaches have not

considered the mobile device scenario in the design phase.

In this paper, we propose to employ mobile devices

(e.g., smartphones) as auxiliary computing units (i.e., mobile
VCUs) to efficiently support CAVs. We designed a collaborate

platform inside CAVs, MobileEdge, which can enable the

on-board VCU to flexibly offload part or all computation

to the mobile VCUs based on a scheduling and offloading

strategy. In this way, we can relieve the on-board VCU

from the heavy workload as well as improve the response

latency and user experience. MobileEdge is usually used in

crowdsourcing scenarios to offload the additional computation

of various third-party applications, while the vehicles’ own

VCUs are primarily used to handle the native applications,

such as Advanced Driver-Assistance System (ADAS) [1]. The

contributions are summarized as follows:

• We formulated the problem that the resource-limited on-

board VCU is incapable of meeting the computation

requirements of more and more latency-sensitive and

computation-intensive CAV applications, including native

driving applications and diverse third-party applications.

• We designed an edge-based platform, MobileEdge, which

employs passengers’ mobile devices to enhance the capa-

bility of on-board VCU. It splits the whole workload into

a general-purpose computing part and an AI computing

part, supports offloading at both the code level and data

level, and provides task scheduling interfaces for develop-

ers. Additionally, to achieve optimal results, MobileEdge

manages devices dynamically by monitoring devices’

real-time status and then offloading tasks accordingly.

• We implemented a prototype system and three task

scheduling strategies. Experimental results showed that

our system can indeed improve VCU performance. More-

over, the lessons learned from this process are presented

for further study.

The remainder of this paper is organized as follows. We first

discuss the motivation and introduce the design of MobileEdge

in Sections II and III, respectively. The implementation of

a prototype is presented in Section IV, and the three task

scheduling strategies are discussed in Section V. We present

the experiments and results in Section VI, which is followed

by a discussion in Section VII. Related works are reviewed in

Section VIII. Finally, we conclude this paper in Section IX.

II. MOTIVATION FOR MOBILEEDGE

The current resource-limited on-board VCU may not be

powerful enough to support extra computation-intensive and

latency-sensitive third-party CAV applications since native

CAV applications have consumed most vehicle computing

resources. Fortunately, the development of mobile devices

provides a way to enhance the capability of on-board VCU.

In this section, we discuss the motivations of our work from

the aspects of main algorithms and third-party applications as

well as the capability of mobile devices.

A. Computation-intensive Algorithms

Generally, most CAV applications use computer vision

based or deep learning based data processing algorithms to

analyze a large amount of vehicle data collected by various

on-board sensors (e.g., dash camera and lidar), which requires
a lot of computing resources and results in a high response

time.

TABLE I
THE PERFORMANCE OF SOME CAV APPLICATIONS’ CORE ALGORITHMS.

Name Latency (ms)

Lane Detection (Computer Vision) [13] 41.11

Lane Detection (TensorFlow) [14] 1022.86

Vehicle Detection [15] 2437.43

Image Recognition [16] 101.903

To better understand the computing intensity in CAV ap-

plications, we take three types of algorithms as examples

and evaluate their performance. We first choose two types of

the most representative algorithms in ADAS: Lane Detection
and Vehicle Detection. We adopt two different Lane Detection
algorithms to detect the lane. One leverages various computer

vision based image processing methods, and the other mainly

is a deep learning algorithm implemented using TensorFlow.

Vehicle Detection also employs a deep learning algorithm to

detect vehicles. Additionally, an Image Recognition algorithm

is also evaluated, which is commonly used in video-related

CAV applications. The Image Recognition is mainly composed
of two steps. The first step uses the histogram equalization

method to enhance the contrast of the image, making darken-

ing the image to provide a higher quality for recognition. The

second step runs a convolutional neural network based deep

learning model to identify objects and label the content of the

image.

We have performed experiments with the above four algo-

rithms on a laptop computer with an Intel i5-7300HQ CPU

@ 2.50GHz, and the results are presented in Table I. It can

be seen that the deep learning based algorithms have higher

latency than the computer vision based algorithms, but they

also achieve higher accuracy. For example, the deep learning

based Lane Detection could still successfully detect all lane

471

lines when they are partially covered or erased. Thus, the

deep learning based algorithms will increasingly be applied.

In conclusion, the core algorithms of native applications and

diverse third-party applications are generally computation-

intensive and resource-hungry.

B. Latency-sensitive Third-party Applications

Recently, with the advancement of edge computing, many

CAV applications have been proposed, which can greatly

improve users’ experience. In particular, video analytics on

CAV could enhance public safety [17]. For example, Zhang et
al. [18] proposed Amber Alert Assistant (A3), which leverages
edge nodes to track a kidnapper’s vehicle by recognizing the

license plate number from the video data. It speeds up the

search efficiency and improves the AMBER Alert system.

Liu et al. [19] presented SafeShareRide, which analyzes the

in-vehicle audio and video data as well as real-time driving

behavior to guarantee the safety of drivers and passengers in

ride-sharing services. Lee et al. [20] proposed Gremlin, an

interactive scheduling system, which determines whether the

driver can safely pay attention to other tasks by analyzing

current driving conditions and interactive features. Grassi et
al. [21] proposed ParkMaster, which utilizes an on-board

camera to analyze the roadside parking situation and reports

free parking spaces to the cloud server to guide other vehicles.

Additionally, Raja et al. [22] designed WiBot, which detects

distracted behavior and enables passenger-car interaction by

analyzing human body movement in the in-vehicle video

data to improve driving safety and users’ experience. We

can see that time is a key factor for CAV applications; they

process real-time data and use the feedback to guide the next

operation. Late results may be useless in many situations such

as object/human tracking and collision prediction. Hence, CAV

applications usually require low response latency to process

a large amount of data. However, as these applications’ core

algorithms are computation-intensive, the resource-limited on-

board VCU is incapable of meeting deadlines, especially when

a lot of vehicle computing resources have been consumed by

ADAS applications. Therefore, how to use resource-limited

on-board VCU to achieve the computing requirements of these

latency-sensitive applications is a big challenge.

C. High Capability Mobile Devices

As we discussed aboved, the current on-board VCU can-

not satisfy the requirements of the rapid-growth of CAV

applications. For existing vehicles on the road, adding more

computing devices or replacing them with a high-performance

computing device is challenging due to cost concerns. For-

tunately, today’s mobile devices are powerful with high-end

chips. Thus, enhancing on-board VCUs by using mobile

devices in a vehicle is a promissing approach.

Mobile devices, such as smartphones and tablets, are widely

used-today, and their computing capability has experienced

substantial growth. Modern smartphones contain not only

multi-core architectured CPUs but also co-processors such as

GPUs and AI chips, and both of them provide huge computing

Fig. 2. The performance of image recognition algorithm on different mobile
devices.

capability. The Huawei Mate10, for example, is equipped with

a Hikey970 8-core CPU, a Mali-G72 12-core GPU and an

AI chip, which is referred to as the Neural Processing Unit

(NPU). The AI chip is designed to handle fast-growing AI

computing tasks like Vehicle Detection. It can recognize 2000
pictures per minute, which is 25 times faster than CPU, and

its energy consumption is one-fifth of the CPU [23]. Hence,

the AI chip is the perfect computing unit to perform a large

number of AI related tasks on the CAV platform. Moreover,

Huawei unveiled the new Hikey980, which is equipped with

a dual-core NPU AI chip that can recognize up to 4,500

images per minute [24]. Likewise, other chip manufacturers

have also integrated some specialized chips such as the AI

chip or DSP, to support complex AI functions. The products

include the Apple A12 [25], the Qualcomm Snapdragon 855

[26], and so on. In addition, as these mobile devices become

ever increasingly powerful, especially smartphones, there are

many machine learning frameworks adapted to mobile devices.

Task TensorFlow Lite [27] released by Google is an example;

it is a lightweight deep learning framework for mobile and

embedded devices that supports running various deep learning

algorithms across platforms including Android and iOS. With

TensorFlow Lite, mobile devices can perform deep learning

based AI computing tasks, even leveraging the acceleration

benefits of GPUs.

To further understand the high computing capability of

these mobile devices, we use the Image Recognition algorithm

described in the previous subsection to evaluate the following

three different mobile devices: a laptop , a Hikey970 board

and a Raspberry Pi 3b (RPi3b). The results, as presented in

Figure 2, show that mobile devices could be fully exploited

to greatly enhance the capability of the on-board VCU.

Up to this point, we have discussed the motivation of

our work in detail. More latency-sensitive third-party CAV

applications are increasingly being deployed, and part of them

use computation-intensive core algorithms. As our preliminary

experimental results show, it is impossible for a resource-

limited VCU to satisfy the requirements of these applications.

Modern mobile devices, such as smartphones, have an in-

creasing computing capability and are widely used. Hence,

we propose that mobile devices in the CAV can be exploited

472

to share the computing burden of the on-board VCU.

III. MOBILEEDGE SYSTEM DESIGN

In this section, we will introduce the detailed design of

MobileEdge, including terminology, design goals, and system

architecture, to illustrate how MobileEdge enhances the on-

board VCU computing capability.

A. Terminology

In MobileEdge, code migration and data offloading are two

essential parts for computing task offloading.

• Code Migration: Code includes the business logic and

dependent libraries of an application [28]. Generally, the

computing tasks of most CAV applications are composed

of general-purpose computing such as image processing

and AI computing such as running a deep learning model.

Thus, in MobileEdge, an application’s code consists of

three parts: the general-purpose computing code, the

AI computing code and the task profile, which defines

the composition of the two types of computing. Code

migration is critical for correctly executing the tasks on

the target device. In addition, the same types of tasks can

share the same code.

• Data Offloading: In MobileEdge, data refers to the input

data of the tasks used for executing the code. Therefore,

in the process of offloading a task, data offloading is also

critical for completing a task and obtaining the correct

result on the target device.

B. Design Goals

MobileEdge is designed to reduce CAV applications’ re-

sponse latency by enhancing the computing capability of on-

board VCU by utilizing passengers’ mobile devices. Specifi-

cally, the design goals could be described as follows:

• Scalable distributed computing platform: As mentioned

above, mobile devices, such as passengers’ smartphones,

could be leveraged to enhance the on-board VCU. How-

ever, these mobile devices are distributed and have high

mobility. It is necessary to build a scalable distributed

computing platform to scale and orchestrate these mobile

devices so that code/data can be migrated and offloaded

to these devices for computing.

• Dynamic device management: In MobileEdge, generally,

these mobile devices are heterogeneous and possess di-

verse computing capabilities. In addition, the available

computing resources of each mobile device are also

changing dynamically due to the continuous use of these

devices, leading to a varying workload. In addition, due

to their high mobility and independence, these mobile

devices may join or leave MobileEdge at any time. As

an example of this variable environment, users can refuse

to connect to the CAV, or they are unable to connect due

to a lost or weak signal. Therefore, a dynamic device

management service is required to maintain and manage

these connected mobile devices as well as the on-board

VCU.

Fig. 3. The architecture of MobileEdge.

• Flexible task scheduling: In MobileEdge, multiple mo-

bile devices are connected to the on-board VCU. In order

to make the best use of the available computing resources

of each device and guarantee various CAV applications

to be completed with acceptable latency, a flexible task

scheduling service is required. It can offload the tasks

to the optimal device (either the on-board VCU or the

connected mobile device) according to a pre-defined

scheduling strategy such as computing-capability-aware,

workload-aware or energy-aware strategies.

C. System Architecture

To achieve the aforementioned goals, we designed a system

architecture for MobileEdge, as presented in Figure 3. Mo-

bileEdge consists of two types of devices: an on-board VCU

and a number of mobile VCUs. Each mobile VCU connects

with the on-board VCU via a wireless local area network such

as the in-vehicle Wi-Fi network. For a CAV application, the

on-board VCU can first migrate the code to each mobile VCU,

and then, for each task of this application, the on-board VCU

decides, according to a task scheduling strategy, whether the

task should be executed locally or offloaded to a connected

mobile VCU by offloading the input data. Through offloading

tasks, MobileEdge could significantly shorten the applications’

response latency.

According to the device type, the entire system architecture

can be divided into two parts: the on-board VCU and the

mobile VCU.

On-board VCU: The on-board VCU is inherently installed

in the vehicle to provide computing, storage and communi-

cation capabilities. In MobileEdge, the on-board VCU not

only acts as the system central control unit but also is a task

execution unit. It consists of four modules: Resource Monitor,
Device Management, Task Scheduler and Task Executor. These

473

modules work collaboratively to enable the on-board VCU to

manage all mobile VCUs and itself, schedule and offload and

execute tasks. The details of the four modules are as follows:

• Resource Monitor: This module is responsible for moni-
toring the usage status of a variety of resources, including

computing and energy resources on a device. Because the

available resources of a device may be changing all the

time based on the system workload, this module needs to

periodically update the profile about available resources

and report to the Device Management module.
• Device Management: This module takes charge of man-
aging all devices, including the on-board VCU and all

connected mobile VCUs, in terms of resources and com-

munication. First, it accepts and manages the connections

from the mobile VCUs and can authenticate and authorize

the connected mobile VCUs to improve system security.

Second, it also integrates and manages the profile of avail-

able resources reported by the Resource Monitor module
on each device. In addition, this module also needs to

record some feature information, such as task type, about

computing tasks to support scheduling different types of

tasks efficiently.

• Task Scheduler: The primary responsibilities of this

module include migrating the code to each mobile VCU,

scheduling and offloading the computing tasks of CAV

applications to an optimal destination, and gathering the

computing results from each VCU. When a new mobile

VCU is connected to MobileEdge or a connected mobile

VCU is missing code , this module will migrate the code

to it. For a computing task, this module analyzes the

available resources on each VCU provided by the Device
Management module to determine if the task should be

performed locally on the on-board VCU or offloaded to

a mobile VCU according to a task scheduling strategy.

• Task Executor: This module only needs to execute the

computing tasks using the input data based on the code.

As a computing task generally has two types of com-

puting, we design two sub-modules, namely General-
purpose Computing and AI Computing as shown in

Figure 3, to process the corresponding computing. The

former can be supported by several frameworks such

as Open Computing Language (OpenCL) [29], and the

latter also can be supported by some frameworks such as

TensorFlow or Caffe [30]. The two sub-modules create a

running environment for computing tasks in accordance

with the code. Then they process the corresponding

computing according to the task profile which illustrates

the execution process of the two types of computing.

Mobile VCU: Mobile VCUs refer to the mobile devices,

e.g., smartphones, which are brought on board vehicles by

passengers. In MobileEdge, the mobile VCU mainly acts as a

destination device for task offloading. It is composed of three

modules: Task Receiver, Task Executor and Resource Monitor.
These modules enable the mobile VCU to monitor its available

resources and report to the on-board VCU. Additionally, the

mobile VCU can receive and process tasks, and finally return

the computing results. The last two modules have the same

function as on the on-board VCU, so we only introduce the

different module in detail as follows:

• Task Receiver: This module receives the migrated code

and the offloaded input data for computing tasks from the

Task Scheduler module on the on-board VCU. Then, it

assigns these tasks to its own Task Executor module for

execution. After these tasks are completed, this module

will return the computing result to the Task Scheduler
module of the on-board VCU. In addition, when the

mobile VCU is missing an application’s code, the module

needs to request the code from the on-board VCU.

IV. PROTOTYPE IMPLEMENTATION

To assess the feasibility and evaluate the system perfor-

mance, we implemented a prototype system with communica-

tion support between the on-board VCU and the mobile VCUs.

Futher, we leveraged two existing frameworks, OpenCL and

TensorFlow Lite, to support various CAV applications. In ad-

dition, we also implemented the resource management service

to handle diverse task scheduling strategies.

In MobileEdge, we implemented the on-board VCU as the

system central control unit to accept the connection from all

mobile VCUs, and we adopted a whitelist-based authentication

mechanism, so only the authenticated mobile VCUs can be

connected to MobileEdge. Each CAV application running

in MobileEdge should have three types of code files: the

OpenCL code files, the TensorFlow Lite model files and a

task configuration script file, which corresponds to the three

parts of the CAV applications’ code. When a mobile VCU is

successfully connected to MobileEdge or a connected mobile

VCU is missing code, to achieve code migration, the on-bard

VCU packages the corresponding code and profile files for

each CAV application and migrates them to the mobile VCU.

As mentioned above, a computing task in MobileEdge has

two types of computing: the general-purpose computing and

the AI computing. Therefore, we use OpenCL to support the

general-purpose computing. Specifically, we rely on OpenCL

kernel programming to achieve the general-purpose computing

task. As to the AI computing, we employ TensorFlow Lite

to execute the deep learning models. Moreover, for the task

profile, JavaScript Object Notation (JSON) structure, which is

a lightweight data-interchange format, is used to describe the

task configuration information, including the application name,

the application code files and the task execution steps. Taking

Image Recognition (described in Section II) as an example, we
give its detailed task profile as shown in Listing 1, which is

also used in our experiment. In the “code files”, it describes

the OpenCL code file and the TensorFlow Lite model file.

The “execution steps” is the execution steps of two types of

computing in a task. For the general-purpose computing, the

“opencl kernels” details each OpenCL kernel’s function name

and parameter settings. Furthermore, the kernel’s execution

device type can be specified in “device”, including CPUs,

GPUs and other acceleration processors. Regarding the AI

474

computing, it runs the deep learning model specified in “ten-

sorflow model file”, according to the input and output ten-

sors’ settings given in “input tensors” and “output tensors”.

Listing 1. The task profile of Image Recognition in JSON format.

{ "application_name": "Image_Recognition",
"code_files": {

"opencl_code_file": "histogram_equalization.cl",
"tensorflow_model_file": "mobilenet_v1.tflite" }

"execution_steps": [
{ "computing_type": "General-purpose_Computing",
"opencl_kernels": [

{ "kernel_name": "calculate_histogram",
"device": "cpu",
"parameters": [

{ "parameter_type": "cl_mem",
"buffer_label": "input_buf",
"buffer_size": [720, 1280, 3] },

{ "parameter_type": "cl_mem",
"buffer_label": "mid_buf_1",
"buffer_size": [3, 256, 4] }],

"global_work_size": [3] },
{ "kernel_name": "histogram_equalization",
"device": "gpu",
"parameters": [

{ "parameter_type": "cl_mem",
"buffer_label": "input_buf" },

{ "parameter_type": "cl_mem",
"buffer_label": "mid_buf_1",
"buffer_size": [3, 256, 4] },

{ "parameter_type": "cl_mem",
"buffer_label": "mid_buf_2",
"buffer_size": [720, 1280, 3] }],

"global_work_size": [720, 1280, 3] },
{ "kernel_name": "resize_image",
"device": "gpu",
"parameters": [

{ "parameter_type": "cl_mem",
"buffer_label": "mid_buf_2",
"buffer_size": [720, 1280, 3]},

{ "parameter_type": "cl_mem",
"buffer_label": "output_buf",
"buffer_size": [224, 224, 3] }],

"global_work_size": [224, 224, 3] } }] },
{ "computing_type": "AI_Computing",
"input_tensors": [{ "dim_size": [1, 224, 224, 3] }],
"output_tensors": [{ "dim_size": [1, 1001] }] }] }

To support a variety of task scheduling strategies, we also

implemented a resource management service, which provides

multiple different interfaces to developers to build efficient

task scheduling algorithms based on available system comput-

ing resources. We mainly manage the resources of the system

in the following four aspects: 1) the computing capability of

each VCU, 2) the system resources usage (includes the CPU

and the memory utilization), 3) the system workload on each

VCU, and 4) the energy status of each VCU, especially the

available residual battery energy for the mobile VCUs.

V. SCHEDULING STRATEGIES

Task scheduling strategies are critical to the performance of

MobileEdge, which guides the scheduler to assign the tasks

to the optimal VCU to minimize the response latency. The

response latency is defined as the time interval between the

start time, when a task is generated, and the end time, when

the on-board VCU obtains the result of the task. As mentioned

in the previous section, MobileEdge provides interfaces for

developers to build various task scheduling strategies, which

may depend on multiple types of computing resources. In this

paper, we take the following three task scheduling strategies

as examples to show how they are built and how they work

in MobileEdge; other strategies are also compatible. For sim-

plicity, the three case strategies are used for the same type of

task, while the scheduling of multiple different types of tasks

can also be considered by developers.

Shortest Queue Length (SQL) strategy: The SQL strategy

always assigns the tasks to the VCU that has the least number

of tasks queued upon the time of scheduling. When a task

is generated, the scheduler first calls the interfaces to query

the current task queue length (i.e., workload status) of all

VCUs (including the on-board VCU and all connected mobile

VCUs), summarized in the local Device Management module.
Then, it assigns the task to the VCU that has the minimum

workload.

Strongest Computing Capability (SCC) strategy: The SCC
strategy prefers to assign the tasks to the most powerful VCU

which is not saturated. Given the fact that there may be many

diverse types of mobile devices (i.e., smartphones, tablets,

etc.) in the real scenario, we consider that the on-board VCU

and all connected mobile VCUs are heterogeneous on the

aspect of computing capability, and the VCU with a higher

computing capability is able to complete the task faster. To

this end, when a task is generated, the scheduler first calls

the interfaces to acquire the computing capability and current

workload status of each VCU, also summarized in the local

Device Management module. Then it chooses the one with the
strongest computing capability among VCUs with unsaturated

workload to offload the task. Note that if all current VCUs

are saturated, the scheduler will need to wait for an available

unsaturated VCU to reschedule the task.

Shortest Response Latency (SRL) strategy: The SRL strat-

egy tends to assign a task to the VCU that is estimated to

have the shortest response latency. For the tasks offloaded

to the mobile VCUs, the response latency mainly consists

of three parts: network transmission time, computing queuing

time and computing processing time. If the tasks are performed

locally on the on-board VCU, then there is no transmission

time cost. The transmission time can be estimated using d
r , in

which d is the data size of a task and r is the network data

transmission rate measured periodically. The queuing time,

which represents the waiting latency in the task queue, can be

approximately calculated by nt×Ta

ne
, in which Ta is the average

processing time of all tasks of the same type on each VCU,

nt and ne represent, respectively, the number of tasks queued

(i.e., the current workload status) and the number of tasks

executed. For processing time, it can also be estimated by the

average processing time Ta of all tasks completed so far on this

VCU. Hence, to build the SRL strategy, the scheduler needs

to know parameters d, r, nt, ne and Ta on all VCUs. When a

task is generated, the scheduler first analyses task data size d,
then calls the interfaces to obtain the value of other parameters

in the local Device Management module, and finally uses them
to estimate the response latency for each VCU based on the

above method. Finally, the scheduler assigns the task to the

VCU with the estimated shortest response latency.

475

Fig. 4. The testbed.

VI. PERFORMANCE EVALUATION

In this section, we comprehensively evaluate the perfor-

mance of MobileEdge. After briefly introducing the experi-

mental setup, we compare and analyze the results of the three

proposed strategies in detail.

A. Experimental Setup

We have built a testbed for our prototype system, which

consists of a router, a laptop computer and three development

boards as shown in Figure 4. In this testbed, the router acts

as a wireless access point to provide a stable network. Similar

to the Baidu Apollo platform, which uses Intel processors, we

also use a laptop with an Intel i5-7300HQ CPU @ 2.50GHz as

the on-board VCU, and it is connected to the router via a wire.

Considering that mobile VCUs are usually heterogeneous in

the real world, we leverage three different development boards:

one Hikey970 development board (mobile VCU #1) and two

RPi3b board (mobile VCU #2 and #3) to work as three mobile

VCUs which are connected to the router using built-in 2.4 GHz

Wi-Fi.

Since real-time video analytics is one of the most important

services in CAV applications, we take it as our evaluation

workload. Specifically, we use a 60 second video data, which is

25 frames per second with the resolution of 1280 × 720 pixels,

as the input. The video stream is decoded locally to extract

every frame image, and then the goal is to identify objects

and label the content of the image. The Image Recognition
algorithm (as described in Section II) is used, and one frame

image is corresponded to one task. In addition, in our exper-

iments, we don’t use the TensorFlow Lite’s gpu acceleration

feature due to its own limitation on the development boards.

B. Experimental Results

We evaluate the performance of MobileEdge by conducting

a set of controlled experiments on our testbed. First, as the

baseline case, the on-board VCU executed all tasks locally

without offloading any tasks to mobile VCUs. Then, we ana-

lyzed the performance of the three proposed task scheduling

strategies (i.e., the SQL, SCC and SRL strategies discussed in

Section V) in MobileEdge.

Fig. 5. The performance without task offloading.

Fig. 6. The performance with using the SQL strategy.

Figure 5 illustrates the task throughput on the on-board

VCU when all tasks are performed locally. There is no mobile

VCU data shown in the figure since no task is offloaded to

mobile VCUs and their throughput is zero all the time. It can

be seen that the on-board VCU takes a very long time, more

than twice the time of the video stream length, to complete

all the tasks.

Figures 6, 7 and 8 present the task throughput on each

VCU when the on-board VCU offloads part of the tasks

according to the SQL, the SCC and the SRL task scheduling

strategies, respectively. Figure 9 presents the number of tasks

(i.e., workload) assigned to each VCU based on the SQL, SCC

and SRL strategies. Figure 10 shows the task response latency

regarding different strategies. From these results, we can see

that, compared to the baseline case (no task offloading), the

workload of the on-board VCU is greatly reduced, and the

final completion time and the response latency of all tasks

is also significantly improved because of the offloading with

MobileEdge. Nevertheless, there are still some differences

between these three task scheduling strategies. To further ex-

plore, two performance metrics are analyzed: final completion
time and average response latency for all tasks.

The final completion time: As shown in Figures 5, 6, 7 and
8, the final completion time of these four cases (i.e., no task

offloading as well as using the SQL, SCC, and SRL scheduling

strategies) is indicated by the red lines. The SQL strategy has

the longest time among the three strategies. That is because the

SQL strategy always assigns tasks to the VCU that have the

least workload without considering the computing capability,

which leads to the situation of more tasks being assigned to

476

Fig. 7. The performance with using the SCC strategy.

Fig. 8. The performance with using the SRL strategy.

the low power VCUs (i.e., mobile VCU #2 and #3) while

the VCUs (i.e., the on-board VCU and the mobile VCU #1)

that have higher computing capability only processed fewer

tasks. Therefore, as shown in Figure 6, although the system’s

total task throughput is high from the beginning, it decreases

sharply as the on-board VCU and the mobile VCU #1 quickly

complete the assigned tasks and then stay low until all tasks

are completed because mobile VCUs #2 and #3 still take more

time to finish the over-assigned tasks. The SCC strategy works

better than the SQL strategy while it is slightly worse than the

SRL strategy. As presented in Figure 7, the system’s total task

throughput is low in the beginning since the SCC strategy

tends to assign tasks according to the computing capability,

resulting in most tasks being assigned to the on-board VCU

while mobile VCUs #1, #2 and #3 have a low or even zero

task throughput. Further, it declines in the end because the

time taken by each VCU to complete the saturated workload

varies slightly, in which the on-board VCU is fastest, followed

by mobile VCU #1, and mobile VCUs #2 and #3 are the

slowest. In addition, as shown in Figure 9, the SQL strategy

significantly reduces the number of tasks assigned to mobile

VCUs #2 and #3, while it increases the workload of the on-

board VCU compared to the SRL strategy. Different from the

SQL and SCC strategies, the SRL strategy takes into account

the transmission time, the queuing time, and the processing

time; thus, it results in an appropriate task distribution by

predicting the response time of each task so that each VCU

takes almost the same amount of time to complete the assigned

tasks, enabling the system’s total task throughput to remain

high from beginning to end as shown in Figure 8. Additionally,

Fig. 9. The number of tasks assigned to each VCU.

Fig. 10. Response latency regarding different task scheduling strategy.

compared to the SCC strategy, in the first few seconds, it

improves the task throughput of mobile VCUs #1, #2 and #3

by assigning them more tasks. As a result, the SRL strategy

achieves the best performance of the three strategies.

The average response latency: As shown in Figure 10,

the four different colored dotted lines represent the average

response latency of all tasks in the four cases, respectively.

Compared with the baseline case (NO Offloading), the aver-

age response latency can be significantly reduced when the

SQL, SCC, and SRL scheduling strategies are applied in

MobileEdge. More specifically, among the three strategies, the

SRL strategy has the lowest average response latency, followed

by the SCC strategy, and the highest is the SQL strategy. Note

that for the SQL strategy, fewer tasks are assigned to the on-

board VCU with higher computing capability, and more tasks

are assigned to the lowest computing capability mobile VCUs

#2 and #3; thus, although the response latency of most tasks

is less than the SRL strategy, there are still a small number of

“tail tasks” whose response latency is so much higher, which

leads to the high average response latency.

VII. LESSONS LEARNED AND DISCUSSION

In this section, we discuss the lessons learned from the

design and evaluation process and the potential future direc-

tions of system improvement. In addition, we believe that

MobileEdge can also be used in other similar scenarios

that involve a centralized node and some mobile devices

(i.e., smartphones).

477

To improve the performance, an effective way is offloading

more tasks to more mobile VCUs. For example, if we continue

to add a Hikey970 board, our preliminary experimental result

shows that the response latency can be further reduced and

even achieve near real-time video analytics. Note that, in

MobileEdge, scalability is one of the crucial design goals,

and we can successfully support a large number of connected

VCUs. However, there is always a maximum limit for adding

VCUs. With increasingly more computation-intensive and

resource-hungry CAV applications installed, it is better to

improve the system performance from the workload itself,

such as algorithms and application design. For instance, model

compression can be used to significantly reduce the computing

intensity of deep learning algorithms [31]. Further, in video

analytic applications, a motion detection module can first be

used to detect the different areas between two frames to avoid

repeated calculations [18].

MobileEdge also has some aspects that can be optimized

in the future. First, the task execution in the current prototype

does not support parallel computing, so we plan to modify

the Task Processor module so that it can handle parallel

computing and automatically expand or shrink tasks based

on the devices’ status. Second, security is very important in

CAV, and it directly affects driving safety. However, the current

version of our design has not taken security into account.

Therefore, in the future, we will design a security module in

such a distributed computing platform, regarding data security,

identity security and system security. For example, we will

consider how to guarantee the integrity of the offloaded data

and how to authenticate the identity of mobile VCUs with a

securer strategy. In addition, the offloaded code should also be

authenticated. To solve these problems, we will first consider

utilizing some trusted platforms, such as Intel Software Guard

eXtensions (SGX) for on-board VCU and ARM TrustZone

for mobile VCUs [32], to provide a hardware-based trusted

execution environment and the proof of integrity for these

offloaded code and transmitted data. In addition, there has

been some research on the safety of our scenario, such as [33].

Finally, since the focus of this paper is to build MobileEdge

and provide various scheduling interfaces for developers, the

three scheduling strategies proposed are only applicable to a

single type of task. In future work, we will continue to consider

scheduling strategies for multi-type tasks.

VIII. RELATED WORK

In recent years, edge computing has become popular in

the CAVs research field due to its advantage of dramatically

reducing response latency. There have been many studies on

the edge computing system and architecture for CAVs. For

examples, Hou et al. [34] presented a new architecture known

as Vehicular Fog Computing, which aggregates available

computing and communication resources from each vehicle

to enhance the quality of vehicular services. It relies on a

cluster composed of parked and slow-moving vehicles. Feng et
al. [35] proposed a framework, named autonomous vehicular

edge, which employs the idle computing resources of each

vehicle to increase the computing capability of vehicles in

a decentralized manner through the autonomous organization

of vehicular edges. Li et al. [36] also proposed a framework

called vehicular edge cloud computing, which offloads vehic-

ular computing tasks to the edge cloud server on the base sta-

tion. Each vehicle can flexibly request its temporarily individ-

ual computing resources in the edge cloud. Moreover, Zhang et
al. [37] proposed a regional cooperative fog computing based
architecture for dealing with big Internet of Vehicle (IoV) data

in a smart city, which adopts a coordinator server to organize

local fog servers on multiple base stations and roadside units to

achieve low-delay for vehicular applications. Zhou et al. [38]
presented a framework, called BEGIN, which utilizes big data

to improve energy efficiency in vehicular edge computing. It

mainly employs an edge computing layer which is composed

of the vehicles, base stations and roadside units. However, all

of these studies have focused on the collaborations between

vehicles or a vehicle and edge/fog servers, which may not

contribute these computing resources. In [1], Zhang et al.
proposed the OpenVDAP, an open vehicular data analytics

platform for CAVs, which is an edge-based full-stack platform.

It not only supports security and privacy protection but also

effectively improves the in-vehicle services’ quality and user

experiences. Different from the aforementioned frameworks,

in addition to leveraging vehicles, base stations and roadside

units, the OpenVDAP also tries to exploit other possible on-

board computing devices, such as passengers’ smartphones,

but it did not give a specific architecture design.

In addition to native vehicle cases, several general-purpose

edge computing platforms are also promising to adapt to

CAVs [39]. Yi et al. [40] presented the LAVEA platform,

which enables computation offloading to edge nodes to provide

video analytics services. Zhang et al. [41] also proposed

Firework, an edge computing based programming framework

for data processing and sharing in hybrid edge-cloud analytics.

However, they cannot support the code migration or do not

mention how to manage the code in their platforms.

IX. CONCLUSION

With the development of CAVs, various native applications

and more third-party applications will be installed in the

future. It is a huge challenge for CAV systems due to the

limited resources on vehicles. Hence, we proposed an edge

computing based platform which employs mobile devices car-

ried by passengers as the mobile edge nodes to enhance the on-

board VCU’s computing capability. With MobileEdge, the on-

board VCU can offload part of or all of the computing tasks to

mobile VCUs. Compared with traditional offloading methods,

MobileEdge not only supports dynamic device management,

flexible task scheduling and offloading strategies, but it can

also efficiently process general-purpose computing and AI

computing tasks on mobile devices. Moreover, we imple-

mented a prototype and three task scheduling strategies. The

experimental results show that MobileEdge can significantly

reduce the response latency of in-vehicle applications, which

helps effectively guarantee driving safety and user experience.

478

ACKNOWLEDGMENT

The corresponding author is Qingyang Zhang. This work

is supported in part by the Key Technology R&D Program

of Anhui Province (No. 1704d0802193), the National Natural

Science Foundation of China (No. 61572001, 61802093) and

the Natural Science Foundation of Zhejiang Province (NO.

LQ18F020003).

REFERENCES

[1] Q. Zhang, Y. Wang, X. Zhang, L. Liu, X. Wu, W. Shi, and H. Zhong,
“Openvdap: An open vehicular data analytics platform for cavs,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), July 2018, pp. 1310–1320.

[2] P. Nelson, “Just one autonomous car will use 4,000 gb of
data/day,” https://www.networkworld.com/article/3147892/internet/one-
autonomous-car-will-use-4000-gb-of-dataday.html, 2016, accessed:
2018-12-01.

[3] Baidu, “Apollo,” http://apollo.auto, 2018, accessed: 2018-12-10.
[4] Waymo, “Waymo,” https://waymo.com/, 2018, accessed: 2018-12-10.
[5] Y. Wang, S. Liu, X. Wu, and W. Shi, “Cavbench: A benchmark suite for

connected and autonomous vehicles,” in 2018 IEEE/ACM Symposium on
Edge Computing (SEC), Oct 2018, pp. 30–42.

[6] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime
computer vision with opencv,” Queue, vol. 10, no. 4, pp. 40:40–40:56,
Apr. 2012.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[8] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, Jan 2017.

[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12. New
York, NY, USA: ACM, 2012, pp. 13–16.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, Oct 2009.

[11] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-
to-everything (v2x) services supported by lte-based systems and 5g,”
IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 70–76,
2017.

[12] S. Garg, A. Singh, K. Kaur, G. S. Aujla, S. Batra, N. Kumar, and
M. S. Obaidat, “Edge computing-based security framework for big data
analytics in vanets,” IEEE Network, vol. 33, no. 2, pp. 72–81, March
2019.

[13] “Lane detection for self-driving car, using computer vision tech-
niques,” https://github.com/maunesh/advanced-lane-detection-for-self-
driving-cars, 2017, accessed: 2019-09-23.

[14] “Implemention of real time lanenet model for lane detection using deep
neural network model,” https://github.com/MaybeShewill-CV/lanenet-
lane-detection, 2018, accessed: 2019-09-23.

[15] “A car detection model implemented in tensorflow,” https://github.com/
MarvinTeichmann/KittiBox, 2017, accessed: 2019-09-23.

[16] “Image classification,” https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/lite/g3doc/models/image classification/overview.md,
2018, accessed: 2019-09-23.

[17] Q. Zhang, H. Sun, X. Wu, and H. Zhong, “Edge video analytics for
public safety: A review,” Proceedings of the IEEE, vol. 107, no. 8, pp.
1675–1696, Aug 2019.

[18] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Distributed collaborative
execution on the edges and its application to amber alerts,” IEEE Internet
of Things Journal, vol. 5, no. 5, pp. 3580–3593, Oct 2018.

[19] L. Liu, X. Zhang, M. Qiao, and W. Shi, “Safeshareride: Edge-based
attack detection in ridesharing services,” in 2018 IEEE/ACM Symposium
on Edge Computing (SEC), Oct 2018, pp. 17–29.

[20] K. Lee, J. Flinn, and B. D. Noble, “Gremlin: Scheduling interactions
in vehicular computing,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, ser. SEC ’17. New York, NY, USA:
ACM, 2017, pp. 4:1–4:13.

[21] G. Grassi, K. Jamieson, P. Bahl, and G. Pau, “Parkmaster: An in-
vehicle, edge-based video analytics service for detecting open parking
spaces in urban environments,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, ser. SEC ’17. New York, NY, USA:
ACM, 2017, pp. 16:1–16:14.

[22] M. Raja, V. Ghaderi, and S. Sigg, “Wibot! in-vehicle behaviour and
gesture recognition using wireless network edge,” in 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
July 2018, pp. 376–387.

[23] Huawei, “Huawei reveals the future of mobile ai at ifa 2017,” https:
//consumer.huawei.com/en/press/news/2017/ifa2017-kirin970/, 2017, ac-
cessed: 2019-07-16.

[24] ——, “Huawei launches kirin 980, the world’s first commercial
7nm soc,” https://consumer.huawei.com/en/campaign/kirin980/, 2018,
accessed: 2019-07-16.

[25] Apple, “A12 bionic: The smartest, most powerful chip in a smartphone,”
https://www.apple.com/iphone-xs/a12-bionic/, 2018, accessed: 2019-07-
16.

[26] Qualcomm, “Qualcomm announces new flagship snapdragon
855 mobile platform - a new decade of 5g, ai, and xr,”
https://www.qualcomm.com/news/releases/2018/12/05/qualcomm-
announces-new-flagship-snapdragon-855-mobile-platform-new-decade,
2018, accessed: 2019-07-16.

[27] Google, “Introduction to tensorflow lite,” https://www.tensorflow.org/
mobile/tflite/, 2017, accessed: 2018-02-17.

[28] L. Chao, X. Peng, Z. Xu, and L. Zhang, “Ecosystem of things: Hardware,
software, and architecture,” Proceedings of the IEEE, vol. 107, no. 8,
pp. 1563–1583, Aug 2019.

[29] K. sGroup, “The opencl specification - version 2.1,”
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf, 2015,
accessed: 2019-09-23.

[30] BVLC, “Caffe: a fast open framework for deep learning.” https://github.
com/BVLC/caffe, 2014, accessed: 2019-09-23.

[31] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, vol. abs/1510.00149, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[32] Z. Ning, F. Zhang, W. Shi, and W. Shi, “Position paper: Challenges
towards securing hardware-assisted execution environments,” in Pro-
ceedings of the Hardware and Architectural Support for Security and
Privacy, ser. HASP ’17. New York, NY, USA: ACM, 2017, pp. 6:1–6:8.

[33] H. Zhong, L. Pan, Q. Zhang, and J. Cui, “A new message authentication
scheme for multiple devices in intelligent connected vehicles based on
edge computing,” IEEE Access, vol. 7, pp. 108 211–108 222, 2019.

[34] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
June 2016.

[35] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular edge
computing framework with aco-based scheduling,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 12, pp. 10 660–10 675, Dec 2017.

[36] X. Li, Y. Dang, and T. Chen, “Vehicular edge cloud computing:
Depressurize the intelligent vehicles onboard computational power,”
in 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Nov 2018, pp. 3421–3426.

[37] W. Zhang, Z. Zhang, and H. Chao, “Cooperative fog computing for
dealing with big data in the internet of vehicles: Architecture and
hierarchical resource management,” IEEE Communications Magazine,
vol. 55, no. 12, pp. 60–67, Dec 2017.

[38] Z. Zhou, H. Yu, C. Xu, Z. Chang, S. Mumtaz, and J. Rodriguez,
“Begin: Big data enabled energy-efficient vehicular edge computing,”
IEEE Communications Magazine, vol. 56, no. 12, pp. 82–89, December
2018.

[39] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A survey on
edge computing systems and tools,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1537–1562, Aug 2019.

[40] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea: Latency-
aware video analytics on edge computing platform,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, ser. SEC ’17.
New York, NY, USA: ACM, 2017, pp. 15:1–15:13.

[41] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data processing
and sharing for hybrid cloud-edge analytics,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 9, pp. 2004–2017, Sep.
2018.

479

