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HIGHLIGHTS

« HyCARLT pinpoints internal shorts during real-world driving.

+ Two-stage design beats extreme healthy—faulty data imbalance.

+ OCV + balanced-Ah features embed electrochemistry into the DL model.
+ Validated on 10 000 EVs over two years; ISC error ~ 15 %.

ARTICLE INFO ABSTRACT

Keywords: Short resistance estimation is vital for diagnosing internal short circuit (ISC) faults in batteries, impacting

Lithium-ion battery battery lifespan and EV performance. Current estimation methods are often limited by error sources introduced

EV ) during the estimation of charge difference based on the state-of-charge (SOC), such as inaccuracies in capacity

PDlagnos?cs and SOC/OCV (open circuit voltage) mapping coefficients, as seen in methods like Cell Voltage Droop, the
rognostics

Battery SOC Difference Relative to Module Median (dSOC). While some approaches may mitigate these
interference factors, they rely on steady-state constant-current conditions, which restricts their applicability
under dynamic, real-world operational scenarios. To address these limitations, it is essential to develop methods
that can handle diverse operating conditions while mitigating data imbalance issues. This work introduces
HyCARLT (Hybrid Classification and Regression with LSTM-Augmented Transformer), a hybrid model that
combines a deep residual network classification module with a regression module incorporating LSTM and
Transformer architectures to handle data imbalance issue and improve resistance estimation accuracy. The
method is validated using data from over 10,000 vehicles and demonstrates better accuracy in short resistance
estimation compared to the state-of-the-art approaches. The validation results demonstrate HyCARLT is a
promising approach for ISC fault detection and short resistance estimation under diverse and dynamic
conditions.

Internal short circuit

1. Introduction overall functionality [2]. This necessitates their timely detection and

diagnosis to maintain the health and safety of EVs.

Electric vehicles (EVs) are rapidly becoming a cornerstone of the
modern transportation landscape, driven by the global shift toward
more sustainable and environmentally friendly technologies. Central
to the operation and efficiency of EVs is the battery, which serves
not only as the power source but also as a critical component that

There are some straightforward methods to identify potential in-
ternal short circuits in EV batteries. For instance, voltage droop rate
and cell voltage performance detect ISCs by directly observing how
fast the cell voltage droops in response to a short circuit [3]. While

directly affects the vehicle’s performance, driving range and experi-
ence. Internal short circuits (ISCs) occur when a conductive pathway
forms between the positive and negative electrodes inside a battery
cell, bypassing the separator and causing abnormal current flow [1].
ISC, can drastically degrade battery performance by increasing energy
consumption, reducing efficiency, diminishing capacity, and impairing
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these methods are effective under conditions with minimal external
interference, such as stable temperatures and limited cell aging, their
reliability decreases in the presence of external factors. These fac-
tors, such as temperature fluctuations or significant aging, can either
mimic the voltage signatures of an ISC or obscure them, leading to
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potential inaccuracies. Furthermore, such methods do not provide a
direct estimation of short resistance, which is a key parameter in
battery diagnostics to quantify the severity of internal short circuits [4].
Accurate estimation of short resistance is vital for the early detection of
potential issues, enabling timely interventions that can prolong battery
life and ensure the reliability of the vehicle’s operation [5].

Estimating short resistance in EV batteries is a challenging task due
to the dynamic and complex nature of battery operations. Traditional
methods, such as electrochemical and equivalent circuit models, laid
the theoretical foundation for understanding battery behavior. These
methods, from the pioneering electrochemical frameworks by Newman
and Balsara [6] to the simplified circuit models by Rand and Woods [71],
rely on static assumptions and approximations that do not adequately
reflect real-world variability caused by factors like temperature, state of
charge (SOC), and aging. Even with advancements introduced by Doyle
et al. [8], and refinements by He et al. [9], these methods struggle
to model the nonlinear and time-variant characteristics essential for
precise short resistance estimations in real-time applications. Build-
ing upon these traditional principles, physical methods for estimating
short resistance, such as the Cell Droop Rate [10] and dSOC [11]
approaches, attempt to make these theoretical models more practically
applicable. However, indirect D&P methods, such as voltage-based ISC
detection techniques, cannot quantify fault severity and are prone to
false positives and negatives under operational variability, such as
temperature fluctuations and cell aging. Direct D&P methods, while
focus more on short resistance estimation, still exhibit significant errors
in complicated real-world conditions, e.g. the capacity variation, uncer-
tainty in SOC/OCV (open circuit voltage) mapping or other noises and
disturbances. To make it more robust under diverse and challenging
environments, data-driven solutions may help.

Machine learning (ML) has emerged as a powerful alternative for
battery diagnostics, offering data-driven insights that can adapt more
flexibly to complex, changing conditions. Early ML applications fo-
cused on state-of-health (SOH) and SOC estimation [12-14], while
more recent efforts incorporate neural networks for predicting aging
and capacity fade [13]. Although such techniques show potential in
handling nonlinear battery behaviors, the direct application of ML
or deep learning (DL) to short resistance estimation has remained
limited. A substantial challenge lies in the inherent imbalance of the
dataset, particularly regarding the distribution of short resistance val-
ues among healthy and faulty cells. Faulty cells constitute a much
smaller proportion compared to healthy cells, and even within the
faulty population, data are unevenly distributed across varying levels
of fault severity. This skewed distribution complicates model training,
as the deep learning algorithm may become biased toward predicting
healthy cells, ultimately degrading performance when identifying and
estimating short-circuit faults. The scarcity of short resistance dataset
has led most DNN-based research to focus on classification tasks, such
as categorizing fault severity, rather than directly estimating short
resistance. Even when deep learning techniques have been applied
to short resistance estimation, these studies often rely on small-scale,
specially curated datasets that lack diversity and fail to represent the
unbalanced distribution of short resistance values typically observed in
real-world scenarios [14]. In most cases, these datasets only contain
several discrete resistance values, making it difficult for the resulting
models to generalize beyond the limited conditions they are trained
on.

To address these challenges, we propose HyCARLT, a novel hybrid
classification and regression approach specifically tailored for short
resistance estimation in EV batteries. The key methodological inno-
vations of HyCARLT include: (i) integrating a deep residual network
(ResNet)-based classifier to accurately isolate faulty cells and signif-
icantly reduce data imbalance; (ii) employing an LSTM-Augmented
Transformer regression module designed to effectively capture both
short-term sequential dynamics and long-term dependencies in bat-
tery operational data; (iii) implementing a specialized weighted loss
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function within the regression stage to ensure the model prioritizes
estimation accuracy for rare and critical low-resistance ISC faults. Addi-
tionally, HyCARLT incorporates carefully designed data augmentation
strategies — combining oversampling of faulty cases and undersampling
of healthy cases — to further improve model robustness. By combin-
ing these innovations, HyCARLT offers a comprehensive, data-driven
diagnostic framework that addresses the limitations of existing meth-
ods, particularly under realistic, diverse, and imbalanced operational
conditions. Our contributions are highlighted as follows:

» Our proposed deep learning method achieves better performance
in estimating the short resistance of batteries using real-world
vehicle data during normal operation. Validated on data from
over 10,000 vehicles, it achieves a relative error of 15% on
faulty cells and no healthy cells are false classified as unhealthy,
representing a significant improvement over existing state-of-the-
art physical methods such as Cell Droop Rate and dSOC, which
exhibit estimation errors ranging from 50% to 80%.

The method proposed in this report provides reliable estimations
across diverse operating conditions without requiring steady-state
assumptions or post-hoc maturation, underscoring its robustness
and practical utility.

Furthermore, the integration of a hybrid model-—combining a
deep residual network for classification with an LSTM-Tran-
sformer regression module—effectively addresses data imbalance,
reduces false positives, and enhances fault detection capabilities.
This design leverages tailored data augmentation techniques,
including under-sampling of healthy cells and over-sampling of
faulty cells, to further improve diagnostic performance, ensuring
accurate and scalable short resistance estimation under real-world
conditions.

Despite its strong performance, HyCARLT has several limitations. First,
its accuracy depends on the quality and diversity of training data,
and rare failure cases remain underrepresented. Second, while data
balancing techniques improve fault detection, estimation errors for
low short resistance values persist. Third, the classification thresh-
old at 2000 Q is empirically set and may require adjustment for
different battery chemistries. Finally, as a deep learning model, Hy-
CARLT lacks physical interpretability, which may limit its adoption
in safety-critical applications. Future work can address these issues by
integrating physics-informed models and expanding training datasets.
The structure of this report is organized as follows: In Section 2,
an overview of the foundational techniques used for estimating short
resistance is discussed. The methodology is provided in Section 3,
including data preprocessing, model architecture, and training process.
In Section 4, the experimental evaluation is discussed, including a
comparative analysis with existing models and the proposed model.

2. Related work

This section explores how advanced deep learning architectures can
be adapted to improve short resistance estimation in electric vehicle
batteries. By leveraging classification and regression paradigms, models
such as convolutional networks, recurrent networks, transformers, and
hybrid designs can effectively capture temporal patterns and manage
long-range dependencies. The discussion emphasizes the potential of
hybrid frameworks to address the limitations of traditional diagnos-
tic tools, particularly in handling imbalanced data and adapting to
dynamic battery states.

For fault diagnostics and prognostics, classification and regression
are two primary predictive paradigms, each is suited for specific types
of outputs. Classification involves predicting categorical labels from
input data. The output is discrete, such as “faulty” or “healthy” in
binary classification, or one of several categories in multiclass classifi-
cation. Models for classification often output probabilities over classes,
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with the predicted label being the one with the highest probability.
Regression, in contrast, deals with predicting continuous values. The
output can take any numerical value within a range, making regression
ideal for tasks such as estimating numerical quantities or forecasting
trends. For instance, predicting the short resistance of a battery cell is
a regression task, where the model aims to provide precise numerical
estimates. Loss functions like Mean Squared Error (MSE) are commonly
employed to minimize the prediction error.

Short resistance estimation is fundamentally a time-series regres-
sion task. DNNs have become central to time-series analysis to tackle
temporal modeling. Fully Convolutional Networks (FCNs) [15] are
designed to process time series data by utilizing convolutional lay-
ers to extract features, with enhancements like FCNPlus introducing
modifications to improve performance. Inception-based models, such
as InceptionTime, adapt the Inception architecture for time series clas-
sification, employing multiple filters of varying lengths to capture
diverse patterns; further developments include InceptionTimePlus vari-
ants like InceptionTimePlus and InceptionTimeXLPlus [16], which offer
expanded architectures for handling more complex data. Recurrent
Neural Networks (RNNs), including Long Short-Term Memory (LSTM)
networks [17], are adept at modeling temporal dependencies in se-
quential data, with advanced versions like LSTMPlus and GRUPlus pro-
viding enhanced capabilities [16]. Hybrid models that combine RNNs
with FCNs, such as LSTM-FCN [17], leverage the strengths of both
architectures to improve classification accuracy. Residual Networks
(ResNets) [15] incorporate residual connections to facilitate the train-
ing of deeper networks, with adaptations like ResNetPlus [18] and one-
dimensional versions such as xresnetld18plus tailored for time series
tasks. Transformer-based models, including TransformerModel [19]
and MultiTSTPlus, have been applied to time series analysis to capture
long-range dependencies, with models like XCM and XCMPlus offering
explainable convolutional neural network approaches. Other notable
models include Multi-Layer Perceptrons (MLPs) and their gated vari-
ants (gMLP) [20], Temporal Convolutional Networks (TCNs) [21], and
architectures that integrate attention mechanisms, such as LSTMAtten-
tion and its enhanced version LSTMAttentionPlus [16]. Informer [22]
pioneers the use of probabilistic sparse self-attention to reduce the
quadratic cost of vanilla Transformers, making it much better at han-
dling long time-series forecasts. Building on this idea, Autoformer [23]
introduces an auto-correlation decomposition that explicitly separates
seasonal and trend components, further improving long-range accu-
racy. FEDformer [24] extends the decomposition view by combining
Fourier and wavelet blocks inside the attention pipeline, yielding bet-
ter efficiency-accuracy trade-offs. More recently, PatchTST [25] re-
imagines time-series inputs as non-overlapping ‘“patches”, enabling
pure Transformer encoders (without convolutions or RNNs) to capture
local context with fewer parameters. Beyond these mainstream vari-
ants, several 2024 releases have pushed the frontier: PSFormer [26]
shares parameters across segment-wise windows to lower memory,
Ister [27] employs interpretable seasonal-trend attention that exposes
internal recurrence patterns, and TEAFormers [28] augment standard
attention with tensor decomposition to model multi-dimensional bat-
tery signals compactly. These architectures provide strong baselines for
time-series regression tasks.

In this work, we revisit three fundamental yet versatile models
— ResNet, LSTM, and Transformer — as essential building blocks to
construct a hybrid framework tailored for short resistance estimation
with better performance. Both local temporal patterns and long-range
dependencies are captured while maintaining computational efficiency,
the complementary strengths of these foundational models are lever-
aged. ResNet overcomes the vanishing gradient issue in very deep
networks by introducing “skip connections.” These skip connections
allow gradients to bypass certain layers, thereby stabilizing training
in deep models. The use of ResNet could exploit its strong feature
extraction capabilities, allowing it to detect subtle yet critical indi-
cators of ISC faults over time by leveraging residual connections to
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model complex dependencies within battery data, which has shown
96.67% prediction accuracy in identifying ISC faults for classification
tasks [29]. LSTM networks are a specialized type of recurrent neural
network (RNN) designed to address the limitations of traditional RNNs,
such as vanishing and exploding gradients. These problems often hinder
RNNs from learning long-term dependencies. LSTMs, introduced by
Hochreiter and Schmidhuber [30], overcome these challenges by using
memory cells and gating mechanisms — specifically input, forget, and
output gates — that regulate the flow of information. This structure
allows LSTMs to retain or discard information selectively, making them
particularly effective for time series tasks where both short-term and
long-term patterns need to be understood. In battery diagnostics, LSTMs
have proven valuable for estimating the SOH and SOC, predicting
degradation trends, and detecting early faults [31]. Their ability to
capture temporal dependencies is crucial for identifying patterns in
voltage and current data that indicate potential faults or degradation
in battery cells. A self-attention mechanism is employed by transform-
ers that allows the model to focus on different parts of the input
data, emphasizing critical elements that influence predictions [32].
Unlike LSTMs, Transformers do not rely on sequential processing,
enabling them to capture long-range dependencies more efficiently and
in parallel. This capability significantly improves training and inference
speed. Transformers have demonstrated strong performance in domains
ranging from natural language processing to image recognition, and
recently in battery diagnostics for tasks like SOC estimation and fault
detection [31]. Their ability to model complex interactions without
the constraints of sequential order makes them ideal for capturing the
dynamic behaviors of batteries.

3. Methodology

To address the severe data imbalance inherent in real-world bat-
tery data — where healthy cells significantly outnumber ISC faulty
cells — our proposed HyCARLT model integrates both classification
and regression modules. Specifically, a deep residual network-based
classifier first determines the presence of ISC faults, allowing the sub-
sequent LSTM-Transformer regression module to focus exclusively on
accurately estimating the severity of confirmed faults. This two-stage
design contrasts with purely regression-based methods, which typically
do not adequately compensate for data imbalance, often resulting in
less reliable fault estimations.

The proposed diagnostic model, illustrated in Fig. 1, is designed
to estimate the short circuit resistance (Rs) of battery cells through
a DNN architecture. The input to the model consists of a time series
dataset that includes multiple features, such as cell group (CG) OCV,
ampere-hour (Amphr), module median OCV (mmOCV), module median
Amphr (mmAmphr), and timestamp data arranged in a Nx5 format.
The input data undergoes preprocessing steps, including normalization
and transformation, ensuring that it is suitable for HyCARLT. The final
output of the HyCARLT is a regression prediction of the short resistance.

3.1. Physical explanation of feature selection and model inputs

To avoid confusion between open-circuit voltage (OCV) and instan-
taneous terminal voltage, we define OCV here as the “relaxed” terminal
voltage measured after the module current has been zero for a dwell
long enough that the voltage drift falls below1 mV h~!. Throughout
this work voltage is sampled only in such rest windows, so the recorded
value is a practical surrogate for the true thermodynamic OCV.

The selected features — cell-group relaxed voltage (denoted OCV,),
module-median relaxed voltage (mmOCV,), cell balanced ampere-hour
(Amphr), and module-median balanced ampere-hour (mmAmphr) — are
closely related to ISC faults through measurable physical phenomena
occurring within battery modules. Each cell group, which consists of
three parallel-connected cells, forms the basic analysis unit (hereafter
referred to simply as “cell”). Under ideal conditions, all eight healthy
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Fig. 1. The proposed HyCARLT model integrates a classification module and a regression module to accurately estimate short-circuit resistance in electric vehicle
batteries. First, a classifier determines whether the cell is healthy or faulty. Healthy samples are quickly assigned a nominal short resistance, while only the faulty
samples pass to the LSTM-Augmented Transformer regression stage. This selective routing ensures the model focuses computational effort where it matters most,
delivering robust and reliable resistance predictions even under highly imbalanced conditions.

cells within a module exhibit identical OCV, profiles and the balancing
circuit remains inactive. When an ISC arises in a particular cell its OCV,
drifts downward; the lower the short resistance, the faster this drift.

Once the OCV, of a faulty cell departs by roughly 5 mV from its
neighbors, the module’s active-balancing circuit is triggered, forcing
the healthy cells to dissipate charge so that module voltages realign.
Hence, the severity of ISC governs both the rate of voltage divergence
in the faulty cell and the duty-cycle of balancing in its healthy peers.

Mechanistically, the discharge quantity 4Q; of the jth cell over a
window At decomposes into three terms:

40; = AQ;(Usage) + 40;(ISC) + AQj(Balance), (€8]
while the module median (assumed healthy) contains only
A0,,, = 40,,,,(Usage) + 40,,,,(Balance). 2

Because all cells share the same load current, the usage terms cancel:
40;(Usage) = 4Q,,,(Usage). The remaining quantities are mapped to
our measured features:

* 4Q; and 4Q,,, are inferred from the respective changes in OCV,
and mmOCYV;, via the local dQ/dV relationship.

« AQ j(Balance) and 40,,,(Balance) are provided directly by the
logged Amphr and mmAmphr counters maintained by the BMS.

* 40;(ISC) equals [ (V/R,)dt ~ [ (OCV./R,)dt, linking short-
circuit resistance R, to the observable voltage depression in the
faulty cell.

Egs. (1)-(2) make “no a-priori assumption” that imbalance or ISC
is present; they simply express charge conservation. The deep network
learns to distinguish healthy from faulty behavior by correlating the
observed divergences in OCV, and balancing current with the hidden
ISC term, thereby enabling detection even when the true battery state
is unknown beforehand.

3.2. Data preprocessing

The raw data collected from the vehicle fleet is inherently simple.
Each cell record in the raw dataset contains only two attributes — OCV
and balanced Ampere-hour (Amphr) — with timestamps. Sampling is
sparse and non-uniform, averaging about 10 points per day, but in
many cases fewer. If a vehicle remains idle without charging or driving,
no data are uploaded, and hence no records appear in the dataset.
Although this relatively sparse sampling and minimalistic attribute set
restrict detailed temporal resolution, the strength of this dataset lies in
its vast scale — over 10,000 vehicles monitored over up to two years —
providing extensive coverage of diverse operational conditions. Despite

these limitations, the recorded OCV and Amphr values are sensitive in-
dicators of internal battery dynamics and ISC events, enabling effective
training of our proposed model, as illustrated in Fig. 2.

Fig. 2 presents one month of data monitoring for 8 cells from a
vehicle. In Fig. 2 (a), the initial OCV of Cell 108 is lower than that
of the other cells. However, over time, the OCV difference gradually
decreases. In Fig. 2 (b), it can be observed that the balanced Amphr of
the other cells continues to increase, while the balanced Amphr of Cell
108 remains near zero. It is the balancing mechanism that leads to the
gradual reduction in the OCV difference.

It is important to clarify that the real-world data employed in this
study are acquired directly from a central database of a large-scale EV
fleet via direct database queries. Specific details regarding the internal
data collection methodologies, sensor configurations, and operational
strategies used by the fleet management system are not available to
us. The data reflects genuine user behavior and real-world driving con-
ditions, which result in irregular and sometimes sparse data uploads,
dependent on vehicle usage patterns. Explicit charging or discharging
statuses are not provided; instead, changes in OCV and balanced Amphr
inherently reflect cumulative charging and discharging activities. Due
to the irregular and sparse sampling frequency (approximately ten
samples per day on average, with frequent days having fewer or no
samples), continuous trends observed in data visualization — such as
the sustained OCV increase from September 27, 2023, to October 20,
2023 - are attributable to intermittent and short partial charging events
combined with limited vehicle usage, rather than indicating continuous
uninterrupted charging.

The primary features extracted for this work include the cell OCV,
module median OCV, cell balanced ampere-hour, and module median
balanced Amphr, alongside the corresponding timestamp. To prepare
the data for model training, the time series is segmented into windows
of 128 consecutive timestamps, resulting in a tensor with the shape of
128 x 5 for each input sample. This window size is chosen to balance
the trade-off between capturing sufficient temporal information and
maintaining computational efficiency.

The data labeling is performed using General Motors’ proprietary
internal algorithm specifically developed to estimate short-circuit re-
sistance. Due to confidentiality and company policy constraints, the
specific details of this method cannot be publicly disclosed at this time.
All data used in this study are collected from normal vehicle driving
without artificial intervention to induce battery faults. Faulty battery
samples are identified retrospectively through rigorous statistical con-
sistency checks across multiple independent diagnostic methods. These
include publicly documented approaches such as the dSOC Method [11]
and the Cell Droop Rate Method [10], which effectively detect ISC
faults but have limited accuracy in short-resistance estimation. To
ensure the most accurate labeling, an internal proprietary algorithm,
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Fig. 2. Driving Vehicle Data. 10 samples/day for OCV and Amphr. (a) OCV signals of 8 cells from one module (Cell 108 shows a short-circuit fault). (b) Balanced
Amphr signals of 8 cells from one module. Markers indicate actual raw database samples; gaps between markers reflect idle periods with no uploaded data.

which significantly improves upon the published methods in terms of
resistance estimation accuracy, is ultimately utilized. Only samples con-
sistently verified as faulty by all independent evaluations are labeled as
faulty, ensuring the robustness, accuracy, and reliability of the training
and testing datasets.

Once these estimates are obtained, we apply an additional pro-
cessing step by setting a threshold of 2000 Q. Any estimated values
exceeding this threshold indicate that cells are considered operationally
normal. The classification threshold of 2000 Q utilized in our study
is determined based on battery-specific parameters and operational
characteristics. Specifically, for the battery cells analyzed (capacity
~300 Ah), this threshold corresponds to a minor internal discharge
rate, where it takes approximately one month (35.94 days) in a resting
state to cause a voltage drop of about 5 mV, resulting in a negli-
gible SOC reduction (~0.57%). For different battery chemistries or
cell capacities, we recommend recalculating this threshold based on
actual measured OCV-SOC relationships, cell capacity, and empirical
discharge parameters to maintain model generality and applicability.
By applying this threshold, the classification task is simplified, focusing
the model’s learning process on regions where faults are most critical.
This approach prevents excessive computational and representational
resources from being spent on healthy samples, where variations in
short resistance are operationally insignificant. Furthermore, it helps to
streamline data preprocessing and ensures consistent labeling criteria.

In addition, to address the challenges posed by the inherent imbal-
ance in the dataset, healthy cells with short resistance value labeled
at 2000 Q are under sampled, and faulty cells with low short resis-
tance values are oversampled, which helps to mitigate the bias toward
predicting the dominant class and enhances the model’s ability to
learn from the rarer ISC fault cases. Oversampling faulty cells could
potentially introduce bias or lead to model overfitting due to duplicated
samples. To address this, our hybrid architecture employs a classifi-
cation module that robustly filters out healthy cells first. Given that
faulty cells show distinct OCV behaviors compared to healthy cells
due to module-level balancing mechanisms, our classification module
achieves high accuracy despite oversampling. Furthermore, the regres-
sion module, focused only on the confirmed faulty cells, effectively
leverages oversampling as an increased training epoch strategy, thus
minimizing bias or overfitting risks. The data is collected from pro-
prietary vehicle database, consisting of autonomously reported records
from over 10,000 vehicles, each submitting roughly 10 data records
daily. Both sampling times and intervals varied and were not fixed.
Initially, missing and anomalous values are identified and filtered out
or interpolated based on their impact on data integrity. Subsequently,
the data is segmented into sequences of 128 temporally continuous data
points from the same battery module, creating time windows used as
model inputs. Timestamps are also included as a feature to incorporate
temporal information crucial for short-circuit resistance estimation. All
extracted features are normalized to mitigate numerical biases.

Due to confidentiality constraints, detailed battery cell data collec-
tion setups and internal label generation procedures cannot be dis-
closed. Despite this, our described preprocessing and experimental

design remains transparent enough for methodological evaluation by
the broader research community.

Additionally, we evaluate our method using an open-source dataset
from the study by Jia et al. [21]. The dataset, publicly accessible at
GitHub,! includes features such as voltage, current, capacity, energy,
total_capacity, total energy, and labels representing R, values. The
original authors provided preprocessing scripts for segmenting raw data
into fixed-length time windows suitable for training.

3.3. Model design

The proposed hybrid framework, HyCARLT (Hybrid Classification
and Regression with LSTM-Augmented Transformer), aims to accu-
rately estimate the short resistance in electric vehicle batteries under
real-world conditions. Our approach is grounded in a two-stage process:
an initial classification step identifies whether a sample is faulty or
healthy, and then a regression step refines the short resistance esti-
mation for the faulty subset. This integrated pipeline addresses the
challenges of extreme data imbalance and operational variability in
battery diagnostics.

At the input level, the model takes a multivariate time series X =
[xl,xz,...,xN]T € RNX4 where N is the sequence length and d =
5 represents the number of features per time step. Each data seg-
ment corresponds to a window of battery operational conditions, and
the goal is to estimate the short resistance for that interval. Since
only a relatively small number of samples are faulty, dealing directly
with regression over the entire dataset would waste computational
resources on the abundant healthy samples and risk biasing the model.
Instead, a classification module f, (+;0,) is integrated to determine if
X represents a faulty case:

fo iRV 500,11, = £, (X;6,), 3

where p represents the probability that the sample is faulty, defined as
having a short resistance below a threshold (2000 Q in this work). The
classification network maps the input from RV*¢ to a probability space
[0,1], producing a fault probability p = f, (X ; @C). As shown in Eq. (2),
setting a decision threshold z, the sample is considered faulty if p > 7,
and healthy otherwise,

N L,
Ye=13 o

By introducing this classification step, healthy samples can be quickly
discarded by assigning them a default short resistance of 2000 Q,
effectively bypassing unnecessary regression computations. This design
significantly reduces the impact of data imbalance, as the regression
model then exclusively focuses on the critical minority class of faulty
samples.

To implement the classification module, a deep residual network
architecture (ResNet) is employed, using the xresnetld34 backbone

if £, (X;0,) >

if £, (X;0,) <. “

1 https://github.com/orDrink/Short-circuit-resistance-estimator
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from the tsai library [16]. This backbone comprises custom residual
blocks with varying kernel sizes (7, 5, and 3), enabling the extraction
of multi-scale temporal features. Each residual block includes batch
normalization and ReLU activation to maintain stable training. The
network’s layered structure captures hierarchical patterns, culminating
in a global average pooling layer and a fully connected output layer
that delivers a probability estimate for the fault condition. Once a
sample is classified as healthy, the inference ends and the estimated
short resistance is set to 2000 Q.

When the classification output y, = 1 indicates a faulty sample, the
model proceeds to the regression stage. Here, the input X is passed
to a regression network f, (+;0,) that produces a continuous-valued
estimate of short resistance R, = f, (X;6,). This regression model in-
tegrates an LSTM layer and a Transformer module. The LSTM layer first
processes the input sequence X of shape N X d, capturing immediate
temporal dependencies and short-term fluctuations in battery behavior.
Formally, it is denoted as:

Z, = L(X) e RV, ©)]

where h is the latent dimension. Next, the Transformer module 7T'(-)
applies multi-head self-attention to Z; , identifying complex, long-range
interactions and patterns over the input time window. This step yields
a transformed representation as:

Z;=T(Z,) eR", (6)
The final regression output is computed as:
ﬁs = I/VrZT + br’ (7)

where W, and b, are trainable parameters of the output layer. The
combination of LSTM and Transformer architectures empowers the
regression model to capture both short-term dynamics and long-range
dependencies in the battery’s temporal data. This synergy ensures that
the model remains sensitive to subtle but critical shifts in the battery’s
behavior, improving the accuracy and robustness of the short resistance
estimation.

HyCARLT’s hybrid inference process can be succinctly described as:

& o0 = ] 2000
’ 5 (x:0,),

To further enhance the model’s performance on rare ISC events, we
employ weighted loss functions and data augmentation during training,
emphasizing faulty samples and guiding the model to prioritize critical
cases. Through this architecture and training strategy, HyCARLT es-
tablishes itself as a scalable, accurate, and efficient solution for short
resistance estimation in electric vehicle battery diagnostics.

if £, (X;0,) <

8
if £, (X;0,) > 7. ®

3.4. Loss functions

The choice of loss functions in both classification and regression
stages is critical for effectively handling the highly imbalanced nature
of the dataset and for ensuring robust fault detection and accurate
resistance estimation. Standard loss functions, such as unweighted
cross-entropy for classification or plain mean squared error (MSE) for
regression, often fail to properly emphasize minority classes or crucial
intervals of the output variable, especially when the distribution of fault
conditions is severely skewed. To overcome these challenges, this sec-
tion details the use of weighted loss functions. During training, higher
importance (or weight) is assigned to samples with short resistance
values lower than 2000 Q, particularly those below 1000 €, as this
range is most critical for detecting faults. More specifically, a weight
of 0.1 is assigned to healthy cells and 2.0 to faulty cells, thereby
emphasizing the importance of accurately predicting faulty samples. By
applying this weighted approach, the model could prioritize learning
from data where faulty patterns are most likely to emerge, ensuring
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that it could accurately capture the complex relationship between input
features and short resistance, particularly in the lower short resistance
ranges.

For the classification module, a weighted binary cross-entropy loss
is employed to balance the contribution of healthy and faulty samples
to the gradient updates. Consider a binary label y; € {0,1} for the ith
training sample, where y; = 1 indicates a fault and y; = 0 corresponds
to a healthy sample. Let f; = f, (X,;0,) be the predicted probability
that sample i is faulty, with f, denoting the classification network
and O, its parameters. In an imbalanced setting with far fewer faulty
samples, a standard binary cross-entropy loss would cause the model
to favor predicting the majority class, thus overlooking rare but critical
faults. To mitigate this issue, the weighted binary cross-entropy loss is
introduced as:

M
1 ~ ~
Le=-u 2. [wVyitog (5;) +w® (1 =) log (1-5)] . )
i=1
where M is the number of samples, and wgl), wﬁo) are weights assigned

to the faulty and healthy classes respectively. By increasing w(cl) relative
to w, the model devotes greater representational capacity to identify-
ing faults, thereby reducing the likelihood of failing to detect rare but
significant anomalies.

For the regression module, which estimates the short resistance R, =
£, (X;0,) for samples identified as faulty by the classification model, a
weighted mean squared error (WMSE) loss is employed. Let R, ; and
R,; = f,(X;;0,) be the true and predicted short resistance values
for the jth faulty sample. Although the classification stage already
filters out healthy samples, imbalances persist within the distribution
of fault severity levels. Severe faults with very low short resistance
values tend to be rarer, but they are of heightened interest in practical
settings. Treating all fault instances equally with a standard MSE loss
risks underrepresenting these critical low-resistance cases. To address
this, WMSE assigns higher weights to critical intervals of the short
resistance range, ensuring the model focuses on accurately predicting
severe faults:

M/

£m 3 T (Ry=1, (35 0,)) 10
j=

where M’ is the number of faulty samples used for training and w?’
is a sample-dependent weight that can be set higher for more critical
fault regions. This weighting scheme directs the model’s learning pro-
cess to improve precision where it is most necessary, aligning model
performance with practical diagnostic priorities.

The combination of weighted binary cross-entropy for classification
and weighted MSE for regression offers a coherent solution to the
inherent data imbalance problem. Rather than naively resampling data
or relying solely on standard loss functions, these weighted approaches
incorporate domain insights directly into the training objective. By
manipulating weights, the model can concentrate its learning capacity
on fault conditions that matter most, reducing missed detections and
enhancing the precision of short resistance estimation in severe cases.

3.5. Training optimization strategy

To ensure efficient and accurate training of the classification and
regression modules, tailored optimization strategies are employed. For
the classification module, the Adam optimizer with an initial learning
rate of 0.001 is utilized to accelerate convergence. A dynamic learning
rate schedule is implemented, reducing the learning rate by a factor of
0.1 when the validation loss plateaus, enabling the model to refine its
learning during later stages of training. Additionally, early stopping is
applied based on validation performance to prevent overfitting, ensur-
ing the model generalizes well to unseen data. The training process is
conducted for a maximum of 300 epochs, though early stopping often
results in fewer actual training iterations.
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The regression module, designed to estimate short resistance values
for faulty samples, is similarly optimized using the Adam optimizer
with an initial learning rate of 0.001. A dynamic learning rate schedule
is applied here as well, adjusting the learning rate during training to
balance stability and learning capacity. Early stopping is employed to
halt training once the validation loss no longer improves, reducing
unnecessary computational cost and preventing overfitting. Given the
greater complexity of the regression task, training is conducted for up
to 500 epochs, providing sufficient iterations to capture the intricate
temporal and contextual relationships in the data.

Both modules utilize mini-batch training to efficiently process the
large dataset, and model checkpoints are saved at each epoch to ensure
recovery in case of interruptions.

4. Experimental evaluation and discussion

The evaluation strategy and results of the proposed hybrid model
for short resistance estimation in EV batteries are presented in this
section. Our experimental design aims to comprehensively assess the
classification and regression capabilities of HyCARLT while addressing
the challenges posed by dataset imbalance and real-world driving con-
ditions. Furthermore, we benchmark the hybrid model’s performance
against SOTA regression models as baseline methods, highlighting its
advantages in accuracy and robustness.

To provide more comprehensive theoretical evidence for our con-
clusions, we explicitly clarify the rationale behind our experimental
design, emphasizing the significance of separating fault classification
from resistance estimation. Furthermore, we highlight the electrochem-
ical rationale underpinning the feature set selection and clarify the
representativeness and robustness of our real-world dataset.

4.1. Experiment setup

The computational infrastructure for training the DNN models relies
on a high-performance computing (HPC) system specifically optimized
for machine learning workloads. The system’s core processing power is
provided by a processor operating at a base clock frequency of 2.8 GHz,
with support for 64 threads to enable substantial parallel computational
throughput. This is complemented by 512 GB of system memory,
essential for handling the large datasets required for deep learning tasks
and ensuring efficient execution of memory-intensive operations. GPU
acceleration is provided by a pair of GPUs, each equipped with 48 GB of
VRAM. These GPUs, optimized for deep learning applications, deliver
high memory bandwidth and computational power for matrix-intensive
operations, utilizing CUDA Version 12.2 for acceleration.

The training process is conducted in two stages to optimize the
performance of the classification and regression tasks. The first stage
focuses on training the ResNet-based classification module, which con-
tains approximately 3 million parameters. This module is responsible
for distinguishing healthy and faulty samples, requiring about three
hours of training time for 300 epochs. The inference time for the
classification module is approximately 10 ms per instance, demon-
strating its suitability for real-time fault detection. The second stage
involves training the regression module, which integrates LSTM and
Transformer architectures to estimate the short resistance values for
samples classified as faulty. This regression model, comprising ap-
proximately 0.6 million parameters, completes training in about two
hours for 500 epochs. The LSTM layer captures short-term temporal
dependencies, while the Transformer module models complex, long-
range interactions. The inference time for this module is approximately
50 ms per instance, ensuring efficient operation during deployment.

This two-stage approach explicitly addresses the severe imbalance
by isolating healthy cells in the classification phase, allowing the
regression phase to concentrate exclusively on accurately estimating
resistance for faulty cells.
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4.2. Data sets and evaluation metrics

To validate our approach, we first use an open-source dataset
described in [21], consisting of 584,148 training samples and 64,905
testing samples. Each sample consists of sequences with 120 time
steps, and the ground truth includes five distinct short resistance levels
spanning a broad range. Our proposed regression module is adopted to
demonstrate the model’s effectiveness on a different data distribution.

Another data employed in this study is collected under real-world
driving conditions. The dataset originates from an extensive fleet of
over 10,000 electric vehicles monitored for up to two years. The
data encompasses diverse operational conditions, including substantial
seasonal temperature variations, capturing both summer and winter
scenarios—and various realistic driving and charging/discharging pro-
files. Although extreme temperature conditions (such as unusually
low or high ambient temperatures) and extreme charging/discharging
events are not explicitly separated or emphasized in isolation, the
extensive temporal and seasonal coverage of our dataset ensures a
representative range of typical operational conditions encountered by
EV batteries in practical use. Therefore, our evaluation provides a
robust assessment of our model’s performance under realistic operat-
ing conditions commonly experienced in real-world EV applications.
Approximately 10 samples are gathered per day from each vehicle,
resulting in a comprehensive dataset encompassing both healthy and
faulty cells. Among these cells, about 380 exhibited ISC faults. To
obtain the training data, we first select 380 faulty cells with short
resistance less than 2000 Q. We then randomly sample 380 vehicles
from total 10,000 vehicles, without any faulty cells. Since each vehicle
contains 96 or 192 cells, the total number of healthy cells is initially
much larger than the number of faulty cells. To achieve a balanced
training dataset, the faulty cell data is oversampled by duplication,
resulting in a double number of faulty samples. Similarly, the healthy
data is randomly downsampled, reducing the number of healthy sam-
ples by a ratio of approximately 4:1 ratio. After oversampling and
downsampling, the ratio of healthy samples to faulty samples is set to
be approximately 1:1, ensuring a balanced dataset. After balancing, the
combined dataset (containing both faulty and healthy cells) is split into
training set, validation set, and testing set using an 80%:10%:10% ratio.
This split applies specifically to the balanced dataset, which consists of
380 faulty cells and 380 healthy cells. The training and validation sets
are used during model development for parameter tuning and overfit-
ting prevention. The testing set in the combined dataset comprises both
healthy and faulty cells (i.e., the 10% portion from the split of the 380-
faulty and 380-healthy sample pool). For the cells with short resistance
values below 2000 Q in the testing set, are included in Test Set 1 to
evaluate the model’s performance to examine the model’s fault isolation
capability and the model’s accuracy on short resistance estimation.
In addition to Test Set 1, we establish another distinct data set, Test
Set 2. This set is entirely independent of the balanced dataset and
contains only healthy cells that are not selected previously. Specifically,
it consists of data from all remaining vehicles after excluding the 380
vehicles containing soft faulty cells and the 380 vehicles selected to
represent healthy cells for the balanced dataset. Since this test set
represents most of the real-world distribution, it provides insights into
the model’s generalization capability and its robustness in recognizing
healthy cells without misclassification.

This data organization ensures comprehensive performance assess-
ment. Test Set 1 enables direct evaluation of classification and regres-
sion performance in identifying and quantifying faults, while Test Set
2 examines the model’s ability to generalize to a much larger popula-
tion of unseen healthy cells, thereby ensuring reliable deployment in
real-world conditions.

For classification, F1-score is used as the main metric, with recall,
precision, and accuracy calculated using Egs. (11)—(14). Here, True
Positive (TP) represents correctly classified faulty samples, True Nega-
tive (TN) represents correctly classified healthy samples, False Positive
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(FP) is the number of false positives, and False Negative (FN) is the
number of false negatives. This approach allowed for a more nuanced
evaluation of the model’s classification performance.

Precision = TP/ (TP + FP), an

Recall=TP/(TP + FN), 12)

Fl — score = 2 % Pr.ec.tston # Recall ) 13)
Precision + Recall

Accuracy =(TP+TN)/(TP+ FP+ FN+TN). 14

For the regression task, we employ multiple evaluation metrics to

capture different aspects of prediction accuracy, as shown in Egs. (15)-(19).

The Mean Squared Error (MSE) measures the average of squared
prediction errors. The Root Mean Squared Error (RMSE) is the square
root of MSE, making it more interpretable in the same units as the
target variable. The Mean Absolute Error (MAE) provides a straightfor-
ward average of absolute residuals, offering a robust measure against
outliers. The Mean Absolute Percentage Error (MAPE) focuses on the
relative magnitude of errors, which is particularly helpful for assessing
the estimation quality across a wide range of short resistance values.
Finally, the coefficient of determination (R%) quantifies how well
the regression model explains the variance in the true labels, with
values closer to 1 indicating better fits. Each metric highlights a dis-
tinct perspective of regression performance, ensuring a comprehensive
evaluation of the proposed model.

n
MSE:%Z(y,._y,.)Z, (15)
i=1
RMSE = VMSE, (16)
1 n
MAE =~ 3 |y; = 5] 17)
i=1
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MAPE = — Y |Z—21| x 100%, (18)
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4.3. Evaluation for proposed model

In this section, an ablation study is performed on an open-source
dataset to identify the best Transformer-based backbone for ISC re-
sistance estimation. The chosen regression module is compared to a
CNN-based baseline, confirming its effectiveness on the same open-
source dataset. Finally, the hybrid classification-regression design is
evaluated on a real-world driving vehicle dataset and benchmark it
against existing SOTA methods, demonstrating the overall performance
and robustness of our approach.

4.3.1. A comparative study of CNN and transformer variants

The HyCARLT is first compared with the CNN-based baseline
from [21], which relies on multiple Conv1D layers, dropout, and a
final dense layer for regression. Both models are trained and tested on
the same dataset (containing 584,148 training samples and 64,905 test
samples). Table 1 shows that HyCARLT achieves lower MSE, RMSE,
and MAPE than the CNN baseline (6.54% vs. 9.10%), while the baseline
obtains a smaller MAE. This trade-off occurs because the CNN baseline’s
convolutional blocks can minimize overall absolute deviations on typi-
cal resistance values but are less adaptive to extreme faults, resulting in
higher percentage errors for rare yet critical low-resistance conditions.
In contrast, the HyCARLT architecture tracks temporal patterns more
effectively, handling both small and large resistance ranges. These
results highlight the effectiveness of pairing LSTM layers for short-term
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sequence modeling with Transformer attention for capturing long-range
dependencies, which leads to consistent performance across diverse
operating conditions.

To test whether HyCARLT’s two-stage design still offers an advan-
tage against the latest Transformer forecasters, we benchmark four
Transformer—variants Informer, Autoformer, FEDformer and PatchTST
on the dataset. Their results, shown in the final four rows of Ta-
ble 1, indicate that although several variants (e.g., PatchTST) narrow
the regression gap, none can simultaneously match HyCARLT’s fault-
classification recall and its low relative-error estimates on faulty cells.
This confirms that explicitly separating ’fault decision’ from ’fault mag-
nitude’ — and training each branch on a class-balanced subset — remains
crucial when the healthy/faulty ratio exceeds 100:1 in the wild.

4.3.2. Ablation study on the open-source dataset

To assess the effectiveness of different Transformer-based backbones
for ISC resistance estimation, an ablation study is conducted using
the same open-source dataset. Table 2 compares four model variants:
a pure Transformer, CNN+Transformer, deepResNet+Transformer and
HyCARLT. Note that in all tables, the best performance are highlighted
in blue and bold, while the second-best results are marked in bold for
clear comparison.

As shown in Table 2, although the ResNet+Transformer variant
yields lower MSE, RMSE, MAE, and a slightly higher R?, it suffers
from a larger MAPE (17.77%). By contrast, HyCARLT yields a MAPE of
6.54%, reflecting more stable relative errors across imbalanced short
resistance distributions. One reason for this disparity is that, while
ResNet deepens feature extraction and excels in absolute-error metrics,
it may overestimate resistance values for lower ranges. LSTM layers,
on the other hand, excel at capturing sequential dependencies crucial
for fault scenarios where small deviations at low resistances can dis-
proportionately affect relative error. Thus, when MAPE is the primary
concern—particularly in highly skewed fault distributions - HyCARLT
is the better choice.

4.3.3. Evaluation on the driving vehicle dataset

In the proposed hybrid model, the classification and regression tasks
are integrated for optimal performance. The ResNet-based classifica-
tion model serves as the classification module, determining whether
a battery cell is healthy. This classification is formulated as a binary
problem, where a label of 1 is assigned to short resistance values
below 2000 Q (indicating a faulty cell), and a label of O is assigned to
values at 2000 Q (representing a healthy cell). Trained on this binary
labeling, the classification model effectively distinguishes healthy cells
from faulty ones.

On Test Set 1, the classification module achieves a recall of 0.92, a
precision of 0.88, and an F1-score of 0.90, demonstrating its robustness
in distinguishing healthy and faulty cells. An accuracy of 0.91 further
validates the model’s reliability. On Test Set 2, which includes healthy
samples from over 10,000 EVs, the model does not report any false
positives.

The performance of HyCARLT surpasses that of the best SOTA
method [xresnetld34] in both test sets, as illustrated in Fig. 3. On
Test Set 1, HyCARLT achieves a relative error of 15.0%, significantly
lower than the 26.6% achieved by the SOTA method. Figs. 3(a) and
3(c) demonstrate that the SOTA method exhibits higher errors for
short resistance values below 750 Q, while HyCARLT maintains a more
uniform estimation error, almost consistently below 20%. Notably, Figs.
3(a) and 3(c) display only the distribution of estimated values below
2000 Q, primarily focusing on the estimation results for faulty cells.
In contrast, Figs. 3(b) and 3(d) illustrate the distribution of estimated
values at 2000 Q and above, mainly emphasizing the estimation results
for healthy cells. According to Eq. (9), relative error becomes more
sensitive for lower ground truth values; for instance, estimating 100 ©
as 150 Q results in a 50% error, whereas estimating 1000 Q as 1050 Q
only results in a 5% error. This highlights HyCARLT’s superior accuracy
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Table 1
Comparison with CNN and transformer variants using an open-source dataset.
Model MSE (Q%) RMSE (Q) MAE (Q) MAPE (%) R?
CNN-Based Baseline [21] 499 x 10° 7.06 x 10* 274 x 10* 9.10 0.98
HyCARLT (Proposed) 339 x 10° 582 x 10* 329 x 10* 6.54 0.98
Informer [22] 1.13 x 10" 1.06 x 10° 455 x 10* 12.39 0.95
Autoformer [23] 405 x 10° 6.36 x 10* 3.80 x 10* 10.81 0.97
FEDformer [24] 3.85 x 10° 6.20 x 10* 3.60 x 10* 9.62 0.97
PatchTST [25] 6.89 x 10° 830 x 10* 333 x 10 8.29 0.97

Table 2

Ablation study on transformer-based regression modules using the open-source dataset. Each row

represents a different backbone.

Model MSE (Q?) RMSE (Q) MAE (Q) MAPE (%) R?

Transformer Only 229 x 10" 151 x 10° 6.13 x 10* 3881.05 0.89
CNN + Transformer 298 x 10 1.72 x 10° 1.00 x 10° 19.41 0.87
ResNet + Transformer 272 x 10° 1.65 x 10* 842 x 10° 17.77 0.99
HyCARLT (Proposed) 339 x 10° 582 x 10* 329 x 10* 6.54 0.98

Note: the error magnitudes are large because the ground-truth short resistance for healthy cells is set to 10°Q in
the source dataset [21]; false-positive predictions therefore inflate error metrics.
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Fig. 3. Performance of HyCARLT and the best SOTA method [xresnetld34_deeperplus] on two test sets. (a) Evaluation on Test Set 1 using HyCARLT; (b)
Evaluation on Test Set 2 using HyCARLT; (c) Evaluation on Test Set 1 using the best SOTA method; (d) Evaluation on Test Set 2 using the best SOTA method.

for lower short resistance values, where it closely approximates the
ground truth.

On Test Set 2, HyCARLT did not misclassify any healthy cells as
faulty, while the best time-series regression analysis method still mis-
classified some healthy cells. As shown in Fig. 3(d), directly applying
regression analysis to Test Set 2 results in fluctuating short resistance
estimates, with some estimated values dropping below 2000 Q. In con-
trast, as illustrated in Fig. 3(b), the classification model constrains the
resistance estimates of healthy cells to 2000 Q, preventing fluctuations
that could lead to false positives. HyCARLT demonstrates superior per-
formance compared to existing time-series regression analysis methods,
excelling particularly in scenarios with lower short resistance values
and achieving error-free classification and regression for healthy cells.

These findings show that the hybrid classification-regression strat-
egy of HyCARLT generalizes well to diverse datasets, effectively ad-
dresses data imbalance, and surpasses prominent single-stage regres-
sion architectures for ISC resistance estimation.

4.4. Performance comparison

Having established HyCARLT’s efficacy on both our real-world
dataset and the open-source dataset, we next extend our evaluations to
a broader set of advanced time-series regression models. The goal is to
confirm that our hybrid design consistently outperforms conventional
single-stage regression approaches across multiple battery diagnostic
scenarios. The performance of various time-series regression models is
compared, to highlight the advantages of our approach in handling
the unique challenges posed by the highly imbalanced dataset used
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Table 3
Performance of models with different architectures.

Model Relative error (%)
FCN [15] 29.5
FCNPlus [16] 29.6
InceptionTime [33] 23.4
InCoordTime [16] 26.9
XCoordTime [16] 26.1
InceptionTimePlus [16] 19.5
InceptionTimeXLPlus [16] 19.5
MultilnceptionTimePlus [16] 24.1
InceptionRocketPlus [16] 83.1
MLP [34] 88.6
gMLP [20] 15.7
OmniScaleCNN [35] 55.8
RNN [17] 48.5
LSTM [17] 48.8
RNNPlus [16] 45.0
LSTMPlus [16] 47.4
GRUPlus [16] 43.2
RNN_FCN [16] 29.8
LSTM_FCN [17] 30.7
GRU_FCN [36] 29.8
MLSTM_FCN [17] 29.7
MGRU_FCN [16] 27.9
RNN_FCNPlus [16] 28.8
LSTM_FCNPlus [16] 30.2
GRU_FCNPlus [16] 30.5
MRNN_FCNPlus [16] 25.9
MLSTM _FCNPlus [16] 33.4
MGRU_FCNPlus [16] 26.2
ResCNN [37] 24.2
ResNet [18] 19.8
ResNetPlus [16] 189
TCN [21] 30.6
MultiTSTPlus [16] 19.9
TransformerModel [19] 73.2
XCM [38] 51.9
XCMPlus [16] 48.3
xresnet1d18plus [16] 30.4
xresnet1d34plus [16] 25.1
xresnet1d50plus [16] 25.6
xresnet1d101plus [16] 33.9
xresnet1d152plus [16] 26.1
xresnet1d18_deepplus [16] 25.9
xresnet1d34_deepplus [16] 21.1
xresnet1d50_deepplus [16] 19.5
xresnet1d18_deeperplus [16] 26.8
xresnet1d34_deeperplus [16] 26.6
xresnet1d50_deeperplus [16] 26.0
XceptionTime [39] 23.4
XceptionTimePlus [16] 24.1
TSSequencer [16] 21.6
TSSequencerPlus [16] 20.4
ConvTran [40] 33.9
ConvTranPlus [16] 35.4
RNNAttention [41] 22.5
LSTMAttention [42] 22.8
GRUAttention [43] 21.6
RNNAttentionPlus [16] 20.6
LSTMAttentionPlus [16] 22.3
GRUAttentionPlus [16] 22.6
TransformerRNNPlus [16] 225.1
TransformerGRUPlus [16] 227.6
HyCARLT (Proposed) 15.0

in this study. These models represent SOTA approaches used for time-
series analysis short resistance estimation tasks. All models have been
retrained using our training dataset.

As shown in Table 3, the models include a range of architec-
tures, from simple fully connected networks (FCN) to advanced models
like ResNet, Transformer, and temporal convolutional networks (TCN).
Each model is tested on Test Set 1 to evaluate its ability to handle
regression tasks under varying conditions.

10
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To highlight the efficacy of our proposed hybrid methodology,
HyCARLT, it is instructive to compare its performance against an
extensive set of SOTA regression approaches that tackle the short-
circuit resistance estimation task without any preliminary classification
stage. These alternative models, drawn from a wide array of neural
architectures, operate on the entire dataset directly and attempt to fit
the severely imbalanced distribution of short-circuit resistance values
in a single step. Table 3 provides a comprehensive benchmarking of
numerous baseline architectures—including convolutional, recurrent,
and transformer-based models. The goal is to achieve low error on
faulty samples, where the estimation is challenging and critical.

As illustrated in Table 3, architectures like MLP or Transformer-
Model may handle simpler distributions but yield large errors when
confronting the highly skewed data, resulting in poor error metrics on
Test Set 1. Even more specialized networks, such as various
InceptionTime-based, RNN-based or FCN-based hybrids, often fail to
overcome the intrinsic imbalance, showing inflated errors particularly
in the lower resistance ranges where faults are rarer and inherently
harder to model.

In contrast, HyCARLT achieves superior performance, which reports
a relative short-resistance estimation error of 15%, substantially out-
performing most SOTA regression models. The classification results on
Test Set 2 are not reported since we mainly evaluate the regression
model capability in this work. Notably, even some architectures tuned
for time-series tasks — such as multi-scale convolutional networks or
recurrent networks with attention - fall short of HyCARLT’s balanced
performance. While certain regression architectures may show intermit-
tent strong performance on one of the test sets, none match HyCARLT’s
consistently strong performance on both. This comparison underscores
the core advantage of the hybrid strategy: rather than forcing a sin-
gle model to simultaneously master the trivial but dominant healthy
regime and the complex, minority faulty regime, HyCARLT assigns
complementary tasks to specialized modules. The result is a method
that not only outperforms individual baselines but also sets a higher
standard for addressing extreme imbalance in battery short-circuit
resistance estimation.

The comparison with SOTA regression approaches reinforces the
significance of our hybrid design. The ResNet front-end isolates abrupt
OCV drops, the LSTM captures mid-range balancing dynamics, and
the Transformer models long-range patterns, enabling the pipeline to
remain sensitive to early ISC signatures. The end-to-end HyCARLT
pipeline excels where traditional models fail, delivering improvements
in fault detection accuracy, short resistance estimation, and overall re-
liability. This comprehensive performance uplift across various neural
architectures illustrates that the hybrid paradigm is not a marginal
enhancement, but rather a robust, scalable solution to the longstanding
imbalance challenges in the EV battery diagnostic domain.

The robust theoretical foundation of our two-stage hybrid design,
electrochemically grounded feature set, and the extensive represen-
tativeness of our dataset collectively provide comprehensive intrinsic
support for our results. These methodological choices significantly
mitigate common error sources encountered by purely regression-based
approaches, theoretically justifying our improved ISC detection and
resistance estimation performance.

5. Conclusion

This work proposes a deep learning model that integrates a ResNet,
LSTM, and Transformer architectures for short resistance estimation in
EV batteries. Validated on data from over 10,000 vehicles, the method
achieves a relative estimation error of 15% on faulty cells and intro-
duces no false positives for healthy cells, significantly outperforming
traditional approaches such as Cell Droop Rate and dSOC, which can ex-
hibit errors of up to 50%-80% under certain conditions. By augmenting
the dataset — oversampling faulty cells and undersampling healthy cells
— and employing a deep-residual-network-based classification module,



Y. Yao et al.

the model effectively mitigates data imbalance and focuses the regres-
sion stage on the critical faulty subset. Although labels are derived
from an existing algorithm due to the absence of ground truth, the
model demonstrates adaptability by learning intrinsic data patterns
rather than simply mirroring the labeling mechanism. This design
ensures that it can be retrained with experimentally obtained or expert-
annotated labels should they become available, preserving accuracy
and effectiveness.

Despite these promising results, several limitations remain. First,
the model’s performance is contingent on the coverage and representa-
tiveness of the training data, which may not capture every real-world
operational regime. Second, while the classification step addresses
overall imbalance, extremely rare or novel fault scenarios might still
require additional data collection or refined augmentation strategies.
Future work will explore incorporating physics-informed constraints
into the network, further expanding the diversity of training samples,
and evaluating the approach across different battery chemistries and
usage profiles, which would enhance the method’s interpretability,
broaden its applicability, and ensure more robust real-time diagnostics
for EV batteries.
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