
1

Joint Optimization of Security Strength and
Resource Allocation for Computation Offloading in

Vehicular Edge Computing
Huizi Xiao, Jun Zhao, Jie Feng, Lei Liu, Qingqi Pei, and Weisong Shi, Fellow, IEEE

Abstract—Vehicular Edge Computing (VEC) is a promising
new paradigm that has attracted much attention in recent
years, which can enhance the storage and computing capabilities
of vehicular networks to provide users with low latency and
high-quality services. Due to the open access and unreliable
wireless channels, some appropriate security measures should
be implemented in the VEC to ensure information security.
However, the operation of the security mechanism dominates
supererogatory computing resources, thus affecting the perfor-
mance of VEC systems. The scarcity of computation and energy
resources of the vehicles conflicts with the requirement of tasks
for time delay and information security. In this paper, taking
the driving velocity and position of the vehicles, the number
of lanes, the model and density of the attackers, and security
strength into consideration, we formulate a max-min optimization
problem to jointly optimize offloading decision, transmit power,
task computation frequency, encryption computation frequency,
edge computation frequency, and block length to obtain optimal
secure information capacity and local computation delay. The
formulated optimization problem is a mixed integer nonlinear
programming (MINLP), which is intractable. We apply the
generalized benders decomposition (GBD)-based method to solve
it. The simulation results show that our proposed algorithms
have convergence and effectiveness and achieve fairness among
vehicles on the road.
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secure information capacity, vehicular edge computing.
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I. INTRODUCTION

With the rapid proliferation of the Internet of Things (IoT),
billions of mobile and stationary devices have been connect-
ed to achieve real-time application services. However, the
traditional cloud computing paradigm faces some significant
challenges, such as high latency and jitter [1]. Edge computing
is an emerging distributed computing paradigm that extends
the concept of cloud computing to the edge of the network,
which refers to migrating computation, communication, and
storage resources closer to the end-users to process the massive
amount of data and tasks. Low latency, reliability, high mo-
bility, and geographically distributed users are the main char-
acteristics of edge computing, making it a suitable solution to
satisfy the challenges of vehicular networks. The integration of
edge computing with vehicular networks is known as vehicular
edge computing (VEC), where the resource-constrained vehi-
cles offload latency-sensitive and computation-intensive tasks
to edge servers. By integrating information, communication,
storage, and intelligence technologies, VEC can extend the
computation capability to the vehicular network edge as well
as play an essential role in improving traffic efficiency and
enhancing road safety [2].

VEC can provide flexible computation resources and appli-
cation services on-demand, which need vehicles to transmit
necessary data and task requirements, so computation offload-
ing technology is vital. The vehicles can significantly reduce
the burden of computing and routing to improve resource
utilization by offloading tasks to edge servers along the road.
However, due to the open access, dynamic network topology,
and insecure wireless channels, there are maybe some security
risks and privacy disclosures in the data transmission process
during the offloading tasks of the vehicles. There may be
potential attackers or adversary vehicles among the vehicles
on the road. VEC is more vulnerable to threats and attacks
because of the limited resources and the lack of centralized
control compared with cellular networks [3]. There will defi-
nitely be security risks if data and tasks are transmitted in plain
information without any cryptographic measures. Therefore,
security mechanisms should be implemented in vehicular edge
environments to provide appropriate confidentiality, integrity,
authenticity, and more protection.

The pivotal issue of computation offloading in VEC is
the decision-making mechanism. The vehicle must determine
whether to offload the task to the edge server or compute
locally. If it takes more time and resources to offload tasks
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to the edge server than local execution, and the information
security is threatened, it is not worth the gain. The scarcity of
vehicle computing and wireless transmission resources also
challenges the joint optimization of efficiency and security
strength because the security schemes consume supererogatory
computational resources and cause communication overhead.
Due to the competition for limited computing and network re-
sources, there is a contradiction between resource optimization
and more robust security. For dynamic time-varying applica-
tion scenarios such as VEC, driving velocity, the density of
vehicles and attackers, and the number of lanes will all affect
the security of task offloading. Hence, the offloading decision
needs to be optimized jointly with resource allocation and se-
curity transmission under time delay and energy consumption
constraints.

Many works have focused on resource allocation and com-
putation offloading scheduling in VEC. Y. Cao et al. [4]
illustrate the concept of edge computing enabled Internet-of-
Vehicles and design a quality of experience (QoE)-based node
selection strategy to choose a proper edge node to achieve a
satisfying quality of experience on the whole. The paper [5]
proposes a framework for edge computing on the road named
autonomous vehicular edge to increase the computational
capabilities of vehicles in a decentralized manner. Based on
the Walrasian equilibrium, the paper [6] jointly analyses the
resource allocation and computation offloading to find the best
strategies for vehicles and VEC servers. A software-defined
vehicular edge computing architecture introduced in [7] to
assign a controller not only guides the vehicles’ task offloading
strategy but also determines the edge cloud resource allocation
strategy to obtain optimum. Considering a three-layer VEC
architecture, Z. Wang et al. [8] propose an online offloading
scheduling and resource allocation algorithm to improve the
system performance, which uses a game-theoretic online al-
gorithm to solve the computation task offloading scheduling
problem. There are also some works to solve the problem of
an untrusted environment and information security in VEC.
VECTrust [9] is a novel model to support the trusted resource
allocation algorithms for scientific data-intensive workflows in
VEC computing environments. A privacy-preserving vehicular
edge computing (PP-VEC) system architecture is proposed
in [10] to disturb the context information of the connect-
ed vehicles based on differential privacy technology before
uploading it to the base station for offloading decisions to
protect privacy. Only a small amount of works are devoted to
the joint optimization of resource allocation and security. B.
Mao et al. [11] propose an artificial intelligence-based adaptive
security specification mechanism for 6G IoT networks where
the devices are connected to cellular networks via different fre-
quency bands. The paper [12] establishes a unified quality-of-
service and security provisioning framework for wiretapping
cognitive radio networks. A minimum optimization problem is
formulated in [13] to weight the time delay and authentication
security level simultaneously. However, the above-mentioned
works did not consider this special scenario of the VEC
environment for joint optimization of resource allocation and
security. The papers [14] and [15] consider the utility and
security simultaneously in vehicular networks. They only use

the game theoretical approach to reach the Nash equilibrium,
and there is no joint optimization of resources and security
variables.

In the research mentioned above, there are solutions to
resource optimization and computation offloading scheduling
in VEC, and there are solutions that try to take information
security into account. However, it is rarely considered that
the particularity of the vehicular network jointly optimizes the
resource allocation and security in the computation offloading
under the constraints of time delay and energy consumption. In
order to provide an idea to the above problems of computation
offloading in vehicular edge computing, we jointly optimize
offloading decision to decide whether the vehicle offload the
tasks to the edge server, local resources to save the time and
energy of vehicles, edge computation resource to balance the
services provided by edge server, and block length to affect
the security level of transmitting frames. The contributions of
this paper are as follows

• We formulate a max-min optimization problem to jointly
optimize offloading decision, transmit power, task compu-
tation frequency, encryption computation frequency, edge
computation frequency, and block length to obtain opti-
mal secure information capacity and local computation
delay. The time delay constraint of the task takes into
account the driving velocity and position of the vehicles.

• The proposed scheme makes the most suitable offloading
decision based on the computing and communication
resources of the vehicles and the computation capacity
of the edge server, under the constraints of task execu-
tion delay and energy consumption. Hence, the overall
performance of the vehicle set on the road is optimal.
We consider the model and density of the attackers in
the vehicle set into the formulated problem.

• The formulated optimization problem is a mixed integer
nonlinear programming (MINLP), which is intractable.
We apply the generalized benders decomposition (GBD)-
based method to solve it. The problem can be decom-
posed into a primal problem and a master problem, which
provide the upper bound and the lower bound of the
original problem, respectively. These two problems can
be solved separately to obtain the optimal solution to the
original problem.

• The simulation results show that our proposed algo-
rithms have well convergence and effectiveness as well
as achieve fairness to the secure information capacity
and local computation delay among vehicles. Meanwhile,
the proposed schemes have a significant performance
advantage compared with other schemes.

The remainder of this paper is structured as follows. We
introduce the system description and formulate the max-min
optimization problem in Section II. The solution procedure of
the optimization problem is presented in Section III. Section
IV performs the simulations and results analysis of the pro-
posed algorithms. We conclude this paper in Section V.

II. SYSTEM DESCRIPTION

This section describes the system scenario and security
quantification for local computation in vehicles and compu-
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Fig. 1: The system scenario.

tation offloading to edge servers in VEC. Then, the whole
process of local computation and offloading is modeled. Fi-
nally, the formal mathematical problem is formulated.

A. System Scenario
Every vehicle on the road has computational tasks that need

to be handled, as shown in Fig.1, such as map recognition and
navigation driving. The applications with strict latency and
security requirements should be computed locally or offloaded
to an edge server instead of being passed to a distant cloud
center. However, offloading tasks out means more significant
security risks and privacy breaches. Other vehicles on the
road can access information within the communication range
of the sending vehicle, so the appropriate encryptions are
needed to protect the data in the offloading transmission. We
consider an edge server covering a set of moving vehicles on
a busy city road and can provide computation services for
offloading tasks. Assume that there are I driving vehicles,
which can be represented as the set I = {1, 2, 3, ..., I}, and
they connect with the edge server by TCP/IP protocol. There
are sufficient reasons for vehicles to resort to the TCP/IP
protocol, which is elaborated in the paper [16]. When sending
vehicle offloads tasks, the data may be received by other
malicious vehicles on the road, causing security risks, so
it is necessary to protect the information using the mature
and practical block cipher. Compared with other asymmetric
encryption, symmetric encryption algorithms are simple, fast,
efficient, and suitable for vehicular edge computing scenarios.

1) Computation Offloading in Vehicular Edge Computing:
Many works [17] have used actual traffic data to be sure
that the vehicle velocities obey a Gaussian distribution in the
case of steady-state traffic conditions, such as free-flow and
congestion, that have been accepted in vehicle traffic theory. In
general, each driver is free to choose their comfortable driving
speed according to the situation, so the velocities of different
vehicles are independently and identically distributed (i.i.d.)
[18]. In order to make each driving speed to the regular driving

velocity range and thus avoid dealing with negative speeds or
even values close to zero, we shall make the vehicle speed fol-
low the truncated Gaussian distribution [19]. Since there are so
many edge servers along the road in which the communication
range is confined, and the vehicle velocity changes small in
the short distance, each vehicle keeps its assigned speed vi in
an edge server coverage [20]. The minimum and maximum
velocity of the truncated Gaussian distribution are represented
vmin and vmax, separately. Therefore, we have the probability
density function of the velocity,

f(vi) =


2 exp(

−(vi−µ)2

2σ2 )
√
2πσ2

(
erf

(
vmax−µ√

2σ2

)
−erf

(
vmin−µ√

2σ2

)) ,
vmin ≤ vi ≤ vmax,

0, otherwise,

(1)

where µ is the average velocity, σ2 is the variance, and
erf(x) = 2√

π

∫ x

0
e−η2

dη is the Gauss error function. By
denoting the coverage length of the edge server on the road
as L and representing the position of the vehicle entering the
coverage as li, the remaining residence time of the driving
vehicle in the current edge server coverage can be obtained

τi =
L− li
vi

. (2)

The residence time can be used as the maximum delay for
task execution to ensure integrity and timeliness.

Let pi be the transmission energy per second of vehicle
i, i.e., the transmit power. The channel transmission rate Ri

depends on the pi and connection state αi of vehicle i as in
[21], [22]

Ri = αi
√
pi , (3)

where αi represents the state of supported vehicular connec-
tion and can be defined as

αi ,
K0

√
Zi

RTT
, (4)
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where Zi is the mobility function of the vehicle served by the
considered TCP/IP mobile connection, which can be modeled
by a time-correlated log-distributed sequence [23]. K0 is a
positive constant to capture the performance of the forward
error correction-based error-recovery system in the physical
layer. RTT is the round-trip-time of the wireless connection,
which can be evaluated through Jacobson’s formula.

2) Security Quantification with an Adversary Model: The
security level of the encryption schemes can be measured by
cryptographic scheme factors themselves, such as the difficulty
of the mathematical problems and the length of the secret key.
There may be different shortcut attacks against corresponding
encryption algorithms, making it difficult to form a universal
security quantification. On the other hand, in addition to
being based solely on encryption schemes, the adversary’s
behavioral capabilities can be measured to represent security
levels. Specifically, the ability of an attacker to crack a cipher
of a certain block length is related to the probability mass
function (PMF). The parameter “attacker strength” denoted
by σ has the dimension of block length, and the probability
of cracking a cipher of block length N is represented as
Pr(σ = N). An attacker with strength σ is able to crack
any block cipher for length ≤ σ within the available time
of the encrypted information with a cost less than its value.
Hence, Pr(σ = N) is also the probability that the frame
would be cracked by the adversary, which leads to the leakage
of the transmitted frame. The vulnerability of the message
can be viewed as the probability of the frame leakage, which
combined with the known probability theory then given by

Φ = Pr(σ = N) = Pr(σ ≥ N). (5)

Let 1
Nmax−Nmin

describe a vehicle adversary’s strength,
which applies a linear adversary strength model in [24]. Nmax

and Nmin are the maximum and minimum block lengths
available in the cryptosystem, respectively. This means that
the probability of an adversary vehicle successfully attacking a
block cipher of length Ni from vehicle i is uniformly distribut-
ed if it is one of the receivers within the communication range
of the sending vehicle i. We define Nmin and Nmax frame
length equal to 0 and Nf , respectively. Thus the vulnerability
of the frames from i ∈ I is given by

Φi = Pr(σ ≥ Ni) =
Nmax −Ni

Nmax −Nmin
=
Nf −Ni

Nf
, (6)

which has an inverse relation to security level. The reason is
that the lower the vulnerability of the frame means the higher
the security level. Thus, the information security is defined as
1− Φ. However, the data offloaded by vehicle i may also be
received by adversary vehicles, and the information security
level also depends on the number of adversary vehicles within
the communication range. Therefore, the security level of a
frame attacked by nei attackers is (1 − Φi)

ne
i . The security

strength of vehicle i offloading one block to the edge server
can be obtained

Si = (1− Φi)
ne
i =

(Ni

Nf

)ne
i

. (7)

According to the paper [25], the vehicle density is denoted as
γ = Nl

3vmax
by using the traffic model, where Nl is the number

of lanes on the road. Thus, the number of attacker vehicles nei
is roughly given by

nei = πd2i ργ =
πd2i ρNl

3vmax
, (8)

where di is the coverage range radius of the sending vehicle
i, and ρ vehicles/vehicle represents attackers’ density. If the
vehicle decides to offload its tasks, a node utility model in [14]
is used to jointly optimize QoS and security, which utilizes
measuring information [26] to formulate. The utility model of
vehicle i can be expressed by the secure information capacity

Ui =
Ri

8Ni
× log2(8Ni)× Si, (9)

where Ri

8Ni
is the number of transmitted encryption blocks per

second. The information capacity of each encryption block is
log2(8Ni), so the total information capacity of the transmitted
blocks per second is induced as Ri

8Ni
× log2(8Ni). Si is the

security strength per block given in (7). In this way, the above
secure information capacity is created, which can be a part of
the optimization goal.

B. Computation Mode Selection

There are two alternative computation modes available for
vehicles. The offloading decision of vehicle i is denoted as
xi ∈ {0, 1}, where “1” represents that the vehicle decides
to process the computation task locally and “0” expresses
offloading the task to the edge server.

• Local computing: xi = 1 means it is a local computation
where the data does not leave the vehicles. So, the
task does not need to be encrypted to ensure secure
transmission, which requires processing the task directly
with the on-board processors.

• Edge computing: xi = 0 means that it is an offloading
computation, and the data needs to be transferred to
the edge server. Therefore, the vehicle needs to encrypt
the data to ensure a certain transmission security level.
Then the task is performed by the edge server. Compared
to uplink transmission and encryption for the vehicle,
backhaul and decryption at the edge server are negligible.

The specific details are described as follows
1) Local Computation in Vehicles: Let the data size of the

task be Di and set the average number of CPU cycles required
to process one bit to qci . Then the total CPU cycles to process
the task are represented as Diq

c
i . By denoting the local task

computation frequency f ci , the time needed to process the task
for local computation in vehicle i can be obtained

T c
i =

Diq
c
i

f ci
. (10)

According to [27], the computation power of the on-board
CPU to process task can be represented as pci = kif

c
i
3.

Therefore, the energy consumption can be given by

Ec
i = pciT

c
i = kiDiq

c
i f

c
i
2, (11)
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where ki is the effective switched capacitance based on the
chip architecture [28]. By applying dynamic voltage and
frequency scaling (DVFS) technology, we can adjust the
computation frequency and supply voltage to minimize energy
consumption.

2) Computation Offloading to Edge Server: If vehicle i
decides to offload the task to the edge server for execution, an
encryption scheme is required to protect the transmitted data,
and applying block cipher does not increase the transmitted
data size, so the data size still is Di. Let the average number
of CPU cycles required to encrypt one bit in the vehicle be qeni
and process task one bit in the edge server be qei . By denoting
the encryption computation frequency feni in the vehicle and
the edge computation frequency fei in the edge server, the time
needed to encrypt is Diq

en
i

fen
i

and needed to process for the edge

server is Diq
e
i

fe
i

. The vehicle i requires to transmit data to the
edge server, which the time it takes is Di

Ri
. Thus, the total time

to offload and process task is

T e
i =

Diq
en
i

feni︸ ︷︷ ︸
encryption delay

+
Di

αi
√
pi︸ ︷︷ ︸

transmission delay

+
Diq

e
i

fei︸ ︷︷ ︸
processing delay

.

(12)
The computation power of the on-board CPU to encrypt data
is peni = kif

en
i

3, just like section II-B1. Therefore, the total
energy consumption of vehicle i to offload the task is

Ee
i = kiDiq

en
i feni

2︸ ︷︷ ︸
encryption consumption

+
Di

√
pi

αi︸ ︷︷ ︸
transmission consumption

. (13)

C. Problem Formulation

The vehicle i can choose the offloading decision x =
(x1, x2, · · · , xI) based on its own and the edge server’s
capacity and security under the latency and energy con-
sumption constraints of the task. Meanwhile, the transmit
power p = (p1, p2, · · · , pI), the task computation frequency
fc = (f c1 , f

c
2 , · · · , f cI ), the encryption computation frequency

fen = (fen1 , fen2 , · · · , fenI ) of vehicles, the edge computation
frequency fe = (fe1 , f

e
2 , · · · , feI ) allocated to each vehicle

by edge server, and the block length N = (N1, N2, · · · , NI)
of the implemented block cipher can be jointly optimized to
achieve the optimum. If the vehicle chooses local computation,
i.e., xi = 1, the latency can be the minimum optimization
objective. Otherwise, the vehicle chooses to offload to the
edge server, i.e., xi = 0, the transmission security information
capacity as the maximum optimization objective. Therefore,
the maximum optimization objective can be written as follows

Oi = (1− xi)ϖ1Ui − xiϖ2T
c
i , (14)

where ϖ1 and ϖ2 are the scaling factors to merge the two
parts into one objective formula to represent the target value
within a reasonable range. However, there are I vehicles
in the set on the road section. The whole system should
be considered optimal, as well as the consumption between
vehicles is supposed not to be significantly different, which
needs to be balanced. We can achieve this by solving for the

maximization of the minimum objective value in the vehicle
set. Therefore, the final formulation can be mathematically
expressed by

max
x,p,fc,fen,fe,N

min
i∈I

Oi

s.t. (C1) : xi ∈ {0, 1}, ∀i ∈ I,
(C2) : xiT

c
i + (1− xi)T

e
i ≤ τi, ∀i ∈ I,

(C3) : xiE
c
i + (1− xi)E

e
i ≤ Ei, ∀i ∈ I,

(C4) : 0 ≤ f ci , f
en
i ≤ F loc

i , ∀i ∈ I,

(C5) :
∑I

i=1
fei ≤ F e,

(C6) : 0 ≤ pi, 0 ≤ fei , ∀i ∈ I,
(C7) : 0 ≤ Ni ≤ Nf , Ni ∈ N+, ∀i ∈ I,

(15)
where N+ represents the set of positive integers. Ei in (C3),
F loc
i in (C4), and F e in (C5) are the maximum energy

consumption of vehicle i, the maximum local computation fre-
quency for vehicle i, and the maximum computation frequency
of the edge server, respectively. (C1) indicates the vehicle
decides whether to offload the task to the edge server. (C2)
represents that there is a maximum delay for task completion
whether the task is executed locally or offloaded to the edge
server. (C6) restricts the edge computation frequency to be
positive. (C7) limits the transmission data block length.

First of all, to solve the problem efficiently, we represent
the problem (15) in the epigraph form to transform the max-
min problem into a maximum problem by introducing a new
variable ζ. Then, the maximum problem can be transformed to
a common and standard minimized form by letting f0 = −ζ
as follows

min
ζ,x,p,fc,fen,fe,N

f0

s.t. (C1), (C2), (C3), (C4), (C5), (C6), (C7),

(C8) : ζ ≤ Oi, ∀i ∈ I.
(16)

The formulated problem is intractable, which is a MINLP. A
GBD-based method can be applied to solve it.

III. SOLUTION OF THE FORMULATED PROBLEM

The GBD method can be used to solve MINLP, i.e., extreme
value problems that contain both integers and continuous
variables, which uses the idea of a cutting plane to build
an adequate solution representation. Specifically, the GBD
method splits the original optimization problem into a master
problem and a primal problem, which subtly lies in the
introduction of complicating variables. After fixing the com-
plicating variables, the remaining primal problem becomes
relatively easy. Then, the extremum set of the master problem
and the set of making the primal problem has a feasible
solution are expressed appropriately using the cutting plane
approach. We decompose the transformed problem (16) into a
primal problem and a master problem, which are the convex
optimization to obtain continuous variables and the mixed
integer linear programming (MILP) to obtain discrete integer
variables separately. The optimal value of the primal problem
provides the upper bound of the original problem, while the
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optimal value of the master problem provides the lower bound.
The two problems iterate over each other until the method
converges. The specific details are described as follows

A. Primal Problem
For the given integer variables x and N , the remaining vari-

ables optimization is considered our primal problem, which is
expressed as follows

min
ζ,p,fc,fen,fe

f0

s.t. (C2), (C3), (C4), (C5), (C6), (C8).
(17)

The GBD method requires the dual problem of the primal
problem, which satisfies Slater’s condition and strong duality,
to solve for the optimal value. The problem is a convex
one, as evidenced in Appendix A. We can represent the
Lagrangian dual problem in (18) with zero dual gap to obtain
the optimal solution of the primal problem by introducing
the dual variable set Ξ = {λ,µ,β,ϕ, φ,ψ}. We have
λ = {λ1, λ2, · · · , λI} ≽ 0, µ = {µ1, µ2, · · · , µI} ≽ 0,
β = {β1, β2, · · · , βI} ≽ 0, ϕ = {ϕ1, ϕ2, · · · , ϕI} ≽ 0,
φ ≥ 0, and ψ = {ψ1, ψ2, · · · , ψI} ≽ 0 corresponding to the
constraints (C2), (C3), (C4), (C5), (C8) in (17), respectively.

G(Ξ) = min
ζ,0≼{p,fc,fen,fe}

L(f0,p,fc,fen,fe,Ξ), (18)

where L(f0,p,fc,fen,fe,Ξ) is the Lagrangian function
represented in (19) as follows
L(f0,p,fc,fen,fe,Ξ) = f0 + f1(p,f

c,fen,fe,Ξ), (19)

and
f1(p,f

c,fen,fe,Ξ)

=
I∑

i=1

λi

(
xi
Diq

c
i

fc
i

+ (1− xi)
(Diq

en
i

fen
i

+
Di

αi
√
pi

+
Diq

e
i

fe
i

)
− τi

)

+
I∑

i=1

µi

(
xikiDiq

c
i f

c
i
2 + (1− xi)

(
kiDiq

en
i fen

i
2 +

Di
√
pi

αi

)
− Ei

)

+
I∑

i=1

βi

(
fc
i − F loc

i

)
+

I∑
i=1

ϕi

(
fen
i − F loc

i

)
+ φ

( I∑
i=1

fe
i − F e

)

+
I∑

i=1

ψi

(
ζ − (1− xi)ϖ1

αi
√
pi

8Ni
× log2(8Ni)×

(Ni

Nf

)ne
i

+ xiϖ2
Diq

c
i

fc
i

)
.

(20)

1) Feasible Solution: When the primal problem (17) is
feasible for the given offloading decision and block length, by
applying the Karush-Kuhn-Tucker (KKT) conditions, we can
obtain the optimal solution structure of the transmit power p,
the task computation frequency fc, the encryption computa-
tion frequency fen, and the edge computation frequency fe.

(i) The optimal solution structure of the transmit power
We take the partial derivatives of L(f0,p,fc,fen,fe,Ξ)

in (19) with respect to variable pi and make it equal to 0.
∂L(f0,p,fc,fen,fe,Ξ)

∂p∗i

=

(
µiDi − ψiϖ1α

2
i

log2(8Ni)

8Ni

(Ni

Nf

)ne
i

)
pi − λiDi = 0.

(21)

So, we get the optimal structure of the transmit power as
follows

p∗i =
(1− xi)λiDi

µiDi − ψiϖ1α2
i
log2(8Ni)

8Ni

(
Ni

Nf

)ne
i
. (22)

(ii) The optimal solution structure of the task computation
frequency

We take the partial derivatives of L(f0,p,fc,fen,fe,Ξ)
in (19) with respect to variable f ci and make it equal to 0.

∂L(f0,p,fc,fen,fe,Ξ)

∂f ci
∗

= 2µikiDiq
c
i f

c
i
3 + βif

c
i
2 −Diq

c
i (ψiϖ2 + λi) = 0.

(23)

Let ∆ = 3Diq
c
i

3
√
µ2
i k

2
i (ψiϖ2 + λi), Y1 = β3

i − 2∆3 +
3µikiDiq

c
i

√
12Diqci (ψiϖ2 + λi)(∆3 − β3

i ), Y2 = β3
i −2∆3−

3µikiDiq
c
i

√
12Diqci (ψiϖ2 + λi)(∆3 − β3

i ), and G = 1 −
2∆3

β3
i

, we can get the optimal structure of the task computation
frequency as follows when xi = 1,

f ci
∗ =


−βi−( 3

√
Y1+

3
√
Y2)

6µikiDiqci
, βi ∈ (0,−( 3√Y1 + 3√Y2)]∩(0,∆),

∆3

6µikiDiqciβ
2
i
, βi = ∆,

βi(cos
arccosG

3 +
√
3 sin arccosG

3 −1)

6µikiDiqci
, βi > ∆,

no solution, otherwise.
(24)

(iii) The optimal solution structure of the encryption com-
putation frequency

Similar to the task computation frequency, we can get the
equation of the encryption computation frequency as follows

∂L(f0,p,fc,fen,fe,Ξ)

∂feni
∗

= 2µikiDiq
en
i feni

3 + ϕif
en
i

2 −Diq
en
i λi = 0.

(25)

Let ∆̄ = 3Diq
en
i

3
√
µ2
i k

2
i λi, Ȳ1 = ϕ3i − 2∆̄3 +

3µikiDiq
en
i

√
12Diqeni λi(∆̄3 − ϕ3i ), Ȳ2 = ϕ3i − 2∆̄3 −

3µikiDiq
en
i

√
12Diqeni λi(∆̄3 − ϕ3i ), and Ḡ = 1 − 2∆̄3

ϕ3
i

, so
the optimal structure of the encryption computation frequency
can be obtained as follows when xi = 0.

feni
∗ =



−ϕi−(
3
√

Ȳ1+
3
√

Ȳ2)
6µikiDiqeni

, ϕi ∈ (0,−( 3
√

Ȳ1 + 3
√

Ȳ2)]∩(0, ∆̄),
∆̄3

6µikiDiqeni ϕ2
i
, ϕi = ∆̄,

ϕi(cos
arccos Ḡ

3 +
√
3 sin arccos Ḡ

3 −1)

6µikiDiqeni
, ϕi > ∆̄,

no solution, otherwise.
(26)

(iv) The optimal solution structure of the edge computation
frequency

Similar to the transmit power, we can get the equation of
the edge computation frequency as follows

∂L(f0,p,fc,fen,fe,Ξ)

∂fei
∗ = −λi(1− xi)

Diq
e
i

fei
2 + φ = 0.

(27)
Thus, the optimal structure of the edge computation frequency
can be obtained as follows

fei
∗ =

√
(1− xi)λiDiqei

φ
. (28)



7

Obviously, once we get the dual variables substituted into
equations (22), (24), (26), and (28), we can find the optimal
solution to the primal problem. The Lagrange dual variables
set Ξ can be obtained by solving the following problem,

max
Ξ

G(Ξ)

s.t. Ξ = {λ,µ,β,ϕ, φ,ψ} ≽ 0.
(29)

The subgradient projection method can be applied to generate
dual variables iteratively. The iterative equations are shown
below.

λi(t+ 1) = [λi(t)−m(t)▽ λi(t)]
+,

µi(t+ 1) = [µi(t)− n(t)▽ µi(t)]
+,

βi(t+ 1) = [βi(t)− k(t)▽ βi(t)]
+,

ϕi(t+ 1) = [ϕi(t)− i(t)▽ ϕi(t)]
+,

φ(t+ 1) = [φ(t)− j(t)▽ φ(t)]+,

ψi(t+ 1) = [ψi(t)− o(t)▽ ψi(t)]
+,

(30)

where [h]+
△
= max{0, h}, t is the subscript of the number

of iterations, m(t), n(t), k(t), i(t), j(t) and o(t) are small
positive step size. A set of subgradients of G(Ξ) can be given
by Theorem 1 in paper [20], which can be represented as
follows and proofed in Appendix B.

▽λi = xi
Diq

c
i

f ci
∗ + (1− xi)

(Diq
en
i

feni
∗ +

Di

αi
√
pi∗

+
Diq

e
i

fei
∗

)
− τi,

∀i ∈ I,

▽µi = xikiDiq
c
i f

c
i
∗2 + (1− xi)

(
kiDiq

en
i feni

∗2 +
Di

√
pi∗

αi

)
− Ei, ∀i ∈ I,

▽βi = f ci
∗ − F loc

i , ∀i ∈ I,
▽ϕi = feni

∗ − F loc
i , ∀i ∈ I,

▽φ =
∑I

i=1
fei

∗ − F e,

▽ψi = ζ − (1− xi)ϖ1
αi
√
pi∗

8Ni
log2(8Ni)

(Ni

Nf

)ne
i

+ xiϖ2
Diq

c
i

f ci
∗ , ∀i ∈ I.

(31)
The Lagrangian dual variables and the optimized solutions
iterate over each other as described in Algorithm 1, and finally
converge to the optimal solution of the primal problem. Hence,
the optimality Benders cut can be added to the master problem
at this iteration.

2) Infeasible Solution: There may not be a feasible solution
to the primal problem (17). We formulate the following slack
primal problem

min
ζ,p̂,f̂c, ˆfen,f̂e,Ĥ,Q̂,Ŷ

I∑
i=1

Ĥi + Q̂i + Ŷi

s.t. (Ĉ2) : xiT
c
i + (1− xi)T

e
i ≤ τi + Ĥi, ∀i ∈ I,

(Ĉ3) : xiE
c
i + (1− xi)E

e
i ≤ Ei + Q̂i, ∀i ∈ I,

(C4), (C5), (C6),

(Ĉ8) : ζ ≤ Oi + Ŷi, ∀i ∈ I,
(32)

Algorithm 1 Algorithm for Solving the Primal Problem

Initialization:
• Initialize the dual variables λ(0), µ(0), β(0), ϕ(0),
φ(0), ψ(0), maximum number of iterations tmax and
the specified precision ϵ.

• Let t = 0.
Iteration:

1: while t ≤ tmax do
2: Substitute the dual variables λ(t), µ(t), β(t), ϕ(t),

φ(t), ψ(t) into (22), (24), (26), and (28) to obtain pi(t),
f ci (t), f

en
i (t), and fei (t), respectively.

3: Update new dual variables λ(t+1), µ(t+1), β(t+1),
ϕ(t + 1), φ(t + 1), ψ(t + 1) by using (30) and (31),
according to the new pi(t), f ci (t), f

en
i (t), and fei (t).

4: if ||λ(t + 1) − λ(t)|| < ϵ, ||µ(t + 1) − µ(t)|| < ϵ,
||β(t+1)−β(t)|| < ϵ, ||ϕ(t+1)−ϕ(t)|| < ϵ, ||φ(t+
1)− φ(t)|| < ϵ, and ||ψ(t+ 1)−ψ(t)|| < ϵ
then

5: p∗i = pi(t), f ci
∗ = f ci (t), f

en
i

∗ = feni (t), and fei
∗ =

fei (t).
6: break.
7: else
8: t = t+ 1.
9: end if

10: end while
Output: p∗, fc∗, fen∗, fe∗.

where Ĥ = {Ĥ1, Ĥ2, · · · , ĤI}, Q̂ = {Q̂1, Q̂2, · · · , Q̂I}, and
Ŷ = {Ŷ1, Ŷ2, · · · , ŶI} are the slack variables with respect to
the constraints (C2), (C3), and (C8) in primal problem (17),
respectively. The introduced variables are linear and do not
affect the convexity of the original primal problem. So, we
can still use a similar method to obtain the optimal solution
of problem (32). By introducing the new dual variables set
Ξ̂ = {λ̂, µ̂, β̂, ϕ̂, φ̂, ψ̂}, the Lagrangian function of the new
problem can be expressed as

L̂(ζ, p̂, f̂c, ˆfen, f̂e, Ĥ, Q̂, Ŷ , Ξ̂) =

I∑
i=1

(Ĥi + Q̂i + Ŷi)+

I∑
i=1

λ̂i

(
xi
Diq

c
i

f̂c
i

+ (1− xi)
(Diq

en
i

ˆfen
i

+
Di

αi

√
p̂i

+
Diq

e
i

f̂e
i

)
− τi − Ĥi

)

+

I∑
i=1

µ̂i

(
xikiDiq

c
i f̂

c
i

2
+ (1− xi)

(
kiDiq

en
i

ˆfen
i

2
+
Di

√
p̂i

αi

)
− Ei − Q̂i

)
+

I∑
i=1

β̂i

(
f̂c
i − F loc

i

)
+

I∑
i=1

ϕ̂i

(
ˆfen
i − F loc

i

)

+ φ̂

( I∑
i=1

f̂e
i − F e

)
+

I∑
i=1

ψ̂i

(
ζ − (1− xi)ϖ1

αi

√
p̂i

8Ni
× log2(8Ni)

×
(Ni

Nf

)ne
i
+ xiϖ2

Diq
c
i

f̂c
i

− Ŷi

)
.

(33)
For the given slack variables Ĥ , Q̂, and Ŷ , after obtaining

the optimal solution ˜(22), ˜(24), ˜(26), ˜(28) and iteration steps
˜(30), ˜(31) by using the same approach in Section III-A1, the

variables p̃∗, f̃c
∗
, ˜fen

∗
, f̃e

∗
can be acquired by calling the

variant of Algorithm 1. The variant of Algorithm 1 refers
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to replacing ˜(22), ˜(24), ˜(26), ˜(28), ˜(30), and ˜(31) with
the corresponding (22), (24), (26), (28), (30), and (31) in
Algorithm 1, and the rest of the logic and flow is the same.
Then, we obtain the new slack variables given by

Ĥi = xiT
c
i + (1− xi)T

e
i − τi,

Q̂i = xiE
c
i + (1− xi)E

e
i − Ei,

Ŷi = ζ −Oi.

(34)

The idea of the block coordinate descent algorithm can be
applied here to get the final optimal solution p̂∗, f̂c

∗
, ˆfen

∗
,

f̂e
∗

of the slack problem (32) by calling Algorithm 2.

Algorithm 2 Algorithm for the Infeasible Solution of the
Primal Problem
Initialization:

• Initialize the slack variable Ĥ(0), Q̂(0), and Ŷ (0).
• Set the maximum number of iterations lmax and the

specified precision ε.
• Let l = 1.

1: Allocate the variables p̃∗(0), f̃c
∗
(0), ˜fen

∗
(0), and

f̃e
∗
(0) by calling the variant of Algorithm 1 based on

Ĥ(0), Q̂(0), and Ŷ (0).
2: Substitute p̃∗(0), f̃c

∗
(0), ˜fen

∗
(0), and f̃e

∗
(0) into (34)

to obtain the new slack variables Ĥ(1), Q̂(1), and Ŷ (1).
Iteration:

3: while l ≤ lmax do
4: Compute p̃∗(l), f̃c

∗
(l), ˜fen

∗
(l), and f̃e

∗
(l) by calling

the variant of Algorithm 1 based on Ĥ(l), Q̂(l), and
Ŷ (l).

5: Substitute p̃∗(l), f̃c
∗
(l), ˜fen

∗
(l), and f̃e

∗
(l) into (34)

to obtain Ĥ(l + 1), Q̂(l + 1), and Ŷ (l + 1).
6: if |Ĥ(l + 1)− Ĥ(l)| ≤ ε, |Q̂(l + 1)− Q̂(l)| ≤ ε, and

|Ŷ (l + 1)− Ŷ (l)| ≤ ε
then

7: p̂∗ = f̃c
∗
(l), f̂c

∗
= f̃c

∗
(l), ˆfen

∗
= ˜fen

∗
(l), and

f̂e
∗
= f̃e

∗
(l)

8: break.
9: end if

10: l = l + 1.
11: end while
Output: p̂∗, f̂c

∗
, ˆfen

∗
, f̂e

∗
.

Therefore, the optimal solution of the slack primal problem,
which is an infeasible solution to the original primal problem,
can form a feasibility Benders cut added to the master problem
at this iteration.

B. Master Problem

Depending on whether the primal problem (17) is feasible
or not, we denote the number of feasible solutions as Kf and
the number of infeasible solutions as KI . They add optimality

cuts and feasibility cuts to the master problem, respectively.
Therefore, we can represent the master problem as follows

min
x,N ,y0

y0

s.t. (C1), (C7),

L 1(x,N ,Ξkf

) ≤ y0, k
f = 1, 2, · · · ,Kf ,

L 2(x,N , Ξ̂kI

) ≤ 0, kI = 1, 2, · · · ,KI ,

(35)

where

L 1(x,N ,Ξkf

) = min
ζ,p,fc,fen,fe

f0 + f1(p,f
c,fen,fe,Ξkf

),

(36)
and

L 2(x,N , Ξ̂kI

) = min
p̂,f̂c, ˆfen,f̂e

f1(p̂, f̂c, ˆfen, f̂e, Ξ̂kI

). (37)

The variables p, fc, fen, fe, Ξkf

in (36) can derive from
the primal solution and its dual solution to problem (17). As
well as the variables p̂, f̂c, ˆfen, f̂e, ΞkI

in (37) can derive
from the slack primal solution and its dual solution to problem
(32). The variables to be solved in the master problem (35)
are x and N . By analyzing the master problem, we know that
solving for N in the master problem is equivalent to solving
for N under constraint (C7) when the following function takes
a maximum value.

f(Ni) = (1− xi)ϖ1

αi
√
pi

8Ni
log2(8Ni)

(Ni

Nf

)ne
i

. (38)

The procedure for finding the optimal solution of function
f(Ni) is shown in Appendix C. So, if xi = 0, we can obtain
the optimal block length as follows

Ni
∗ =

{
round(2

1
(1−ne

i
) ln 2

−3
), 0 ≤ nei<1,

Nf , nei ≥ 1,
(39)

where round(·) indicates rounding. The optimal solution is
consistent with common sense. When an adversary vehicle
may be present in the communication range of the sending
vehicle, the sender needs to determine the transmission block
length based on the probability of adversary presence to ensure
a comparable level of security. When there is definitely one or
more adversaries in the communication range of the sending
vehicle, the sending vehicle will adjust its transmission block
length to the maximum to try its best to ensure security
strength.

The only variable that needs to be determined is x up to
now. When there is a feasible solution to the primal problem
(17) for this iteration, we substitute xi = 1 and xi = 0 for each
vehicle i into function L 1(x,N ,Ξkf

) to obtain the function
values L 1

i0 and L 1
i1, then perform a simple comparison. If

L 1
i0 ≤ L 1

i1, xi is set to 0. Otherwise, xi is set to 1. When
there is an infeasible solution to the primal problem (17) for
this iteration, we substitute xi = 1 and xi = 0 for each vehicle
i into function L 2(x,N , Ξ̂kI

) to obtain the function values
L 2

i0 and L 2
i1, then perform a simple comparison. If L 2

i0 ≤
L 2

i1, xi is set to 0. Otherwise, xi is set to 1. With the above
analysis and equation (39), we obtain the optimal solution of
the master problem (35).
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Algorithm 3 The Generalized Benders Decomposition
Method to Solve Problem (16)

Initialization:
• Initialize the integer variables x(0) and N(0).
• Set the maximum number of iterations mmax, the

specified precision ι.
• Let m = 0.

1: Set LB(0) = −∞, UB(0) = +∞, ϱ = ι.
Iteration:

2: while m ≤ mmax and ϱ ≥ ι do
3: Solve the primal problem (17) for the given x(m) and

N(m).
4: if the primal problem (17) is feasible then
5: Obtain the p(m), fc(m), fen(m), fe(m), Ξ(m),

and f0(m).
6: Update UB(m+ 1) = min{UB(m), f0(m)}.
7: if UB(m+ 1) = f0(m) then
8: p

′
= p(m), fc

′
= fc(m), fen

′
= fen(m),

fe
′
= fe(m), x

′
= x(m) and N

′
=N(m).

9: end if
10: else
11: Solve the slack primal problem (32) to obtain p̂(m),

f̂c(m), ˆfen(m), f̂e(m), and Ξ̂(m).
12: end if
13: Solve the master problem (35) to obtain x(m + 1),

N(m+ 1) and y0(m+ 1).
14: Update LB(m+ 1) = y0(m+ 1).
15: Update ϱ = |UB(m+1)−LB(m+1)

LB(m+1) |.
16: m = m+ 1.
17: end while
Output: p∗ = p

′
, fc∗ = fc

′
, fen∗ = fen

′
, fe∗ = fe

′
,

x∗ = x
′
, N∗ =N

′
.

C. Generalized Benders Decomposition Algorithm

The optimal value obtained in the primal problem (17) is
the performance upper bound of the problem (16), which is
represented as UB. And the optimal value obtained in the
master problem (35) is the performance lower bound of the
problem (16), which is represented as LB. The optimality
Benders cuts and feasibility Benders cuts are continuously
added to the master problem with the number of iterations. The
search area for the optimal global solution gradually decreases.
The generalized benders decomposition method to solve the
problem (16) is expressed in Algorithm 3.

The optimal value of the problem (16) can be obtained when
the gap between UB and LB reaches a preset threshold ι
or the number of iterations reaches a maximum mmax. The
optimal value of the maximum problem can be recovered from
the optimal value of the problem (16) by ζ = −f0.

IV. SIMULATION RESULTS AND ANALYSIS

This section performs the simulation of the algorithms and
the analysis of the experimental results. Firstly, we introduce
the environment and parameter settings for the experiments.
Then, the convergence and feasibility of the algorithms are

verified. Finally, we perform the performance analysis of the
algorithms.

TABLE I: Parameter settings in the simulation

Parameter Meaning Value

vmin/vmax Minimum / Maximum Speed [2, 24] m/s [20]

µ Mean Speed 13 m/s [20]

σ Standard Deviation of Speed 5 [20]

L Coverage Diameter of Edge Server 100 m

αi State of Vehicular Connection [3, 6]×106

Nf Maximum Block Length 64

ρ Density of Attackers 10−4 vehicles/vehicle [14]

Nl Number of Lanes 8

Di Data Size [100, 900] KB

qci Processing Density of Task 600 cycles/bit

ki Effective Switched Capacitance 10−27 [29]

qeni Processing Density of Encryption 90 cycles/bit

qei Processing Density of Edge 100 cycles/bit

ϖ1, ϖ2 The Weighted Values [0,1] ×10−5, [0,1]

Ei Maximum Energy of the Vehicle 0.4 J

F loc
i Maximum Vehicular Computation Frequency 2.0 GHz [30]

F e Maximum Edge Computation Frequency 3.0 GHz

A. Simulation Settings

We consider that there are currently 8 vehicles under the
coverage of an edge server at the roadside. Some task data
need to be processed in each vehicle. The vehicle can process
the task locally or offload it to the edge server. However, if the
vehicle decides to offload the task to the edge server will need
to upload data. Some vehicles in the communication range of
the sending vehicle can also receive this information. If there is
a malicious vehicle in the receiver, the information will suffer
security risks. Therefore, the sending vehicle needs to encrypt
its data and decide the encryption block length according to
the condition and capacity of the malicious vehicles to appear.
Thus, in addition to some task and channel attributes, there are
some parameters of traffic conditions and malicious vehicles
that are also listed in Table I.

We jointly optimized some variables and randomly selected
the remaining variables to highlight the proposed scheme’s
advantages. The experiments set the following schemes

• RTCF [20]: The scheme randomly chooses task com-
putation frequency. The remaining variables are opti-
mized, such as encryption computation frequency, trans-
mit power, edge computation frequency, transmission
block length, and vehicular offloading decision.

• RCOR [31]: The scheme randomly chooses computation
offloading resources, such as encryption computation fre-
quency, transmit power, and edge computation frequency.
The remaining variables are optimized, such as task
computation frequency, transmission block length, and
vehicular offloading decision.

• RTBL [32]: The scheme randomly chooses transmission
block length. The remaining variables are optimized, such
as transmit power, task computation frequency, encryp-
tion computation frequency, edge computation frequency,
and vehicular offloading decision.
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Fig. 2: Convergence of Algorithm 1 in feasible solution. Fig. 3: Convergence of the variant of Algorithm 1 in infeasible solution.

Fig. 4: Convergence of Algorithm 2 in infeasible solution. Fig. 5: The objective value of Algorithm 3 along with the iterations.

• RVOD [33]: The scheme randomly chooses vehicular
offloading decision. The remaining variables are opti-
mized, such as transmit power, task computation frequen-
cy, encryption computation frequency, edge computation
frequency, and transmission block length.

B. Convergence of the Proposed Algorithms

The curves of the Lagrange multipliers λi in Algorithm 1
with the number of iterations are shown in Fig. 2. It can be
seen that the feasible solutions for all I vehicles can converge
simultaneously, which also indicates the effectiveness and con-
vergence of the Algorithm 1. For the infeasible solution of the
primal problem, its internal lagrangian subgradient projection
method is implemented by calling the variant of Algorithm 1.
The curves of Lagrange multipliers µi for all I vehicles with
the number of iterations are plotted in Fig. 3, which exhibits a
good convergence as the basis for obtaining stable infeasible
solutions. Algorithm 2 obtains an infeasible solution to the

primal problem by cyclically calling the variant of Algorithm
1 and computing new values of the slack variables Ĥ , Q̂,
and Ŷ . Fig. 4 shows the trend of the slack variables Q̂i

with the number of iterations. The figure demonstrates the
fast convergence of the infeasible solution for the whole I
vehicles system. Since I vehicles have different parameters
such as speed, position, connection status, and communication
range, there will be a situation where some vehicles satisfy a
single constraint while others do not, so the slack variables
Q̂i of some vehicles are negative and others are positive. But
no matter whether positive or negative, their slack variables
eventually converge to stable, indicating that the system as
a whole converges to infeasible solutions. Fig. 5 shows the
trend of the objective value in Algorithm 3 with the number
of iterations, indicating the fast convergence of the generalized
benders decomposition method for solving problem (16). As
the iterations proceed, the solution does not necessarily jump
across between the feasible and infeasible solutions, and it is
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Fig. 6: ζ under the different density of attackers ρ and number of lanes Nl.Fig. 7: Comparisons of the average objective value, the worst objective value,
and the best objective value.

Fig. 8: ζ under different number of vehicles I . Fig. 9: ζ under different maximum local computation frequency F loc.

possible to fall into the feasible solution until convergence.
So, it is possible for Algorithm 3 to converge such quickly as
in Fig. 5.

C. Performance of the Proposed Algorithms

As shown in Fig. 6, with the density of attackers in the
vehicle set becoming denser, the risk of the offloading trans-
mission process becomes higher, so the secure information
capacity of task transmission, which is the optimized objective
of offloading computing, will decrease. Similarly, when the
number of lanes Nl on the road increases, the possibility of a
growing number of attacker vehicles also rises. Therefore, the
eight-lane has a lower objective value than the four-lane and
the six-lane, and the secure information capacity is lower.

In Fig. 7, we compare the minimum, the average, and the
maximum objective value in the local computing and edge
computing of the proposed scheme, PTCF, PCOR, RTBL, and

RVOD, which correspond to the worst, the average and the
best optimization in vehicle set. In edge computing, the higher
Oi means further secure information capacity, and the higher
Oi means lower local computation delay in local computing.
It can be seen that the proposed scheme achieves better
performance and has a balance between the best and the worst
performance in the vehicle set. The PCOR randomly chooses
encryption computation frequency, transmit power, and edge
computation frequency, so the performance difference is not
obvious in edge computing. Moreover, the selection of the
weighted value ϖ1 also makes the difference not prominent.

We can see that the minimum objective value ζ in the vehi-
cle set I changes with the different number of vehicles from
Fig. 8. As the number of vehicles I increases, ζ will decrease,
whether it is local computing or edge computing. This is
because vehicles of diverse conditions and performances may
be included, and the smallest objective value ζ may achieve a
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Fig. 10: ζ under different maximum block length Nf . Fig. 11: The number of vehicles selected for local computing as a percentage
of all vehicles under different connection state α.

smaller value as the number of vehicles increases. However,
the proposed scheme still has better performance than other
schemes. It can be seen that the optimization of transmission
block length is very necessary, which can greatly improve the
performance.

Fig. 9 represents the minimum objective value in the vehicle
set I under different maximum local computation frequency
F loc. The proposed scheme obtains the maximum value of
ζ in comparison with other schemes. As the maximum local
computation frequency becomes larger, the range values of
f c become larger, and its optimal value becomes larger. So ζ
becomes larger for local computation. For edge computing, as
fen becomes larger, the freedom of taking pi becomes wider,
allowing it to take smaller values. Thus ζ becomes smaller.
However, since the PCOR scheme randomly chooses compu-
tation offloading resources, such as encryption computation
frequency, transmit power, and edge computation frequency,
F loc does not have a significant impact on the overall.

Fig. 10 shows the minimum objective value ζ in the vehicle
set changes with the different maximum block lengths Nf .
When 0 ≤ nei<1, the optimal block length Ni

∗ depends on
the number of attacker vehicles nei , and has nothing to do with
Nf . The broader the transmission block length Nf can be, the
lower the security strength Si of the vehicle i, thereby reducing
the secure information capacity and the objective value. The
PCOR randomly chooses three variables, so the performance
is the worst. Although this is the case of edge computing,
comparing the optimization of transmission block length and
vehicular offloading decision, the optimization benefit of task
computation frequency is higher. It influences the process of
computation offloading through offloading decisions.

Fig.11 represents the trend of the proportion of vehicles
decided to locally compute in the vehicle set as the connection
state αi changes. It can be seen from the two pictures that the
vehicles are more willing to offload tasks to the edge server
as the connection state gets better. As can be seen from the
upper figure of Fig. 11, the PCOR randomly chooses com-

putation offloading resources, such as encryption computation
frequency, transmit power, and edge computation frequency,
so vehicles decide on local computing. As the connection
state becomes better, some vehicles with weak computation
capacity will gradually offload tasks to the edge server. The
PVOD randomly chooses vehicular offloading decisions, so
the statistics are kept at about 50%. The bottom figure in
Fig. 11 shows the proportion of vehicles computing locally in
the change of different connection states αi and transmission
data size Di in the proposed scheme. For the same connection
state, the larger the data size, the higher the proportion of local
computing, because the overall cost of offloading computation
is excessive.

V. CONCLUSIONS

In this paper, we focused on the joint optimization of securi-
ty strength and resource allocation for computation offloading
in VEC. Taking a full account of the open accessed channels
and highly dynamic movement of vehicles, factors such as
the driving velocity and position of the vehicles, the number
of lanes, the model and density of the attackers, and security
strength are added to the system modeling. We established a
max-min optimization problem to jointly optimize offloading
decision, transmit power, task computation frequency, encryp-
tion computation frequency, edge computation frequency, and
block length to obtain optimal secure information capacity
and local computation delay. The formulated problem is in-
tractable, which is a MINLP. A GBD-based method is applied
to solve it. The simulation results showed that our proposed
algorithms have well convergence and effectiveness. It is utility
to achieve fairness to the secure information capacity and local
computation delay among vehicles. Meanwhile, the proposed
schemes have a significant performance advantage compared
with other schemes.
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APPENDIX A
PROOF THE CONVEXITY OF PROBLEM (17).

The variables p, fc, fen, and fe in the constraints of
the problem (17) are all related with constant by multiples,
roots, reciprocals, or exponents, and the linear combination of
them. So, the primal problem is the minimum linear objective
function with convex constraints satisfying Slater’s condition
and strong duality.

APPENDIX B
PROOF OF THE SET OF SUBGRADIENTS

Under given Lagrangian dual variables set Ξ =
{λ,µ,β,ϕ, φ,ψ}, we can substitute it into (22), (24), (26)
and (28) to obtain the optimal variables p∗, fc∗, fen∗, fe∗.
According the equation (18), we have

G(Ξ
′
) ≤ f0

+
I∑

i=1

λ
′
i

(
xi
Diq

c
i

fc
i
∗ + (1− xi)
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)
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Adding G(Ξ) to both sides of the above inequality, we can
obtain the following inequality,
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According to the definition of the subgradients z of a convex
function g(·) at the point x0: g(x0)+zT (x−x0) ≤ g(x), which
can be held for all x in the domain, a set of subgradients can be
obtained in (31). Therefore, the acquisition of the subgradients
set is proved.

APPENDIX C
PROOF THE OPTIMAL SOLUTION OF FUNCTION (38)

By taking the derivative for the function (38), we get the
derivative function as follows
∂f(Ni)

∂Ni
=

(1− xi)ϖ1

αi
√
pi

8N
ne
i

f

Ni
ne
i−2

(
1

ln 2
+ (nei − 1) log2(8Ni)

)
.

When nei ≥ 1, ∂f(Ni)
∂Ni

≥ 0 always holds, so f(Ni) mono-
tonically increasing. The function can be maximized only
when Ni takes the maximum value Nf ; When 0 ≤ nei<1

and log2(8Ni) ≤ 1
(1−ne

i ) ln 2 , ∂f(Ni)
∂Ni

≥ 0 always holds.

Also, when 0 ≤ nei<1 and log2(8Ni)>
1

(1−ne
i ) ln 2 , ∂f(Ni)

∂Ni
<0

always holds. Hence, f(Ni) increases first and then decreases.
The function can be maximized only when log2(8Ni) =

1
(1−ne

i ) ln 2 , i.e., Ni = 2
1

(1−ne
i
) ln 2

−3
. Therefore, the optimal

value of Ni can be expressed as follows

Ni
∗ =

{
2

1
(1−ne

i
) ln 2

−3
, 0 ≤ nei<1,

Nf , nei ≥ 1.

So, the optimal solution of the function (38) is proved.
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