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 A B S T R A C T

Li-ion batteries may experience internal short circuits (ISCs), which can lead to increased energy usage, 
decreased efficiency, reduced capacity, and impaired performance. In severe cases, ISCs may cause thermal 
runaway, posing risks of fires or explosions. Therefore, diagnostics and prognostics (D&P) of ISCs are essential 
to electrical vehicle driving experience. Existing literature surveys on ISC either do not include the state-of-
the-art D&P approaches after 2021 or do not provide qualitative and quantitative performance comparison, 
making it challenging to assess the respective strengths and limitations of different methods. This survey is 
conducted to fill this gap by examining over 30 D&P methods, including both physics-based models and data-
driven techniques. A detailed analysis of these methods is provided, with their performance evaluated through 
sensitivity analysis and validation using actual test data. Our evaluation reveals that direct ISC diagnostic 
methods such as Cell Droop Rate exhibit significant estimation errors (approximately 80%–90%) in real vehicle 
data, highlighting the critical need for improved robustness and accuracy. Based on the evaluation, some key 
challenges in current ISC D&P are identified, and future research directions are proposed.
1. Introduction

The transition from fossil fuels to cleaner, renewable energy sources 
sparks a revolution in the automotive industry, leading to the
widespread adoption of electric vehicles (EV). At the core of this trans-
formation lies the lithium-ion (Li-ion) battery, which is considered the 
preferred power source for EVs due to its high energy density, long cy-
cle life, and relative efficiency [1]. In recent years, the global market for 
EVs and Li-ion batteries has experienced exponential growth, represent-
ing a significant technological advancement that supports a sustainable 
future. The Global EV Outlook 2024 report by the International Energy 
Agency highlights that over 10 million electric vehicles are on the roads 
globally, with significant growth in charging infrastructure, advance-
ments in battery technology, increasing investments, and supportive 
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policies aiming for EVs to represent 30% of the global vehicle fleet by 
2035 [2]. Along with the remarkable benefits, Li-ion batteries present 
critical challenges, particularly the risk of thermal runaway. Thermal 
runaway is a self-sustaining, exothermic reaction that can be triggered 
by overcharging, mechanical abuse, design/manufacturing defect, or 
fault degradation [3,4]. The root cause is often a breakdown in the 
separator, allowing the electrodes to come into direct contact, namely 
internal short circuit (ISC). The subsequent uncontrolled reactions 
can be catastrophic, leading to intense heat generation, fire, or even 
explosions, which may cause significant damage to the battery, the 
vehicle, and its occupants. Furthermore, these incidents may result in 
not only financial losses but also environmental harm and damage to 
the reputation of original equipment manufacturers (OEM) [5]. Given 
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these potential risks, the fault diagnostics and prognostics (D&P) of 
Li-ion batteries, especially ISC D&P, becomes a vital component in 
ensuring vehicle reliability. Effective D&P techniques, such as monitor-
ing voltage and current fluctuations, impedance spectroscopy, thermal 
imaging, and sensor-based methods, are employed in both laboratory 
environments and real-world applications to detect, analyze, and miti-
gate issues [6]. Recent studies have further enhanced the understanding 
of battery thermal management systems. For example, Vashisht et al. 
experimentally evaluated heat-generating parameters, demonstrating 
the importance of incorporating dynamic resistance variations to im-
prove thermal prediction accuracy [7]. Liu et al. employed a ternary 
hybrid nanofluid to optimize cooling performance in battery modules, 
achieving significant reductions in both maximum module temperature 
and internal temperature gradients [8]. Additionally, Yousefi et al. in-
vestigated the effectiveness of liquid immersion cooling using enhanced 
Al2O3 nanofluids for large-format prismatic battery packs, underscoring 
the critical role of optimized thermal control strategies in preventing 
thermal runaway incidents [9].

There exist some surveys offering valuable insights for mainstream 
ISC D&P methods, and categorizing them into offline and online ap-
proaches, parameter inconsistency-based methods, and model-based 
techniques [10,11]. These surveys are instrumental in advancing the 
understanding of ISC detection up to their publication time and have 
served as helpful resources for researchers in the field. However, there 
are some drawbacks to these surveys. Firstly, the existing surveys, 
published before 2021, do not include the latest developments. Ad-
ditionally, there is no qualitative and quantitative comparison, mak-
ing it difficult for readers to understand the status of the ISC D&P 
performance [12,13].

To solve these issues, we embark on a comprehensive examination 
and comparative analysis of the predominant methodologies employed 
in battery prognostics, including an in-depth discussion of their en-
abling conditions and performance. The root causes and modeling of 
ISC are explored followed by a survey of a variety of D&P approaches, 
ranging from electrochemical impedance spectroscopy to advanced 
artificial intelligence/machine learning (AI/ML) models [14–16]. These 
methodologies are meticulously classified to illustrate their under-
lying principles and operational frameworks. The landscape of bat-
tery D&P techniques is diverse and multifaceted. Our report classifies 
these methods into distinct categories based on their D&P principles, 
such as electrochemical modeling and analysis, physical or empirically 
modeling and analysis, and data-driven based modeling and analysis. 
Within each classification, we scrutinize the operational prerequisites 
and the contexts in which these methods are most effective. The 
comparison draws on a multitude of criteria, including sensitivity to 
battery conditions, adaptability to varying operational modes, and the 
capacity for early detection of potential failures [17]. A sensitivity 
analysis of selected D&P methods is also conducted. The robustness 
of these methods against perturbations in their operational parame-
ters is evaluated, revealing their strengths and potential limitations. 
Furthermore, these methods have been subjected to rigorous evalua-
tion on diverse datasets, encompassing both controlled experimental 
data and real-world operational data from electric vehicles [18]. The 
empirical assessments provide invaluable insights into the practicality 
and reliability of these techniques in actual use scenarios. The ultimate 
objective of our report is to distill complex D&P methodologies into 
accessible knowledge, thereby empowering the research community 
with the understanding necessary to deploy the most appropriate and 
effective tools for advancing battery reliability in EVs.

The rest of this report is organized as follows. Chapter 2 discusses 
the root causes and impacts of short faults. Chapter 3 systematically 
classifies and outlines the state-of-the-art D&P methods, providing in-
sights into their operational principles and contexts. Following this, 
Chapter 4 offers a qualitative and quantitative comparison of these 
methods, analyzing their effectiveness across various scenarios and 
datasets to underscore their strengths and limitations. Chapter 5 de-
scribes the current challenges in ISC D&P related to data limitations, 
algorithmic challenges, and other technical hurdles, and then outlines 
future research directions informed by these challenges.
2 
Table 1
Nomenclature, greek symbols, subscripts, and superscripts.
 Symbol Definition  
 𝑄 Battery charge capacity (Ah)  
 𝐼 Current (A)  
 𝑉 Voltage (V)  
 𝑅 Resistance (Ω)  
 𝐶 Battery capacity (Ah)  
 𝛥𝑡 Time interval (s)  
 𝑑𝑉 ∕𝑑𝑄 The derivative of battery voltage with respect to charge capacity 
 𝑑𝑆𝑂𝐶 Differential State of Charge  
 𝑂𝐶𝑉 Open-circuit voltage (V)  
 𝑆𝑂𝐶 State of charge (%)  
 𝜀 Estimation error (%)  
 𝛿 Parameter variation coefficient  
 𝑎 Voltage decay slope  
 𝑘 SOC/OCV mapping coefficient  
 𝑔 Constant relating voltage to charge variation  
 Subscripts and Superscripts
 𝑗 Cell group index  
 𝑚 Module median cell  
 𝑠 Short-circuit related parameter  
 𝑢𝑠𝑎𝑔𝑒 Parameter due to external usage  
 𝑏𝑎𝑙 Parameter due to cell balancing  
 0 Initial or nominal condition  
 𝑖, 𝑖 + 1 Timestamps at intervals  

Table 2
List of acronyms and abbreviations.
 Acronym Definition  
 ISC Internal Short Circuit  
 D&P Diagnostics and Prognostics  
 OEM Original Equipment Manufacturer  
 LIB Lithium-ion Battery  
 ANN Artificial Neural Network  
 ESC External Short Circuit  
 OCV Open Circuit Voltage  
 SOC State of Charge  
 EV Electric Vehicle  
 ECM Equivalent Circuit Model  
 BMS Battery Management System  
 CNN Convolutional Neural Network  
 RNN Recurrent Neural Network  
 LSTM Long Short-Term Memory  
 RF Random Forest  
 SVM Support Vector Machine  
 EIS Electrochemical Impedance Spectroscopy 
 P2D Pseudo-Two-Dimensional Model  
 FEA Finite Element Analysis  
 NMC Nickel Manganese Cobalt  
 SEI Solid Electrolyte Interphase  
 FDR Fault Detection Rate  
 FAR False Alarm Rate  

2. Understanding of internal short circuit

ISC is a common fault for lithium-ion batteries. This fault is caused 
by unintended electrical connections between the cathode and anode, 
resulting in the release of stored energy as heat internally. The fault 
may escalate into dangerous thermal events such as runaway reactions, 
fires, or explosions if the short resistance is small. Due to its frequency 
and potential severity, it is critical to understand ISCs, including why 
they occur, their impact on battery performance and reliability, and 
how to model them. To enhance clarity, Table  1 summarizes the key 
notations used throughout the manuscript, including Latin and Greek 
symbols, as well as subscripts and superscripts. Table  2 provides a com-
prehensive list of acronyms and abbreviations commonly referenced in 
this study. 
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2.1. Definition and causes

An ISC occurs when an unintended direct electrical connection 
forms between the positive and negative electrodes inside a battery, by-
passing the separator. This short-circuits path allows a current to flow. 
When the path is large, heat is generated rapidly, which may cause 
the electrolyte to decompose, releasing gases and potentially leading 
to catastrophic failure called thermal runaway, i.e. fires or explo-
sions [19–21]. This phenomenon is a significant concern in lithium-ion 
batteries due to their widespread use in various applications, including 
electric vehicles, portable electronics, and energy storage systems. ISC 
in lithium-ion batteries are categorized into soft short and hard short 
based on separator failure mechanisms observed under mechanical 
stress. Soft shorts occur due to localized separator tearing, allowing 
limited electrode contact and gradual energy dissipation, often unde-
tectable by conventional voltage monitoring. Hard shorts result from 
large-scale structural collapse, causing extensive electrode bridging and 
rapid heat accumulation that triggers thermal runaway [22,23]. Soft 
shorts may evolve into hard shorts if dendrites fully penetrate the 
separator, emphasizing the dynamic nature of failure progression [24]. 
The causes of ISCs in lithium-ion batteries can be broadly categorized 
into internal and external factors. Internally, ISCs may occur due to 
manufacturing defects, dendrite/solidate electrolyte interphase (SEI) 
growth, chemical instability, electrode-tab electrical degradation, and 
ion conductivity reduction [25,26]. Manufacturing defects may include 
torn tabs, uneven electrode coating, misalignment of battery layers, 
or damaged/sliced separator [27]. Imperfections during welding or 
the presence of microscopic metal particles can also create pathways 
for electrical current that bypass the normal route. Over time during 
vehicle operation, degradation mechanisms such as SEI growth, lithium 
dendrite growth, or lithium plating can damage the separator, leading 
to an unintended electrical connection between the anode and cath-
ode [28]. Additionally, mechanical failures, including torn tabs or other 
forms of structural degradation, may happen during the whole EV life-
cycle, which compromise the integrity of the separator and contribute 
to ISC [29,30]. Electrode-tab degradation is another critical factor, 
where connections between electrodes and tabs degrade over time due 
to mechanical stress or corrosion, leading to an intermittent disconnec-
tion of some electrode. Frequent connection/disconnection is known 
to cause localized heating and uneven current distribution, which 
may eventually result in unintended current paths between electrodes 
(e.g., lithium dendrite), increasing the risk of ISC [31,32]. Reduction 
in ion conductivity within the electrolyte can also contribute to ISC, 
as factors such as improper electrolyte composition, contamination, or 
aging can reduce ion mobility, leading to uneven current distribution 
and localized heating and increase the likelihood of ISC [33,34]. ISCs 
can also be caused externally by mechanical damage such as impacts 
from accidents, where the casing and internal structure of batteries are 
compressed or punctured [35,36]. Such an event directly jeopardizes 
the physical barriers between electrodes, leading to shorts. The external 
pressure applied to the sides of the pouch cell during installation or 
operation sometimes causes the separator to recede or the internal 
structure to change, potentially leading to soft or hard ISC. External 
factors such as rapid temperature changes are known to induce material 
expansion or contraction, potentially compromising internal structures 
and leading to short circuits. Additionally, the incorporation of battery 
packs in complex electronic systems can expose them to electrical 
anomalies from other components, such as voltage spikes, which may 
precipitate internal shorts. The external and internal factors may occur 
simultaneously or alternatively, leading to the degradation towards ISC.

2.2. Impacts of internal short circuits

ISC can manifest as either a hard short or a soft short, each of 
which impacts the battery performance differently. Soft shorts involve 
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a pathway with relatively high resistance, resulting in a slow self-
discharge for the affected cell. Unlike hard shorts, soft shorts do not 
immediately lead to thermal runaway. However, the continuous self-
discharge causes the cell’s OCV to drop below that of healthy cells. 
This voltage discrepancy is managed by the BMS balancing mecha-
nisms to compensate such imbalance, leading to unnecessary energy 
consumption, reduced overall efficiency of the battery pack, and a 
decrease in the driving range of EVs [37]. Over time, the persistent 
self-discharge is observed to accelerate battery aging, reduce capacity, 
and degrade performance [38]. Long-term effects are associated with a 
decreased lifespan of the battery pack and the need for more frequent 
maintenance or replacements, thereby increasing long-term costs for 
the vehicle owner. Hard shorts involve a low-resistance path between 
the anode and cathode, leading to a substantial and rapid flow of 
current. This sudden surge of current can generate excessive heat, 
which causes thermal runaway—a self-sustaining exothermic reaction 
resulting in fires or explosions, posing serious risks to passengers and 
bystanders [39]. The rapid discharge and overheating associated with 
hard shorts are known to severely damage the battery cells, causing 
an immediate and permanent loss of capacity and lifespan [40]. This 
not only compromises the battery’s ability to store and deliver energy 
efficiently but can also render the entire battery pack unusable, ne-
cessitating costly replacements or repairs. Another side effect is the 
environmental challenges of disposing damaged batteries, as they con-
tain hazardous materials requiring proper recycling or disposal [41]. 
From the perspective of OEMs, both hard and soft shorts should be 
addressed. While hard shorts present immediate safety hazards with 
catastrophic potential, soft shorts lead to gradual degradation that can 
undermine consumer confidence and satisfaction [42]. The nature of 
soft shorts makes them harder to detect early and accurately, poten-
tially allowing the degradation to progress unnoticed until significant 
performance loss occurs. Consequently, robust safety protocols and 
advanced monitoring systems are essential to detect and mitigate the 
risks associated with both types of ISCs, ensuring the reliability of EV 
batteries throughout their operational lifespan.

2.3. ISC modeling

Modeling ISCs in lithium-ion batteries plays an important role in 
understanding the underlying mechanisms, developing and validating 
D&P algorithms before practical implementation [43]. However, cap-
turing the complex, rapid, and nonlinear nature of ISC events presents 
significant challenges [44]. Traditional equivalent circuit models are 
used as a foundational basis for simulating battery behavior but are 
limited in capturing the intricate dynamics of ISCs, such as localized 
heating, electrochemical degradation, and mechanical stress [45–47]. 
Therefore, more advanced modeling techniques have been developed 
to bridge this gap and offer deeper insights into ISC formation and 
progression. The Equivalent Circuit Model (ECM) is one of the fun-
damental approaches used to simulate the behavior of lithium-ion 
batteries, including the occurrence of ISCs. A combination of resistive 
and capacitive elements is used in ECM to represent the battery, 
providing a simplified yet effective means to understand and predict 
battery performance under various conditions. A typical static ECM 
model is presented in Fig.  1, specifically illustrating the representation 
of an ISC within a lithium-ion battery [48]. The resistance 𝑅0 is used 
to represents the ohmic resistance, accounting for internal resistances. 
The model can be expanded by combining additional resistive and ca-
pacitive elements to capture the dynamic characteristics of the battery 
under different conditions. To capture ISC and cell balancing impacts, 
two additional branches are included in the model and arranged in 
parallel. The presence of an internal short circuit is represented by 
the resistor short resistance, causing a direct current flow through it. 
This path is found to bypass the normal battery load and create a 
parasitic current, leading to localized heating and potential damage, 
such as rapid capacity loss or thermal runaway [39]. While ECMs can 
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Fig. 1. Static ECM model for a cell with ISC and balancing circuit.

simulate certain battery behaviors, they are limited in describing the 
internal structure of the battery, such as localized phenomena like 
shorts between cell components, electrode porosity, and material degra-
dation [49]. To address these limitations, the Pseudo-Two-Dimensional 
(P2D) model is introduced, which provides a more comprehensive 
approach by considering the internal electrochemical and physical 
processes within lithium-ion batteries. P2D model is shown in Fig. 
2, an electrochemical model commonly used to understand the inter-
nal mechanisms of lithium-ion batteries. The P2D model is based on 
the concentrated solution theory and porous electrode theory, which 
describe how ions move through the electrolyte and interact with 
the electrode materials [50,51]. In the P2D model, the electrodes are 
represented as porous structures filled with active material particles, 
usually modeled as spheres of uniform size, increasing the specific 
surface area and enhancing electrochemical reactions [52]. The model 
simulates the movement of lithium ions through the electrolyte, consid-
ering concentration gradients and ion conductivity, which affect overall 
battery performance and response to ISC events. It describes the elec-
trochemical reactions occurring at the electrode–electrolyte interface, 
and how ISC alters the local reaction environment, leading to further 
degradation. The model considers electron flow in the electrode and ion 
flow in the electrolyte, representing the charge transport mechanisms 
directly influenced by the presence of ISC. The P2D model calculates 
mass transfer within the battery, including lithium insertion/extraction 
in the electrode and diffusion in the electrolyte. 

For ISC detection, the P2D model captures local heating and degra-
dation effects caused by ISC but are often not accounted for in simpler 
models like ECM. This includes temperature rise near the short cir-
cuit, which accelerates the degradation. By observing electrochemical 
changes within the battery, such as altered lithium-ion transport and re-
action kinetics, the P2D model can identify characteristics of ISC. These 
characteristics manifest as deviations in predicted voltage, current dis-
tribution, and thermal curves compared to a healthy battery. The model 
can dynamically simulate the development of ISC, aiding in predicting 
changes in faults over time and their impact on battery performance. 
This makes it useful for validating ISC detection algorithms that rely 
on identifying these electrochemical anomalies.

While ECM and P2D models provide valuable insights to the bat-
tery’s electrical and electrochemical behaviors, they still have limita-
tions in capturing the full complexity of ISC events, particularly those 
involving interactions between thermal, mechanical, and electrical phe-
nomena. These models often overlook factors such as mechanical stress, 
electrode deformation, and temperature gradients that can significantly 
impact ISC initiation and progression. To address these gaps, multi-
physics models are introduced, integrating multiple physical processes 
to provide a comprehensive analysis of ISC behavior. Yao et al. re-
cently conducted detailed comparative analyses and simulations of 
high-power and high-energy lithium-ion batteries, highlighting the lim-
itations of traditional pseudo-two-dimensional (P2D) modeling meth-
ods and the necessity of parameter adjustments for precise capacity 
predictions under high discharge rates [53].
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Fig. 2. Schematic representation of the P2D model for lithium-ion batteries. This model 
integrates multiple physical phenomena, including electrolyte-phase lithium transport, 
electrochemical reaction kinetics at the electrode–electrolyte interface, electronic and 
ionic conduction, and mass balance considerations across different battery compo-
nents [52].

Multi-physics modeling has become a cornerstone for simulating ISC 
mechanisms in lithium-ion batteries, integrating thermal, mechanical, 
and electrochemical dynamics to capture complex failure modes [54]. 
Traditional ECMs and P2D frameworks often neglect the coupled effects 
of heterogeneous stress factors, such as external mechanical impacts 
and material fatigue, which are critical for ISC initiation. In contrast, 
multi-physics approaches explicitly resolve these interactions through 
coupled partial differential equations (PDEs) [44].

A. Thermal-Electrical Coupling. Localized joule heating from ISC 
current paths (> 10 A∕cm2) generates temperature gradients exceeding 
50 ◦C∕mm within cell layers. Finite element analysis (FEA) tools like 
COMSOL Multiphysics® implement energy conservation equations to 
simulate this behavior [55]. Experimental validations using infrared 
thermography have demonstrated that such models can predict thermal 
runaway thresholds with less than 10% error compared to empir-
ical measurements for NMC cathodes [56]. For example, dynamic 
loading tests under mechanical abuse reveal that temperature spikes 
precede voltage drops by 8–15 s, providing a critical early warning 
window [57].

B. Mechanical Stress-Driven Failure. Electrode volume expansion in 
silicon-based anodes (up to 10% strain) and external crush loads (>5 
kN) can induce separator puncture, a primary ISC trigger [58]. No-
tably, multi-field simulations reveal that separator rupture occurs when 
von Mises stress exceeds 120 MPa in commercial polyethylene sepa-
rators, a threshold validated through in-situ mechanical compression 
experiments [59].

C. Electrical Anomaly Signatures. Coupled electro-thermal simula-
tions identify characteristic ISC signatures, including voltage plateau 
shifts (𝛥𝑉 < 50 mV) during relaxation phases and transient impedance 
reductions (20%–40% drop within 10 ms post-ISC initiation) [60]. 
These findings align with differential voltage analysis (dQ/dV) studies 
showing that micro-shorts alter local current distribution, broadening 
voltage peaks by 15%–30% in early-stage ISC cases [15]. Field data 
from electric vehicle battery packs further confirm that cross-voltage 
correlation coefficients drop below 0.85 within 5 min of ISC onset, 
enabling real-time detection [61].

D. Stochastic Quantification. Stochastic modeling techniques, such 
as Monte Carlo simulations, address manufacturing variability by incor-
porating parameters like graphite anode particle size distributions and 
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separator porosity tolerances (±5%) [62]. The National Renewable En-
ergy Laboratory (NREL) has further developed open-source toolkits that 
combine multi-physics models with experimental databases, achieving 
90% accuracy in predicting ISC scenarios under diverse operating 
conditions [63].

2.4. Datasets for ISC D&P

The dataset with the ISC fault is crucial for advancing research on 
ISC D&P. In this section, the ISC related datasets are reviewed and 
compared.

2.4.1. Open-source datasets
Open-source datasets greatly facilitate battery research, particularly 

in estimating battery states such as State of Charge (SOC), Remaining 
Useful Life (RUL), and State of Health (SOH), along with degradation 
processes. For instance, the NASA Battery Dataset is used to provide 
valuable data on lithium-ion battery degradation under fixed charge–
discharge life cycles, while the Randomized Battery Usage Dataset 
provides dynamic insights into SOC and SOH under real-world, non-
standard conditions [64,65]. Additionally, the Oxford Battery Degra-
dation Dataset provides detailed battery health across its entire lifes-
pan [66], and the Drive Cycle Battery Dataset contains SOC and RUL es-
timations during simulated automotive driving cycles [67]. The CALCE 
Battery Performance Dataset offers temperature-related data, crucial for 
designing robust EV battery systems [68]. However, none of these open-
source datasets includes the data with ISC faults. Several proprietary 
datasets described in research papers are used to provide experimen-
tal data with ISC faults, offering valuable insights into the behavior 
of lithium-ion batteries under fault conditions. These datasets often 
involve custom-built or commercially available battery cells, along 
with detailed analysis of their electrochemical and material proper-
ties. For instance, a study inducing dynamic overcharge of lithium-ion 
batteries under different environmental conditions uses a single cylin-
drical lithium-ion cell, which were subjected to controlled overcharge 
and elevated temperature conditions to induce ISC [69]. The dataset 
includes signals such as voltage, temperature, and current, provid-
ing a detailed examination of how these parameters evolve during 
fault scenarios. The study on enhancing Li-ion battery safety by early 
detection of nascent internal shorts utilized a Sanyo 18650SA lithium-
ion battery, focusing on the self-discharge characteristics and thermal 
stability under various cycling conditions [70]. Real-world data from 
electric vehicle operations also plays a crucial role in understanding 
ISC behavior. For example, the National Big Data Alliance of New 
Energy Vehicles (NDANEV) dataset provides operational data collected 
from electric vehicles, tracking metrics like cell voltage, temperature, 
and current [71]. This large-scale dataset, containing data from up to 
95 cells per vehicle, offers a comprehensive view of how ISC-related 
issues manifest in actual driving conditions. This dataset does not sim-
ulate ISC but captures real-world incidents, such as thermal runaway 
during charging. Electrochemical Impedance Spectroscopy (EIS) mea-
surements are considered another powerful tool for detecting ISC. One 
study generated a dataset of over 840 EIS spectra from 5 NCM811 and 2 
NCM523 commercial batteries, where ISC was simulated by paralleling 
resistances between 200 Ω and 10 Ω across the cells [72]. This dataset 
captured EIS data across a wide frequency range and different states 
of health (SOH), providing detailed information on how internal short 
circuits affect the impedance and electrochemical behavior of the cells.

2.4.2. Proprietary dataset
In addition to publicly available datasets, we obtained two pro-

prietary datasets from an industry partner. These datasets provide 
experimental ISC data under controlled conditions. Coin Cell dataset is 
collected using small batteries with a capacity of 1Ahr. On-Vehicle Sim-
ulated ISC dataset contain high-frequency time-series signals, includes 
faulty cells from one real vehicle. Note that no thermocouples are used 
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during the experiments in our dataset. Therefore, surface temperature 
measurements and corresponding temperature plots are not available 
in this study. The following sections offer detailed descriptions of these 
datasets.

A. Coin Cell Dataset. The Coin Cell dataset contains laboratory 
cycling data that is collected from Lithium coin cell battery with sep-
arator damage faults. It includes three different profiles: static cycling, 
dynamic charge, and dynamic discharge profiles. C-rate is a measure 
of the rate at which a battery is charged or discharged relative to its 
nominal capacity; for instance, a 1C rate means that the discharge 
current will fully discharge the battery in one hour. For the static 
cycling profile, there are 300 cycles from 8 cells, with 4 cells exhibiting 
soft faults, sampled at 30 s (shown in Fig.  3(a), (b)). For the dynamic 
charge profile, there are 10 cycles from 8 cells, 4 of which are with 
soft short fault. The sampling rate is 1 Hz as shown in Fig.  3(c), 
(d). Similarly, there are 10 cycles from 8 cells with 4 faulty cells, 
sampled at 1 Hz for the dynamic discharge profile, as shown in Fig. 
3(e), (f). This lab test dataset allows analyses of cell performance under 
different cycling conditions for both healthy and faulty cells. However, 
the severity of ISC fault, due to manually injected separator damage, is 
not quantitative measured. Consequently, while useful for developing 
and testing general ISC D&P algorithms, this dataset is inadequate for 
correlating the D&P results and the severity of ISC.

B. On-Vehicle Simulated ISC Dataset. This dataset is collected from 
real vehicles, but the ISC is simulated using additional resistance paral-
lel to selected cells. Ground truth data for short circuit faults are very 
difficult to obtain in real-world operational scenarios, as such faults 
are both rare and potentially hazardous. To overcome this limitation, 
five resistors with known values are connected in parallel with five 
specific cell groups within the battery pack to simulate ISC conditions. 
Specifically, the dataset consists of samples collected once per second. 
These resistors, selected at five discrete levels within the 500–1500 Ω
range, are used to simulate varying degrees of short circuit faults. As 
the ground truth is known, this dataset provides a clear and precise 
benchmark. As shown in Fig.  4, the figure presents nearly four months 
of data monitoring for eight cell groups (cells 104 to 111) from a 
vehicle. In Fig.  4(a), the current signal is mostly around zero. In fact, 
this data does not include driving information, but only a small amount 
of charging data, as indicated by the spikes in the figure. There is also 
some low-current charging data, while during the remaining time, the 
vehicle is at a stationary state but is constantly on, with the low-current 
discharging. Fig.  4(b) shows the voltage signals, where cell groups 104 
−111 represent the cell group indices from the same module, with the 
faulty cell group (cell 108) is in red color. Its voltage starts lower than 
the other cells, but due to the effective compensation by the balancing 
mechanism in the vehicle, the voltage difference gradually decreases.

Due to the experimental nature of our dataset, inherent uncertain-
ties from measurement instrumentation and environmental variations 
are expected. These uncertainties primarily arise from sensor mea-
surement noise and calibration accuracy, potentially influencing volt-
age, current, and derived parameters like short-circuit resistance (𝑅𝑠). 
Although specific uncertainty quantification details are unavailable, 
typical sensor uncertainties in battery experiments are usually within 
±1%–2%, which should be considered when interpreting the presented 
results.

Simulation software such as MATLAB/Simulink, COMSOL Multi-
physics, ANSYS, or GT-SUITE, used to build electro-thermal models, 
plays a vital role in understanding battery behavior. While this survey 
did not employ these simulation tools, numerous studies have leveraged 
them to investigate battery dynamics. For example, [53] constructed 
a pseudo-two-dimensional (P2D) model using COMSOL Multiphysics 
to simulate high-power and high-energy lithium-ion cell behaviors. 
Similarly, [8] utilized ANSYS Fluent to evaluate battery pack ther-
mal management performance using nanofluid cooling, incorporating 
boundary conditions such as inlet velocity, cooling channel geom-
etry, and ambient temperature. Additionally, [7] estimated internal 
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Fig. 3. Coin Cell Data Sample. (a) Voltage of one life cycle from stationary charging/ discharging profile; (b) Current of one life cycle from stationary charging/discharging profile; 
(c) Voltage of one life cycle from dynamic charging/stationary discharging profile ; (d) Current of one life cycle from dynamic charging/stationary discharging profile; (e) Voltage 
of one life cycle from stationary charging/dynamic discharging profile; (f) Current of one life cycle from stationary charging/dynamic discharging profile. All cells were charged 
using the standard Constant-Current followed by Constant-Voltage (CC-CV) protocol, where the current mode switched from CC to CV once the cell voltage reached the upper 
cutoff threshold. All discharging procedures were conducted using Constant-Current (CC) mode. In this plot, red-black-blue–green represent the states of CC Charge, CV Charge, 
Rest, and CC Discharge, respectively. Due to confidentiality constraints, we cannot provide the actual photograph of the experimental setup. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. On-Vehicle Simulated ISC Dataset. 10 samples/second for voltage, 1 sample/second for other signals. (a). Normalized current signal of the pack. (b). Voltage signals of 8 
cells from one module.
resistance and entropy change parameters using inverse prediction 
techniques.

In such models, the equivalent circuit parameters 𝑅1, 𝑅2, and 
𝐶 are commonly used to represent battery internal characteristics: 
𝑅1 typically denotes the ohmic resistance of the cell, 𝑅2 represents 
charge transfer resistance, and 𝐶 is the double-layer capacitance. These 
parameters are usually obtained through EIS or model fitting to exper-
imental data. While our dataset does not provide the necessary inputs 
to perform this level of simulation, we recognize the potential value 
of integrating modeling-based methods with ISC D&P pipelines, and 
consider it an important direction for future work.

The detailed technical specifications of the battery cells used in this 
study are subject to confidentiality agreements. While we are unable 
to disclose these specifics, the experimental methodology and overall 
study design remain transparent and sufficiently detailed to allow the 
community to understand and evaluate the validity and relevance of 
our experimental approach.
6 
3. Battery D&P methods

In general, ISC D&P can be classified into electrical-based and non-
electrical-based approaches. Electrical-based methods typically analyze 
voltage, current, or other battery parameters, while non-electrical-
based methods leverage other type of sensors, e.g. CO, CO2 and H2
gas sensors [73], temperature sensors [74] or pressure sensors [75]. 
The non-electrical methods generally detect ISCs when the battery is 
very close to failure. In contrast, electrical-based methods can provide 
early detection of ISCs, offering more opportunities to mitigate severe 
failures. Since the electrical signal sensors are also used for control 
purposes, electrical-based methods are more cost effective. Considering 
the benefit of electrical-based methods, in this work, the electrical-
based ISC D&P methods are our focus, as shown in Fig.  5, which are 
described in two major subcategories: indirect D&P methods and direct 
D&P methods. For indirect ISC D&P methods, voltage fluctuations, SOC 
imbalances, temperature gradients, or impedance changes obtained by 
detecting electrochemical or thermal anomalies over time can be used 
to predict ISC. Direct short fault techniques, on the other hand, estimate 
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Fig. 5. Taxonomy of EV Battery D&P Methods.
short resistance directly, allowing not only for the detection of ISCs but 
also for a quantitative assessment of their severity.

3.1. Indirect D&P methods

3.1.1. Electrochemical impedance spectroscopy methods
Electrochemical Impedance Spectroscopy (EIS) has proven to be a 

critical tool for diagnosing ISC in lithium-ion batteries, particularly 
in identifying early-stage ISC faults. In one study, EIS combined with 
a deep neural network (DNN) achieved an ISC detection accuracy of 
97.5% over the battery’s full life cycle, with zero false positives. The 
system effectively detected changes in equivalent resistance from 200 Ω
to 10 Ω, demonstrating its applicability for real-time ISC detection [72]. 
Another study examined ISC detection under battery aging conditions 
using a frequency-domain P2D model to simulate impedance behavior. 
Experimental results from coin cell tests showed that ISC significantly 
altered low-frequency impedance, with diffusion coefficients increasing 
by 47% to 143% as the state of health (SOH) declined. This highlights 
the effectiveness of EIS in capturing early ISC faults by focusing on 
low-frequency components [76]. Some research, however, focuses on 
other fault types, such as electrolyte leakage [77], without directly ad-
dressing ISC. Additionally, EIS has contributed to general battery health 
assessments, such as refining state-of-charge (SOC) and state-of-health 
(SOH) estimations. EIS has been integrated with real-time systems for 
impedance estimation, providing precise measurements [78]. More-
over, studies have employed EIS to improve equivalent circuit models 
by incorporating elements like the solid electrolyte interface (SEI), 
which aids in SOC and SOH evaluation [79,80]. Despite these ad-
vancements, the high complexity and cost of EIS equipment remain 
challenges for onboard integration [78]. The measurement techniques 
for evaluating the state of power (SOP) of battery systems are also 
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critical for reliable D&P. Chen et al. proposed iterative power command 
searching methods to accurately measure battery SOP, addressing un-
certainties related to current and voltage tolerance limits, which can 
impact battery performance D&P [81].

3.1.2. Physical and empirical D&P methods
Physical and empirical D&P methods utilize metrics such as voltage, 

current, SOC, and capacity to detect discrepancies between healthy 
and faulty cells. These discrepancies arise because the short fault 
may impact these measurements upon certain conditions. The primary 
advantage of indirect methods lies in their computational simplicity 
and sensitivity. Intuitively, an internal short may cause energy loss, 
longer charging times, lower rest voltage, higher charging capacity, or 
lower discharging capacity, changes in the OCV/SOC curve, changes 
in the electrode potential/capacity curve, and variations in internal 
resistance. However, the indirect methods cannot provide the short 
circuit resistance. Furthermore, for the soft short resistance that is 
greater than 100 Ohm, the impact of ISC for indirect D&P methods may 
be manifested by other noise factors or other failure modes.

Based on the characteristics of the methods, we list a series of 
indirect D&P methods below, some of which are referenced from the lit-
erature [82]. D&P methods proposed here are divided into several cat-
egories based on different battery parameters. These methods primar-
ily use straightforward principles like dQ/dV analysis [83,84], time-
based [85], voltage [17], current [86], capacity [87], and resistance 
estimations [88], with some methods derived from the 6-parameter 
ECM model [82]. Recent advancements also integrate machine learning 
techniques [83] and simplified electrochemical models [17] to enhance 
detection robustness and early-stage prognosis.
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Table 3
Indirect ISC D&P methods.
 Categories ISC D&P methods  
 dQ/dV 1. dQdV_3.52, 2. dQdV_3.59, 3. dQdV_3.70, 13. CC_Chg_LinDQDV, 14. 

CC_DChg_LinDQDV
 

 Time 5. CC_Chg_Time, 6. CV_Chg_Time, 7. CC_DChg_Time  
 Voltage 8. Chg_Rest_linDV, 9. DChg_Rest_LinDV, 10. CC_Chg_LinDV, 11. 

CC_Dchg_LinDV, 15. Rest_V_Drop, 17. Voltage level
 

 Current 12. CV_Chg_LinDI  
 Capacity/Energy 4. Eng_Loss_Static, 16. DChg_Capacity, 22. Max_Chg_Cap, 26. 

Eng_Loss_Dynamic
 

 Resistance 18. Static Charging Resistance, 19. Static Discharging Resistance, 20. 
DV_a, 21. DV_RSC, 24. Delta_R, 25 Avg_DChg_R, 28. Pulse_R, 29. 
6P_R0, 30. 6P_R1, 31. 6P_R2

 

 Capacitance 32. 6P_C1, 33. 6P_C2  
 SOC/OCV Curve 23. SOC/OCV slope, 27. OCV_p, 34. 6P_OCV  
• dQ/dV methods, such as dQdV_3.52 and CC_Chg_LinDQDV, ana-
lyze charge–discharge characteristics, focusing on changes in the 
dQ/dV curve at specific voltage points.

• Time-based methods (e.g., CC_Chg_Time, CV_Chg_Time) track 
time changes during charge and discharge phases.

• Voltage methods (e.g., Chg_Rest_LinDV) assess voltage drop dy-
namics during different states.

• Current and capacity/energy methods estimate parameters like 
energy loss or capacity via integrals of voltage and current.

• Resistance methods (e.g., Static Charging Resistance, 6P_R0) esti-
mate internal resistance under various conditions, including rest, 
charge, and discharge.

• Capacitance and SOC/OCV methods model capacitance and SOC 
dynamics, while electrode potential methods track potential dif-
ferences across electrodes.

The detailed list of methods is shown in Table  3. For example,
dQdV_3.52 refers to the value of the dQ/dV curve during the charging 
phase of the cell at 3.52 V. CC denotes constant current conditions, 
while Chg, DChg, and Rest represent charging, discharging, and resting 
states, respectively. LinDQDV describes the rate of change in the dQ/dV 
curve over time. Methods whose names start with 6P are based on pa-
rameters estimated from the 6-parameter ECM model. Static resistance 
is calculated by estimating the internal resistance during the transition 
from Rest to charge/discharge states, with OCV approximated from the 
final voltage in the Rest state. Q and Cap are obtained through time 
integration.

3.1.3. Data-driven based approaches
Data-driven based approaches can be categorized into two groups: 

Traditional machine learning approaches and Deep Learning
approaches. Traditional machine learning is defined as an approach 
requiring structured data and feature engineering to select relevant 
features from raw data (e.g., voltage, current, or temperature signals) 
to train models for classification or regression tasks. In the context of 
ISC D&P, traditional ML techniques such as Support Vector Machines 
(SVMs) can be used to classify batteries as healthy or faulty based on 
preprocessed signals or to predict the probability of ISC occurrence. 
These methods are effective when a clear relationship exists between 
the input features and the target fault, but they typically rely heavily 
on manual feature extraction, which limits their ability to capture more 
complex patterns in the data. Deep Learning is a subset of machine 
learning that automatically learns features from raw data through 
multi-layer neural networks, such as Convolutional Neural Networks 
(CNNs). These networks can model complex, non-linear relationships 
in the data and are especially useful in handling time-series data, 
which is common in battery health monitoring. In ISC D&P, deep 
learning models can analyze large volumes of data from various sensors 
without the need for explicit feature engineering. They can detect 
intricate patterns related to early ISC development and provide real-
time insights, making them particularly suited for fault detection in 
dynamic and noisy environments like electric vehicles.
8 
Traditional Machine Learning Approaches
Machine learning methods are used to analyze large volumes of 

battery data to identify patterns and anomalies that may be too complex 
or subtle for traditional physics-based models to detect. Physics-based 
models rely on specific, well-understood principles, but may struggle 
to capture the full complexity of battery behavior under varying con-
ditions, while machine learning models can adapt to a wide range of 
inputs and learn from historical data, allowing them to generalize and 
detect faults like ISCs early. Machine learning excels in environments 
where there is a large amount of real-world data, and its ability to 
handle noise and non-linear relationships makes it highly suitable for 
battery diagnostics. Unlike physics-based approaches, which may re-
quire precise modeling and assumptions, machine learning can uncover 
relationships between various signals (such as voltage, current and 
balancing Amphr) without needing a detailed understanding of the 
underlying physical processes. This makes it especially useful in cases 
where those processes are not fully understood or are too complex to 
model directly.

A. SVM method. SVM are supervised learning models that work 
by finding the optimal hyperplane that best separates data points into 
different classes. The algorithm maximizes the margin between the 
closest data points (support vectors) from each class to ensure robust 
classification, even in high-dimensional spaces [89,90]. In several stud-
ies, SVM is utilized for battery fault diagnostics, but not all directly 
address ISC faults. For instance, in [91,92], SVM is applied to diagnose 
connection faults and external short circuits (ESC), but ISC was not 
investigated. [82] explores ISC faults triggered by mechanical abuse, 
simulating ISC by dropping batteries onto hard surfaces. External short 
circuit resistances are employed to generate training data. Although 
SVM is mentioned as part of the study, SVM’s detailed results are not 
reported, implying its performance was not superior. In [15], the au-
thors simulate ISC faults by creating controlled external short circuits in 
series-connected 18,650 cells and evaluated multiple machine learning 
techniques, including SVM. Although SVM is tested, it achieves 89.65% 
accuracy in identifying ISC faults. The gradient boosting decision tree 
(GBDT) model outperforms it, achieving 99.4% accuracy.

B. Decision Tree/Random Forest (RF) method. A Decision Tree 
works by recursively splitting the data into subsets based on feature 
values, creating branches that lead to decisions or classifications at 
each node. The algorithm selects splits that maximize the separation 
of classes or reduce variability (for regression). RF is an ensemble 
learning method that builds multiple decision trees during training 
and combines their outputs to make more accurate predictions. It 
reduces overfitting and increases robustness by averaging the results 
of individual trees, each built on different subsets of the data [93]. 
RF algorithms are widely applied to diagnose ISC faults in lithium-
ion batteries. In [83], the authors utilize an RF classifier to extract 
features from voltage and current differences in the battery pack, 
detecting and localizing ISC faults with minimal sensors. Experiments 
conducted under constant current discharge and New European Driving 
Cycle (NEDC) conditions achieve a detection accuracy of 97.059%. 
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In [82], ISC conditions are emulated by connecting external short 
circuit resistors across the battery terminals. The RF classifier is trained 
on both healthy and ISC-affected battery data, achieving a fault de-
tection accuracy of 98.45%. In [94], RF is used to classify battery 
states based on voltage and current signals. Training data is generated 
via multi-physics simulations covering different SOCs and short circuit 
resistances, achieving F1 scores greater than 0.93 in ISC detection. 
In [95], an RF classifier is employed to distinguish between normal and 
ISC conditions. The RF model outperforms Logistic Regression and Deep 
Learning in terms of accuracy across various operating conditions.

C. K-means clustering method. K-means clustering is an unsuper-
vised learning algorithm that partitions data into clusters by minimiz-
ing the distance between data points and the centroid of each cluster. 
It iteratively updates cluster centroids and assigns points to the nearest 
centroid until convergence [96]. K-means clustering algorithm is also 
used in ISC fault diagnostics in batteries. In [97], the authors use 
real running data from a big data platform for electric vehicles from 
management systems serving more than 200,000 new energy vehicles. 
Experimental data are selected from the battery cell voltages of three 
electric vehicles, where one of them a normal vehicle, and two of 
them are vehicles suspected of having ISC faults. K-means clustering 
algorithm is used to cluster the battery cell voltages and select the 
center of the clusters as a representative cell to reduce false alarms due 
to the variations of the battery cells. With this algorithm, ISC faults 
in faulty vehicles are successfully detected, showing good diagnostic 
accuracy and false alarm reduction. In [98], the authors use data 
from seven vehicles with abnormal voltage fluctuations or thermal 
runaway faults and three normal vehicles, all of which used Li-ion 
batteries. The experimental data is obtained from a real electric vehicle 
big data platform. By extracting the standard deviation of the battery 
cell voltage and the improved Pearson correlation coefficient of each 
vehicle as features, the faulty battery cells are identified by a K-means 
clustering algorithm, and the degree of the faults was quantified based 
on the Euclidean distance. The experimental results show that the 
method successfully identifies the sudden voltage drop in the ISC fault 
detection of the battery, and the overall diagnostic accuracy is more 
than 98%.

D. Correlation Analysis Methods. Correlation Analysis measures the 
statistical relationship between two variables, quantifying how one 
variable changes in relation to another. It helps in detecting linear 
dependencies, with high correlation values indicating a strong rela-
tionship that can be useful for identifying patterns or anomalies in 
data [99]. In [62], the authors avoided the impact of battery individual 
inconsistency on fault diagnostics by extracting voltage correlations 
between voltage sensors instead of direct voltage measurements. In the 
paper, a method based on Independent Component Analysis (ICA) and 
Principal Component Analysis (PCA) is proposed to quickly diagnose 
ISC faults by parallel processing of high-dimensional non-Gaussian 
correlation coefficient signals in combination with cross-battery sensor 
topologies. In the experiments, different degrees of ISC faults are simu-
lated by connecting various resistors in parallel to the battery pack, and 
the experimental results show that the method can accurately detect 
and localize ISC faults in a delay-free manner, while having lower fault 
detection delays and higher detection rates than traditional methods. 
For ISC faults, the Fault Detection Rate (FDR) of the proposed method 
is 97.5%, while its False Alarm Rate (FAR) has a maximum value of 
0.21% for ISC fault detection. In [100], the authors further used ICA in 
combination with Voltage Correlation Coefficient (VCC) to detect ISC 
faults by extracting the VCC signals between neighboring cell voltage 
measurements. To simulate different levels of ISC faults, the experi-
ment varies the internal resistance by connecting different resistors in 
parallel between the battery electrodes. The experimental results show 
that the method can maintain stable detection under different fault 
intensities and automatically set the detection threshold to ensure that 
the detection delay is kept at the lowest level and the faulty battery 
cells are accurately isolated. F. Ensemble Learning method. Ensemble 
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Learning combines multiple models (such as decision trees or neural 
networks) to improve prediction accuracy and reduce variance. By 
aggregating the strengths of diverse models, ensemble methods, such as 
bagging and boosting, provide more reliable and generalizable results 
than individual models [101,102].

In [103], an ensemble learning-based correlation coefficient method 
was proposed for diagnosing ISC and voltage sensor faults in EV battery 
packs. Ensemble learning was utilized by integrating the diagnostic 
results from multiple sub-models, each based on different window 
widths of the correlation coefficient signals, allowing for a more robust 
detection across various fault intensities. The approach incorporated 
Bayesian probability and Independent Component Analysis (ICA) to 
combine the fault probabilities from each sub-model into a global fault 
diagnostics, addressing the challenge of selecting an optimal window 
width for ISC fault detection. The method is validated using a six-cell 
battery pack, where ISC faults are simulated by connecting resistors (10 
Ω and 25 Ω) in parallel with individual cells to create faults of different 
intensities. The experimental setup generates 12,500 samples. The re-
sults showed that the ensemble method is highly effective, detecting ISC 
faults immediately after their occurrence, with high precision even in 
the presence of weaker ISC faults. The proposed method demonstrates 
improved fault identification accuracy and reduced false positive rates 
compared to traditional single-scale methods, with a detection accuracy 
exceeding 98% for ISC faults. In ISC fault diagnostics and prognostics, 
traditional machine learning methods vary in effectiveness. SVMs tend 
to perform relatively poorly compared to models like Gradient Boosting 
Decision Trees GBDT and RF, which consistently achieve over 97% ac-
curacy in ISC detection. RF is particularly effective at handling complex 
data and works well with minimal sensor input. K-means clustering 
is also beneficial, especially in reducing false alarms and detecting 
early-stage faults. However, correlation analysis offers real-time fault 
detection but requires more complex setups. Overall, ensemble learning 
methods, which combine multiple models, provide more robust ISC 
detection and are a stronger choice.

Deep Learning Methods
Deep learning techniques have been applied in growing applications 

in the D&P of ISC for EV batteries, offering significant advancements in 
reliability. One of the key advantages of deep neural networks (DNNs) 
is their ability to capture long-term dependencies, which is crucial for 
the accurate detection of battery faults over extended periods. In [104], 
Jia et al. demonstrate a CNN-based framework for estimating short-
circuit resistance Rs from real battery data. They generated a large 
dataset ( 649,000 samples) from cycling tests with external short cir-
cuits and constructed a CNN architecture consisting of normalization, 
five convolutional layers, dropout, and fully connected dense layers. 
The inputs to their model included sequences of: Current, Voltage, 
charging capacity, charging energy, Total charging capacity, and Total 
charging energy, sampled at 1 Hz over 120-second intervals. Their CNN 
model achieved an average relative absolute error of 6.75% ± 2.8%, 
and they thoroughly analyzed performance using regression plots, error 
histograms, and parametric design studies. This work underscores the 
viability of deep learning for direct resistance estimation.

A. Artificial neural network (ANN) based method. ANN serves as a 
fundamental architecture in deep learning, particularly well-suited for 
classification and regression tasks due to their ability to fully propagate 
information across densely connected layers. In the context of lithium-
ion battery diagnostics, ANN-based models demonstrate significant 
promise [105]. In [82], a fully connected network is used, and the 
ISC case is simulated using an external short-circuit resistor, and the 
training dataset consists of data from both healthy and faulty batteries 
with external short-circuit resistance. The training dataset consists of 
data from healthy batteries and faulty batteries with external short-
circuit resistance, and several features such as SOC, voltage, and energy 
loss were extracted by recording the charging and discharging voltages 
and currents of the batteries. Finally, ISC faults are classified by models 
such as RF and ANN, and ANN classification accuracy reaches 97.97% 
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normal in normal and 100% fault in fault accuracy. In [106], does not 
directly involve ISC faults, but mainly discusses external short circuit 
(ESC) faults in electric vehicle Li-ion battery packs, utilizing voltage 
information for Prediction. The experimental design includes charging 
and discharging multiple battery packs and introducing a single cell 
ESC fault to collect current and voltage data. The method achieves 
high prediction accuracy (maximum error of 4.8% under charging 
conditions).

B. Convolutional Neural Network (CNN) based method. CNN is a 
deep learning model widely used in the fields of image processing and 
computer vision. Convolutional layer is the core layer of CNN and is 
used to recognize local features in an image. The convolutional layer 
slides over the input data through filters to extract convolutional neural 
network mimics the way the human brain processes images through 
the above hierarchical structure, starting from local features, extracting 
and integrating information layer by layer, and finally realizing the 
overall understanding and classification of images. This hierarchical 
structure allows CNNs to perform well in tasks such as image recog-
nition and classification, and to have high computational efficiency 
and accuracy [107]. Progress has been made in ISC fault diagnostics 
of lithium-ion batteries using CNN methods. Seo et al. propose a CNN-
based ISC detection method by constructing an equivalent circuit model 
of the battery through MATLAB/Simulink to simulate ISC faults with 
different degrees of severity, and preprocessing the terminal voltage 
data to remove the constant-current-related interference, and finally 
achieved a fault classification accuracy of 96.0% [108]. Goh et al. 
evaluate the ISC faults of parallel-connected batteries by constructing 
an electrochemical-thermal coupling model and using a CNN combined 
with the battery surface temperature distribution and verify the robust-
ness of the method by employing the simulated data and training it 
with noisy inputs [109]. Seo et al. also uses the RC modeling method 
in MATLAB/Simulink to evaluate the ISC faults of parallel-connected 
batteries, and the method is validated by using simulated data and 
training with noise input. RC model in Simulink for ISC fault simulation 
and classified ISC faults with different resistance values by CNN and 
finally achieved 82.3% classification accuracy [110]. On the other 
hand, although Goh et al. propose a CNN-based battery fault detection 
method, their research direction is mainly focused on faults caused by 
mechanical damage rather than ISC fault detection [111,112].

C. Recurrent Neural Network (RNN) based method. RNN is a neural 
network model capable of processing variable-length sequence data, 
which is unique in having a temporal feedback mechanism. Unlike tra-
ditional feed-forward neural networks, RNNs consider the output of the 
previous time step when processing the input of each time step, which 
enables RNNs to model the contextual information in the sequence. 
RNNs process variable-length sequence data by updating hidden states 
at each time step, using the current input and the previous hidden state 
to compute the next. The hidden states capture temporal dependencies, 
making RNNs well-suited for tasks like natural language processing 
(NLP) and time series prediction [113]. However, traditional RNNs 
face issues like vanishing/exploding gradients, which are mitigated by 
advanced variants like Long Short-Term Memory (LSTM) and Gated 
Recurrent Units (GRU) through gating mechanisms that better handle 
long-term dependencies [114]. In [115], LSTM combined with a battery 
physical model is used to indirectly diagnose thermal runaway faults 
caused by ISC by predicting the surface and internal temperatures of 
the battery. The experimental data is obtained from NASA’s battery 
charge/discharge dataset, and the experiments are set at different am-
bient temperatures (24 ◦C, 4 ◦C, and 43 ◦C), and the results show that 
the method is effective in predicting changes in battery temperature, 
and thus in detecting potential thermal runaway failures. Although this 
study focuses on thermal runaway, the cause of the failure is closely 
related to ISC. And in [110], the electrochemical-thermal-internal short 
circuit coupling model is directly combined with an LSTM model, 
based on battery current, voltage, temperature and SOC parameters 
to detect and categorize the internal short-circuit faults of batteries. 
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The study simulates and generates 1380 sets of battery internal short-
circuit datasets, and the model’s diagnostic accuracy reaches 88.41% 
and 92.03% in charging and discharging states, which can effectively 
determine the severity of internal short-circuits and give appropriate 
warnings. All the above studies effectively diagnose ISC faults using 
LSTM models, but the former focuses on the indirect detection of 
thermal faults, while the latter is more focused on the direct detection 
of ISCs.

D. Transformer based method. The core principle of transformer 
is based on the self-attention mechanism, which can efficiently cap-
ture long-distance features by calculating the dependencies between 
different positions in the input sequence and dynamically assigning 
weights. Different from traditional sequence models (e.g., RNN, LSTM), 
transformer has parallel computing capability, which can significantly 
improve the computational efficiency and the ability to handle long 
time sequences [116]. The transformer method is applied to the di-
agnostics of ISC faults in battery packs. In [117], a reconstruction 
model combining transformer and LSTM is proposed for ISC detection 
of battery voltage data. The time series features are extracted by a 
sequence encoder, and the decoder optimizes the reconstruction pro-
cess using an attention mechanism and detects ISC by residual analysis 
with actual voltage data. The experimental data includes voltage data 
of 20 battery cells under different driving conditions, and ISC faults 
with 1 Ω, 5 Ω and 10 Ω resistance values are simulated. The results 
show that the model exhibits better accuracy and noise suppression 
in detecting minor ISC faults. On the other hand, in [118], a cycle 
segmentation-based transformer model is proposed for simultaneously 
extracting time-space and cycle information for ISC detection. The 
length of the sliding window is adaptively adjusted by the period 
analysis module to effectively extract the period features in the time 
series. The experimental data include the voltage data of 60 series-
parallel Li-ion battery packs under three operating conditions, and the 
ISC faults of 1 Ω, 3 Ω, and 5 Ω are simulated, and the test results 
show that the F1 scores of this model under different ISC severities are 
improved by 24.2% compared with other methods. Both studies show 
that the Transformer method is highly robust and versatile in the early 
detection and accurate diagnostics of battery ISC faults. In the current 
landscape of DNN methods applied to ISC diagnostics and prognostics 
in lithium-ion batteries, ANN has demonstrated strong performance, 
particularly in fault classification tasks, achieving high accuracy in 
detecting ISC faults. This is partly because many related studies have 
used small datasets, typically involving only one or a few batteries, and 
focus on relatively simple classification tasks without requiring fault 
quantification, which naturally leads to higher accuracy. However, 
these methods may need validation on larger and more diverse datasets 
to ensure robustness. While ANN’s reliance on densely connected layers 
can sometimes limit its ability to capture complex temporal dependen-
cies, CNNs are highly efficient for processing structured data and are 
effective when ISC faults exhibit spatial or local features. Nonetheless, 
CNNs may not be ideal for analyzing long-term sequences. RNNs, 
particularly LSTM variants, excel at modeling temporal dependencies, 
making them well-suited for ISC fault detection over time, though 
they may face computational challenges. Transformer-based models, 
which use self-attention mechanisms, provide excellent scalability and 
accuracy for handling long sequences, showing promise for early ISC 
fault detection.

3.2. Direct short fault D&P techniques

Direct ISC D&P techniques are specifically designed to estimate 
short resistance directly, providing a clear indication of the severity of 
such incidents. These methods’ strength lies in their capacity to offer an 
intuitive and direct gauge of a short fault’s impact. However, accurately 
and reliably estimating variables like short resistance is challenging 
due to their sensitivity to impact factors, which makes the precise 
quantification of short resistance a complicated task. Direct short fault 
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D&P is normally based on the ECM modeling shown in Fig.  1, which 
can be summarized in the following equation, 

𝑄𝑗 (𝑡𝑖+1
)

−𝑄𝑗 (𝑡𝑖
)

= ∫

𝑡𝑖+1

𝑡𝑖
𝐼𝑑𝑡 − ∫

𝑡𝑖+1

𝑡𝑖
𝐼 𝑗𝑐𝑏𝑑𝑡 − ∫

𝑡𝑖+1

𝑡𝑖
𝑉 𝑗𝑑𝑡 × 1

𝑅𝑗
𝑠
. (1)

This equation describes the change in the cell’s charge between two 
timestamps, 𝑡𝑖 and 𝑡𝑖+1, where 𝑗 represents the cell group index. The 
charge variation, 𝑄𝑗 (𝑡𝑖+1

)

− 𝑄𝑗 (𝑡𝑖
)

, can be expressed as the sum 
of three integral terms. The first term, ∫ 𝑡𝑖+1

𝑡𝑖
𝐼𝑑𝑡, represents the total 

current drawn from the battery during the time interval, as measured 
by the current sensor. The second term, − ∫ 𝑡𝑖+1

𝑡𝑖
𝐼 𝑗𝑐𝑏𝑑𝑡 accounts for the 

cell balancing current, which is obtained from the corresponding cell 
balancing signal. The third term, − ∫ 𝑡𝑖+1

𝑡𝑖
𝑉 𝑗𝑑𝑡 × 1∕𝑅𝑗

𝑠, represents the 
short-circuit current, where 𝑉 𝑗 is the cell voltage measured by the 
voltage sensor, and short resistance is the internal resistance of the 
cell. By accurately measuring the charge capacity difference, 𝑄𝑗 (𝑡𝑖+1

)

−
𝑄𝑗 (𝑡𝑖

)

, and knowing the values of the current, cell balancing current, 
and cell voltage, it becomes possible to estimate the short resistance of 
the battery cell. Simplifying this basic form of Eq.  (1) using different 
constraints, the Cell Droop Rate method and dSOC method can be 
derived.

A. Cell Droop Rate [119]. This method estimates short resistance 
using data during the rest phase, when the external current is zero 
(𝐼 = 0) and cell balancing is neglected (𝐼 𝑗𝑐𝑏 = 0). The charge capacity 
difference, 𝑄𝑗 (𝑡𝑖+1

)

− 𝑄𝑗 (𝑡𝑖
)

= Δ𝑄𝑗 , the SOC change, and the cell 
capacity are related as shown in Eq.  (2): 
𝛥𝑄𝑗 = 𝛥𝑆𝑂𝐶𝑗 ∗ 𝐶, (2)

Thus, the SOC change is proportional to the open-circuit voltage (OCV) 
change, Δ𝑂𝐶𝑉 𝑗 = 𝑂𝐶𝑉 𝑗−𝑂𝐶𝑉0, with a factor 𝑘 (𝑘 = 𝑑𝑆𝑂𝐶𝑗∕𝑑𝑂𝐶𝑉 𝑗):

𝛥𝑆𝑂𝐶𝑗 = 𝑘 ∗ 𝛥𝑂𝐶𝑉 𝑗 . (3)

In addition, Δ𝑄𝑗 can be calculated by integrating the current, where 
the current is equal to 𝑉 𝑗∕𝑅𝑗

𝑠, 

𝛥𝑄𝑗 = −∫

𝑡𝑖+1

𝑡𝑖
𝑉 𝑗𝑑𝑡 ∗ 1∕𝑅𝑗

𝑠. (4)

The voltage integral, ∫ 𝑡𝑖+1
𝑡𝑖

𝑉 𝑗𝑑𝑡, can be replaced by 𝑉 𝑗 ∗ Δt, where 𝑉 𝑗

is the average value of the cell voltage. By relating the OCV change to 
the average cell voltage and the short resistance, an equation is derived 
that expresses the cell voltage as a function of time, the short resistance, 
and the initial OCV: 
𝑂𝐶𝑉 𝑗 =

(

−𝑉 𝑗 ∗ 𝛥𝑡∕𝑅𝑗
𝑠

)

∕(𝐶 ∗ 𝑘) + 𝑂𝐶𝑉0. (5)

Refer to Fig.  1, −𝐼𝑅0 = 𝐼𝑠 due to 𝐼 = 0, where 𝐼𝑅0 denotes the current 
flowing through resistor 𝑅0, and 𝐼𝑠 denotes the current flowing through 
resistor 𝑅𝑠. Based on Fig.  1, Eq. (6) is obtained: 
(

𝑂𝐶𝑉 𝑗 − 𝑉 𝑗) ∕𝑅0 = 𝑉 𝑗∕𝑅𝑗
𝑠. (6)

Eq.  (6) is transformed to give the following equation: 
𝑂𝐶𝑉 𝑗 = 𝑉 𝑗∕𝑅𝑗

𝑠 ∗ 𝑅0 + 𝑉 𝑗 . (7)

From Eq.  (5) and Eq.  (7), Eq. (8) can be obtained: 
𝑉 𝑗 = −𝑉 𝑗∕

(

𝑅𝑗
𝑠 ∗ 𝐶 ∗ 𝑘

)

∗ 𝛥𝑡 +
(

𝑂𝐶𝑉0 − 𝑅0∕𝑅𝑗
𝑠 ∗ 𝑉 𝑗) . (8)

Recursive least squares (RLS) method is used to estimate the internal 
resistance, 𝑅𝑗

𝑠, from the cell voltage measurements over time.
B. dSOC [120]. The short resistance is not directly estimated by 

dSOC in production. Instead, dSOC is used as indicators to flag potential 
faults. However, based on engineering feedback, dSOC can be used to 
estimate short resistance for further diagnostic purposes. It assumes 
that the cell capacity (𝐶) is constant and known, and the cell balancing 
current is negligible (𝐼 𝑗𝑐𝑏 = 0). The charge capacity difference, Δ𝑄𝑗 , 
is related to the SOC change, ΔSO𝐶𝑗 , and the cell capacity, Δ𝑄𝑗 =
ΔSO𝐶𝑗 ∗ 𝐶. For the median cell in the module, the battery charge 
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(Δ𝑄𝑚) difference is assumed to be solely due to the external current 
(𝐼), as its short resistance is considered infinite. Thus, Δ𝑄𝑚 satisfies 
the following two equations: 

𝛥𝑄𝑚 = 𝛥𝑆𝑂𝐶𝑚 ∗ 𝐶, (9)

𝛥𝑄𝑚 = ∫

𝑡𝑖+1

𝑡𝑖
𝐼𝑑𝑡. (10)

By comparing the charge capacity difference of the cell of interest to 
the median cell to remove the usage impact, the short resistance can 
be estimated using the average cell voltage, the time interval, and the 
difference between the SOC changes (i.e., dSOC): 

𝑅𝑗
𝑠 = 𝑉 𝑗 ∗ 𝛥𝑡∕

(

𝛥𝑆𝑂𝐶𝑚 ∗ 𝐶 − 𝛥𝑆𝑂𝐶𝑗 ∗ 𝐶
)

. (11)

Let (Δ𝑆𝑂𝐶𝑚 − Δ𝑆𝑂𝐶𝑗) ∕Δt be denoted as 𝑚𝑠𝑐 ; then Eq. (11) can be 
transformed into the following Eq. (12): 

𝑅𝑗
𝑠 = 𝑉 𝑗∕

(

𝑚𝑠𝑐 ∗ 𝐶
)

(12)

C. Current Ratio. Under a constant current discharge scenario, the 
differential voltage (𝑑𝑉 ) can be described as the change in open-
circuit voltage (𝑑𝑂𝐶𝑉 ) which is directly proportional to the current (𝐼) 
multiplied by a constant 𝑔, and the differential time (𝑑𝑡). This change 
can also be expressed in terms of the differential charge (𝑑𝑄), leading 
to the equation 𝑑𝑉 ≈ 𝑑𝑂𝐶𝑉 = 𝑔 ⋅𝐼 ⋅𝑑𝑡 = 𝑔 ⋅𝑑𝑄. For any given cell 
within a battery, the change in charge 𝑑𝑄 and the consequent change 
in voltage 𝑑𝑉  can be broken down into three components: the change 
due to short circuiting 𝑑𝑄𝑠 and 𝑑𝑉𝑠, the change due to usage 𝑑𝑄𝑢𝑠𝑎𝑔𝑒
and 𝑑𝑉𝑢𝑠𝑎𝑔𝑒, and the change due to cell balancing 𝑑𝑄𝑏𝑎𝑙 and 𝑑𝑉𝑏𝑎𝑙. Here, 
usage refers to the changes brought by the external load consumption. 
These relationships are encapsulated in the equation: 

𝑑𝑉 = 𝑑𝑉𝑠 + 𝑑𝑉𝑢𝑠𝑎𝑔𝑒 + 𝑑𝑉𝑏𝑎𝑙 , (13)

where the right-hand side of the equation can be expressed as below: 

𝑑𝑉𝑠 + 𝑑𝑉𝑢𝑠𝑎𝑔𝑒 + 𝑑𝑉𝑏𝑎𝑙 = 𝑔 ⋅
(

𝐼𝑠 + 𝐼𝑢𝑠𝑎𝑔𝑒 + 𝐼𝑏𝑎𝑙
)

⋅ 𝑑𝑡. (14)

For a median cell, which does not experience shorting and thus no 𝑑𝑉𝑠, 
the equation is simplified to: 

𝑑𝑉 𝑚 = 𝑑𝑉 𝑚
𝑢𝑠𝑎𝑔𝑒 + 𝑑𝑉 𝑚

𝑏𝑎𝑙 (15)

The right-hand side of the Eq. (15) can be expressed as below: 

𝑑𝑉 𝑚
𝑢𝑠𝑎𝑔𝑒 + 𝑑𝑉 𝑚

𝑏𝑎𝑙 = 𝑔 ⋅
(

𝐼𝑚𝑢𝑠𝑎𝑔𝑒 + 𝐼𝑚𝑏𝑎𝑙
)

⋅ 𝑑𝑡 (16)

Subtracting Eq. (16) from Eq.  (14) we derive the expression for the 
change in voltage due to short, considering the cell balancing and the 
usage with a correction factor (𝛥𝐶

) : 

𝑑𝑉𝑠+𝑑2𝑉𝑏𝑎𝑙+𝑑𝑉𝑢𝑠𝑎𝑔𝑒 ⋅𝛥𝐶 = 𝑔 ⋅
(

𝐼𝑠 + 𝐼𝑏𝑎𝑙(time avg) + 𝐼𝑢𝑠𝑎𝑔𝑒 ⋅ 𝛥𝐶
)

⋅𝑑𝑡 (17)

where 𝑑2𝑉𝑏𝑎𝑙 = 𝑑𝑉𝑏𝑎𝑙 − 𝑑𝑉 𝑚
𝑏𝑎𝑙, and the left side of the equation can be 

expressed as 𝑑𝑉 −𝑑𝑉 𝑚, denoted as 𝑑2𝑉 . In the case where the balancing 
current 𝐼𝑏𝑎𝑙 is zero and there is no correction factor 𝛥𝐶 applied, the 
change in voltage due to short 𝑑2𝑉  divided by the short current 𝐼𝑠
is equal to the differential voltage over current 𝑑𝑉 ∕𝐼 . This ratio is 
then used to determine the internal resistance associated with the short 
resistance, following the relation 𝑅𝑠 = 𝑉 ∕𝐼𝑠. The comparison of various 
methods for estimating short resistance in lithium-ion batteries is sum-
marized in Table  4. The table outlines each method’s advantages and 
limitations, providing a comparative analysis crucial for researchers 
and practitioners in the field. The dSOC method is less impacted by 
capacity changes, yet it does not account for cell balancing and is 
similarly affected by 𝑘. The Cell Droop Rate shares these cons but is 
noted for minimal capacity impact. This comparative analysis aids in 
discerning the suitability of each method for different D&P scenarios.
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Table 4
Comparison of different methods for short resistance estimation.
 Method Pros Cons  
 dSOC Less impact on usage. Impacted by 𝑘, balance, and capacity.  
 Cell Droop Rate Less impact on capacity. Assume no usage. Impacted by 𝑘, measurement error, and balance. 
 Current Ratio Less impact due to capacity and 𝑘. Impacted by measurement error.  
3.3. Research gaps

Our investigation into direct and indirect D&P methods reveals 
several gaps. Direct D&P methods are relatively scarce, and while 
machine learning and deep learning have been applied to ISC D&P, 
they are primarily used for classification tasks, such as categorizing the 
severity of faults, rather than directly estimating 𝑅𝑠. Despite achieving 
high accuracy, these approaches rely on relatively simple and limited 
datasets, with some experiments based on a single cell, raising concerns 
about their scalability to larger datasets. Furthermore, while direct 
D&P methods can estimate short resistance, short resistance is highly 
sensitive to factors like capacity, necessitating more robust methods to 
ensure accurate and stable estimations across varying conditions.

4. Performance evaluation and discussion

We introduce the relevant datasets in Section 2 and ISC D&P ap-
proaches in Section 3. Based on these datasets, we evaluate some D&P 
methods. It is important to note that not every D&P method can be 
applied to all datasets. Different types of evaluations are necessary 
to account for the unique characteristics of each dataset, including 
sensitivity analysis and applicability of ISC D&P methods. In this sec-
tion, we focus on evaluating the sensitivity of several direct D&P 
methods, aiming to better understand their performance, advantages, 
and limitations. Indirect D&P methods are not involved in sensitivity 
analysis because they do not directly provide quantitative estimates of 
short resistance; their results are qualitative in nature, making them 
unsuitable for sensitivity analysis. Sensitivity evaluation allows us to 
determine how effectively each ISC D&P method responds to early-
stage faults, especially in scenarios where subtle anomalies are difficult 
to detect. This process is essential for determining the appropriate 
conditions under which these indicators can be applied. There are three 
main types of data used for evaluation: simulation data, lab data, and 
real vehicle data. While we acknowledge the value of simulation data, 
it is not included in the primary evaluation within this survey. The 
simulated healthy cells’ voltage showing highly consistent electrical sig-
nals. This makes faulty cell identification straightforward, and the main 
purpose of using simulation data is to validate the methods’ correctness. 
Therefore, we exclude it from this section’s evaluation. Due to the 
structure of this project, which is divided into three parts, we present 
initial results here using two selected datasets: the Coin Cell dataset for 
performance evaluation and discussion of the lab dataset, and the On-
Vehicle Simulated ISC dataset for real vehicle data, containing faulty 
cells with known ground truth.

4.1. Sensitivity analysis

ISC D&P methods are chosen for their responsiveness to internal 
battery perturbations that signal short circuits. These methods are 
based on electrochemical principles and display notable changes during 
ISC-related internal reactions, making them feasible for real-time D&P 
applications. Sensitivity analysis is crucial for evaluating how factors 
such as capacity and SOC influence the accuracy and reliability of short 
resistance measurements. The relative error is used as a measure in the 
sensitivity analysis, as shown in Eq.  (18), 

𝜀 =
|

|

|

|

(

𝑅𝑠 − 𝑅𝑠

)

∕𝑅𝑠
|

|

|

|

∗ 100%, (18)

where (𝑅𝑠) represents the estimated value of the true value 𝑅𝑠. Note 
that the indirect D&P methods (e.g., voltage slope and capacity change) 
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primarily serve as qualitative indicators for ISC detection, making them 
unsuitable for direct sensitivity analysis. Accurate sensitivity assess-
ment requires quantitative ISC characterization methods (such as short 
resistance estimation), which directly link subtle changes in parameters 
to specific variations in 𝑅𝑠. Therefore, in this study, sensitivity analysis 
is focused solely on the direct D&P methods.

4.1.1. Sensitivity analysis of the cell droop rate method
The rate of voltage decay during the rest period (𝐼 = 0) and cell 

balancing is neglected (𝐼𝑐𝑏 = 0) are use in the Cell Droop Rate method. 
In this approach, the slope of the voltage over time, denoted as a 
(𝑎 < 0), is calculated to determine the short resistance. The estimated 
short resistance is derived using Eq.  (19): 
𝑅𝑠 = −𝑉 𝐽∕(𝑎 ∗ 𝐶 ∗ 𝑘), (19)

where 𝑉 𝐽  represents the average voltage of a cell, 𝐶 is the battery 
capacity, and 𝑘 is the SOC/OCV mapping coefficient. Both 𝐶 and 𝑘
are assumed to be known and constant. However, inaccuracies in these 
values can result in significant estimation errors.
A. Influence of 𝑘 on 𝑅𝑠 Estimation.

Assuming that the actual SOC/OCV mapping coefficient of a cell 
is 𝑘, but using 𝑘 ∗ 𝛿 in the 𝑅𝑠 estimation process, this introduces the 
computational error expressed in Eq.  (20): 

𝜀 =
|

|

|

|

|

|

−𝑉 𝐽∕(𝑎 ∗ 𝐶 ∗ 𝑘) + 𝑉 𝐽∕(𝑎 ∗ 𝐶 ∗ 𝑘 ∗ 𝛿)

−𝑉 𝐽∕(𝑎 ∗ 𝐶 ∗ 𝑘)

|

|

|

|

|

|

∗ 100%, (20)

It can be simplified to the following equation: 
𝜀 = |(𝛿 − 1)∕𝛿| ∗ 100%. (21)

For example, assuming the true value of k is 1.15, but an approximate 
value of 0.5 (𝛿 = 0.4347) is used in the calculation, this will result in 
an estimated error of 130%.
B. Influence of 𝐶 on 𝑅𝑠 Estimation.

Assuming that a cell’s actual capacity is 𝐶, but using 𝛿 ∗ 𝐶 in the 𝑅𝑠
estimation process, this introduces the computational error expressed 
in Eq.  (22): 

𝜀 =
|

|

|

|

|

|

−𝑉 𝐽∕(𝑎 ∗ 𝐶 ∗ 𝑘) + 𝑉 𝐽∕(𝑎 ∗ 𝐶 ∗ 𝛿 ∗ 𝑘)

−𝑉 𝐽∕(𝑎 ∗ 𝐶 ∗ 𝑘)

|

|

|

|

|

|

∗ 100%, (22)

It can be simplified to the following equation: 
𝜀 = |(𝛿 − 1)∕𝛿| ∗ 100%. (23)

For example, assuming the true value of the cell capacity is 297 Amphr, 
but an approximate value of 300 Amphr (𝛿 = 1.01) is used in the 
calculation, this will result in an estimated error of 1.0%.

4.1.2. Sensitivity analysis of the dSOC method
For dSOC method, it is assumed that the battery capacity is constant 

and the known, and the cell balancing current is negligible (𝐼𝑐𝑏 = 0). 
This method estimates short resistance by measuring the SOC difference 
(denoted as 𝛥𝑆𝑂𝐶) between the module median and a specific cell 
group over time, calculated as 𝑑𝑆𝑂𝐶 =

(

𝛥𝑆𝑂𝐶𝑚 − 𝛥𝑆𝑂𝐶𝑗) ∕𝛥𝑡. The 
short resistance is then given by Eq.  (24). 
𝑅𝑠 = 𝑉 𝑗∕(𝑑𝑆𝑂𝐶 ∗ 𝐶) (24)

where 𝑉 𝑗 is the average voltage of a cell. Unlike other methods, 
this approach assumes that SOC can be directly measured without 
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converting OCV using the SOC/OCV mapping coefficient (𝑘). However, 
inaccuracies in 𝐶 can lead to significant errors in the estimated 𝑅𝑠. 
When capacity decreases, the discharge accelerates, causing a change 
in the measured 𝑑𝑆𝑂𝐶, denoted as 𝑑𝑆𝑂𝐶 ′. Assuming the battery is 
discharging at a constant current 𝐼 , with a short current 𝐼𝑠, and that 
the module median capacity (𝐶𝑚 = 𝐶0), the required true 𝑑𝑆𝑂𝐶 for 𝑅𝑠
estimation is calculated as: 

𝑑𝑆𝑂𝐶 =
∫ 𝐼𝑑𝑡
𝐶𝑚 ∗ 𝛥𝑡

−
∫
(

𝐼 + 𝐼𝑠
)

𝑑𝑡
𝐶0 ∗ 𝛥𝑡

. (25)

However, the measured 𝑑𝑆𝑂𝐶 ′ is calculated as the following equation: 

𝑑𝑆𝑂𝐶 ′ =
∫ 𝐼𝑑𝑡
𝐶𝑚 ∗ 𝛥𝑡

−
∫
(

𝐼 + 𝐼𝛿
)

𝑑𝑡
𝛿 ∗ 𝐶0 ∗ 𝛥𝑡

. (26)

The ratio 𝑑𝑆𝑂𝐶′

𝑑𝑆𝑂𝐶  can be calculated by Eq.  (27): 

𝑑𝑆𝑂𝐶 ′

𝑑𝑆𝑂𝐶
=

(

1
𝛿 − 1

)

∗ ∫ 𝐼𝑑𝑡 + 1
𝛿 ∗ ∫ 𝐼𝑠𝑑𝑡

∫ 𝐼𝑠𝑑𝑡
. (27)

Assuming 𝐼𝑠 is also approximately constant,  Eq.  (27) can be simplified 
to the following: 

𝑑𝑆𝑂𝐶 ′

𝑑𝑆𝑂𝐶
=

(

1
𝛿 − 1

)

∗ 𝐼 + 1
𝛿 ∗ 𝐼𝑠

𝐼𝑠
. (28)

Therefore, the capacity loss introduces the computational error ex-
pressed in Eq.  (29): 

𝜀 =
|

|

|

|

|

|

𝑉 𝑗∕
(

𝑑𝑆𝑂𝐶 ∗ 𝐶0
)

− 𝑉 𝑗∕
(

𝑑𝑆𝑂𝐶 ∗ 𝛿 ∗ 𝐶0
)

𝑉 ∕
(

𝑑𝑆𝑂𝐶 ∗ 𝐶0
)

|

|

|

|

|

|

∗ 100%. (29)

It can be simplified to the following equation: 

𝜀 =
|

|

|

|

|

1 − 1∕
(

(1 − 𝛿) ∗ 𝐼 + 𝐼𝑠
𝐼𝑠

)

|

|

|

|

|

∗ 100% (30)

For example, assuming the battery is discharging at a constant current 
of 10 A, with a short current of 0.04 A, and 𝛿 is 1.01, this will result 
in an estimated error of 71.7%.

4.2. Lab data analysis

Lab dataset, e.g., coin cell data, is cycle life based. Despite of 
hundreds of life cycles, directly quantifying the impact of soft ISC 
is challenging, as its effects on the battery are not evident in the 
short term and do not lead to significant degradation. Additionally, 
since short resistance is a highly sensitive indicator, its estimation is 
easily affected by factors such as capacity and k, leading to potential 
inaccuracies. As a result, we do not perform direct D&P algorithm 
evaluations on lab datasets. A more immediate reason is that we do 
not have the ground truth of short resistance in the lab datasets, 
only knowing that the cell is faulty without the ability to quantify 
it. Therefore, for lab datasets, we focus on evaluating indirect D&P 
algorithms, taking full advantage of the life cycle data to compare ISC 
D&P methods under different conditions, such as charging, discharging, 
and resting after charge/discharge. In our survey, we discuss many ISC 
diagnostic methods, each offering unique strengths in detecting internal 
short circuits in lithium-ion batteries. However, due to limitations such 
as the lack of available code and datasets, as well as the differing en-
abling conditions required by each method, it is challenging to evaluate 
and compare all these diagnostic techniques on a uniform dataset. To 
address this, we select 36 indirect diagnostic ISC D&P methods and 
evaluate them on the same dataset. This focused evaluation aims to 
provide a clearer understanding of the performance of these selected 
indicators under consistent conditions. In the following sections, we 
will discuss the results of this evaluation, highlighting key insights and 
their implications for ISC diagnostics.
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We assess a set of 36 indicators across different laboratory data 
profiles to plot their True Positive Rate (TPR) against False Positive 
Rate (FPR). The assessment is designed to determine the efficacy of 
these indicators across all cycles and profiles, as well as their speci-
ficity to cycle lives or excitation conditions. 36 diagnostic methods 
listed in Table  1 are evaluated for fault isolation between soft faulty 
and healthy data. These diagnostic methods are categorized into nine 
distinct groups. The number preceding each ISC D&P method represents 
its corresponding index, which matches the numbers shown in Fig.  6.

To determine the effectiveness of a health indicator, a threshold that 
maximizes the distinction between healthy and faulty cells is required. 
The threshold is identified by evaluating the metric TPR+TNR, with the 
optimal threshold being the one that maximizes this value. Once the 
threshold is established, the corresponding TPR and FPR values under 
the test conditions are used to represent the indicator’s performance, 
plotted as a dot in Fig.  6. The average TPR and FPR results for these 
36 D&P methods over all available life cycles are presented in Fig. 
6(a). Since some methods rely on dynamic charging/discharging data, 
and some methods only employ life cycle data, two different colors 
are used in Fig.  6. Purple dots represent the average values across 
approximately 10 cycles under dynamic charge/discharge conditions 
(Fig.  3 (c, e)), while blue dots indicate averages over 300 life cycles 
with constant charge and constant discharge conditions (Fig.  3(a)). The 
ISC D&P methods evaluated with selected life cycle data is presented 
in Fig.  6(b). Here, purple dots denote the values at the 5th cycle under 
dynamic charge/discharge conditions, while blue dots represent the 
values at the 100th cycle under constant charge and constant discharge 
conditions. Some common health indicators, such as Capacity (ISC 
D&P method 16) and Voltage drop (ISC D&P method 15), exhibit low 
TPRs, indicating limited effectiveness across the range of conditions. 
This suggests that these methods may not be effective to isolate ISC 
fault. Notably, the performance of ISC D&P methods when evaluated 
by specific life cycles (Fig.  6(b)) is superior to the average calculated 
across all cycles (Fig.  6(a)). This reflects that, even for the same health 
indicator, the threshold may vary across different life cycles as faults 
worsen and battery degradation progresses, resulting in substantial 
differences in dot distributions between Figs.  6 (a) and  6 (b).

Furthermore, the Voltage Slope after discharge (ISC D&P method 9) 
and Average Discharge Resistance (ISC D&P method 25) demonstrate 
outstanding performance by specific life cycle tests (Fig.  6(b)). By 
selecting and combining multiple health indicators, such as ISC D&P 
method 9 and 25, diagnostic accuracy could be enhanced. The fusion 
of these indicators allows for a tailored approach that accommodates 
the unique characteristics of each cell’s life cycle and operational 
profile, thereby improving the overall diagnostic performance. These 
findings indicate the nuanced nature of battery health assessment and 
the importance of context in the application of ISC D&P methods. The 
potential to fine-tune diagnostics by cycle and profile conditions is a 
promising avenue for research.

4.3. Real vehicle data analysis

The real vehicle datasets are trip-based. Although the On-Vehicle 
Simulated ISC dataset is an exception as it does not include driving 
states, it does contain normal charging and low-current discharging 
states. The highly dynamic nature of trip-based data makes some in-
direct D&P algorithms (such as slope-based methods or methods based 
on charge/discharge energy differences within a cycle) unsuitable for 
evaluation on trip-based data. Additionally, for datasets like OnStar, 
which are from a large number of vehicles, there is no current or 
voltage signal. Unlike the lab datasets, the real vehicle datasets incor-
porate balancing mechanisms, which are rarely considered in indirect 
D&P algorithms. As a result, it is nearly impossible to directly apply 
D&P algorithms to these datasets. However, since real vehicle datasets 
include faulty cells, the evaluation of direct D&P algorithms is our 
focus.
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Fig. 6. Distribution of ISC D&P methods plotted as True Positive Rate (TPR) against False Positive Rate (FPR). Each point represents a distinct ISC D&P method. Blue points 
indicate the method evaluated with the 300-life-cycle dataset, while purple points indicate the method evaluated with the 10 cycles dataset, which requires dynamic current 
inputs. Indicators closer to the bottom-right corner of the plot demonstrate superior performance. (a) performance comparison with all available life cycle data, (b) performance 
comparison with selected life cycle data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. A data segment from On-Vehicle Simulated ISC dataset. (a). Current signal of the pack; (b). Voltage signals of 8 cells from one module; (c). Balancing Amphr signals of 8 
cells from the module. (d). Cell group voltage minus the module median voltage calculated from 8 cell groups from the module.
Fig.  7(a) shows a segment of the On-Vehicle Simulated ISC dataset 
during a discharge phase at −0.6 A, and Fig.  7(b) presents the voltage 
signal variation for one module under this discharge condition. It is 
observed that the voltage of the faulty cell (Cell 108) starts slightly 
lower than the other cells but, over time, the voltage difference gradu-
ally decreases. By the end, the voltage of this cell even slightly exceeds 
that of the other cells. Due to the balancing mechanism, as shown in 
Fig.  7(c), other cells reduce their voltage to maintain consistency in 
the OCV of the cells within the module. It is evident that the faulty cell 
does not participate in cell balancing during this process. To make this 
voltage change more apparent, the difference between the cell voltage 
and the module median (DV) is shown in Fig.  7(d). The DV curve clearly 
illustrates the differences between the faulty cell and the healthy cells, 
allowing for simple and accurate faulty cell isolation in this dataset.

Fig.  7 presents the DV curves for 192 cells from the On-Vehicle 
Simulated ISC dataset during a low-current discharge segment. The 
𝑅𝑠 values for Cells 108, 124, 140, 164 are selected at five discrete 
levels within the 500–1500 Ω range. It is evident that the more severe 
the ISC, indicated by a lower short resistance, leads to greater DV 
differences. From this figure, it can be observed that short resistance 
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can be roughly quantified through DV differences. However, to estimate 
short resistance, methods such as Cell Droop Rate is required, as they 
are derived from voltage-related differences caused by ISC. Table  5 lists 
the results of short resistance estimation using direct D&P methods. 
Since the dataset does not include SOC data, the estimation results of 
dSOC are not compared here. It is evident that there are significant 
deviations between the estimations and the ground truth values. 

For Cell Droop Rate, short resistance estimation requires the current 
to be zero, making the method inapplicable in this case. To verify 
this understanding, considering the current is small, we apply this 
method directly. However, the estimated values for all cells are much 
smaller than the ground truth values, resulting in an estimated relative 
error of about 80% to 90%, since the current is significantly greater 
than the actual short circuit current. Therefore, existing direct D&P 
methods are not sufficiently accurate or robust for quantifying short 
resistance. One reason for this is the high sensitivity of short resis-
tance estimation to external factors, making the enabling conditions 
of these methods more stringent. Additionally, errors introduced by 
sensors during signal acquisition cannot be overlooked. The significant 
estimation errors observed in Table  3 primarily result from current 
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Table 5
Performance evaluation on real vehicle data.
 Method CG108 CG124 CG140 CG164 CG188  
 Estimation error of Cell Droop Rate 79.87% 84.82% 88.31% 90.24% 92.11% 
interference, sensor inaccuracies, and the stringent enabling conditions 
required by direct methods, such as zero-current scenarios for the 
Cell Droop Rate method. Improving robustness in dynamic environ-
ments necessitates advanced signal processing techniques for sensor 
data filtering, enhanced sensor accuracy, and incorporating adaptive 
calibration mechanisms. Additionally, the development of hybrid di-
agnostic models combining physics-based and data-driven techniques 
could further enhance the practical reliability of direct methods.

When comparing physics-based models and data-driven techniques, 
a comprehensive approach is adopted that considers their inherent 
characteristics and limitations. For physics-based models, model com-
plexity, computational demands, and sensitivity to modeling parame-
ters are explicitly assessed. In the case of data-driven methods, perfor-
mance robustness is evaluated relative to data quality, quantity, and 
diversity. Specifically, sensitivity analysis is employed to quantify how 
variations in key parameters (such as the SOC mapping coefficient 𝑘
and battery capacity 𝐶) influence estimation accuracy in physics-based 
methods. Meanwhile, data-driven techniques are evaluated based on 
their adaptability and performance across varying datasets, including 
real-world scenarios. Through such multi-dimensional evaluations, the 
comparative analysis offers clear and actionable insights into the most 
suitable application contexts for each diagnostic approach.

5. Challenges and future directions for ISC D&P

ISC D&P in lithium-ion batteries for EVs is crucial for improving 
EV driving experience. Current methods for detecting ISC are relatively 
effective and have been successfully integrated into production systems. 
However, achieving highly accurate ISC detection without triggering 
false positives or negatives remains a significant challenge.

Nonlinear, sudden, or near-hard shorts are difficult to model and 
capture early, as simplified models like ECMs lack the ability to rep-
resent detailed internal electrochemical processes. While physics-based 
P2D models offer higher accuracy, they are computationally intensive 
and unsuitable for real-time applications. This gap becomes critical 
when detecting intermittent shorts in pouch cells, where mechanical 
stress-induced deformation alters internal resistance within seconds. 
Moreover, accurate ISC detection depends heavily on sensor precision 
for voltage, current, and temperature, with sensor noise and reliability 
under harsh EV conditions often leading to false positives or missed 
detections.

The scarcity of high-quality, labeled data for ISC faults exacer-
bates these issues. Most public datasets lack controlled fault injection 
under realistic operating conditions, forcing researchers to rely on 
synthetic data that oversimplifies failure modes. This data paucity di-
rectly impacts diagnostic reliability—machine learning models trained 
on simulated dendrite growth patterns show lower accuracy when 
applied to real-world battery packs. Furthermore, the transient na-
ture of mechanical stress-induced shorts creates detection blind spots. 
Pressure sensors embedded in pouch cells can detect swelling from 
gas generation, but their low sampling rates often miss sub-second 
mechanical relaxation events preceding ISC initiation.

Non-electrical sensing modalities introduce complementary chal-
lenges. Gas sensors (CO, H2) and ultrasonic probes provide post-failure 
confirmation rather than early warning. Thermal imaging achieves 
faster response but struggles to distinguish ISC-induced hotspots from 
normal temperature gradients during fast charging. Emerging tech-
niques like distributed fiber optic sensing show promise in detecting 
localized strain variations but require fundamental redesigns of cell 
packaging.
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Future research should focus on improving sensor technology, data 
availability, and modeling techniques. Enhancing sensor precision, 
along with the integration of multi-sensor fusion approaches, can 
improve ISC detection by combining voltage, current, thermal, and 
acoustic signals to provide a more comprehensive fault signature. 
Additionally, research into adaptive calibration methods for BMS sen-
sors will be crucial in mitigating environmental noise and improving 
detection reliability. To address data scarcity, efforts should be directed 
toward developing standardized, large-scale datasets for ISC research. 
This includes leveraging synthetic data generation techniques, such as 
physics-informed machine learning, to create realistic ISC scenarios 
for training deep learning models. Furthermore, advanced diagnostic 
algorithms, such as Koopman mode analysis and hybrid model ap-
proaches, could enhance ISC detection accuracy [43]. By integrating 
the computational efficiency of ECMs with the physical accuracy of P2D 
models, these hybrid techniques offer a promising path toward real-
time ISC detection in EV applications. In addition, refining machine 
learning-based classifiers to better correlate short resistance variations 
with specific failure modes will be essential in reducing false alarms. 
Future research should explore the coupling of electro-thermal models 
with real-time estimation frameworks, such as extended Kalman filters 
(EKF), which have shown promise in tracking ISC state evolution under 
dynamic conditions [121].

In addition, differentiating ISC-induced self-discharge from natural 
battery aging processes, such as SEI thickening and capacity fading, 
remains a critical challenge. To enhance the reliability of ISC detec-
tion, future research should explore integrating SOH estimation models 
with ISC diagnostics, leveraging collaborative diagnosis frameworks. 
Such integration would provide a clearer distinction between normal 
degradation and ISC-related faults, enabling more precise maintenance 
decisions and enhanced safety management.

A promising direction for future research is the integration of ma-
chine learning approaches with physics-based models, often termed 
hybrid modeling. Such integrated models leverage the computational 
efficiency and predictive accuracy of machine learning alongside the 
interpretability and fundamental insights offered by physics-based ap-
proaches. For instance, combining Electrochemical Impedance Spec-
troscopy (EIS)-based methods with deep learning techniques can enable 
precise early-stage ISC detection with improved scalability.

To address the scalability issues for larger battery systems, future 
research should focus on developing hierarchical or modular diag-
nostic approaches, where data-driven methods provide rapid anomaly 
detection across the entire battery pack, and physics-based models sub-
sequently perform detailed analyses on localized suspicious cells. Such 
hybrid frameworks can significantly reduce computational burdens 
while maintaining high diagnostic accuracy, enabling practical, real-
time implementation in large-scale EV battery management systems.

6. Conclusion

In this work, we have conducted a comprehensive review and 
comparison of various diagnostic and prognostic (D&P) methods for 
detecting ISC in lithium-ion batteries. The surveyed approaches are 
categorized into indirect and direct methods based on their data sources 
and detection mechanisms. Indirect methods, which infer ISC from 
observable electrical signals such as voltage deviations or SOC in-
consistencies are widely implemented in real-world EV applications. 
However, these methods often struggle with quantifying ISC severity 
and are prone to false positives and false negatives due to opera-
tional variability and external noise factors. On the other hand, direct 
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methods, including impedance-based and resistance estimation tech-
niques, offer a more precise quantification of ISC faults by directly 
characterizing electrical pathways affected by short circuits. Despite 
their improved accuracy, these methods still face challenges in real-
world deployment, as existing models often exhibit significant errors 
in estimating short resistance, requiring further refinement for online 
applications. Our evaluation reveals that direct ISC diagnostic methods 
such as Cell Droop Rate exhibit significant estimation errors (approxi-
mately 80%–90%) in real vehicle data, highlighting the critical need for 
improved robustness and accuracy. A key takeaway from our review is 
that while indirect ISC D&P methods are currently the most feasible for 
onboard EV monitoring, they require further advancements to reduce 
false alarms and improve robustness across diverse operating condi-
tions. Meanwhile, direct methods, particularly those leveraging EIS and 
deep learning, show promising potential in enhancing ISC detection 
accuracy and early warning capabilities. However, the practical imple-
mentation of these approaches remains constrained by measurement 
complexity and computational efficiency.

The insights from this comprehensive review and analysis have 
significant implications for industry stakeholders such as battery man-
ufacturers and EV companies. By identifying and clearly outlining 
the strengths and limitations of various ISC diagnostic and prognostic 
methods, our findings assist stakeholders in selecting appropriate and 
reliable ISC detection technologies suited to their specific operational 
needs. Particularly, our comparative evaluations provide critical guid-
ance on adopting robust D&P methods that minimize false positives and 
enhance early detection capabilities, thereby improving battery safety 
and reliability. These insights can directly inform safety standards and 
operational guidelines for battery management systems, contributing 
to enhanced vehicle safety, reduced warranty costs, and improved 
consumer trust.
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