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ABSTRACT
By collectively leveraging advanced communications systems, sens-
ing, drones, wearable technologies and large-scale data analysis,
smart firefighting is envisioned as the next generation firefight-
ing with the capacities of gathering massive real-time scene data,
transferring them into useful information and insights for fire re-
sponders, and even providing them with more safe and accurate
decisions. For smart firefighting, timeliness and accuracy are two
foremost system requirements, yet they are unsatisfied in many
applications. One reason for such dilemma is due to the underly-
ing used computing architecture (i.e. cloud computing) that can
produce extra latency in large-scale data transmission. To address
this problem, we explore the firefighting field utilizing edge com-
puting and discuss the overall system architecture, opportunities,
challenges, as well as some early technical suggestions on building
edge-enabled smart firefighting. To validate the feasibility of edge
computing, we simulate the firefighting context and respectively
deploy a video-based flame detection algorithm on a local Intel’s
edge computing platform and a remote Amazon EC2. The prelimi-
nary results show that edge computing can significantly increase
system’s reactive speed, with on average 50% reduction in system
latency.
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1 INTRODUCTION
Firefighting is the act of using different kinds of techniques and
equipment to extinguish fires, rescue trapped people and minimize
casualties and property damage. On the fireground, accurate and
timely data is vital for effective firefighting. The more data the fire
responders have (such as the firefighter’s localization and phys-
iological condition, burning building’s floor-plan, the hazardous
area’s location, and the number of trapped occupants and their
corresponding location), the higher opportunities of saving more
people, guaranteeing firefighter’s safety and limiting fire damage.

However, fire responders still rely on the outdated, inefficient
and even unreliable equipment or systems: field data is very limited
and the rescue tactics are made by Incident Commanders (IC) based
on their own experiences. The evolving new technologies including
sensing, drones, wearable devices, communication systems, arti-
ficial intelligence and IoT are enabling us to collect vast amounts
of real-time data, extract useful information and even guide safer
rescue tactics for the fire responders. Modern firefighting is also
referred to as smart firefighting by the NIST’s research roadmap
plan [9]. The Department of Homeland Security launched the NGFR
program [14] to leverage various innovative technologies to make
fire responders more protected, connected and fully aware.

For future firefighting, a large volume of field data will be pro-
duced by a variety of field devices. Yet, if they not well processed,
the data might be useless or even misleading to the fire responders.
Thus, different advanced data processing, analytics as well as algo-
rithms will be jointly or separately exploited to extract, learn, and
estimate useful and meaningful information (e.g. firefighter’s loca-
tion on the floor-room granularity) for the IC. Nevertheless, such
process is usually computation-intensive and energy-draining, mak-
ing it inappropriate to execute on the local on-site, resource-limited
devices.

In contrast, the cloud computing paradigm with the low-cost,
unlimited resources center, is the best candidate for the large-scale
data processing and complex algorithm execution. In reality, many
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firefighting-related systems or ongoing projects have proposed to
depend on the cloud such as the localization and tracking from the
TRX System’s NEON Personnel Tracker [8] and Precision Location
and Mapping System in [13]. However, the cloud is Internet-based,
and its issue is the extra latency in interacting with the remote
cloud. This problem is becoming much more severe as the preva-
lence of IoT-based applications with unprecedented volume and a
variety of data generated each day. Obviously, the traditional cloud
computing model is not quite fit for the time-crucial firefighting
system. Take the indoor firefighter localization and tracking system
as an example. Such system usually needs to run the localization al-
gorithm frequently (around one time per 30 seconds). In addition to
the traditional radio raging based triangulation, extra sensor fusion
algorithm is introduced to calibrate the position accuracy. When
using the cloud computing model, the position precision will be def-
initely guaranteed due to the calibration, while the response time
might fluctuate significantly as the dynamics of available network
bandwidth and workload on the cloud.

On the fireground, each second matters and accurate data is
highly desirable. To balance the trade-off between these twometrics,
we envision to apply a new computing model-edge computing-into
the time-sensitive firefighting field. This is an emerging architecture
which will perform the complex data processing and analysis in the
proximity of the data source, instead of on a remote cloud server,
to improve the system response time, conserve network bandwidth
and potentially address the security concerns and privacy exposure.

In this paper, we first introduce edge computing. Thenwe present
several popular time-sensitive applications for effective smart fire-
fighting. The potential opportunities, system architecture and chal-
lenges about edge computing enabled smart firefighting are dis-
cussed in Section 4. In Section 5, we simulate the firefighting context
and demonstrate the performance advantages of edge computing
in reducing the system latency and conclude this paper in Section
6.

2 WHAT IS EDGE COMPUTING?
Edge computing([15, 17, 18]), also referred as fog computing([10–
12]), is a new distributed computing architecture that can break up
complex computational workloads into small elements and perform
them on local edge devices/nodes, instead of offloading large volume
data and workloads on a remote cloud data center. Here, the edge
devices/nodes can be any device with computing, storage, and
network connectivity, located at the frontiers of the Internet. For
example, they are not only the data producers such as the sensors,
surveillance cameras and smartphones, but also the communication
gateways (e.g. switches, routers, access point and base station).The
core of edge computing is to offload computational tasks in the
proximity of data source, either on the devices where the data is
generated, or on the nearby gateways. Doing so can eliminate the
data transmission over the Internet, saving the network bandwidth;
thus alleviating the Internet traffic burden. Without large scale
communication cost, the edge computing based applications enable
the edge nodes/devices to react locally and significantly reduce
the system latency. Edge computing is suitable for time sensitive
applications, especially for those taking the resource-constrained

devices’ readings as input, meanwhile, depending on complex data
processing/algorithms to obtain actionable and immediate output.

Note that edge computing is not mutually exclusive with cloud
computing. They can coexist within a same application, inwhich the
edge is responsible for processing the time-sensitive functions while
the cloud is responsible for less time sensitive operations, such as
historical analysis and long-term storage. Whether we can depend
on the cloud server totally depends on the application’s requirement
of response time. In particular, given a specific application with data
from various sensors, the developer can consider the hybrid model
if some data needs to be processed and acted on with very small
tolerable latency (e.g. a few seconds), and some can wait minutes
or even a few hours for action.

3 SMART FIREFIGHTING
The key of smart firefighting is to leverage the IoT to integrate
all data. According to the report in [9], smart firefighting contains
three elements: (1) data gathering from a range of sources; (2) data
processing, analysis and prediction; and (3) effective dissemina-
tion of processed results to the fire responders or other related
stakeholders.

Smart firefighting contains many applications. In this paper, we
limit our focus on the real-time applications with data collection
and processing, the research areas that might benefit from using
edge computing. To be specific , they are Situational Awareness,
Intelligent Safety Decision-making, and 3D Fire Ground modeling.
More research topics or applications could be found in [9].

3.1 Situational Awareness
Situational awareness is comprised of many aspects including the
localization and tracking, hazards detection and firefighter health
condition monitoring. Improved situational awareness will enable
the fire responders to recognize and avoid potential hazards, and
enhance fire personnel’s safety. A series of sensors and field devices
are the source of data to improve situational awareness.

3.1.1 Localization and Tracking. Indoor firefighter localization
and tracking has been explored since 1999. The main challenge is to
pinpoint the fire fighter’s location within a few meters over a few
seconds, with significantly higher demand in both the precision and
timeliness. Many solutions are radio-ranging based, already demon-
strating success in the traditional indoor environment. The radio
technology contains a localization infrastructure with some "an-
chors" deployed at known positions, intermittently emitting radio
signals to radio transmitters worn by each firefighter to range the
distance between the firefighter and the known anchors and then
determine the firefighter’s position through different localization
algorithms (e.g. triangulation, fingerprinting or proximity). Given
the extreme conditions of such environment, all these solutions
suffer from low precision, leading to the spate of multi-sensory
fusion calibration scheme, which involves a large scale sensor read-
ings analysis and system integration[8][13]. As the more precise
enhanced system usually includes highly sophisticated algorithms,
the cloud architecture is widely adopted. The limitation of cloud-
based solution is the longer system response time, produced by
transmitting large volume of sensor data over the Internet. Fur-
thermore, due to the prevalence of IoT, an unprecedented volume
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and variety of data are entering into the Internet, severely mak-
ing the Internet traffic much more crowded than ever before, and
thus bringing a huge challenge for the time-critical cloud- based
localization.

3.1.2 Hazards Detection & Occupant Counting. Anything can
happen on the fireground, and the lack of hazard awareness would
add to the danger. Identifying the hazard’s location and number of
occupants can speed rescue. For such applications, smart firefight-
ingwill rely on video analytics to distill invaluable information from
body cameras and surveillance cameras in on the firegrounds. For
example, while the rescue team is in the search mission, correctly
detecting the flash-over and toxic gas, then quickly broadcasting
its location to all fire fighters may allow them to avoid risky areas.
Some other types of hazards are falling ceiling, collapsing wall, or
even chemical gas emission. This data can aid in routing fire teams.
Moreover, the images or videos from the surveillance cameras are
sources for discovering how many occupants are trapped and even
where they may be. Similarly, video and image analytics require
large computing power, which requires a cloud-based service. Ex-
tensive video data, significantly much larger than the regular sensor
readings, will go through the Internet and may adversely affect the
real-time performance.

3.2 Intelligent Safety Decision Making
The rapid advances of communication systems, sensing technolo-
gies and IoT are giving the fire responder access unprecedented
large volumes of data, which is not limited to fireground data. The
data can also come from the Internet, such as demographic reports,
building blue-prints, public social media postings and so on. As a
result, the data might be overwhelming and may increase the risk
of distracting the fire responders and even causing them to make
wrong and unsafe decisions.

A more fully integrated type of application tries to make the IoT
data actionable and useful, usually depending on a series of machine
learning and artificial intelligence to analyze the volume of data,
turn them into actionable knowledge, and ultimately form real-time
recommendations and decisions for the fire responders. Imagine the
next generation fireground: various wearable sensors and devices
in the firefighter’s clothes can sense the position, health condition,
the presence of dangerous chemical gases, environmental heat and
much more; drones can see the fireground’s aerial imagery; robotics
with cameras and sensors can enter into dangerous areas to see
debris and report other important environmental parameters such
as heat, smoke density and others. This data coupled with an auto-
mated intelligent safety decision system can help the firefighter find
exits, identify hazards, warn them about surrounding temperatures,
and estimate the probability of explosion.

AI based research for fire responders is still at the early stage. So
far there is only one ongoing project from NASA JPL, also referred
as AUDREY[16], which is exploring the application of artificial
intelligence to help fire responders make safe and split-second
recommendations in dangerous situations. Apparently, AUDREY is
highly time-sensitive. Yet the AI-based large-scale data analysis and
reasoning determines AUDREY can only perform core computation
on a remote cloud, which in turn extends the system response time.

3.3 fireground 3D Modeling
fireground 3D modeling enables the IC to know the situational
information in 3D space. Coupled with a localization system, it
can display each firefighter’s position in a more meaningful way
(i.e. on which floor and which room). Unfortunately, 3D structure
modeling requires many input parameters such as the building’s
height, number of floors, shape and the inside floor plan and so
on, while this may be unavailable for the firefighting scenario with
little or even no prior knowledge about the burning structure. Our
ongoing project FAST[3] attempts to the building’s dimensions and
the inside floor plan from the aerial images taken by drones and
the open data portal for city construction.3D structure modeling
requires significant computing power. Rather than purely depend-
ing on the cloud model, we propose to add edge computing into
our computing architecture.

4 EDGE COMPUTING ENABLED SMART
FIREFIGHTING

In this section, we first discuss the potential opportunities for smart
firefighting, then propose the overall architecture for edge com-
puting based smart firefighting. Last, the challenges of using edge
computing in the firefighting context are discussed.

4.1 Opportunities
The edge computing aims to reduce system latency and improve
system’s reactive speed by offloading computational task to one or
more resource-appropriate edge nodes, which are in the proximity
of the data source. Obviously, this new computing model shines
bright lights on applications with higher requirements on both
accuracy and timeliness. By applying edge computing to smart fire-
fighting, we anticipate two main opportunities for fire responders:

Timeliness: As the field collected data will be processed or an-
alyzed on geographically local devices, instead of a distant cloud
center, the system response time could be enormously reduced by
saving the data transmission cost and other extra time consumption
in the cloud.

Accuracy: Many efforts in the edge computing community are
focused on enhancing the edge nodes’ computing capacity. Some,
like the local distributed system, focus on software solutions while
others work on developing more powerful processing chips. Even
though edge computing is still in the early phase, all these efforts
will definitely enable the edge server either on single or multiple
devices to execute complex algorithms and employ data analytics
to obtain more accurate results.

4.2 System Architecture
The architectural depiction of the edge computing enabled smart
firefighting is illustrated in the Figure 1. The system consists of the
fireground sensing components, routing network and the remote
cloud server. For the first two elements, there are many different
types of devices, which have the potential of offloading workload.
The cloud server is kept to store large-scale data for future histori-
cal analysis and conduct off-line model training or other latency
tolerant applications.

Figure 2 shows currently available edge devices and edge nodes
for firefighting and their corresponding distances to the field data
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Figure 1: The architecture of edge computing enabled smart
firefighting.

Figure 2: Involved devices in the edge computing enabled
smart firefighting system.

source. The objective for edge-enabled smart firefighting is to har-
ness all computing resources close to the data sources, including
the original data producer, the field edge devices on the fire vehicle
as well as the routing nodes/mobile base stations located at the
frontiers of core Internet. The computational task requiring imme-
diate reactions will be deployed on either the edge nodes or field
edge devices, physically close to the data source with only one-hop
or two-hop away.

Field edge devices: The edge devices either worn by the fire-
fighter or newly installed around the fire scene are field data sources.
For example, the tiny sensors embedded in the protective gear, or
other physiological sensors (e.g. Zephyr BioHarness[7]) are respon-
sible for continuously tracking each firefighter’s heath data, such
as heart rate, heart rate variability, and other physiological factors.
The location unit[8] is the source of firefighter’s indoor location
data. The infrared body cam and toxic gas sensor can be used to
detect the hazardous events on the fireground. Furthermore, exist-
ing surveillance cameras could be used to estimate the number of
trapped occupants and their locations.

Additionally, on the fire vehicle, there is a local centralized data
center, also referred as base station, usually deployed on a laptop,
operated by the IC, providing the user interface for monitoring
and tracking. Most fire vehicles also contain a mobile broadband
router, with the capacities of converting the broadband cellular
signals (i.e. 4G/LTE) to WiFi and creating a local WiFi hotspot.
Compared with the field sensors, they have much more capacity
both in computation and storage. Thus, we refer them as the field
computing center in Figure 2.

Edge nodes: These devices include the routers, base stations,
switches, as well as their corresponding capacity-added nodes in
storage or computation. Besides the traditional Internet traffic rout-
ing, in the edge computing model, they are also responsible for
processing complex data analysis and algorithms for time-sensitive
applications.

Cloud server: In the edge computing enabled smart firefighting,
the field data used for historical analysis will be transmitted to the
cloud center when the Internet connection is available. And the
less time-sensitive applications such as the dynamic model training,
can deploy on the cloud server as well.

Wireless data communication: The wireless communication
network is another essential component of edge-enabled smart
firefighting. Two types of wireless networks are widely used. First
is the infrastructure-less networking, in which field devices can
form a network in ad-hoc manner and communicate with each
other without any pre-existing infrastructure. This network will
handle the data transmission between the field devices and the base
station. Second is the infrastructure-based communication network
between the base station and the remote cloud server. Currently,
the base station can depend on the broadband cellular network
(i.e. 4G/LTE). Furthermore, with the rapid development of smart
cities, the free public WiFi is ubiquitous, making the IEEE 802.11
radio-based WiFi as another option for Internet access.

4.3 Challenges
Despite of the superiorities of edge computing for time-sensitive
applications, there are some challenges when using it in the smart
firefighting context.

Challenge 1: Where is the edge server?
The edge server includes a set of edge devices/nodes that are cho-

sen to locally execute computational tasks, which are traditionally
deployed on the remote cloud server. In theory, the network bridge
nodes (i.e. edge nodes in Figure 2) are the ideal options for edge
server due to their more powerful capabilities in computation and
storage, compared with the extreme edge devices on the fireground.
These nodes are usually located one-hop or two-hop away from
the field sensors.

In the extreme application context, however, there are many
challenges for deploying these nodes as edge servers. Unlike other
real-time applications, the network connectivity between the field
sensors and such gateway nodes is unreliable regardless of what
kind of Internet access method (e.g.WiFi or 4G/LTE) is used. The
power outage often associated with structure fires might break
down the WiFi infrastructure. The available cellular network’s
bandwidth would be dynamic and unpredictable with wireless radio
interference, building materials and geographic location.

Instead of purely relying on the gateway nodes, the applications
for firefighting can deploy the edge server on the field devices, in-
cluding different types of sensors, drones, robotics, body cameras,
IC’s laptop, mobile hotspot and other devices with computing ca-
pacities. The edge server could be on a single edge device/node or
a virtual computing center across multiple devices. For example,
FAST [3] proposes to deploy the 3D structural modeling on the
drone.

Note that, unlike the drones, laptops or cameras, the field sen-
sors have very little computing power, to make them support local
real-time analytics and data processing, the researches can rely on
the Apache Edgent[2], which is a lightweight programming model
and micro-kernel style run-time which could be embedded in small
sensors to accelerate the small sensor’s processing power. Take
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the application of detecting gas emission as an example. Tradition-
ally, the relevant sensors worn by the fire responders continuously
sense and stream the sensors’ readings to the base station to an-
alyze.Using the Apache Edgent, the small sensor can locally run
the data analysis algorithm. Additionally, it also includes a remote
computing center feature to process complex data. As the network
connectivity to the Internet is unreliable, the researchers can tailor
or custom the base station center as the remote data center.

Applications involving complex machine learning or artificial
intelligence can depend on the local distributed system, in which
the local field devices will first form a resource pool, then a local
centralized management center execute the task divisions, then
offload all subtasks on the resource-appropriate edge devices and
at last assemble the final result based on each subtask’s output.
Another option is to choose hardware containing advanced chips
to support machine learning and deep learning. For example, the
GPU from the NVIDA could be used for the training task. Once
the training is done, the CPU from many mainstream vendors can
conduct the reasoning and inference tasks, like the Intel’s Xeon and
FPGA, Qualcomm Snapdragon, Google’s TPU, NVidia’s Jeston[5].

Challenge 2: Load balancing and energy conservation
Moving the computing server further close to the data source

has the benefit of saving communication cost and reducing system
latency. However, the biggest concern is the associated energy con-
sumption. In the fireground, all edge devices are battery-operated.
The chosen edge server’s battery will drain quickly due to the extra
computation workload from other edge devices. For this problem,
dynamic edge server election might be a solution, which will allow
the qualified edge devices, based on their current residual energy
level, to automatically enter/exit the resource pool to contribute
their compute resources.

Challenge 3: Lightweight data processing and algorithms
Compared with the cloud server, the computational ability of

edge devices/nodes is still limited. This is because they all have their
own workloads and the priority of running as an edge server is usu-
ally less than their primary task. For instance, the router, if allowed
to be configured as an edge server, will assign limited resources or
limited time ( e.g. during off peak hour) to execute computational
task from other devices, causing minimum impact on its traditional
workloads in data routing and transmitting. Therefore, if the re-
searchers would like to enhance the real-time performance using
edge computing model, they need to furthermore optimize their
algorithms to maximally reduce the computational complexity.

Challenge 4: Task partitioning and work offloading
For the extreme field edge device, it is hard for a single device

to satisfy the computational demands of the complex tasks, such
as machine learning based decision making. In such case, the edge
devices that qualify as an edge server can form a local distributed
system to cooperatively work on a specific task. Unlike the task
partitioning for regular edge applications discussed in [10, 12, 15,
17, 18], the targeted server is energy and resource constrained.
In addition, the edge server is highly dynamic as the edge server
needs to exit the resource pool to conserve energy for its own
workload. So, in the firefighting context, the question is how to
effectively partition a task from the energy perspective and offload
each subtask on the resource appropriate edge server.

Figure 3: Intel’s FRD and its core processing components.

5 PRELIMINARY VIDEO ANALYTICS
In this Section, we will investigate the performance of video analy-
sis on a local edge server and a remote cloud center, respectively.
Here, the video means the real field data from the firefighters’ body
cam, one most important data source for enhancing the situational
awareness.

Owing to the mature digital video technology, currently, body
cams are being used by many fire departments. In fact, there are
plenty of helmet-mounted cameras on the market, equipped with
WiFi interface and large volume memory card, with the prices rang-
ing from $100 to $400. These cams have the capability to transmit
live video, audio, high quality snapshots, along with GPS location
in real-time to the base station. Due to the limited bandwidth typi-
cally available at fire scenes, body cams are currently just used for
on-site video recording, post-incident analysis, investigation and
training.

5.1 Experimental Set Up and Assumption
Our main goal is to prove the feasibility of using edge computing
in firefighting, especially its potential in improving the response
speed. So we set up a simulated environment, using two laptops at
different positions to represent the data center on the fire vehicle
and the fire fighter’s body cam on the fireground, respectively.

The computational task we focus on is the real-time video flame
detection, which is usually computationally intensive and not appro-
priate to execute on the power and resource limited edge devices.

The algorithm we chosen is Support Vector Machine based, re-
quiring a group of prior videos as training to learn a model [6]. We
deploy this algorithm on a local edge device and a remote cloud
center, which are discussed in detail below.

Edge server: We employ Intel’s Fog Reference Design (RFD)[4],
a test bed demonstration for fog and edge computing in a self-
contained enclosed chassis as shown in Figure 3. RFD is still in the
early prototype phase, with limited distribution to the OpenFog
university members through Intel’s Altera University program. To
execute complex computational tasks locally, RFD equips with high
compute performance with Intel Core i3/i5/i7 or Xeon Processor.
It also contains Intel’s FPGA solutions and tools to provide pro-
grammable logic for specialized functions. Its software includes the
Ubuntu 16.04 Desktop AMD64 , Open Source BIOS, video analyt-
ics, DL/ML, hardware acceleration, time sensitive networking, and
many others. In addition to the powerful ingredients, RFD is very
small and can be put on the fire vehicle to serve as a local edge
server.
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Figure 4: Comparison of time consumption.

Cloud server:We rely on Amazon Elastic Compute Cloud (Ama-
zon EC2) for US East (Ohio) Region, geographically located in New
Albany, Ohio. To be specific, we deploy the fire flame detection
algorithm on the t2.2 xlarge compute instances, which features 32
GB of memory and 8 vCPU [1].

Assumption: We assume that the fire occurs in Detroit, USA,
around 200 miles from the cloud center and the FRD is physically
located close to the local data center within USB cable communi-
cation distance. We further ignore such cable based transmission
delay as it provides much higher transmission speed than the wire-
less network, producing a very small or even negligible delay. In
other words, the simulated body camera will stream video to FRD
directly. The video we used is the test fire video clips from [6].

As the communication infrastructure, the open free public WiFi
and 4G/LTE are both considered, with their corresponding down-
load/upload speed as around 11Mbps/5Mbps and 24Mbps/21Mbps.
We assume the body cam is equipped with built-in WiFi interface
and can only communicate with other devices through WiFi con-
nection. So we configure FRD as a WiFi hotspot for 4G/LTE testing
case.

5.2 Experimental Results
Figure 4 illustrates the average latency for edge and cloud using
two different wireless communication infrastructures. The time
consumption for different operations are explored as well. Here,
the operations we consider include the data transmission, flame
detection, frame decoding and processing (denoted as Others in
the Figure 4). As expected, the edge computing model behaves
significantly better than the cloud model in terms of total latency.
On the other hand, the edge’s performance gains are more obvious
in the case of using 4G, with around 61% latency reduction from
92.02ms for the cloud model and 35.7ms for the edge model.

In spite of the higher bandwidth of WiFi, surprisingly, the per-
formance of using 4G/LTE overall outperforms that of using WiFi.
The cellular network’s advantages actually benefits from the 1-hop
direct communication between the simulated body cam and the
FDR (i.e. configured WiFi hotspot). In addition, regardless of what
wireless infrastructure is used, we also note that the time duration
for detecting a flame is very close for cloud and edge, with the for-
mer performing slightly better than the latter. This demonstrates
that Intel’s FDR is powerful enough to process the computation-
intensive tasks, and thus is a very good fit for the edge computing
model.

6 CONCLUSION
In this paper, we reviewed the IoT based smart firefighting and
summarized several desirable time-sensitive applications for the
fire responders. We then pointed out the edge computing enabled
architecture, opportunities and challenges for smart firefighting.
Last, we investigated the feasibility of edge computing through a
video based fire flame detection. The total latency is significantly
reduced when using the edge computing model. We expect this
article to inspire researchers in smart firefighting field in order
to reconsider their computing architecture to enhance the system
quality in the perspective of timeliness and accuracy.
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