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HyCARLT pinpoints internal shorts during real-world driving.
Two-stage design beats extreme healthy–faulty data imbalance.
OCV + balanced-Ah features embed electrochemistry into the DL model.
Validated on 10 000 EVs over two years; ISC error ≈ 15 %.
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 A B S T R A C T

Short resistance estimation is vital for diagnosing internal short circuit (ISC) faults in batteries, impacting 
battery lifespan and EV performance. Current estimation methods are often limited by error sources introduced 
during the estimation of charge difference based on the state-of-charge (SOC), such as inaccuracies in capacity 
and SOC/OCV (open circuit voltage) mapping coefficients, as seen in methods like Cell Voltage Droop, the 
Battery SOC Difference Relative to Module Median (dSOC). While some approaches may mitigate these 
interference factors, they rely on steady-state constant-current conditions, which restricts their applicability 
under dynamic, real-world operational scenarios. To address these limitations, it is essential to develop methods 
that can handle diverse operating conditions while mitigating data imbalance issues. This work introduces 
HyCARLT (Hybrid Classification and Regression with LSTM-Augmented Transformer), a hybrid model that 
combines a deep residual network classification module with a regression module incorporating LSTM and 
Transformer architectures to handle data imbalance issue and improve resistance estimation accuracy. The 
method is validated using data from over 10,000 vehicles and demonstrates better accuracy in short resistance 
estimation compared to the state-of-the-art approaches. The validation results demonstrate HyCARLT is a 
promising approach for ISC fault detection and short resistance estimation under diverse and dynamic 

conditions.
1. Introduction

Electric vehicles (EVs) are rapidly becoming a cornerstone of the 
modern transportation landscape, driven by the global shift toward 
more sustainable and environmentally friendly technologies. Central 
to the operation and efficiency of EVs is the battery, which serves 
not only as the power source but also as a critical component that 
directly affects the vehicle’s performance, driving range and experi-
ence. Internal short circuits (ISCs) occur when a conductive pathway 
forms between the positive and negative electrodes inside a battery 
cell, bypassing the separator and causing abnormal current flow [1]. 
ISC, can drastically degrade battery performance by increasing energy 
consumption, reducing efficiency, diminishing capacity, and impairing 
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overall functionality [2]. This necessitates their timely detection and 
diagnosis to maintain the health and safety of EVs.

There are some straightforward methods to identify potential in-
ternal short circuits in EV batteries. For instance, voltage droop rate 
and cell voltage performance detect ISCs by directly observing how 
fast the cell voltage droops in response to a short circuit [3]. While 
these methods are effective under conditions with minimal external 
interference, such as stable temperatures and limited cell aging, their 
reliability decreases in the presence of external factors. These fac-
tors, such as temperature fluctuations or significant aging, can either 
mimic the voltage signatures of an ISC or obscure them, leading to 
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potential inaccuracies. Furthermore, such methods do not provide a 
direct estimation of short resistance, which is a key parameter in 
battery diagnostics to quantify the severity of internal short circuits [4]. 
Accurate estimation of short resistance is vital for the early detection of 
potential issues, enabling timely interventions that can prolong battery 
life and ensure the reliability of the vehicle’s operation [5].

Estimating short resistance in EV batteries is a challenging task due 
to the dynamic and complex nature of battery operations. Traditional 
methods, such as electrochemical and equivalent circuit models, laid 
the theoretical foundation for understanding battery behavior. These 
methods, from the pioneering electrochemical frameworks by Newman 
and Balsara [6] to the simplified circuit models by Rand and Woods [7], 
rely on static assumptions and approximations that do not adequately 
reflect real-world variability caused by factors like temperature, state of 
charge (SOC), and aging. Even with advancements introduced by Doyle 
et al. [8], and refinements by He et al. [9], these methods struggle 
to model the nonlinear and time-variant characteristics essential for 
precise short resistance estimations in real-time applications. Build-
ing upon these traditional principles, physical methods for estimating 
short resistance, such as the Cell Droop Rate [10] and dSOC [11] 
approaches, attempt to make these theoretical models more practically 
applicable. However, indirect D&P methods, such as voltage-based ISC 
detection techniques, cannot quantify fault severity and are prone to 
false positives and negatives under operational variability, such as 
temperature fluctuations and cell aging. Direct D&P methods, while 
focus more on short resistance estimation, still exhibit significant errors 
in complicated real-world conditions, e.g. the capacity variation, uncer-
tainty in SOC/OCV (open circuit voltage) mapping or other noises and 
disturbances. To make it more robust under diverse and challenging 
environments, data-driven solutions may help.

Machine learning (ML) has emerged as a powerful alternative for 
battery diagnostics, offering data-driven insights that can adapt more 
flexibly to complex, changing conditions. Early ML applications fo-
cused on state-of-health (SOH) and SOC estimation [12–14], while 
more recent efforts incorporate neural networks for predicting aging 
and capacity fade [13]. Although such techniques show potential in 
handling nonlinear battery behaviors, the direct application of ML 
or deep learning (DL) to short resistance estimation has remained 
limited. A substantial challenge lies in the inherent imbalance of the 
dataset, particularly regarding the distribution of short resistance val-
ues among healthy and faulty cells. Faulty cells constitute a much 
smaller proportion compared to healthy cells, and even within the 
faulty population, data are unevenly distributed across varying levels 
of fault severity. This skewed distribution complicates model training, 
as the deep learning algorithm may become biased toward predicting 
healthy cells, ultimately degrading performance when identifying and 
estimating short-circuit faults. The scarcity of short resistance dataset 
has led most DNN-based research to focus on classification tasks, such 
as categorizing fault severity, rather than directly estimating short 
resistance. Even when deep learning techniques have been applied 
to short resistance estimation, these studies often rely on small-scale, 
specially curated datasets that lack diversity and fail to represent the 
unbalanced distribution of short resistance values typically observed in 
real-world scenarios [14]. In most cases, these datasets only contain 
several discrete resistance values, making it difficult for the resulting 
models to generalize beyond the limited conditions they are trained 
on.

To address these challenges, we propose HyCARLT, a novel hybrid 
classification and regression approach specifically tailored for short 
resistance estimation in EV batteries. The key methodological inno-
vations of HyCARLT include: (i) integrating a deep residual network 
(ResNet)-based classifier to accurately isolate faulty cells and signif-
icantly reduce data imbalance; (ii) employing an LSTM-Augmented 
Transformer regression module designed to effectively capture both 
short-term sequential dynamics and long-term dependencies in bat-
tery operational data; (iii) implementing a specialized weighted loss 
2 
function within the regression stage to ensure the model prioritizes 
estimation accuracy for rare and critical low-resistance ISC faults. Addi-
tionally, HyCARLT incorporates carefully designed data augmentation 
strategies – combining oversampling of faulty cases and undersampling 
of healthy cases – to further improve model robustness. By combin-
ing these innovations, HyCARLT offers a comprehensive, data-driven 
diagnostic framework that addresses the limitations of existing meth-
ods, particularly under realistic, diverse, and imbalanced operational 
conditions. Our contributions are highlighted as follows:

• Our proposed deep learning method achieves better performance 
in estimating the short resistance of batteries using real-world 
vehicle data during normal operation. Validated on data from 
over 10,000 vehicles, it achieves a relative error of 15% on 
faulty cells and no healthy cells are false classified as unhealthy, 
representing a significant improvement over existing state-of-the-
art physical methods such as Cell Droop Rate and dSOC, which 
exhibit estimation errors ranging from 50% to 80%.

• The method proposed in this report provides reliable estimations 
across diverse operating conditions without requiring steady-state 
assumptions or post-hoc maturation, underscoring its robustness 
and practical utility.

• Furthermore, the integration of a hybrid model—combining a 
deep residual network for classification with an LSTM-Tran-
sformer regression module—effectively addresses data imbalance, 
reduces false positives, and enhances fault detection capabilities. 
This design leverages tailored data augmentation techniques, 
including under-sampling of healthy cells and over-sampling of 
faulty cells, to further improve diagnostic performance, ensuring 
accurate and scalable short resistance estimation under real-world 
conditions.

Despite its strong performance, HyCARLT has several limitations. First, 
its accuracy depends on the quality and diversity of training data, 
and rare failure cases remain underrepresented. Second, while data 
balancing techniques improve fault detection, estimation errors for 
low short resistance values persist. Third, the classification thresh-
old at 2000 Ω is empirically set and may require adjustment for 
different battery chemistries. Finally, as a deep learning model, Hy-
CARLT lacks physical interpretability, which may limit its adoption 
in safety-critical applications. Future work can address these issues by 
integrating physics-informed models and expanding training datasets.

The structure of this report is organized as follows: In Section 2, 
an overview of the foundational techniques used for estimating short 
resistance is discussed. The methodology is provided in Section 3, 
including data preprocessing, model architecture, and training process. 
In Section 4, the experimental evaluation is discussed, including a 
comparative analysis with existing models and the proposed model.

2. Related work

This section explores how advanced deep learning architectures can 
be adapted to improve short resistance estimation in electric vehicle 
batteries. By leveraging classification and regression paradigms, models 
such as convolutional networks, recurrent networks, transformers, and 
hybrid designs can effectively capture temporal patterns and manage 
long-range dependencies. The discussion emphasizes the potential of 
hybrid frameworks to address the limitations of traditional diagnos-
tic tools, particularly in handling imbalanced data and adapting to 
dynamic battery states.

For fault diagnostics and prognostics, classification and regression 
are two primary predictive paradigms, each is suited for specific types 
of outputs. Classification involves predicting categorical labels from 
input data. The output is discrete, such as ‘‘faulty’’ or ‘‘healthy’’ in 
binary classification, or one of several categories in multiclass classifi-
cation. Models for classification often output probabilities over classes, 
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with the predicted label being the one with the highest probability. 
Regression, in contrast, deals with predicting continuous values. The 
output can take any numerical value within a range, making regression 
ideal for tasks such as estimating numerical quantities or forecasting 
trends. For instance, predicting the short resistance of a battery cell is 
a regression task, where the model aims to provide precise numerical 
estimates. Loss functions like Mean Squared Error (MSE) are commonly 
employed to minimize the prediction error.

Short resistance estimation is fundamentally a time-series regres-
sion task. DNNs have become central to time-series analysis to tackle 
temporal modeling. Fully Convolutional Networks (FCNs) [15] are 
designed to process time series data by utilizing convolutional lay-
ers to extract features, with enhancements like FCNPlus introducing 
modifications to improve performance. Inception-based models, such 
as InceptionTime, adapt the Inception architecture for time series clas-
sification, employing multiple filters of varying lengths to capture 
diverse patterns; further developments include InceptionTimePlus vari-
ants like InceptionTimePlus and InceptionTimeXLPlus [16], which offer 
expanded architectures for handling more complex data. Recurrent 
Neural Networks (RNNs), including Long Short-Term Memory (LSTM) 
networks [17], are adept at modeling temporal dependencies in se-
quential data, with advanced versions like LSTMPlus and GRUPlus pro-
viding enhanced capabilities [16]. Hybrid models that combine RNNs 
with FCNs, such as LSTM-FCN [17], leverage the strengths of both 
architectures to improve classification accuracy. Residual Networks 
(ResNets) [15] incorporate residual connections to facilitate the train-
ing of deeper networks, with adaptations like ResNetPlus [18] and one-
dimensional versions such as xresnet1d18plus tailored for time series 
tasks. Transformer-based models, including TransformerModel [19] 
and MultiTSTPlus, have been applied to time series analysis to capture 
long-range dependencies, with models like XCM and XCMPlus offering 
explainable convolutional neural network approaches. Other notable 
models include Multi-Layer Perceptrons (MLPs) and their gated vari-
ants (gMLP) [20], Temporal Convolutional Networks (TCNs) [21], and 
architectures that integrate attention mechanisms, such as LSTMAtten-
tion and its enhanced version LSTMAttentionPlus [16]. Informer [22] 
pioneers the use of probabilistic sparse self-attention to reduce the 
quadratic cost of vanilla Transformers, making it much better at han-
dling long time-series forecasts. Building on this idea, Autoformer [23] 
introduces an auto-correlation decomposition that explicitly separates 
seasonal and trend components, further improving long-range accu-
racy. FEDformer [24] extends the decomposition view by combining 
Fourier and wavelet blocks inside the attention pipeline, yielding bet-
ter efficiency-accuracy trade-offs. More recently, PatchTST [25] re-
imagines time-series inputs as non-overlapping ‘‘patches’’, enabling 
pure Transformer encoders (without convolutions or RNNs) to capture 
local context with fewer parameters. Beyond these mainstream vari-
ants, several 2024 releases have pushed the frontier: PSFormer [26] 
shares parameters across segment-wise windows to lower memory, 
Ister [27] employs interpretable seasonal-trend attention that exposes 
internal recurrence patterns, and TEAFormers [28] augment standard 
attention with tensor decomposition to model multi-dimensional bat-
tery signals compactly. These architectures provide strong baselines for 
time-series regression tasks.

In this work, we revisit three fundamental yet versatile models 
– ResNet, LSTM, and Transformer – as essential building blocks to 
construct a hybrid framework tailored for short resistance estimation 
with better performance. Both local temporal patterns and long-range 
dependencies are captured while maintaining computational efficiency, 
the complementary strengths of these foundational models are lever-
aged. ResNet overcomes the vanishing gradient issue in very deep 
networks by introducing ‘‘skip connections.’’ These skip connections 
allow gradients to bypass certain layers, thereby stabilizing training 
in deep models. The use of ResNet could exploit its strong feature 
extraction capabilities, allowing it to detect subtle yet critical indi-
cators of ISC faults over time by leveraging residual connections to 
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model complex dependencies within battery data, which has shown 
96.67% prediction accuracy in identifying ISC faults for classification 
tasks [29]. LSTM networks are a specialized type of recurrent neural 
network (RNN) designed to address the limitations of traditional RNNs, 
such as vanishing and exploding gradients. These problems often hinder 
RNNs from learning long-term dependencies. LSTMs, introduced by 
Hochreiter and Schmidhuber [30], overcome these challenges by using 
memory cells and gating mechanisms – specifically input, forget, and 
output gates – that regulate the flow of information. This structure 
allows LSTMs to retain or discard information selectively, making them 
particularly effective for time series tasks where both short-term and 
long-term patterns need to be understood. In battery diagnostics, LSTMs 
have proven valuable for estimating the SOH and SOC, predicting 
degradation trends, and detecting early faults [31]. Their ability to 
capture temporal dependencies is crucial for identifying patterns in 
voltage and current data that indicate potential faults or degradation 
in battery cells. A self-attention mechanism is employed by transform-
ers that allows the model to focus on different parts of the input 
data, emphasizing critical elements that influence predictions [32]. 
Unlike LSTMs, Transformers do not rely on sequential processing, 
enabling them to capture long-range dependencies more efficiently and 
in parallel. This capability significantly improves training and inference 
speed. Transformers have demonstrated strong performance in domains 
ranging from natural language processing to image recognition, and 
recently in battery diagnostics for tasks like SOC estimation and fault 
detection [31]. Their ability to model complex interactions without 
the constraints of sequential order makes them ideal for capturing the 
dynamic behaviors of batteries.

3. Methodology

To address the severe data imbalance inherent in real-world bat-
tery data – where healthy cells significantly outnumber ISC faulty 
cells – our proposed HyCARLT model integrates both classification 
and regression modules. Specifically, a deep residual network-based 
classifier first determines the presence of ISC faults, allowing the sub-
sequent LSTM-Transformer regression module to focus exclusively on 
accurately estimating the severity of confirmed faults. This two-stage 
design contrasts with purely regression-based methods, which typically 
do not adequately compensate for data imbalance, often resulting in 
less reliable fault estimations.

The proposed diagnostic model, illustrated in Fig.  1, is designed 
to estimate the short circuit resistance (Rs) of battery cells through 
a DNN architecture. The input to the model consists of a time series 
dataset that includes multiple features, such as cell group (CG) OCV, 
ampere-hour (Amphr), module median OCV (mmOCV), module median 
Amphr (mmAmphr), and timestamp data arranged in a Nx5 format. 
The input data undergoes preprocessing steps, including normalization 
and transformation, ensuring that it is suitable for HyCARLT. The final 
output of the HyCARLT is a regression prediction of the short resistance.

3.1. Physical explanation of feature selection and model inputs

To avoid confusion between open-circuit voltage (OCV) and instan-
taneous terminal voltage, we define OCV here as the ‘‘relaxed’’ terminal 
voltage measured after the module current has been zero for a dwell 
long enough that the voltage drift falls below1 mV h−1. Throughout 
this work voltage is sampled only in such rest windows, so the recorded 
value is a practical surrogate for the true thermodynamic OCV.

The selected features – cell-group relaxed voltage (denoted OCVr), 
module-median relaxed voltage (mmOCVr), cell balanced ampere-hour 
(Amphr), and module-median balanced ampere-hour (mmAmphr) – are 
closely related to ISC faults through measurable physical phenomena 
occurring within battery modules. Each cell group, which consists of 
three parallel-connected cells, forms the basic analysis unit (hereafter 
referred to simply as ‘‘cell’’). Under ideal conditions, all eight healthy 
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Fig. 1. The proposed HyCARLT model integrates a classification module and a regression module to accurately estimate short-circuit resistance in electric vehicle 
batteries. First, a classifier determines whether the cell is healthy or faulty. Healthy samples are quickly assigned a nominal short resistance, while only the faulty 
samples pass to the LSTM-Augmented Transformer regression stage. This selective routing ensures the model focuses computational effort where it matters most, 
delivering robust and reliable resistance predictions even under highly imbalanced conditions.
cells within a module exhibit identical OCVr profiles and the balancing 
circuit remains inactive. When an ISC arises in a particular cell its OCVr
drifts downward; the lower the short resistance, the faster this drift.

Once the OCVr of a faulty cell departs by roughly 5 mV from its 
neighbors, the module’s active-balancing circuit is triggered, forcing 
the healthy cells to dissipate charge so that module voltages realign. 
Hence, the severity of ISC governs both the rate of voltage divergence 
in the faulty cell and the duty-cycle of balancing in its healthy peers.

Mechanistically, the discharge quantity 𝛥𝑄𝑗 of the 𝑗th cell over a 
window 𝛥𝑡 decomposes into three terms: 
𝛥𝑄𝑗 = 𝛥𝑄𝑗 (Usage) + 𝛥𝑄𝑗 (ISC) + 𝛥𝑄𝑗 (Balance), (1)

while the module median (assumed healthy) contains only 
𝛥𝑄𝑚𝑚 = 𝛥𝑄𝑚𝑚(Usage) + 𝛥𝑄𝑚𝑚(Balance). (2)

Because all cells share the same load current, the usage terms cancel: 
𝛥𝑄𝑗 (Usage) = 𝛥𝑄𝑚𝑚(Usage). The remaining quantities are mapped to 
our measured features:

• 𝛥𝑄𝑗 and 𝛥𝑄𝑚𝑚 are inferred from the respective changes in OCVr
and mmOCVr via the local 𝑑𝑄∕𝑑𝑉  relationship.

• 𝛥𝑄𝑗 (Balance) and 𝛥𝑄𝑚𝑚(Balance) are provided directly by the 
logged Amphr and mmAmphr counters maintained by the BMS.

• 𝛥𝑄𝑗 (ISC) equals ∫ (𝑉 ∕𝑅𝑠) 𝑑𝑡 ≈ ∫ (OCVr∕𝑅𝑠) 𝑑𝑡, linking short-
circuit resistance 𝑅𝑠 to the observable voltage depression in the 
faulty cell.

Eqs. (1)–(2) make ‘‘no a-priori assumption’’ that imbalance or ISC 
is present; they simply express charge conservation. The deep network 
learns to distinguish healthy from faulty behavior by correlating the 
observed divergences in OCVr and balancing current with the hidden 
ISC term, thereby enabling detection even when the true battery state 
is unknown beforehand.

3.2. Data preprocessing

The raw data collected from the vehicle fleet is inherently simple. 
Each cell record in the raw dataset contains only two attributes – OCV 
and balanced Ampere-hour (Amphr) – with timestamps. Sampling is 
sparse and non-uniform, averaging about 10 points per day, but in 
many cases fewer. If a vehicle remains idle without charging or driving, 
no data are uploaded, and hence no records appear in the dataset. 
Although this relatively sparse sampling and minimalistic attribute set 
restrict detailed temporal resolution, the strength of this dataset lies in 
its vast scale – over 10,000 vehicles monitored over up to two years – 
providing extensive coverage of diverse operational conditions. Despite 
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these limitations, the recorded OCV and Amphr values are sensitive in-
dicators of internal battery dynamics and ISC events, enabling effective 
training of our proposed model, as illustrated in Fig.  2.

Fig.  2 presents one month of data monitoring for 8 cells from a 
vehicle. In Fig.  2 (a), the initial OCV of Cell 108 is lower than that 
of the other cells. However, over time, the OCV difference gradually 
decreases. In Fig.  2 (b), it can be observed that the balanced Amphr of 
the other cells continues to increase, while the balanced Amphr of Cell 
108 remains near zero. It is the balancing mechanism that leads to the 
gradual reduction in the OCV difference.

It is important to clarify that the real-world data employed in this 
study are acquired directly from a central database of a large-scale EV 
fleet via direct database queries. Specific details regarding the internal 
data collection methodologies, sensor configurations, and operational 
strategies used by the fleet management system are not available to 
us. The data reflects genuine user behavior and real-world driving con-
ditions, which result in irregular and sometimes sparse data uploads, 
dependent on vehicle usage patterns. Explicit charging or discharging 
statuses are not provided; instead, changes in OCV and balanced Amphr 
inherently reflect cumulative charging and discharging activities. Due 
to the irregular and sparse sampling frequency (approximately ten 
samples per day on average, with frequent days having fewer or no 
samples), continuous trends observed in data visualization – such as 
the sustained OCV increase from September 27, 2023, to October 20, 
2023 – are attributable to intermittent and short partial charging events 
combined with limited vehicle usage, rather than indicating continuous 
uninterrupted charging.

The primary features extracted for this work include the cell OCV, 
module median OCV, cell balanced ampere-hour, and module median 
balanced Amphr, alongside the corresponding timestamp. To prepare 
the data for model training, the time series is segmented into windows 
of 128 consecutive timestamps, resulting in a tensor with the shape of 
128 × 5 for each input sample. This window size is chosen to balance 
the trade-off between capturing sufficient temporal information and 
maintaining computational efficiency.

The data labeling is performed using General Motors’ proprietary 
internal algorithm specifically developed to estimate short-circuit re-
sistance. Due to confidentiality and company policy constraints, the 
specific details of this method cannot be publicly disclosed at this time. 
All data used in this study are collected from normal vehicle driving 
without artificial intervention to induce battery faults. Faulty battery 
samples are identified retrospectively through rigorous statistical con-
sistency checks across multiple independent diagnostic methods. These 
include publicly documented approaches such as the dSOC Method [11] 
and the Cell Droop Rate Method [10], which effectively detect ISC 
faults but have limited accuracy in short-resistance estimation. To 
ensure the most accurate labeling, an internal proprietary algorithm, 
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Fig. 2. Driving Vehicle Data. 10 samples/day for OCV and Amphr. (a) OCV signals of 8 cells from one module (Cell 108 shows a short-circuit fault). (b) Balanced 
Amphr signals of 8 cells from one module. Markers indicate actual raw database samples; gaps between markers reflect idle periods with no uploaded data.
which significantly improves upon the published methods in terms of 
resistance estimation accuracy, is ultimately utilized. Only samples con-
sistently verified as faulty by all independent evaluations are labeled as 
faulty, ensuring the robustness, accuracy, and reliability of the training 
and testing datasets.

Once these estimates are obtained, we apply an additional pro-
cessing step by setting a threshold of 2000 Ω. Any estimated values 
exceeding this threshold indicate that cells are considered operationally 
normal. The classification threshold of 2000 Ω utilized in our study 
is determined based on battery-specific parameters and operational 
characteristics. Specifically, for the battery cells analyzed (capacity 
∼300 Ah), this threshold corresponds to a minor internal discharge 
rate, where it takes approximately one month (35.94 days) in a resting 
state to cause a voltage drop of about 5 mV, resulting in a negli-
gible SOC reduction (∼0.57%). For different battery chemistries or 
cell capacities, we recommend recalculating this threshold based on 
actual measured OCV-SOC relationships, cell capacity, and empirical 
discharge parameters to maintain model generality and applicability. 
By applying this threshold, the classification task is simplified, focusing 
the model’s learning process on regions where faults are most critical. 
This approach prevents excessive computational and representational 
resources from being spent on healthy samples, where variations in 
short resistance are operationally insignificant. Furthermore, it helps to 
streamline data preprocessing and ensures consistent labeling criteria.

In addition, to address the challenges posed by the inherent imbal-
ance in the dataset, healthy cells with short resistance value labeled 
at 2000 Ω are under sampled, and faulty cells with low short resis-
tance values are oversampled, which helps to mitigate the bias toward 
predicting the dominant class and enhances the model’s ability to 
learn from the rarer ISC fault cases. Oversampling faulty cells could 
potentially introduce bias or lead to model overfitting due to duplicated 
samples. To address this, our hybrid architecture employs a classifi-
cation module that robustly filters out healthy cells first. Given that 
faulty cells show distinct OCV behaviors compared to healthy cells 
due to module-level balancing mechanisms, our classification module 
achieves high accuracy despite oversampling. Furthermore, the regres-
sion module, focused only on the confirmed faulty cells, effectively 
leverages oversampling as an increased training epoch strategy, thus 
minimizing bias or overfitting risks. The data is collected from pro-
prietary vehicle database, consisting of autonomously reported records 
from over 10,000 vehicles, each submitting roughly 10 data records 
daily. Both sampling times and intervals varied and were not fixed. 
Initially, missing and anomalous values are identified and filtered out 
or interpolated based on their impact on data integrity. Subsequently, 
the data is segmented into sequences of 128 temporally continuous data 
points from the same battery module, creating time windows used as 
model inputs. Timestamps are also included as a feature to incorporate 
temporal information crucial for short-circuit resistance estimation. All 
extracted features are normalized to mitigate numerical biases.

Due to confidentiality constraints, detailed battery cell data collec-
tion setups and internal label generation procedures cannot be dis-
closed. Despite this, our described preprocessing and experimental 
5 
design remains transparent enough for methodological evaluation by 
the broader research community.

Additionally, we evaluate our method using an open-source dataset 
from the study by Jia et al. [21]. The dataset, publicly accessible at 
GitHub,1 includes features such as voltage, current, capacity, energy, 
total_capacity, total_energy, and labels representing 𝑅𝑠 values. The 
original authors provided preprocessing scripts for segmenting raw data 
into fixed-length time windows suitable for training.

3.3. Model design

The proposed hybrid framework, HyCARLT (Hybrid Classification 
and Regression with LSTM-Augmented Transformer), aims to accu-
rately estimate the short resistance in electric vehicle batteries under 
real-world conditions. Our approach is grounded in a two-stage process: 
an initial classification step identifies whether a sample is faulty or 
healthy, and then a regression step refines the short resistance esti-
mation for the faulty subset. This integrated pipeline addresses the 
challenges of extreme data imbalance and operational variability in 
battery diagnostics.

At the input level, the model takes a multivariate time series 𝑋 =
[

𝑥1, 𝑥2,… , 𝑥𝑁
]𝑇 ∈ R𝑁×𝑑 , where 𝑁 is the sequence length and 𝑑 =

5 represents the number of features per time step. Each data seg-
ment corresponds to a window of battery operational conditions, and 
the goal is to estimate the short resistance for that interval. Since 
only a relatively small number of samples are faulty, dealing directly 
with regression over the entire dataset would waste computational 
resources on the abundant healthy samples and risk biasing the model. 
Instead, a classification module 𝑓𝑐

(

∙;𝛩𝑐
) is integrated to determine if 

X represents a faulty case: 
𝑓𝑐 ∶ R𝑁×𝑑 → [0, 1] , 𝑝̂ = 𝑓𝑐

(

𝑋;𝛩𝑐
)

, (3)

where 𝑝̂ represents the probability that the sample is faulty, defined as 
having a short resistance below a threshold (2000 Ω in this work). The 
classification network maps the input from R𝑁×𝑑 to a probability space 
[0,1], producing a fault probability 𝑝̂ = 𝑓𝑐

(

𝑋;𝛩𝑐
)

. As shown in Eq.  (2), 
setting a decision threshold 𝜏, the sample is considered faulty if 𝑝̂ ≥ 𝜏, 
and healthy otherwise, 

𝑦̂𝑐 =
{

1,  if 𝑓𝑐
(

𝑋;𝛩𝑐
)

≥ 𝜏;
0,  if 𝑓𝑐

(

𝑋;𝛩𝑐
)

< 𝜏.
(4)

By introducing this classification step, healthy samples can be quickly 
discarded by assigning them a default short resistance of 2000 Ω, 
effectively bypassing unnecessary regression computations. This design 
significantly reduces the impact of data imbalance, as the regression 
model then exclusively focuses on the critical minority class of faulty 
samples.

To implement the classification module, a deep residual network 
architecture (ResNet) is employed, using the xresnet1d34 backbone 

1 https://github.com/orDrink/Short-circuit-resistance-estimator

https://github.com/orDrink/Short-circuit-resistance-estimator
https://github.com/orDrink/Short-circuit-resistance-estimator
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from the tsai library [16]. This backbone comprises custom residual 
blocks with varying kernel sizes (7, 5, and 3), enabling the extraction 
of multi-scale temporal features. Each residual block includes batch 
normalization and ReLU activation to maintain stable training. The 
network’s layered structure captures hierarchical patterns, culminating 
in a global average pooling layer and a fully connected output layer 
that delivers a probability estimate for the fault condition. Once a 
sample is classified as healthy, the inference ends and the estimated 
short resistance is set to 2000 Ω.

When the classification output 𝑦̂𝑐 = 1 indicates a faulty sample, the 
model proceeds to the regression stage. Here, the input 𝑋 is passed 
to a regression network 𝑓𝑟

(

∙;𝛩𝑟
) that produces a continuous-valued 

estimate of short resistance 𝑅̂𝑠 = 𝑓𝑟
(

𝑋;𝛩𝑟
)

. This regression model in-
tegrates an LSTM layer and a Transformer module. The LSTM layer first 
processes the input sequence 𝑋 of shape 𝑁 × 𝑑, capturing immediate 
temporal dependencies and short-term fluctuations in battery behavior. 
Formally, it is denoted as: 
𝑍𝐿 = 𝐿 (𝑋) ∈ R𝑁×ℎ, (5)

where ℎ is the latent dimension. Next, the Transformer module 𝑇 (⋅)
applies multi-head self-attention to 𝑍𝐿, identifying complex, long-range 
interactions and patterns over the input time window. This step yields 
a transformed representation as: 
𝑍𝑇 = 𝑇

(

𝑍𝐿
)

∈ Rℎ. (6)

The final regression output is computed as: 
𝑅̂𝑠 = 𝑊𝑟𝑍𝑇 + 𝑏𝑟, (7)

where 𝑊𝑟 and 𝑏𝑟 are trainable parameters of the output layer. The 
combination of LSTM and Transformer architectures empowers the 
regression model to capture both short-term dynamics and long-range 
dependencies in the battery’s temporal data. This synergy ensures that 
the model remains sensitive to subtle but critical shifts in the battery’s 
behavior, improving the accuracy and robustness of the short resistance 
estimation.

HyCARLT’s hybrid inference process can be succinctly described as:

𝑅̂𝑠(𝑋) =

{

2000Ω,  if 𝑓𝑐
(

𝑋;𝛩𝑐
)

< 𝜏;
𝑓𝑟

(

𝑋;𝛩𝑟
)

,  if 𝑓𝑐
(

𝑋;𝛩𝑐
)

≥ 𝜏.
(8)

To further enhance the model’s performance on rare ISC events, we 
employ weighted loss functions and data augmentation during training, 
emphasizing faulty samples and guiding the model to prioritize critical 
cases. Through this architecture and training strategy, HyCARLT es-
tablishes itself as a scalable, accurate, and efficient solution for short 
resistance estimation in electric vehicle battery diagnostics.

3.4. Loss functions

The choice of loss functions in both classification and regression 
stages is critical for effectively handling the highly imbalanced nature 
of the dataset and for ensuring robust fault detection and accurate 
resistance estimation. Standard loss functions, such as unweighted 
cross-entropy for classification or plain mean squared error (MSE) for 
regression, often fail to properly emphasize minority classes or crucial 
intervals of the output variable, especially when the distribution of fault 
conditions is severely skewed. To overcome these challenges, this sec-
tion details the use of weighted loss functions. During training, higher 
importance (or weight) is assigned to samples with short resistance 
values lower than 2000 Ω, particularly those below 1000 Ω, as this 
range is most critical for detecting faults. More specifically, a weight 
of 0.1 is assigned to healthy cells and 2.0 to faulty cells, thereby 
emphasizing the importance of accurately predicting faulty samples. By 
applying this weighted approach, the model could prioritize learning 
from data where faulty patterns are most likely to emerge, ensuring 
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that it could accurately capture the complex relationship between input 
features and short resistance, particularly in the lower short resistance 
ranges.

For the classification module, a weighted binary cross-entropy loss 
is employed to balance the contribution of healthy and faulty samples 
to the gradient updates. Consider a binary label 𝑦𝑖 ∈ {0, 1} for the 𝑖th 
training sample, where 𝑦𝑖 = 1 indicates a fault and 𝑦𝑖 = 0 corresponds 
to a healthy sample. Let 𝑝𝑖 = 𝑓𝑐

(

𝑋𝑖;𝛩𝑐
) be the predicted probability 

that sample 𝑖 is faulty, with 𝑓𝑐 denoting the classification network 
and 𝛩𝑐 its parameters. In an imbalanced setting with far fewer faulty 
samples, a standard binary cross-entropy loss would cause the model 
to favor predicting the majority class, thus overlooking rare but critical 
faults. To mitigate this issue, the weighted binary cross-entropy loss is 
introduced as: 

⫋ = − 1
𝑀

𝑀
∑

𝑖=1

[

𝑤(1)
𝑐 𝑦𝑖 log

(

𝑝𝑖
)

+𝑤(0)
𝑐

(

1 − 𝑦𝑖
)

log
(

1 − 𝑝𝑖
)]

, (9)

where 𝑀 is the number of samples, and 𝑤(1)
𝑐 , 𝑤(0)

𝑐  are weights assigned 
to the faulty and healthy classes respectively. By increasing 𝑤(1)

𝑐  relative 
to 𝑤(0)

𝑐 , the model devotes greater representational capacity to identify-
ing faults, thereby reducing the likelihood of failing to detect rare but 
significant anomalies.

For the regression module, which estimates the short resistance 𝑅̂𝑠 =
𝑓𝑟

(

𝑋;𝛩𝑟
) for samples identified as faulty by the classification model, a 

weighted mean squared error (WMSE) loss is employed. Let 𝑅𝑠,𝑗 and 
𝑅̂𝑠,𝑗 = 𝑓𝑟

(

𝑋𝑗 ;𝛩𝑟
) be the true and predicted short resistance values 

for the 𝑗th faulty sample. Although the classification stage already 
filters out healthy samples, imbalances persist within the distribution 
of fault severity levels. Severe faults with very low short resistance 
values tend to be rarer, but they are of heightened interest in practical 
settings. Treating all fault instances equally with a standard MSE loss 
risks underrepresenting these critical low-resistance cases. To address 
this, WMSE assigns higher weights to critical intervals of the short 
resistance range, ensuring the model focuses on accurately predicting 
severe faults: 

𝑟 =
1
𝑀 ′

𝑀 ′
∑

𝑗=1
𝑤(𝑗)

𝑟
(

𝑅𝑠,𝑗 − 𝑓𝑟
(

𝑋𝑗 ; Θ𝑟
) )2, (10)

where 𝑀 ′ is the number of faulty samples used for training and 𝑤(𝑗)
𝑟

is a sample-dependent weight that can be set higher for more critical 
fault regions. This weighting scheme directs the model’s learning pro-
cess to improve precision where it is most necessary, aligning model 
performance with practical diagnostic priorities.

The combination of weighted binary cross-entropy for classification 
and weighted MSE for regression offers a coherent solution to the 
inherent data imbalance problem. Rather than naively resampling data 
or relying solely on standard loss functions, these weighted approaches 
incorporate domain insights directly into the training objective. By 
manipulating weights, the model can concentrate its learning capacity 
on fault conditions that matter most, reducing missed detections and 
enhancing the precision of short resistance estimation in severe cases.

3.5. Training optimization strategy

To ensure efficient and accurate training of the classification and 
regression modules, tailored optimization strategies are employed. For 
the classification module, the Adam optimizer with an initial learning 
rate of 0.001 is utilized to accelerate convergence. A dynamic learning 
rate schedule is implemented, reducing the learning rate by a factor of 
0.1 when the validation loss plateaus, enabling the model to refine its 
learning during later stages of training. Additionally, early stopping is 
applied based on validation performance to prevent overfitting, ensur-
ing the model generalizes well to unseen data. The training process is 
conducted for a maximum of 300 epochs, though early stopping often 
results in fewer actual training iterations.
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The regression module, designed to estimate short resistance values 
for faulty samples, is similarly optimized using the Adam optimizer 
with an initial learning rate of 0.001. A dynamic learning rate schedule 
is applied here as well, adjusting the learning rate during training to 
balance stability and learning capacity. Early stopping is employed to 
halt training once the validation loss no longer improves, reducing 
unnecessary computational cost and preventing overfitting. Given the 
greater complexity of the regression task, training is conducted for up 
to 500 epochs, providing sufficient iterations to capture the intricate 
temporal and contextual relationships in the data.

Both modules utilize mini-batch training to efficiently process the 
large dataset, and model checkpoints are saved at each epoch to ensure 
recovery in case of interruptions.

4. Experimental evaluation and discussion

The evaluation strategy and results of the proposed hybrid model 
for short resistance estimation in EV batteries are presented in this 
section. Our experimental design aims to comprehensively assess the 
classification and regression capabilities of HyCARLT while addressing 
the challenges posed by dataset imbalance and real-world driving con-
ditions. Furthermore, we benchmark the hybrid model’s performance 
against SOTA regression models as baseline methods, highlighting its 
advantages in accuracy and robustness.

To provide more comprehensive theoretical evidence for our con-
clusions, we explicitly clarify the rationale behind our experimental 
design, emphasizing the significance of separating fault classification 
from resistance estimation. Furthermore, we highlight the electrochem-
ical rationale underpinning the feature set selection and clarify the 
representativeness and robustness of our real-world dataset.

4.1. Experiment setup

The computational infrastructure for training the DNN models relies 
on a high-performance computing (HPC) system specifically optimized 
for machine learning workloads. The system’s core processing power is 
provided by a processor operating at a base clock frequency of 2.8 GHz, 
with support for 64 threads to enable substantial parallel computational 
throughput. This is complemented by 512 GB of system memory, 
essential for handling the large datasets required for deep learning tasks 
and ensuring efficient execution of memory-intensive operations. GPU 
acceleration is provided by a pair of GPUs, each equipped with 48 GB of 
VRAM. These GPUs, optimized for deep learning applications, deliver 
high memory bandwidth and computational power for matrix-intensive 
operations, utilizing CUDA Version 12.2 for acceleration.

The training process is conducted in two stages to optimize the 
performance of the classification and regression tasks. The first stage 
focuses on training the ResNet-based classification module, which con-
tains approximately 3 million parameters. This module is responsible 
for distinguishing healthy and faulty samples, requiring about three 
hours of training time for 300 epochs. The inference time for the 
classification module is approximately 10 ms per instance, demon-
strating its suitability for real-time fault detection. The second stage 
involves training the regression module, which integrates LSTM and 
Transformer architectures to estimate the short resistance values for 
samples classified as faulty. This regression model, comprising ap-
proximately 0.6 million parameters, completes training in about two 
hours for 500 epochs. The LSTM layer captures short-term temporal 
dependencies, while the Transformer module models complex, long-
range interactions. The inference time for this module is approximately 
50 ms per instance, ensuring efficient operation during deployment.

This two-stage approach explicitly addresses the severe imbalance 
by isolating healthy cells in the classification phase, allowing the 
regression phase to concentrate exclusively on accurately estimating 
resistance for faulty cells.
7 
4.2. Data sets and evaluation metrics

To validate our approach, we first use an open-source dataset 
described in [21], consisting of 584,148 training samples and 64,905 
testing samples. Each sample consists of sequences with 120 time 
steps, and the ground truth includes five distinct short resistance levels 
spanning a broad range. Our proposed regression module is adopted to 
demonstrate the model’s effectiveness on a different data distribution.

Another data employed in this study is collected under real-world 
driving conditions. The dataset originates from an extensive fleet of 
over 10,000 electric vehicles monitored for up to two years. The 
data encompasses diverse operational conditions, including substantial 
seasonal temperature variations, capturing both summer and winter 
scenarios—and various realistic driving and charging/discharging pro-
files. Although extreme temperature conditions (such as unusually 
low or high ambient temperatures) and extreme charging/discharging 
events are not explicitly separated or emphasized in isolation, the 
extensive temporal and seasonal coverage of our dataset ensures a 
representative range of typical operational conditions encountered by 
EV batteries in practical use. Therefore, our evaluation provides a 
robust assessment of our model’s performance under realistic operat-
ing conditions commonly experienced in real-world EV applications. 
Approximately 10 samples are gathered per day from each vehicle, 
resulting in a comprehensive dataset encompassing both healthy and 
faulty cells. Among these cells, about 380 exhibited ISC faults. To 
obtain the training data, we first select 380 faulty cells with short 
resistance less than 2000 Ω. We then randomly sample 380 vehicles 
from total 10,000 vehicles, without any faulty cells. Since each vehicle 
contains 96 or 192 cells, the total number of healthy cells is initially 
much larger than the number of faulty cells. To achieve a balanced 
training dataset, the faulty cell data is oversampled by duplication, 
resulting in a double number of faulty samples. Similarly, the healthy 
data is randomly downsampled, reducing the number of healthy sam-
ples by a ratio of approximately 4:1 ratio. After oversampling and 
downsampling, the ratio of healthy samples to faulty samples is set to 
be approximately 1:1, ensuring a balanced dataset. After balancing, the 
combined dataset (containing both faulty and healthy cells) is split into 
training set, validation set, and testing set using an 80%:10%:10% ratio. 
This split applies specifically to the balanced dataset, which consists of 
380 faulty cells and 380 healthy cells. The training and validation sets 
are used during model development for parameter tuning and overfit-
ting prevention. The testing set in the combined dataset comprises both 
healthy and faulty cells (i.e., the 10% portion from the split of the 380-
faulty and 380-healthy sample pool). For the cells with short resistance 
values below 2000 Ω in the testing set, are included in Test Set 1 to 
evaluate the model’s performance to examine the model’s fault isolation 
capability and the model’s accuracy on short resistance estimation. 
In addition to Test Set 1, we establish another distinct data set, Test 
Set 2. This set is entirely independent of the balanced dataset and 
contains only healthy cells that are not selected previously. Specifically, 
it consists of data from all remaining vehicles after excluding the 380 
vehicles containing soft faulty cells and the 380 vehicles selected to 
represent healthy cells for the balanced dataset. Since this test set 
represents most of the real-world distribution, it provides insights into 
the model’s generalization capability and its robustness in recognizing 
healthy cells without misclassification.

This data organization ensures comprehensive performance assess-
ment. Test Set 1 enables direct evaluation of classification and regres-
sion performance in identifying and quantifying faults, while Test Set 
2 examines the model’s ability to generalize to a much larger popula-
tion of unseen healthy cells, thereby ensuring reliable deployment in 
real-world conditions.

For classification, F1-score is used as the main metric, with recall, 
precision, and accuracy calculated using Eqs. (11)–(14). Here, True 
Positive (TP) represents correctly classified faulty samples, True Nega-
tive (TN) represents correctly classified healthy samples, False Positive 
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(FP) is the number of false positives, and False Negative (FN) is the 
number of false negatives. This approach allowed for a more nuanced 
evaluation of the model’s classification performance. 
Precision = 𝑇𝑃∕ (𝑇𝑃 + 𝐹𝑃 ) , (11)

Recall = 𝑇𝑃∕ (𝑇𝑃 + 𝐹𝑁) , (12)

F1 − score = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, (13)

Accuracy = (𝑇𝑃 + 𝑇𝑁) ∕ (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁) . (14)

For the regression task, we employ multiple evaluation metrics to 
capture different aspects of prediction accuracy, as shown in Eqs. (15)–(1
The Mean Squared Error (MSE) measures the average of squared 
prediction errors. The Root Mean Squared Error (RMSE) is the square 
root of MSE, making it more interpretable in the same units as the 
target variable. The Mean Absolute Error (MAE) provides a straightfor-
ward average of absolute residuals, offering a robust measure against 
outliers. The Mean Absolute Percentage Error (MAPE) focuses on the 
relative magnitude of errors, which is particularly helpful for assessing 
the estimation quality across a wide range of short resistance values. 
Finally, the coefficient of determination (𝑅2) quantifies how well 
the regression model explains the variance in the true labels, with 
values closer to 1 indicating better fits. Each metric highlights a dis-
tinct perspective of regression performance, ensuring a comprehensive 
evaluation of the proposed model. 

MSE = 1
𝑛

𝑛
∑

𝑖=1

(

𝑦𝑖 − 𝑦̂𝑖
)2 , (15)

RMSE =
√

MSE, (16)

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦̂𝑖|| , (17)

MAPE = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

|

|

𝑦𝑖 − 𝑦𝑖
𝑦𝑖

|

|

|

|

|

× 100%, (18)

𝑅2 = 1 −
∑

(

𝑦𝑖 − 𝑦̂𝑖
)2

∑
(

𝑦𝑖 − 𝑦̄
)2

. (19)

4.3. Evaluation for proposed model

In this section, an ablation study is performed on an open-source 
dataset to identify the best Transformer-based backbone for ISC re-
sistance estimation. The chosen regression module is compared to a 
CNN-based baseline, confirming its effectiveness on the same open-
source dataset. Finally, the hybrid classification-regression design is 
evaluated on a real-world driving vehicle dataset and benchmark it 
against existing SOTA methods, demonstrating the overall performance 
and robustness of our approach.

4.3.1. A comparative study of CNN and transformer variants
The HyCARLT is first compared with the CNN-based baseline

from [21], which relies on multiple Conv1D layers, dropout, and a 
final dense layer for regression. Both models are trained and tested on 
the same dataset (containing 584,148 training samples and 64,905 test 
samples). Table  1 shows that HyCARLT achieves lower MSE, RMSE, 
and MAPE than the CNN baseline (6.54% vs. 9.10%), while the baseline 
obtains a smaller MAE. This trade-off occurs because the CNN baseline’s 
convolutional blocks can minimize overall absolute deviations on typi-
cal resistance values but are less adaptive to extreme faults, resulting in 
higher percentage errors for rare yet critical low-resistance conditions. 
In contrast, the HyCARLT architecture tracks temporal patterns more 
effectively, handling both small and large resistance ranges. These 
results highlight the effectiveness of pairing LSTM layers for short-term 
8 
sequence modeling with Transformer attention for capturing long-range 
dependencies, which leads to consistent performance across diverse 
operating conditions. 

To test whether HyCARLT’s two-stage design still offers an advan-
tage against the latest Transformer forecasters, we benchmark four 
Transformer—variants Informer, Autoformer, FEDformer and PatchTST 
on the dataset. Their results, shown in the final four rows of Ta-
ble  1, indicate that although several variants (e.g., PatchTST) narrow 
the regression gap, none can simultaneously match HyCARLT’s fault-
classification recall and its low relative-error estimates on faulty cells. 
This confirms that explicitly separating ’fault decision’ from ’fault mag-
nitude’ – and training each branch on a class-balanced subset – remains 
crucial when the healthy/faulty ratio exceeds 100:1 in the wild.

4.3.2. Ablation study on the open-source dataset
To assess the effectiveness of different Transformer-based backbones 

for ISC resistance estimation, an ablation study is conducted using 
the same open-source dataset. Table  2 compares four model variants: 
a pure Transformer, CNN+Transformer, deepResNet+Transformer and 
HyCARLT. Note that in all tables, the best performance are highlighted 
in blue and bold, while the second-best results are marked in bold for 
clear comparison.

As shown in Table  2, although the ResNet+Transformer variant 
yields lower MSE, RMSE, MAE, and a slightly higher 𝑅2, it suffers 
from a larger MAPE (17.77%). By contrast, HyCARLT yields a MAPE of 
6.54%, reflecting more stable relative errors across imbalanced short 
resistance distributions. One reason for this disparity is that, while 
ResNet deepens feature extraction and excels in absolute-error metrics, 
it may overestimate resistance values for lower ranges. LSTM layers, 
on the other hand, excel at capturing sequential dependencies crucial 
for fault scenarios where small deviations at low resistances can dis-
proportionately affect relative error. Thus, when MAPE is the primary 
concern—particularly in highly skewed fault distributions - HyCARLT 
is the better choice. 

4.3.3. Evaluation on the driving vehicle dataset
In the proposed hybrid model, the classification and regression tasks 

are integrated for optimal performance. The ResNet-based classifica-
tion model serves as the classification module, determining whether 
a battery cell is healthy. This classification is formulated as a binary 
problem, where a label of 1 is assigned to short resistance values 
below 2000 Ω (indicating a faulty cell), and a label of 0 is assigned to 
values at 2000 Ω (representing a healthy cell). Trained on this binary 
labeling, the classification model effectively distinguishes healthy cells 
from faulty ones.

On Test Set 1, the classification module achieves a recall of 0.92, a 
precision of 0.88, and an F1-score of 0.90, demonstrating its robustness 
in distinguishing healthy and faulty cells. An accuracy of 0.91 further 
validates the model’s reliability. On Test Set 2, which includes healthy 
samples from over 10,000 EVs, the model does not report any false 
positives.

The performance of HyCARLT surpasses that of the best SOTA 
method [xresnet1d34] in both test sets, as illustrated in Fig.  3. On 
Test Set 1, HyCARLT achieves a relative error of 15.0%, significantly 
lower than the 26.6% achieved by the SOTA method. Figs.  3(a) and 
3(c) demonstrate that the SOTA method exhibits higher errors for 
short resistance values below 750 Ω, while HyCARLT maintains a more 
uniform estimation error, almost consistently below 20%. Notably, Figs. 
3(a) and 3(c) display only the distribution of estimated values below 
2000 Ω, primarily focusing on the estimation results for faulty cells. 
In contrast, Figs.  3(b) and 3(d) illustrate the distribution of estimated 
values at 2000 Ω and above, mainly emphasizing the estimation results 
for healthy cells. According to Eq.  (9), relative error becomes more 
sensitive for lower ground truth values; for instance, estimating 100 Ω
as 150 Ω results in a 50% error, whereas estimating 1000 Ω as 1050 Ω
only results in a 5% error. This highlights HyCARLT’s superior accuracy 
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Table 1
Comparison with CNN and transformer variants using an open-source dataset.
 Model MSE (Ω2) RMSE (Ω) MAE (Ω) MAPE (%) R2  
 CNN-Based Baseline [21] 4.99 × 109 7.06 × 104 2.74 × 104 9.10 0.98 
 HyCARLT (Proposed) 𝟑.𝟑𝟗 × 𝟏𝟎𝟗 𝟓.𝟖𝟐 × 𝟏𝟎𝟒 𝟑.𝟐𝟗 × 𝟏𝟎𝟒 6.54 0.98 
 Informer [22] 1.13 × 1010 1.06 × 105 4.55 × 104 12.39 0.95 
 Autoformer [23] 4.05 × 109 6.36 × 104 3.80 × 104 10.81 0.97 
 FEDformer [24] 3.85 × 109 6.20 × 104 3.60 × 104 9.62 0.97 
 PatchTST [25] 𝟔.𝟖𝟗 × 𝟏𝟎𝟗 𝟖.𝟑𝟎 × 𝟏𝟎𝟒 𝟑.𝟑𝟑 × 𝟏𝟎𝟒 8.29 0.97 
Table 2
Ablation study on transformer-based regression modules using the open-source dataset. Each row 
represents a different backbone.
 Model MSE (Ω2) RMSE (Ω) MAE (Ω) MAPE (%) R2  
 Transformer Only 2.29 × 1010 1.51 × 105 6.13 × 104 3881.05 0.89 
 CNN + Transformer 2.98 × 1010 1.72 × 105 1.00 × 105 19.41 0.87 
 ResNet + Transformer 𝟐.𝟕𝟐 × 𝟏𝟎𝟖 𝟏.𝟔𝟓 × 𝟏𝟎𝟒 𝟖.𝟒𝟐 × 𝟏𝟎𝟑 17.77 0.99 
 HyCARLT (Proposed) 𝟑.𝟑𝟗 × 𝟏𝟎𝟗 𝟓.𝟖𝟐 × 𝟏𝟎𝟒 𝟑.𝟐𝟗 × 𝟏𝟎𝟒 6.54 0.98 
Note: the error magnitudes are large because the ground-truth short resistance for healthy cells is set to 106 Ω in 
the source dataset [21]; false-positive predictions therefore inflate error metrics.
Fig. 3. Performance of HyCARLT and the best SOTA method [xresnet1d34_deeperplus] on two test sets. (a) Evaluation on Test Set 1 using HyCARLT; (b) 
Evaluation on Test Set 2 using HyCARLT; (c) Evaluation on Test Set 1 using the best SOTA method; (d) Evaluation on Test Set 2 using the best SOTA method.
for lower short resistance values, where it closely approximates the 
ground truth.

On Test Set 2, HyCARLT did not misclassify any healthy cells as 
faulty, while the best time-series regression analysis method still mis-
classified some healthy cells. As shown in Fig.  3(d), directly applying 
regression analysis to Test Set 2 results in fluctuating short resistance 
estimates, with some estimated values dropping below 2000 Ω. In con-
trast, as illustrated in Fig.  3(b), the classification model constrains the 
resistance estimates of healthy cells to 2000 Ω, preventing fluctuations 
that could lead to false positives. HyCARLT demonstrates superior per-
formance compared to existing time-series regression analysis methods, 
excelling particularly in scenarios with lower short resistance values 
and achieving error-free classification and regression for healthy cells.
9 
These findings show that the hybrid classification-regression strat-
egy of HyCARLT generalizes well to diverse datasets, effectively ad-
dresses data imbalance, and surpasses prominent single-stage regres-
sion architectures for ISC resistance estimation.

4.4. Performance comparison

Having established HyCARLT’s efficacy on both our real-world 
dataset and the open-source dataset, we next extend our evaluations to 
a broader set of advanced time-series regression models. The goal is to 
confirm that our hybrid design consistently outperforms conventional 
single-stage regression approaches across multiple battery diagnostic 
scenarios. The performance of various time-series regression models is 
compared, to highlight the advantages of our approach in handling 
the unique challenges posed by the highly imbalanced dataset used 
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Table 3
Performance of models with different architectures.
 Model Relative error (%) 
 FCN [15] 29.5  
 FCNPlus [16] 29.6  
 InceptionTime [33] 23.4  
 InCoordTime [16] 26.9  
 XCoordTime [16] 26.1  
 InceptionTimePlus [16] 19.5  
 InceptionTimeXLPlus [16] 19.5  
 MultiInceptionTimePlus [16] 24.1  
 InceptionRocketPlus [16] 83.1  
 MLP [34] 88.6  
 gMLP [20] 15.7  
 OmniScaleCNN [35] 55.8  
 RNN [17] 48.5  
 LSTM [17] 48.8  
 RNNPlus [16] 45.0  
 LSTMPlus [16] 47.4  
 GRUPlus [16] 43.2  
 RNN_FCN [16] 29.8  
 LSTM_FCN [17] 30.7  
 GRU_FCN [36] 29.8  
 MLSTM_FCN [17] 29.7  
 MGRU_FCN [16] 27.9  
 RNN_FCNPlus [16] 28.8  
 LSTM_FCNPlus [16] 30.2  
 GRU_FCNPlus [16] 30.5  
 MRNN_FCNPlus [16] 25.9  
 MLSTM_FCNPlus [16] 33.4  
 MGRU_FCNPlus [16] 26.2  
 ResCNN [37] 24.2  
 ResNet [18] 19.8  
 ResNetPlus [16] 18.9  
 TCN [21] 30.6  
 MultiTSTPlus [16] 19.9  
 TransformerModel [19] 73.2  
 XCM [38] 51.9  
 XCMPlus [16] 48.3  
 xresnet1d18plus [16] 30.4  
 xresnet1d34plus [16] 25.1  
 xresnet1d50plus [16] 25.6  
 xresnet1d101plus [16] 33.9  
 xresnet1d152plus [16] 26.1  
 xresnet1d18_deepplus [16] 25.9  
 xresnet1d34_deepplus [16] 21.1  
 xresnet1d50_deepplus [16] 19.5  
 xresnet1d18_deeperplus [16] 26.8  
 xresnet1d34_deeperplus [16] 26.6  
 xresnet1d50_deeperplus [16] 26.0  
 XceptionTime [39] 23.4  
 XceptionTimePlus [16] 24.1  
 TSSequencer [16] 21.6  
 TSSequencerPlus [16] 20.4  
 ConvTran [40] 33.9  
 ConvTranPlus [16] 35.4  
 RNNAttention [41] 22.5  
 LSTMAttention [42] 22.8  
 GRUAttention [43] 21.6  
 RNNAttentionPlus [16] 20.6  
 LSTMAttentionPlus [16] 22.3  
 GRUAttentionPlus [16] 22.6  
 TransformerRNNPlus [16] 225.1  
 TransformerGRUPlus [16] 227.6  
 HyCARLT (Proposed) 15.0  

in this study. These models represent SOTA approaches used for time-
series analysis short resistance estimation tasks. All models have been 
retrained using our training dataset. 

As shown in Table  3, the models include a range of architec-
tures, from simple fully connected networks (FCN) to advanced models 
like ResNet, Transformer, and temporal convolutional networks (TCN). 
Each model is tested on Test Set 1 to evaluate its ability to handle 
regression tasks under varying conditions.
10 
To highlight the efficacy of our proposed hybrid methodology, 
HyCARLT, it is instructive to compare its performance against an 
extensive set of SOTA regression approaches that tackle the short-
circuit resistance estimation task without any preliminary classification 
stage. These alternative models, drawn from a wide array of neural 
architectures, operate on the entire dataset directly and attempt to fit 
the severely imbalanced distribution of short-circuit resistance values 
in a single step. Table  3 provides a comprehensive benchmarking of 
numerous baseline architectures—including convolutional, recurrent, 
and transformer-based models. The goal is to achieve low error on 
faulty samples, where the estimation is challenging and critical.

As illustrated in Table  3, architectures like MLP or Transformer-
Model may handle simpler distributions but yield large errors when 
confronting the highly skewed data, resulting in poor error metrics on 
Test Set 1. Even more specialized networks, such as various
InceptionTime-based, RNN-based or FCN-based hybrids, often fail to 
overcome the intrinsic imbalance, showing inflated errors particularly 
in the lower resistance ranges where faults are rarer and inherently 
harder to model.

In contrast, HyCARLT achieves superior performance, which reports 
a relative short-resistance estimation error of 15%, substantially out-
performing most SOTA regression models. The classification results on 
Test Set 2 are not reported since we mainly evaluate the regression 
model capability in this work. Notably, even some architectures tuned 
for time-series tasks – such as multi-scale convolutional networks or 
recurrent networks with attention – fall short of HyCARLT’s balanced 
performance. While certain regression architectures may show intermit-
tent strong performance on one of the test sets, none match HyCARLT’s 
consistently strong performance on both. This comparison underscores 
the core advantage of the hybrid strategy: rather than forcing a sin-
gle model to simultaneously master the trivial but dominant healthy 
regime and the complex, minority faulty regime, HyCARLT assigns 
complementary tasks to specialized modules. The result is a method 
that not only outperforms individual baselines but also sets a higher 
standard for addressing extreme imbalance in battery short-circuit 
resistance estimation.

The comparison with SOTA regression approaches reinforces the 
significance of our hybrid design. The ResNet front-end isolates abrupt 
OCV drops, the LSTM captures mid-range balancing dynamics, and 
the Transformer models long-range patterns, enabling the pipeline to 
remain sensitive to early ISC signatures. The end-to-end HyCARLT 
pipeline excels where traditional models fail, delivering improvements 
in fault detection accuracy, short resistance estimation, and overall re-
liability. This comprehensive performance uplift across various neural 
architectures illustrates that the hybrid paradigm is not a marginal 
enhancement, but rather a robust, scalable solution to the longstanding 
imbalance challenges in the EV battery diagnostic domain.

The robust theoretical foundation of our two-stage hybrid design, 
electrochemically grounded feature set, and the extensive represen-
tativeness of our dataset collectively provide comprehensive intrinsic 
support for our results. These methodological choices significantly 
mitigate common error sources encountered by purely regression-based 
approaches, theoretically justifying our improved ISC detection and 
resistance estimation performance.

5. Conclusion

This work proposes a deep learning model that integrates a ResNet, 
LSTM, and Transformer architectures for short resistance estimation in 
EV batteries. Validated on data from over 10,000 vehicles, the method 
achieves a relative estimation error of 15% on faulty cells and intro-
duces no false positives for healthy cells, significantly outperforming 
traditional approaches such as Cell Droop Rate and dSOC, which can ex-
hibit errors of up to 50%–80% under certain conditions. By augmenting 
the dataset – oversampling faulty cells and undersampling healthy cells 
– and employing a deep-residual-network-based classification module, 
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the model effectively mitigates data imbalance and focuses the regres-
sion stage on the critical faulty subset. Although labels are derived 
from an existing algorithm due to the absence of ground truth, the 
model demonstrates adaptability by learning intrinsic data patterns 
rather than simply mirroring the labeling mechanism. This design 
ensures that it can be retrained with experimentally obtained or expert-
annotated labels should they become available, preserving accuracy 
and effectiveness.

Despite these promising results, several limitations remain. First, 
the model’s performance is contingent on the coverage and representa-
tiveness of the training data, which may not capture every real-world 
operational regime. Second, while the classification step addresses 
overall imbalance, extremely rare or novel fault scenarios might still 
require additional data collection or refined augmentation strategies. 
Future work will explore incorporating physics-informed constraints 
into the network, further expanding the diversity of training samples, 
and evaluating the approach across different battery chemistries and 
usage profiles, which would enhance the method’s interpretability, 
broaden its applicability, and ensure more robust real-time diagnostics 
for EV batteries.
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