
To Turn or Not To Turn, SafeCross is the Answer
Baofu Wu

School of Computer Science and Technology
Hangzhou Dianzi University

Hangzhou, China
baofu.wu@hdu.edu.cn

Yuankai He
Department of Computer Science

Wayne State University
Detroit, USA

william.he@wayne.edu

Zheng Dong
Department of Computer Science

Wayne State University
Detroit, USA

dong@wayne.edu

Jian Wan
School of Computer Science and Technology

Hangzhou Dianzi University
Hangzhou, China

wanjian@hdu.edu.cn

Jilin Zhang
School of Computer Science and Technology

Hangzhou Dianzi University
Hangzhou, China

jilin.zhang@hdu.edu.cn

Weisong Shi
Department of Computer Science

Wayne State University
Detroit, USA

weisong@wayne.edu

Abstract—Blind area has plagued drivers’ safety ever since
the dawn of automobiles. Thanks to the fast-growing vision-
based perception technologies, autonomous driving systems can
monitor the driving circumstance through a 360-degree view, and
hence most blind areas can be avoided. However, in the left turn
scenario at an intersection, the opposite road may be blocked by
another vehicle parking at the same intersection (see Fig. 1), and
in this case, the blind area cannot be observed by the onboard
perception module of the autonomous vehicle. A potential fatal
collision may occur if the autonomous vehicle turns left while
a vehicle is running through the blind area. In this paper, we
propose Safecross, a framework that oversees an intersection
and delivers blind area warnings to the left-turn vehicles at the
intersection if running vehicles are detected in the blind area.
In order to provide accurate and reliable real-time warnings
in all possible weather conditions, the architecture of Safecross
has four major components: video pre-processing (VP) module,
video classification (VC) module, few-shot learning (FL) module,
and model switching (MS) module. Especially, the VP and VC
modules will train a basic model to identify the blind area when
a blocking vehicle appears at the intersection. Since the range
of the blind area varies in different weather conditions, the FL
and MS modules can adapt the basic model to the new condition
in real-time to make the blind area identification more accurate.
Intuitively, if the blind area is identified timely and accurately,
the left-turn throughput of the intersection can be maximized. We
have conducted extensive experiments to evaluate our proposed
framework. The experiments are performed on a total of 2855
video segments with a time span of 180 days, including sunny,
rainy, and snowy weather conditions. Experimental results show
how Safecross can guarantee the vehicle’s safety while increasing
the left-turn traffic throughput by 50%.

Index Terms—SafeCross, Blind zone, Collision avoidance, Real-
time, Scenes adaption

I. INTRODUCTION

BLIND zone is one of the major obstacles endangering ve-
hicle safety. According to National Highway Safety Ad-

ministration statistics (NHTSA), there are more than 800,000
traffic accidents caused by blind areas every year [1]. Au-
tonomous vehicles are equipped with cameras, LiDAR sensors,
Radar sensors, and other sensors. Most of the blind areas
around the vehicle are monitored by these sensors; however,

there are blind areas that are caused by other vehicles, such
as at an intersection, is not resolved.

The most typical example is the blind areas in the left turn
scenario at a road intersection. According to NHTSA’s report
in 2010, more than 480,000 crashes involve drivers turning
left [2]. The most common reasons cited in the study for left-
turn crashes include obstructed view while turning, inadequate
surveillance (driving into blind zones), misjudgment of the
other driver’s speed and miscalculating the distance or “gap”
across the intersection.

In the United States and other right-side driving countries,
a specific blind area problem plagues the safety of drivers and
traffic throughput. An example of such scenes is shown in
Fig. 1. In scenes similar to this, the light is green for both
the vehicles going straight and turning left. To simplify, we
will assume ideal driving conditions. Here we see the vehicle
circled in green is looking to make a left turn; however, his
view of the opposite road is blocked by the van. Without
knowing if there is any on-coming traffic, the vehicle circled
in green cannot accurately and confidently make his left turn.
In this case, the vehicle circled in red is in the blind area
behind the van. If the vehicle circled in green had chosen to
make the turn, it would result in a tragic accident. However,
if there weren’t any cars next to or behind the van, the
driver would be wasting his and others’ time by waiting for
the non-existent vehicle to pass. The problem the vehicle
circled in green and many others have stems from incomplete
information. To address this challenge, we need a system that
can analyze the traffic from a ”global” point of view. The
system needs to ensure the safety of the driver and to increase
traffic throughput. Therefore, the system needs to be able to
accurately identify whether or not it is safe for the vehicle
circled in green to make the left turn and to output the results
in real-time.

Since autonomous vehicle’s sensors cannot obtain global
information to effectively analyze the risk of blind zones, ex-
isting solutions mainly focus on the analysis of the surveillance
video of traffic intersections. On the edge server, researchers



Fig. 1. An overview of left-turn alert system. When the opposite truck
obstructs the sight of the vehicle attempting a left turn, the straight-going
vehicle moving quickly in the blind area behind the truck is dangerous. The
roadside unit equipped with a surveillance camera has a global perspective
without blind zones, predicts the risk of collision, and sends out early warning
signals.

[3]–[8] use recognition algorithms to locate vehicles to realize
the collision warning analysis. However, existing solutions
only focus on the risk prediction of a single scenario, and
do not consider the impact of weather conditions on road
conditions and safe distance. Different weather conditions,
such as rain and snow, will affect the friction coefficient of
the road, the emergency braking distance, and the deceleration
distance of the vehicle. The scope of the safety warning should
be adapted to different weather scenarios, which must be
considered when the project is implemented.

To address the issues mentioned above, in this paper, we
introduce the SafeCross framework, a framework that is added
to the existing infrastructure. It oversees the entire junction,
analyses the traffic, and makes an informed decision for the
driver.

To solve the problem of the limited vision of autonomous
vehicles, we adopt a vehicle-road coordination solution to
obtain global road information through global surveillance
cameras deployed on the roadside. To achieve real-time data
processing as much as possible, we will use background
subtraction operation to simplify the original RGB data into
black and white data; at the same time, we use the video
classification algorithm to learn the habits of humans in turning
left, and train to get a blind-zone warning model which can
judge whether a safety reminder is needed. In the face of
problems in different weather scenarios, especially for the
scenarios with few samples, we use few-shot learning methods
to train a model. Finally, to ensure real-time adaptation of
models in different weather scenarios and to ensure uninter-
rupted business, we choose Pipeswitch to implement real-time
switching of multiple models.

Although we studied left-turn blind zones warning issues in
the right-driving countries, the SafeCross framework is also
suitable for dealing with right-turn blind zones warning in
left-driving nations. The difference is just the training data.
The major contributions of the SafeCross framework are listed
below, of which we will show the results in the experiment
and discussion sections.
• We propose the SafeCross framework, which is the first

work to identify hidden dangers in blind zones, make

early warning judgments in real-time, and adapt real-time
models to different weather scenarios.

• We propose a basic model of whether there is danger
in the blind zone which is trained based on video pre-
processing (VP) and video classification (VC); in addi-
tion, we make the multiple scenes real-time adaptation
into a true with few-shot learning (FL) and model switch-
ing (MS) to ensure uninterrupted recognition.

• We carry out several experiments to verify the perfor-
mance of SafeCross. We created a dataset from an online
live surveillance video. The classification accuracy of
Daytime data has reached 98.98% in judging whether
there is danger in the blind zone of the left-turn lane.
It also achieves a good classification effect in a few-shot
scene. It can realize real-time switching of models at a
speed of less than 10ms when the scene changes. Through
classification and statistics, SafeCross can effectively
increase the traffic throughput by 50% in the presence
of blind zones.

The other content of the paper is organized as follows. We
present the related work in Sec. II, In Sec. III, we present the
overall design of SafeCross framework. We will present the
system implementation in Sec. IV. In Sec. V, the performance
evaluation will be presented. We provide discussion and future
work in Sec. VI. Finally, we conclude in Sec. VII.

II. RELATED WORK

A. Detection

Among the potential collision problems caused by blind
zones, it is essential to detect moving objects. As shown in
Figure 1, the collision risk of a left-turning vehicle comes from
the high-speed oncoming vehicle in the opposite blind zone.
There are several popular approaches to detection: optical flow,
frame difference, background subtraction, and deep learning
methods.

Optical flow [9]–[11] focuses on the relationship of pixel
characteristics in a sequence of image frames. By reading
and comparing the pixel intensities in consecutive frames,
the optical flow algorithm determines the apparent motion of
objects in the scene. It is widely used to identify the speed
and the direction of moving objects, but it has a very high
computational complexity.

The frame difference method [12] is based on two or
three consecutive frames to detect movement, which has the
advantage of fast processing times. Still, it is challenging to
separate overlapping targets and may cause false detection.

The background subtraction method [13]–[16] obtains the
background image first and then uses semantic thresholds to
process the difference image. It calculates the pixel intensity
differences between the learned background and the test frame.
The processing is fast, but it cannot detect non-moving objects.

The deep learning methods [17], [18] combine the deep
learning algorithms with the above three methods to obtain
higher accuracy but requires more pre-processing, learning,
and memory.



B. Collision Avoidance

State-of-the-art Collision avoidance at traffic intersections
mainly has two major approaches, trajectory prediction col-
lision avoidance based on simulation and conflict detection
based on deep learning.

Trajectory prediction collision avoidance based on simu-
lation calculates the risk of collision through modeling and
simulation. Kim et al. [6] predict the probabilistic motion of
surrounding vehicles to analyze the collision risk of surround-
ing vehicles quantitatively. Park et al. [5] modeled the colli-
sion uncertainty through Gaussian distribution and proposed
a probabilistic collision detection method between a highly
free robot and an imperfect obstacle. The methods these two
papers proposed solve the problem of the blind areas around
the vehicle but cannot solve the blind areas created at an
intersection.

The second category, based on deep learning, can solve sev-
eral problems. Based on object detection results, researchers
propose different object tracking algorithms to predict the
probability of collision. For example, Tan et al. [7] use Yolo
to implement the function of recognition and combine it
with LSTM to achieve object tracking. Fu et al. [8] propose
an effective algorithm with five steps for an infrastructure-
cooperative intersection accident pre-warning system, which
contains defining variables, reasoning the vehicle’s evolution
state, verifying safe driving behavior, assessing risk, and
making decisions. However, it is just in the simulation stage.

C. Scene adaptation

The safety distances of vehicles in different weather sce-
narios are very different. The vehicles ’ safety distance should
be longer for the wet and slippery road in rainy and snowy
weather. How to adapt to multiple scenes for the monitoring
system is a brand new problem. In the existing research, there
are two ideas. One is to build a supermodel with different
weather scene data as input. The other is to build respective
models for different scenarios and use model switching to
achieve scene adaptation.

Building a supermodel is one of the solutions to the multi-
scenario problem. It takes the data of different scenes as
input and trains the model through a large amount of training
data to adapt to the recognition task of different scenes. The
super program has an essential manifestation in language. For
example, the Generative Pre-trained Transformer(GPT-3) [19]
model proposed by OpenAI, which has an astonishing 175
billion parameters, can realize functions such as translation,
answering, translating, and writing articles. The articles it
writes almost reach real people’s level. To solve adaptive issues
in multiple scenarios, expert mixing is another method. This
method sets up models specializing in handling different tasks,
namely experts, and has a ”gated network” to choose which
experts to consult for any given data. Based on this paradigm,
Google proposed Switch Transformer-a ”sparse activation”
technique trained to obtain a model (Switch-C) containing
1.6 trillion parameters. It has 2048 experts. In the Sanford
Question Answering Dataset (SQuAD) [20] benchmark test,

N 12

10

2

5

14
4

7

16

6
9

1

3

8

18

Fig. 2. The danger zone (in red) for a left-turn vehicle at an intersection.

Switch-C got 87.7. However, the supermodel requires exten-
sive and expensive training data and labeling data. It is difficult
to collect enough data at traffic intersections with a small
amount of data, extraordinary weather data, for model training.

III. SAFECROSS FRAMEWORK

Problem Statement: As shown in Fig. 2, we consider a
busy road intersection with a green vehicle, which attempts
to turn left; however, a grey vehicle is waiting to turn left
on the opposite side of the road, and it is blocking the view
of the green vehicle. The blind area behind the grey vehicle
is called the danger zone for the green vehicle, the danger
zone is highlighted in red in Fig. 2. For the green vehicle
to make a safe left turn, whether or not there are vehicles
in the danger zone is very important. It is also very time
costly and dramatically impacts the traffic flow if there aren’t
any vehicles in the danger zone, but the green vehicle does
not make the turn because it does not have that information.
Thus, we propose the SafeCross framework. It can deliver real-
time alerts to left-turning vehicles if vehicles are detected in
the danger zone. The SafeCross framework learns the size
and location of the danger zone from drivers’ behaviors. The
danger zone is carefully learned and constrained for several
reasons. If we arbitrarily define a very large danger zone, then
we would not be helping traffic throughput; on the other hand,
if we arbitrarily define a very small zone, then it does not
ensure the safety of the left-turning vehicles. Different weather
conditions are another factor when SafeCross determines the
size and location of the danger zone, because the stopping
distance and visibility range are different in different weather
conditions.

A. System overview

SafeCross is a real-time system deployed in existing infras-
tructure, designed to ensure the safety of left-turning vehicles
and increase left-turning traffic throughput in different scenes.
The whole system architecture is shown in Figure 4, which
includes four main components:



Fig. 3. From the original scene to our DNN input.

• Video Pre-processing (VP): We need to identify all of
the moving vehicles on the scene, and we do not need
information from vehicles that are not moving. We utilize
background subtraction to obtain this information.

• Video Classification (VC): After obtaining information
about moving vehicles, we train a basic model based on
drivers’ behaviors when making a left turn under typical
weather. This basic model is further divided into four
categories: left turn with blind area, left turn without
blind area, no left turn with blind area, no left turn
without blind area. To fully extract the vehicle’s temporal
and spatial information, we choose the Slowfast video
classification model as the training model.

• Few shot Learning (FL): Because it is difficult to find
enough data for rainy, snowy, or other weather conditions,
we use Few-shot learning to learn new models based on
their nearest neighbor in the trained basic models.

• Model Switching (MS): When all models are trained, we
use Pipe-switch to achieve real-time switching of models
so that SafeCross can make the correct prediction for the
size and location of the danger zone.

B. Video Pre-processing
1) Challenges: Due to the infrastructure available, we

can only acquire camera footage from surveillance cameras,
sometimes decades old. The quality of the video, the clarity of
the objects in the video, and the placement of the cameras all
proved to be difficult problems. First, because the quality of
the video is low, the objects in each frame cannot be clearly
identified with existing object recognition models. We will
discuss an example in the experiments sections. Second, if we
were to retrain an object detection model, because the cameras
are placed at different locations at each intersection, SafeCross
would have zero scalability because we would have to train
a different object detection model for every intersection. The
reasons mentioned above persuaded us not to use an object
detection model to recognize vehicles in the scene.

2) Our Approach: The above problems ultimately led us
to use background subtraction to track moving objects in
each frame. Because we only want to identify the moving
objects in the scene, background subtraction is best both for
detecting moving objects and scalability. To further improve
the accuracy of the method, we use a dynamic background.

The background subtracted from each frame is constantly
updated.

In Figure 3(a), an unprocessed frame is shown. Because
we only want to identify the moving vehicles in each frame,
an unprocessed frame contains too much noise and useless
information, such as the background, the sky, stopped vehicles,
and pedestrians.

In Figure 3(b), we give an example of a snapshot of
the intersection that has been processed by the Background
Subtraction method. The noise from the low-quality cameras
is reduced dramatically by performing opening morphology,
erosion then dilation, on the entire scene. We cannot feed this
image to the training model yet, because although we have
identified the moving vehicles, we still need to map them into
a 2-D representation of the intersection.

In Figure 3(c), we map the vehicle location information
from b to a 2-D representation of the intersection. This step
is crucial for the model to learn the spatial information of the
moving vehicles. This is the last step in the pre-processing
stage. Once we obtain a 2-D representation of the intersection,
we can finally feed it to the training model.

To summarize, we reduced the amount of information
contained in a raw frame to retain only relevant information.
We further reduce the number of parameters the training model
needs to learn by remapping from a 3-D space into a 2-D
plane.

By using erosion on the processed scene, we can eliminate
most of the noise from the camera because they are small and
do not have any structure; however, since erosion is applied
to the entire scene, the structures of the detected vehicles are
also weakened. Therefore, we need to apply dilation to re-
strengthen the structures. Dilation strengthens the structure of
all objects on the scene. Since we used erosion to eliminate
most of the noise, dilation will not strengthen the noise that
has already been eliminated; thus, only the objects we want
to detect are strengthened.

The ultimate goal of SafeCross is to create a model that
would learn when drivers should make a left turn at an
intersection with reduced visibility. So it would be easier if
there were less irrelevant information for the model to learn.
To achieve this, we can reduce the number of pixels in the
processed image while still maintaining the objects’ structure.



Fig. 4. An overview of SafeCross framework. For all model training, the background subtraction (BG Sub) processing of the video is performed to get the
training data. The training of the basic model uses daytime data. And the training of the few-shot data model is obtained through few-shot learning (FSL)
training based on the daytime model parameters. For switching between multiple models, real-time Pipeswitch is triggered when the scene changes to realize
real-time adaptive safety detection.

C. Video Classification

Model training takes the 2-D representation images inputs
and outputs whether or not the vehicle should make the turn.

1) Challenges: There are two challenges with model train-
ing. First, while each 2-D representation of the intersection
provides spatial information, it does not provide any tempo-
ral information across consecutive frames. Without sufficient
temporal information, it is difficult for the model to make an
accurate prediction. Second, while we do have enough training
data to train a good model for normal weather conditions, we
do not have enough data to train special weather conditions
from scratch. For the second challenge, we will devote the
following subsection to discussing our approach.

2) Our Approach: First Challenge: To obtain temporal
information across consecutive frames, we apply the SlowFast
network to train the basic model. Slowfast [21] network is a
single stream architecture that operates at two different frame
rates [21]. Figure 5 shows that the SlowFast network. This
network takes a series of consecutive frames, interprets the
spatial and temporal characteristics of the frames, and learns
a model.

We construct the tasks for meta-training as follows: during
the meta-training, we have a total of M scene sets that are
denoted as {S1, S2, . . . , SM}, for every Si, i ∈ {1, . . . ,M},
we construct the corresponding task Ti = (Dtraini ,Dtesti )
(Dtraini and Dvali represent the training and test sets in the task
Ti). We first split the videos from Si into many consecutive
segments with length t + 1, so that a segment video set
(V1, V2, . . . , Vt+1) would be generated, and the first t frames
would be regarded as the input x, the last frame as the output y
(x = (V1, V2, . . . , Vt), y = Vt+1). So that K input/output pairs
(x, y) would be collected for meta-training. In Dtraini , every
time we randomly sample K (input,output) pairs from the
tasks list Ti as Dtrain = {(x1, y1), . . . , (xK , yK)}. The result
is a prediction model y = f(x; θ). In the test and validation

Fig. 5. An overview of Slowfast network. It has a low frame rate, low temporal
resolution Slow pathway and a high frame rate, α × higher temporal resolution
Fast pathway. The Fast pathway is lightweight by using a fraction (β, e.g.,
1/8) of channels. Lateral connections fuse them.

set, we randomly sampling K input/output pairs to form the
corresponding test data Dtesti .

D. Few shot Learning

1) Challenges: As mentioned in the previous sub-section,
we do not have sufficient training data to train special case
models from scratch. This is due to the scarceness of the data,
difficulties in collecting data, and difficulties in labeling the
data.

2) Our approach: To train models for special cases, we
apply a few-shot learning technique. On a high level, we take
a training case for the special case, find the model with the
most similar set of parameters and results, and use transfer
learning to train the model for the special case. Specifically,
in a N -way, K-shot learning problem, each episode of training
cases contains a support set and a query set. The support set
consists of K samples each from N unseen categories (K is
typically a small integer <= 10), the algorithm then has to



Fig. 6. An overview of our proposed problem setting. During training step (in
the up side figure), we have various videos frame collected from M different
scenes. We construct meta-training data sets Dtrain and apply the MAML
method to obtain a model fθ(·) with parameter θ. When the target scenes
(down-side figure), we obtain a small number of video frames from this target
scene, and produce a new model fθ′ (·) where the model’s parameters θ′ are
adapted to this rare scene.

determine which of the support set classes each query video
belongs to. Here the episodes are randomly sampled from a
larger collection of data, we call it the meta sets. The few-
shot learning problem here could be solved through learning
a distance function φ(fθ(x1), fθ(x2)), here x1 and x2 are two
video instances that drawn from Ctrain.

Model-Agnostic Meta-Learning (MAML) learns an initial-
ization for the parameters θ of a model fθ, for a new task,
a good model for that task can be learned with only a small
number of gradient steps and samples via two optimization
loops:
• Outer Loop: Updates the meta initialization of the model

parameters, which is used to make the model enable to
fast adapt to new tasks.

• Inner Loop: Task adaptation based on the meta-
initialization, it performs a few gradient updates over
the k labeled examples (the support set) provided for
adaptation.

Here, for the task Ti in support set, let θki represents the
parameter θ after k gradient updates, let θ0i = θ. In the inner
loop, during each update, we compute:

θki = θk−1i − α∇θk−1
i
L(f(Ti; θk−1i )) (1)

where α is the inner loop learning rate on weights θ,
and L is the loss on the (support set) of Ti after k-1 inner
loop updates. After totally k inner loop updates, the meta
initialization update in the outer loop is computed on Ti in
query set, the model parameters θ are then updated, which
can be formulated as:

θ = θ − β∇θ
∑

Ti∈ptrain

L(f(Ti; θki )) (2)

where β is the outer learning rate of meta-initialization weights
θ.

Fig. 7. An overview of PipeSwitch. PipeSwitch pipelines model transmission
and task execution. The example shows an inference task that only has a
forward pass in task execution.

E. Model Switching

Now that we have trained multiple models for different
weather conditions, we need an algorithm to switch between
models efficiently.

1) Challenges: The size and location of the danger zone
vary for different models. Therefore, we need a model-
switching algorithm to switch models based on the detected
scene; however, non-optimized model switching is slow and
tedious for GPUs. Research have found that methods based
on task scheduling and context switching have a huge over-
head when applied to GPUs. This is because Service Level
Objectives (SLO) must be met during the Deep Learning
(DL) inference process, which will take tens to hundreds of
milliseconds. Taking ResNet as an example, the DNN model
in the GPU is switched and preloaded until the first inference
request is completed. The average model switching time for
ResNet is several seconds [22].

2) Our Approach: We implement the Pipeswitch [22]
method to manage model switching. Pipeswitch is a pipelined
task switching method that multiplexes GPU resources. It is
observed that the DL model has a hierarchical structure, and
its reasoning task is calculated layer by layer from the front to
the back. Therefore, there is no need for the GPU to load all of
the data before starting layer-by-layer inference. Instead, the
model can infer while loading hierarchical data, just as Figure
7 shows. with Pipeswitch, the overhead of model switching
on the GPU can be dropped down to the millisecond level.

3) Optimal model-aware grouping: Specifically, the algo-
rithm uploads data at the granularity of each layer and blocks
one layer of calculation before uploading. Such an operation
is bound to bring two aspects of costs. The first is that the
amount of data varies between layers, but the cost of the layer
with a small amount of data is similar to that of the larger
layer, which is obviously not reasonable enough. The second
is the synchronization cost of calculation and transmission,
which is when the calculation knows to be calculated The
data is already in place and it takes time. Based on these
two considerations, the algorithm performs layered grouping
processing. Use pruning method to achieve. This is also



TABLE I
OVERVIEW OF DATASET.

Scenarios Daytime Rain Snow
Time 6h 1h 3h

Segments 1966 34 855
Segments length 32 frames

Frame rate 30Hz
Frame resolution 1376x776 pixels

Classes turn left & no turn left

the basis for synchronizing the flow ways and fast ways of
Slowfast.

IV. SYSTEM IMPLEMENTATION

In this section, we will describe the SafeCross framework
implementation in detail.

A. Experimental Setup

Hardware configuration: We used an NVIDIA GPU Work-
station as a roadside unit to deploy the SafeCross framework.
The device deploys Intel Xeon E5-2690 v4 and four GeForce
RTX 2080 Ti graphics cards, and the frequency is 2.6GHz.
It is equipped with 14 cores, 64GB of memory, and the
operating system is 18.04 LTS. It should be noted that, because
Pipeswitch in the model switching part cannot support multiple
GPUs processing, we only used one GPU in the experiment.

Software configuration: We implement SafeCross in
Python 3.7, and use pytorch 1.3.0 as a deep learning library
to support Pipeswitch and Slowfast. We use Cuda 10.1 par-
allel computing architecture to accelerate model training and
inference, and we use cudnn 7.6.4 for GPU acceleration of
deep neural networks. Another software environment includes
torchvision-0.4.1, scipy-1.3.2.

B. Dataset

The existing data set cannot meet the requirements of our
experiment. Because of the lack of a suitable data set, we
found a live surveillance video of a traffic intersection from
Belarus on the Internet. By collecting markers, we sorted out
the data needed for training. Below we will introduce the
production details of the dataset.

Data overview: We obtained aerial traffic intersection data
from a live monitoring of a traffic intersection in Belarus.
The live video can be accessed through the Youtube link:
https://www.youtube.com/watch?v=RIBTbuT0WkQ. As Fig-
ure 3(a), at the intersection, vehicles are allowed to go straight
and turn left at the same time. The data set we collected
contains three different weather patterns: sunny, rain, and
snow. We selected a total of 2855 segments of data with a
time span of 180 days. Table I shows the specific details of
the data.

Data processing: First, we manually divided and labeled
the videos into four different categories, based on driver
behaviors, for each weather conditions:
• Left Turn without blind area.
• No Left Turn without blind area.

• Left Turn with blind area.
• No Left Turn with blind area.
For the turn left category, we select the vehicle that is

turning left as the object of interest for segment division, and
select the end frame of the segment as the keyframe. In the
keyframe, the vehicle’s left front wheel is exactly on the lane
line. For the no left turn category, we choose vehicle waiting
to turn left as the object for segment division. Each segment
has 32 consecutive frames. If there is a big car on the opposite
side in a segment, we consider this segment to be a segment
with a blind area, otherwise it is a segment without a blind
area.

C. Implementation

Software implementation and specific settings are as fol-
lows:

Background Subtraction: The crossroad video is pro-
cessed frame by frame into 2D data with the background
removed, and each frame records the position information
of the moving object. Among them, we use mathematical
morphology algorithms to reduce noise interference. To further
reduce the interference of irrelevant data, we segmented the
middle to the upper right corner of the video frame.

Slowfast: We use 32 consecutive 2D frames for each
training case. Among them, in Slowfast’s Flow section, one
frame of data is selected for every eight frames, so a total of
4 frames are obtained. Every frame is included in Slowfast’s
Fast section, resulting in a total of 32 frames. Then, the four
frames of Slow are combined with the 32 frames of Fast to
form a new 36 frames of input data for model training. The
backbone of Slowfast r50 4x16x1 256 SafeCross, we used,
is ResNet50, and the model trained from scratch using daytime
data. We use 80% data as the training data, 10% as test data,
and 10% as validation data.

Few-shot learning: We used the daytime model as the pre-
trained model and used the Few-shot method to train the rain
model and snow model.

Pipeswitch: We only use one GPU to carry out the model
switching experiment.

V. PERFORMANCE EVALUATION

In this section, we compare and contrast the different
methods that worked and did not work.

A. Detection Methods Comparison

In order to determine the most effective detection method,
we experimented with a few that has had success on multiple
other projects. We will compare and contrast the different
techniques we used, including YOLOv3(A Machine Learning
model), tracking optical flow, and background subtraction. The
data-set we are using is a custom data-set that only includes
videos of an intersection. To compare the results of different
methods, we chose a specific scenario where there is a vehicle
attempting to make a left turn, and the driver has partially
obstructed view. In this specific scenario, there is an incoming
vehicle on the other side of the traffic in the danger(obstructed



view) zone. We will evaluate the different methods based on
if it can identify the vehicle in the danger zone or not and its
execution time.

It is important to note that all of the results are based on
the same frame.We will show a summary at the end of the
experimentation section.

We will start by re-iterating the scenario as shown in 8(a).
In this scenario, the vehicle circled in green is attempting to
make a left turn; however, the driver cannot determine if it is
safe to make that turn. This is because the driver’s view of the
traffic is partially blocked. In this scenario, there is a vehicle
in the danger zone as defined previously; therefore, the driver
should not make the left turn.

Next, we will show the results of Sparse Optical Flow,
Dense Optical Flow, YOLOv3, and Background Subtraction.
We will show whether of not each method can identify the
vehicle in the danger zone, circled in red, and each method’s
execution time.

As shown by the results of Sparse Optical Flow in Figure
8(b), this technique is not ideal. Sparse Optical Flow detects
too many edges from the environment and misses too much
of the traffic. This is partially due to noise introduced by the
low quality camera. While Sparse Optical Flow has an average
execution time of only 6.4 milliseconds per frame, it cannot
correctly identify the vehicle in the danger zone. If we were
to apply Sparse Optical Flow in this scenario, it would cause
a crash.

Next, we will demonstrate the detection results from Dense
Optical Flow, as shown in Figure 8(c). Dense Optical Flow
did successfully identify the vehicle in the danger zone;
however,the average execution time process a frame is ap-
proximately 224.20 milliseconds, an almost 40 times increase
comparing to Sparse Optical Flow.

Moving on to more modern techniques, we implemented
YOLOv3 to recognize and extract objects from the scene.
We picked YOLOv3 from the categories of object recognition
because it is one of the easiest to implement and one of the
fastest algorithms available.

As Figure 8(d) shows, YOLOv3 cannot identify the vehicle
in the danger zone. This is partially due to the distance,
angle, and low-quality of the camera; however, even after we
re-trained the weights, we cannot get better results. Adding
on to that, YOLOv3 an average execution time of 256.40
milliseconds per frame. Therefore, we did not choose YOLOv3
as our detection method.

Eventually, we dawned on a solution. For our purpose to
guide the left-turning driver, with the camera placed at such
a faraway distance, we do not necessarily need to recognize
the objects. Instead, anything that moves, or introduces pixel
changes, should be recorded. It is slightly different from
optical flow because they track edges in objects rather than
pixel changes. To see pixel changes, background subtraction is
the simplest and fastest method. With Background subtraction,
we can easily eliminate noise caused by low-quality camera;
we can easily track a change in the background; we can easily
differ between a moving vehicle and a stationary one.

TABLE II
EXECUTION TIME OF VARIOUS DETECTION METHODS.

Methods BGS Sparse OF Dense OF YOLOv3
Time 0.74ms 6.43ms 224.20ms 256.40ms

Detected Yes No Yes No

TABLE III
ACCURACY OF DIFFERENT SCENES VIDEO CLASSIFICATION.

Types Top1 acc Mean class acc
Daytime 0.9630 0.9667

Snow 0.9416 0.9510
Rain 0.8518 0.8636

The resulting image, Figure 8(e), has an average execution
time of 0.74 milliseconds per frame. This is much faster
than Dense Optical Flow, and it produces a slightly better
result. Therefore, Background subtraction is our more effective
detection method.

To conclude the results, we will demonstrate a Table II of
the execution time of each of the detection methods.

B. Accuracy of classification models

We train the video classification models on daytime, snow,
and rain, respectively. Among them, we use the daytime data
with a large amount of data to train the Slowfast basic model,
while the snow and rain models with a small amount of data
are trained through few-shot learning. Training videos are
classified into two categories, class 0 is marked as danger
to turn left, and class 1 is marked as safe to turn left. And
both classes include blind and no-blind videos. We randomly
divide the data into three parts train:val:test=8:1:1.

The results of Top 1 classification accuracy and
Mean class acc of the three models are gathered in
the table III. From the table, the Top1 accuracy of the
daytime scene of the basic model reached 0.9630, and the
Mean class acc reached 0.9667. The main reason why the
classification accuracy is so high is that the number of
classification categories is small (two classes). We also found
that the accuracy of snow and rain is lower than that of
daytime, and the rain dataset achieves the lowest accuracy, but
is still get a high result, 0.8636. The above findings indicate
that SafeCross can achieve higher accuracy classification
in daytime scenes. Rain and snow scenes can also achieve
high classification accuracy. However, to achieve more ideal
results, more training data is needed.

To verify the effectiveness of SlowFast on SafeCross
dataset, we compare it with other two famous video classi-
fication models, Convolutional 3D (C3D) [23] and temporal
segment network (TSN) [24]. C3D is one of the most famous
video classification methods, which uses SVM to classify
video. And TSN uses ResNet as the backbone, and combines
a sparse temporal sampling strategy and video-level super-
vision to enable efficient and effective learning. We com-
pare slowfast r50 4x16x1 256e, c3d sports1m 16x1x1 45e
and tsn r50 1x1x3 75e on our daytime dataset and the result
are as the Table IV shows. From it, we can find that C3D



Fig. 8. (a) Original Image (b) Failure of Sparse Optical Flow; (c) Success of Dense Optical Flow; (d) Failure of YOLOv3; (e) Success of Background
Subtraction

TABLE IV
ACCURACY OF DIFFERENT CLASSIFICATION METHODS ON DAYTIME

DATASET.

Models Top1 acc Mean class acc
slowfast r50 4x16x1 256e 0.9630 0.9667
c3d sports1m 16x1x1 45e 0.9644 0.9340

tsn r50 1x1x3 75e 0.8855 0.7538

model achieves the highest top 1 accuracy, but the slowfast got
the highest mean class accuracy, which is the most important
indicate what we want.

To verify the effectiveness of few shot learning. We carry
out the ablation study. In our experiments, we design the
model training of few shot datasets, snow and rain dataset,
with or without with few-shot learning. For these with few-
shot learning, we use the model trained by daytime dataset as
pretrain model. And for these without few shot learning, we
train them directly. Finallywe compare the result of Top1 acc
and Mean class acc of four experiments, which are shown in
the Table V. From it, we can find that both the snow and
rain datasets achieve higher Top1 acc and Mean class acc
with few shot learning method than that of without few shot
learning method, which verified the effectiveness of few shot
learning.

TABLE V
ACCURACY OF FEW SHOT LEARNING.

Experiments Top1 acc Mean class acc
snow with few shot learning 0.9416 0.9510

snow without few shot learning 0.8889 0.8648
rain with few shot learning 0.8518 0.8636

rain without few shot learning 0.5455 0.5833

C. Model Switching

In order to compare the effectiveness and real-time of
Pipeswitch in model switching, we carried out an experiment
comparing the run-time with and without Pipswitch on one
GeForce RTX 2080 Ti graphics. In detail, without Pipeswitch
means it stops one model’s task in the GPU and then starts a
new model’s task, which is also called Stop-and-start.

In the experiment, we compared three different types of
models: SafeCross, ResNet152 [25], and Inception v3 [26],
and recorded the time when the client sent a task switching
request to the GPU server and the time when the GPU
switched back to feedback and calculated the task completion
time. Among them, SafeCross chooses to switch between day
and snow models. The experimental results are shown in the
Table VI.

Experiments prove that Pipeswitch allows for much faster



TABLE VI
COMPARISON BETWEEN OF DIFFERENT MODELS SWITCHING.

Slowfast 4x16,R50 ResNet152 Inception v3
End-start 5614.75ms 4081.15ms 3612.25ms
Pipeswitch 6.06ms 5.30ms 4.32ms

model switching, and the model switching delay was reduced
to the millisecond level (less than 10ms), which is sufficient
for real-time model switching tasks. The overhead without
Pipeswitch mainly comes from the context initialization of
CUDA and the first-time library load in PyTorch [27].

D. Throughput Comparison

In order to verify the improvement of the throughput by
SafeCross in the scenes with blind zones, we counted the video
segments with blind spots from the 10 hours video data in the
daytime, rain, and snow scenes and made the statistics and
made a test set. It includes two classes. Class 0 has 32 video
segments, meaning there is a car in the blind zone and should
not turn left; class 1 has 31 video segments meaning there is
no car in the blind area and can turn left.

We use SafeCross to classify the test set data. The result
shows that the classification accuracy is 1. This means that 32
scenes with no car in blind zones are judged safe to turn left
without waiting; 31 scenes with a car are considered not to
turn left and need to wait. In the 63 scenes with blind spots
obtained by statistics, SafeCross judged 32 of them should
turn, so the traffic throughput of the left turn is significantly
increased by 32/63.

VI. DISCUSSION AND FUTURE WORK

A. Discussion

In this part we will discuss the deployment of SafeCross
and some observations:

Observation 1: For the detection of moving objects, espe-
cially the recognition of moving objects with non-traditional
viewing angles and low pixel values, methods based on
YOLOv3 and Sparse Optical Flow are not always a good
choice and mobile detection is more competent. While Dense
Optical Flow shows better results, its high execution time is
not always ideal for a fast changing scenario.

In Section 5.1, we evaluated the recognition effect of the
vehicle (Figure 8), YOLOv3 recognition has low recognition
accuracy or even omission because the camera is placed far
away from the objects and placed at a skewed angle. For
Optical Flows, due to the low quality of the camera with too
much noise, we could not generate an accurate and usable
output. Background subtraction can monitor all the moving
actions of vehicles and has the lowest execution time.

Observation 2: Although the overall effect of video classi-
fication in multi-classification is not good; when there are few
categories, such as two-class classification, higher classifica-
tion accuracy can be obtained.

In Section 5.2, We used a large amount of data to train
the two-classification model of Slowfast video classification.

The Top 1 accuracy of daytime reached 0.9630 and the
Mean class acc reached 0.9667. This is significantly higher
than the best classification accuracy of Kinetics-400 [28].
However, the accuracy of the binary classification model
trained on the video data of snow and rain scenes with a small
amount of data decreases significantly. These comprehensive
descriptions show that video classification is a good choice
when you have a large number of two-category data sets.

B. Future work

SafeCross has realized the real-time adaption danger warn-
ing, but there are still many points that can be optimized. The
areas to be improved in the future include:
• Change offline danger warning to online danger warning.

The current SafeCross is the processing and mining of
historical data. For the time being, it cannot realize online
early warning of video data.

• Expand the research scope of vehicles coming at inter-
sections. Now our data is based on the danger warning
of vehicles turning left in one direction. How to achieve
simultaneous warning in four directions requires further
research.

• Expand the research scope of blind spot. SafeCross is
an architecture to solve the blind spot problem, and the
left turn is just a specific scenario of it. Is SafeCross
suitable for blind spot pedestrian warning? Is it suitable
for highway? It is worth doing further research.

• Increase the number of extreme scenes. The data we are
using now contains three scenarios: daytime, rain, and
snow. Considering the diverse scenes of traffic intersec-
tions, model training can be carried out based on the
SafeCross architecture for each scene, but it should be
noted that the more training data, the better.

• Based on the SafeCross architecture, build prototypes
in real life, and further explore the pain points of the
SafeCross architecture based on actual applications, and
make targeted optimizations.

VII. CONCLUSION

In this paper, we introduced the SafeCross framework by
leveraging Slowfast video classification and Few-shot learning
to effectively train models to ensure the safety of drivers.
Experiments show that SafeCross is an effective implemen-
tation to ensure the safety of drivers and to increase traffic
throughput. Its design allows it to be easily implemented in
existing infrastructure and be easily scalable.

ACKNOWLEDGMENT

The authors would like to thank all the reviewers for
their helpful comments. This work is supported by the Na-
tional Natural Science Foundation of China under Grant
No.62072146, National Key RD Program of China under
Grant No.2019YFB2102101, The Key Research and De-
velopment Program of Zhejiang Province under Grant No.
2021C03187.



REFERENCES

[1] N. L. Review, “What if my car accident was caused by a blind
spot?” [EB/OL], https://www.natlawreview.com/article/what-if-my-car-
accident-was-caused-blind-spot Accessed January 31, 2022.

[2] NHTSA, “Crash factors in intersection-related
crashes: An on-scene perspective,” [EB/OL], 2010,
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811366
Accessed January 31, 2022.

[3] N. Saunier, T. Sayed, and C. Lim, “Probabilistic collision prediction for
vision-based automated road safety analysis,” in 2007 IEEE Intelligent
Transportation Systems Conference. IEEE, 2007, pp. 872–878.

[4] L. Meng, W. X. Han, and S. Ke, “Traffic conflict identification technol-
ogy of vehicle intersection based on vehicle video trajectory extraction,”
Procedia Computer Science, vol. 109, pp. 963–968, 2017.

[5] C. Park, J. S. Park, and D. Manocha, “Fast and bounded probabilistic
collision detection for high-dof trajectory planning in dynamic envi-
ronments,” IEEE Transactions on Automation Science and Engineering,
vol. 15, no. 3, pp. 980–991, 2018.

[6] J. Kim and D. Kum, “Collision risk assessment algorithm via lane-
based probabilistic motion prediction of surrounding vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 9, pp.
2965–2976, 2017.

[7] L. Tan, X. Dong, Y. Ma, and C. Yu, “A multiple object tracking algorithm
based on yolo detection,” in 2018 11th International Congress on Image
and Signal Processing, BioMedical Engineering and Informatics (CISP-
BMEI). Beijing, China: IEEE, 2018, pp. 1–5.

[8] Y. Fu, C. Li, T. H. Luan, Y. Zhang, and G. Mao, “Infrastructure-
cooperative algorithm for effective intersection collision avoidance,”
Transportation research part C: emerging technologies, vol. 89, pp. 188–
204, 2018.

[9] R. Ke, Z. Li, J. Tang, Z. Pan, and Y. Wang, “Real-time traffic flow
parameter estimation from uav video based on ensemble classifier and
optical flow,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 1, pp. 54–64, 2018.

[10] Z. Wang, X. Sun, W. Diao, Y. Zhang, M. Yan, and L. Lan, “Ground
moving target indication based on optical flow in single-channel sar,”
IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 7, pp. 1051–
1055, 2019.

[11] Y. Xin, J. Hou, L. Dong, and L. Ding, “A self-adaptive optical flow
method for the moving object detection in the video sequences,” Optik,
vol. 125, no. 19, pp. 5690–5694, 2014.

[12] G. Shi, J. Suo, C. Liu, K. Wan, and X. Lv, “Moving target detection
algorithm in image sequences based on edge detection and frame
difference,” in 2017 IEEE 3rd Information Technology and Mechatronics
Engineering Conference (ITOEC), 2017, pp. 740–744.

[13] H. Sajid and S.-C. S. Cheung, “Universal multimode background sub-
traction,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp.
3249–3260, 2017.

[14] S. Jiang and X. Lu, “Wesambe: A weight-sample-based method for
background subtraction,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 28, no. 9, pp. 2105–2115, 2017.

[15] B. Garcia-Garcia, T. Bouwmans, and A. J. R. Silva, “Background
subtraction in real applications: Challenges, current models and future
directions,” Computer Science Review, vol. 35, p. 100204, 2020.

[16] L. Li, Z. Wang, Q. Hu, and Y. Dong, “Adaptive nonconvex sparsity
based background subtraction for intelligent video surveillance,” IEEE
Transactions on Industrial Informatics, vol. 17, no. 6, pp. 4168–4178,
2020.

[17] J. Cheng, Y.-H. Tsai, S. Wang, and M.-H. Yang, “Segflow: Joint learning
for video object segmentation and optical flow,” in Proceedings of the
IEEE international conference on computer vision, 2017, pp. 686–695.

[18] P. W. Patil and S. Murala, “Msfgnet: A novel compact end-to-end deep
network for moving object detection,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 11, pp. 4066–4077, 2018.

[19] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, no. 4, pp. 681–694, 2020.

[20] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

[21] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks
for video recognition,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2019, pp. 6202–6211.

[22] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “Pipeswitch: Fast pipelined context
switching for deep learning applications,” in 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). Canada:
USENIX Association, Nov. 2020, pp. 499–514.

[23] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in Proceedings
of the IEEE international conference on computer vision, 2015, pp.
4489–4497.

[24] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in European conference on computer vision. Springer,
2016, pp. 20–36.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[26] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
2818–2826.

[27] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[28] Open-mmlab, “slowfast-model-zoo,” [EB/OL], 2022,
https://github.com/open-mmlab/mmaction2/blob/master/configs/
recognition/slowfast/README.md Accessed January 31, 2022.


