
NLUBroker: A Flexible and Responsive Broker for Cloud-based Natural
Language Understanding Services

Lanyu Xu
Wayne State University
lanyu.xu@wayne.edu

Arun Iyengar
IBM T.J. Watson Research Center

aruni@us.ibm.com

Weisong Shi
Wayne State University
weisong@wayne.edu

Abstract
Cloud-based Natural Language Understanding (NLU) ser-

vices are getting more and more popular with the development
of artificial intelligence. More applications are integrated with
cloud-based NLU services to enhance the way people commu-
nicate with machines. However, with NLU services provided
by different companies powered by unrevealed AI technology,
how to choose the best one is a problem for users. To our
knowledge, there is currently no platform that can provide
guidance to users and make recommendations based on their
needs. To fill this gap, in this paper, we propose NLUBro-
ker, a platform to comprehensively measure the performance
indicators of candidate NLU services, and further provide a
broker to select the most suitable service according to the
different needs of users. Our evaluation shows that different
NLU services leading in different aspects, and NLUBroker
is able to improve the quality of experience by automatically
choosing the best service. In addition, reinforcement learning
is used to support NLUBroker by an intelligent agent in a
dynamic environment, and the results are promising.

1 Introduction

The widespread development of computerized natural lan-
guage understanding (NLU) has resulted in several cloud-
based NLU products and services [1, 6, 9, 17] and has greatly
affected the way people interact with machines. Dialog sys-
tems, especially goal-oriented dialog systems, are now com-
monly used to support applications requiring NLU capabili-
ties [10]. With time-sensitive and compute-intensive require-
ments, NLU services use cloud computing to train language
models with machine learning algorithms for high accuracy
and scalable service. In developed applications, NLU services
are often integrated with other services such as storage and an-
alytic services on the cloud as well as third-party applications
to provide enhanced functionality.

With the burgeoning of NLU services, two challenging but
practical questions arise: (a) how good is one NLU service

Utterance play a symphony by Beethoven
Slot O O B-music_item O B-artist

Intent PlayMusic

Table 1: An example utterance with annotations of semantic
slots in IOB format and intent, which indicates the slot of the
music item, and the artist with the intent PlayMusic.

compared to others? (b) how to choose the proper service for
an application with a specific purpose? Answering these two
questions will greatly benefit application developers using
NLU services.

We are able to answer the first question by analyzing ser-
vice performance qualitatively through some general metrics.
NLU performance is represented in two parts: intent detec-
tion and slot filling. Intent detection is the utterance level
classification, to classify the end user intents given diversely
expressed utterances in natural language. Popular detection
methods include support vector machines (SVM), convolu-
tional neural networks (CNN) [14] and recurrent neural net-
works (RNN) [16]. Slot filling is the word level sequential la-
beling task to understand utterances with finer granularity and
usually performs well on conditional random field (CRF) [20],
RNN [23] and attention model [8]. Take a play music utter-
ance as an example, “play a symphony by Beethoven" (Ta-
ble 1)1. Different slot types are labeled for each word, and
a specific intent is labeled for the whole utterance. Thus, to
compare the performance of different NLU services, the per-
formance of intent and slot filling can be used, as well as
other metrics such as cost and responsiveness which are gen-
erally important considerations for a cloud-based service. The
second question is an extension of the first question and can
be resolved once the performance of each service provider
is compared and analyzed. Based on the comparison result,
users will find the most appropriate one for the required sce-
nario easily.

In this paper, we propose NLUBroker to address the two

1 IOB format: a common token tagging format. B- prefix indicates the begin-
ning of a tag, I- prefix indicates the tag is inside a chunk, and O means a
token belongs to no chunk.



Figure 1: The design of NLUBroker.

aforementioned questions. NLUBroker has a general bench-
marking module to make a comprehensive evaluation of NLU
services. This module contributes to the brokering module
by initializing broker parameters with the evaluation results.
The brokering module takes over the data flow distribution
for the application when several cloud providers are available.
By leveraging a reinforcement learning (RL) algorithm, the
brokering module can achieve better scalability. The remain-
der of this paper is organized as follows. Section 2 describes
the NLUBroker design, including the benchmarking and the
brokering, as well as the underlying mechanisms. NLUBro-
ker is evaluated in Section 3. Related work is introduced in
Section 4. Finally, Section 5 concludes the paper.

2 Design

In this section, we introduce the design of NLUBroker. Our
system is based on the assumption that users have access to
train and use models on multiple service providers. Figure 1
illustrates the system architecture of NLUBroker which is
composed of two components: the benchmarking module and
the brokering module. The two components are detachable
from each other since each module itself can have its own
input parameters, while the two modules work together to
provide the comprehensive functionality as a fair NLUBroker.

2.1 Benchmarking

As the fundamental part for the brokering module, the bench-
marking module is proposed for two purposes: (1) guide users
by providing efficient evaluation and comparison in terms of
functionality, performance, and availability. Users can easily
choose the most appropriate service for their specific pur-
poses based on the evaluated information; (2) initialize the
brokering module by giving the score of the service providers
according to the evaluation metrics and user preferences.

User interface allows users to have self-defined descriptors
and corpora. Consider a user interested in finding the most
appropriate service for a chatbot; several arguments can be

specified using the descriptor: workload size, training and
testing ratio, target services, target workloads, target metrics,
evaluate criterion, and so on. A default training corpus is also
provided by the system for users who don’t have a specified
dataset.

Workload generator is responsible for validating, cleaning,
and transforming the input data according to the descriptor. It
removes redundant data which only differs by space, punctua-
tion, or letter-case, and converts data to the required format.
Then it generates workload files based on the training/testing
data ratio, workload size, intent type, slot type, etc..

Service evaluator collects three key parameters for NLU
services: intent, slot type, and utterance to generate qualified
files to train NLU models on different service providers. It
helps the user to train models based on the provided corpus
and descriptor on multiple service providers under the given
quota. Once models are trained well on the cloud and ready to
use, service evaluator sends queries to different models using
APIs provided by services. To evaluate NLU services, the
service evaluator uses target metrics defined by users in the
descriptor. It also provides several metrics by default, ranging
from general system-related metrics such as availability to
NLU-specific metrics like prediction accuracy.

With the three aforementioned components, the benchmark-
ing module is extensible to test a variety of cloud NLU ser-
vices with different corpora. By allowing users to have self-
defined input, the benchmarking module helps users not only
on making research comparisons, but also having a better
understanding of the difference among NLU services.

2.2 Brokering

Let’s assume a scenario where an application developer de-
signs a personal assistant application that uses the cloud-based
NLU service to reduce development costs. The service type
includes queries for a variety of purposes, such as finding
nearby restaurants, inquiring about the local weather, advice
on travel routes, and more. In order to read the end user’s in-
put more accurately, the brokering module can take advantage
of the benchmarking results and always push the query to
the top-ranked service provider. Figure 1 depicts this process.
A lightweight multi-classification method is deployed in the
brokering module to obtain the intent of each incoming query,
since the service performance is affected by the intent type
as validated in Section 3. The ranking formula of the avail-
able service provider is then generated based on the results
contributed by the benchmarking module (blue arrow in Fig-
ure 1), as shown in Equation (1). We use quality of experience
(QoE) to indicate the service ranking. The higher the QoE, the
better the service. In the static approach (left side in Figure 1
Brokering), QoE is the only indicator for brokering. Each
element in the vector QoE ranges from 0 to 1 to represent
performance of available providers on different intents. Set
X ′ stands for normalized metrics X . The normalization of n



Algorithm 1 Algorithm in experience-driven agent
Input: State space S, action space A, discount rate θ, learning rate µ

1: Initialize Q(s,a), T t0 ;
2: while q do
3: for query qi with intent i coming at time t do
4: interact with the environment to get Si;
5: according to policy πt(s,a), take action At

i : choose
provider p j;

6: broker qi to p j, get reward R(s,a): qoet
ji, new state St

j
and waiting time T t

ji;
7: Q(s,a)← (1− µ) ∗Q(s,a)+ µ ∗ (R(s,a)+ θ ∗Q(s,a) ∗

log(T t
ji/T last

j );
8: T last

j ← T t
ji

9: end for
10: end while

different metrics varies depending on their impact on overall
performance. Users are free to assign values for set α with a
sum of one to decide the weights of corresponding metrics.

QoE =
n

∑
k=1

αk ∗X ′k, where
n

∑
k=1

αk = 1 (1)

QoE = α∗ log
10∗Tmin

T
+β∗ F

Fmax
+ γ∗ Mmin

M
,

where α+β+ γ = 1
(2)

Specifically, in this paper, we consider the response time
T , prediction performance F , as well as the monetary cost M
to rank the service by Equation (2). The logarithm of time
takes the notion that the marginal improvement of perceived
quality is reduced at a faster response rate for the end user.
The accuracy and cost are simply chosen to be normalized
by the extreme value. The constant 10 is multiplied to avoid
a negative value. The weights α, β, and γ depend on users’
assessment of the priority of the corresponding metric. Note
that the brokering module also has the ability to optimize
by accuracy, responsiveness, and cost, by simply setting the
corresponding parameter to 1 and the others to 0. We con-
sider QoE in the rest of the paper since it is a comprehensive
indicator that combines all of these factors.

2.3 Experience-driven agent
Equation (1) embodies the basic principle of the brokering
module, which is to always choose the best service provider
for queries given the predicted intent in a static way. While
in reality, a static distribution is not always applicable due
to quotas imposed by the service. For example, for a web
application embedded with an NLU service, when the number
of end user requests under one intent bursts, the static way will
reach the limitation of the best service. Considering the joint
QoE of clients, we resort to reinforcement learning (RL) [25]
to improve the brokering module by balancing load among the

services. RL refers to an agent learning continuously from
the interaction with the environment to achieve a specific
goal: the maximum expected QoE. As shown in Algorithm 1,
for each incoming query qi at a specific state s (intent) on
time t, the agent follows a policy πt(s) to take action. A
policy defines the probability distribution over actions. πt(s,a)
means the probability that action a is taken in state s at time
t. When there is peak traffic access, the agent will be aware
of the possible service congestion and distribute to the vacant
service providers promptly. Therefore, we have considered the
latency factor in Q (Algorithm 1 line 7) for the policy. qoet

ji
is the reward for query qi at time t and is calculated after the
action At

i is taken using Equation 1, demonstrating the end
user experience. θ is introduced as the discount rate to avoid
a possible infinity problem in the reward, since the agent
is updating dynamically according to the current network
situation, server state, and user preferences.

Compared with accessing a single cloud NLU service
provider, the brokering module makes it possible to provide
a real-time choice and combine the advantages of different
cloud services to improve the end user experience, which is
not possible using a single service provider. Moreover, users
can pre-define the weights for performance metrics based on
their preferences so that the brokering module can provide
reasonable optimization for them. In addition, by interacting
with the environment promptly, the agent can effectively dis-
tribute the high-concurrency query data to multiple service
providers to ensure the timeliness of the query results.

3 Implementation

To build a fair NLUBroker, we trained the models from scratch
to achieve an impartial comparison because built-in slot types
for each service are different in content, size, and purpose.
In addition, we carefully read the materials about instruction,
access and usage limitation, etc. to ensure the evaluation and
implementation are conducted legitimately. Considering the
cost and time limitation, we only choose three of the most
representative and widely used NLU service providers to eval-
uate: Google Dialogflow, Amazon Lex, and Microsoft LUIS.
NLUBroker is extensible for other NLU services.

NLUBroker is deployed on an Intel Fog Reference node,
which has one Xeon E3-1275 v5 processor equipped with
32GB DDR4 memory and 256GB PCIe SSD. Network speed
is ensured to be consistent and stable during the experiments.

For benchmarking purposes we use a labeled public NLU
dataset SNIPS collected by the company snips.ai and labeled
with intent and slot type [5]. It includes nearly 14K utterances
with seven common used intents in human communications:
AddToPlaylist, BookRestaurant, GetWeather, PlayMusic, Rate-
Book, SearchCreativeWork, SearchScreeningEvent. For each
intent, there are a group of slot types related to it.



(a) All intents (b) Without SearchCreativeWork
Figure 2: Learning curve results.

3.1 Provider Performance

This part introduces results from the benchmarking module
evaluating three state-of-the-art NLU services from both al-
gorithmic and system aspects.

Learning Curve. The learning curve is one important in-
dicator for evaluating the quality of the service, especially for
users who hope to get an accurate model with limited training
data. We randomly select from a corpus to compose the train-
ing data set with the sizes of 10, 50, 100, 200, 500, 800, and
1000 for each intent and use LearningCurve A to G to label
the trained model. Lex is limited to F because of restrictions.
From the benchmark, we randomly select 80% as the training
set for each intent, with the remaining 20% in the testing set.
To avoid possible bias and to exercise the general capability
of models, we test models five times, by randomly choosing
testing sets from testing utterances each time. Figure 2 illus-
trates how the average F1 score of trained models varies with
training data size. LUIS maintains stable and accurate perfor-
mance all the time. Dialogflow’s performance on E is lower
than expected. Lex starts at the lowest score and experiences
a steep increase when training data grows from B to C, where
the training data size grows from two to three digits for each
intent. The gap between Lex and Dialogflow narrows with
more training data, and Lex exceeds Dialogflow on E. The
unusually low F1 score of E for Dialogflow arises because
SearchCreativeWork has an extremely low F1 score, since
Dialogflow is confused by SearchCreativeWork and Search-
ScreenEvent. After removing this intent, both Dialogflow and
Lex obtain stable improvement as shown in Figure 2(b). In
general, good performance requires more than 100 utterances
to train for each intent. When training sets are small, LUIS
performs best.

Intent detection. Figure 3 shows the average F1 score for
each intent. Dialogflow predicts most of the intents accurately,
leaving SearchCreativeWork and SearchScreeningEvent in-
tents, whose F1 scores are less than 0.8. Lex shows an obvi-
ous deficiency in predicting BookRestaurant. LUIS has stable
performance and high accuracy (more than 0.9) among all
intents. On the whole, AddToPlaylist, GetWeather, PlayMu-
sic, RateBook are so-called “good intent" achieving high F1
scores across different services, while the remaining three
intents get various results. For users, it is essential to select
the appropriate service depending on the target intent.

Figure 3: Prediction performance (intent).

Slot filling. Similarly to intent detection, slot filling perfor-
mance varies among different slots. We define “bad" slot types
as those whose F1 score is less than 0.6, and we find it is hard
for all three services to correctly detect phrases in PlayMusic
with label album, track, and genre. One reason for this is the
limited amount of training data of these slot types, which is
only one-fourth to one-third of the training data for other slot
types. Thus, the model is not strong enough to understand
the context structure for these slot types. The other “bad" slot
types are related to names, such as a street name (poi), a food
name (cuisine), or a restaurant name (restaurant_name). Inter-
estingly, each service varies in failed slot types and numbers,
reflecting the different drawbacks in back-end models.

Responsiveness. Response time is evaluated with the test
set in F and measured by the operation time for each query.
The results reported in Table 2 show the average response
time and the time spent completing 99% of queries. Though
on average it takes less than 0.7 seconds for all three services
to process a query, there is a big difference in end-to-end
latency among the three services. On average, operation time
consumed by Lex is three times that of Dialogflow, and 1.7
times that of LUIS.

Service Dialogflow Lex LUIS
Intent (F1) 88.73 89.01 97.95
Slot (F1) 83.56 87.78 85.38

Response (s) Average 0.206 0.604 0.357
99% 0.388 0.835 0.512

Availability (%) 99.970 99.991 99.998
Cost/1,000 requests ($) 2.00 0.75 3.00
Limit requests/minute 600 N/A 3,000

Table 2: Evaluation summary.

Availability. In order to measure availability, we queried
NLU services over 30 consecutive days and measured the
failure rate. In each minute of the availability test, the frame-
work sends a query to the cloud services and records any error
message received. All three services show good performance
in the availability tests, and failures rarely occur (Table 2). A
higher number of failures occurred in Dialogflow because the
gateway was out of service for several consecutive minutes.
[Summary and insights] Table 2 summaries the evaluation
results of three state-of-the-art NLU service providers. Cost
and request limitations are provided by documentation for
each service provider, and we compare only the enterprise
version. The results from the evaluation module reveal that,
in general, the three services all performed well: average F1
score around 0.9, average latency less than 1s, and average
availability higher than 99.9%. Users thus need to measure



the indicators to find the service that best meets their require-
ments. The three state-of-the-art NLU services have trade-offs
between accuracy and other performance metrics. There is
no absolute winner achieving the shortest response time and
highest accuracy at the same time. And the prediction per-
formance is affected by the training data size and intent type.
Thus, if the user obtains a dataset with larger data, or in a dif-
ferent distribution, it is worthwhile to rerun the benchmarking
to generate a new model.

3.2 NLUBroker Performance

The lightweight multiclassification algorithm for NLUBro-
ker is logistic regression provided by Scikit-learn, with the
semantic hash as the embedding method [22]. This combina-
tion is chosen given the small overhead (0.1ms/request) with
good accuracy (91.0%). Both the word embedding model and
trained logistic regression model are saved and launched once
with NLUBroker.

QoE optimization. We evaluate the NLUBroker perfor-
mance using QoE as shown in Table 3 for both the static and
agent-based method. The static method uses Equation 2 to
choose the best service provider. The agent-based method fol-
lows the Algorithm 1 proposed in Section 3. We set both the
learning rate µ and discount factor θ to 0.5 in the experiment,
which means that the agent treats historical performance and
current performance equally and learns from both at the same
speed. As an example to show the capability of NLUBroker
to optimize QoE, we choose the weights as 0.8, 0.1, 0.1 for ac-
curacy, response time, and cost, considering the trade off [13].
The NLUBroker performance is shown in Table 3. Though it
has the trade-off among parameters, compared with accessing
a single cloud NLU service provider, NLUBroker makes it
possible to combine the advantages of different cloud services
to obtain a more balanced performance with higher QoE in
both static and agent-based approaches. Considering the sim-
plicity of deployment, the static approach is the best choice
when queries coming in slow speed and small volume.

Throughput. To test the scalability of NLUBroker, we
increase the number of threads to get the throughput of the
system and compare with systems without NLUBroker. When
getting “too many requests” messages from the server, NLU-
Broker is able to distribute requests to the suboptimal service.
Since Lex is not accepting multiple requests at the same time,
we compare NLUBroker with the other two. The throughput
results (Figure 4) show that the performance of Dialogflow
and LUIS is consistent with the request limitation claimed in
the document, while NLUBroker has the capability to balance
workload by distributing blocked requests to a second choice.
The static approach will retry three times before brokering the
blocked request to the second choice service. The agent-based
approach has the highest throughput when the thread number
increases, since it constantly monitors the response time of
previous responses in the same action and quickly switches

Figure 4: Throughput performance.

Dialogflow Lex LUIS NLUBroker
(static)

NLUBroker
(agent)

F1 (%) 88.73 89.01 97.95 97.23 97.38
Response (s) 0.206 0.604 0.357 0.25 0.32

Cost 2.00 0.75 3.00 2.29 2.68
QoE (%) 84.73 87.92 88.31 90.17 90.28

Table 3: QoE optimization for NLUBroker.

to other available services without retrying the operation.

4 Related Work

Benchmarking. Different types of benchmarks are available
for different computing applications and services [4, 7, 15,
27, 28]. However, the required workload and evaluation indi-
cators in NLU services differ from the existing benchmarks,
making it still at an early stage. Resnik et al. evaluated several
NLP services with different case studies [21]. [3] examined
the prediction performance of several NLU services on two
different corpora. Dialogue systems are evaluated with similar
principles [18,26]. These works focus at the algorithmic level,
while our benchmarking module evaluates NLU services from
both an algorithmic and system perspective.
Brokering. Located between cloud customers and providers,
brokers are helping customers to select the most suitable
cloud service [2,11,12,19,24]. For example, [11] proposes a
split algorithm for request splitting and provisioning across
multiple cloud platforms. ARank ranks the candidate services
based on service quality. However, there is no suitable broker
designed specifically for NLU services.

5 Conclusion

In this work, NLUBroker, an extensible NLU service broker,
is proposed to help users choose a suitable service provider
based on preferences and enable the cross-cloud resource ac-
quisition for QoE of applications. NLUBroker evaluates the
performance of several state-of-the-art NLU service providers
and shows that there is no absolute winner in different query
scenarios in terms of accuracy, responsiveness, and cost. With
these insights, NLUBroker automatically distributes NLU
requests based on user preferences to make full use of the
advantage of each service provider to achieve the overall op-
timality. A reinforcement learning-based agent is leveraged
to deal with high concurrency requests in a dynamic environ-
ment, while ensuring accuracy and responsiveness.



6 Discussion

In this paper, we propose NLUBroker, a platform to compre-
hensively measure the performance indicators of candidate
NLU services, and further provide a broker to select the most
suitable service according to the different needs of users. And
we list the discussion as follows:

[Feedback] One of the core parts is about how to design the
brokering module, so we are looking for suggestions on the
methodology of NLUBroker, especially for the more efficient
policy for the reinforcement learning-based agent.

[Controversial points] The privacy issue is always a prob-
lem between the cloud customer and service provider, and this
issue also exists in NLUBroker. Before the data is uploaded
to the cloud, it will go through the broker, which may increase
the potential risk. In our design, NLUBroker only helps re-
quests to select the optimal service, while never saving any
data in any circumstances.

[Discussion types] This paper is likely to generate dis-
cussions on the different performance of cloud-based NLU
services, and the reinforcement learning-based agent. Specif-
ically, it should lead to discussions on how the brokering
module contributes to the quality of experience for users.

[Open issue] This paper is focused on the functionality of
NLUBroker. We do not address the types of natural language
understanding algorithms used by the cloud service providers.

[Under what circumstances might the whole idea fall
apart] The ideas in the paper will continue to be valid as long
as Web services for natural language understanding services
continue to be used.,

References

[1] AWS. Amazon Lex – Build Conversation Bots, 2019.
https://aws.amazon.com/lex.

[2] Ramsha Baig, Waqas A Khan, Irfan Ul Haq, and Ir-
fan Muhammad Khan. Agent-based sla negotiation
protocol for cloud computing. In 2017 International
Conference on Cloud Computing Research and Innova-
tion (ICCCRI), pages 33–37. IEEE, 2017.

[3] Daniel Braun, Adrian Hernandez-Mendez, Florian
Matthes, and Manfred Langen. Evaluating natural lan-
guage understanding services for conversational ques-
tion answering systems. In Proceedings of the 18th
Annual SIGdial Meeting on Discourse and Dialogue,
pages 174–185, 2017.

[4] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[5] Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. Snips voice platform:
an embedded spoken language understanding system
for private-by-design voice interfaces. arXiv preprint
arXiv:1805.10190, pages 12–16, 2018.

[6] Facebook. Wit.ai, 2019. https://wit.ai/.

[7] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 3–18. ACM, 2019.

[8] Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo,
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung Chen.
Slot-gated modeling for joint slot filling and intent pre-
diction. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), volume 2, pages 753–757,
2018.

[9] Google. Dialogflow, 2018.
https://dialogflow.com/.

[10] Jan-Gerrit Harms, Pavel Kucherbaev, Alessandro Boz-
zon, and Geert-Jan Houben. Approaches for dialog

https://aws.amazon.com/lex
https://wit.ai/
https://dialogflow.com/


management in conversational agents. IEEE Internet
Computing, 2018.

[11] Ines Houidi, Marouen Mechtri, Wajdi Louati, and Dja-
mal Zeghlache. Cloud service delivery across multiple
cloud platforms. In 2011 IEEE International Conference
on Services Computing, pages 741–742. IEEE, 2011.

[12] Arezoo Jahani, Farnaz Derakhshan, and Leyli Moham-
mad Khanli. Arank: A multi-agent based approach for
ranking of cloud computing services. Scalable Comput-
ing: Practice and Experience, 18(2):105–116, 2017.

[13] Jiarong Jiang, Adam Teichert, Jason Eisner, and Hal
Daume. Learned prioritization for trading off accuracy
and speed. In Advances in Neural Information Process-
ing Systems, pages 1331–1339, 2012.

[14] Yoon Kim. Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882, 2014.

[15] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming
Zhang. Cloudcmp: comparing public cloud providers.
In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pages 1–14. ACM, 2010.

[16] Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua
Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He,
Larry Heck, Gokhan Tur, Dong Yu, et al. Using recurrent
neural networks for slot filling in spoken language un-
derstanding. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 23(3):530–539, 2015.

[17] Microsoft. Language Understanding (LUIS), 2018.
https://www.luis.ai/home.

[18] Fabrizio Morbini, Kartik Audhkhasi, Kenji Sagae,
Ron Artstein, Dogan Can, Panayiotis Georgiou, Shri
Narayanan, Anton Leuski, and David Traum. Which asr
should i choose for my dialogue system? In Proceedings
of the SIGDIAL 2013 Conference, pages 394–403, 2013.

[19] Przemyslaw Pawluk, Bradley Simmons, Michael Smit,
Marin Litoiu, and Serge Mankovski. Introducing stratos:
A cloud broker service. In 2012 IEEE fifth international
conference on cloud computing, pages 891–898. IEEE,
2012.

[20] Christian Raymond and Giuseppe Riccardi. Genera-
tive and discriminative algorithms for spoken language
understanding. In Eighth Annual Conference of the In-
ternational Speech Communication Association, 2007.

[21] Philip Resnik and Jimmy Lin. Evaluation of nlp systems.
The handbook of computational linguistics and natural
language processing, 57:271–295, 2010.

[22] Kumar Shridhar, Amit Sahu, Ayushman Dash, Pedro
Alonso, Gustav Pihlgren, Vinay Pondeknath, Fotini
Simistira, and Marcus Liwicki. Subword semantic hash-
ing for intent classification on small datasets. arXiv
preprint arXiv:1810.07150, 2018.

[23] Aditya Siddhant, Anuj Goyal, and Angeliki Metalli-
nou. Unsupervised transfer learning for spoken lan-
guage understanding in intelligent agents. arXiv preprint
arXiv:1811.05370, 2018.

[24] Smitha Sundareswaran, Anna Squicciarini, and Dan Lin.
A brokerage-based approach for cloud service selection.
In 2012 IEEE Fifth International Conference on Cloud
Computing, pages 558–565. IEEE, 2012.

[25] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[26] Johannes Twiefel, Timo Baumann, Stefan Heinrich, and
Stefan Wermter. Improving domain-independent cloud-
based speech recognition with domain-dependent pho-
netic post-processing. In AAAI, pages 1529–1536, 2014.

[27] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu,
Qiang Yang, Yongqiang He, Wanling Gao, Zhen Jia,
Yingjie Shi, Shujie Zhang, et al. Bigdatabench: A big
data benchmark suite from internet services. In High
Performance Computer Architecture (HPCA), 2014
IEEE 20th International Symposium on, pages 488–499.
IEEE, 2014.

[28] Yifan Wang, Shaoshan Liu, Xiaopei Wu, and Weisong
Shi. CAVBench: A benchmark suite for connected
and autonomous vehicles. In Proceedings of the Third
IEEE/ACM Symposium on Edge Computing, pages 30–
42. IEEE, 2018.

https://www.luis.ai/home

	Introduction
	Design
	Benchmarking
	Brokering
	Experience-driven agent

	Implementation
	Provider Performance
	NLUBroker Performance

	Related Work
	Conclusion
	Discussion

