
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Design and Implementation of TARF: A
Trust-Aware Routing Framework for WSNs

Guoxing Zhan, Weisong Shi, Senior Member, IEEE, and Julia Deng

Abstract—The multi-hop routing in wireless sensor networks (WSNs) offers little protection against identity deception through replaying
routing information. An adversary can exploit this defect to launch various harmful or even devastating attacks against the routing
protocols, including sinkhole attacks, wormhole attacks and Sybil attacks. The situation is further aggravated by mobile and harsh
network conditions. Traditional cryptographic techniques or efforts at developing trust-aware routing protocols do not effectively address
this severe problem. To secure the WSNs against adversaries misdirecting the multi-hop routing, we have designed and implemented
TARF, a robust trust-aware routing framework for dynamic WSNs. Without tight time synchronization or known geographic information,
TARF provides trustworthy and energy-efficient route. Most importantly, TARF proves effective against those harmful attacks developed
out of identity deception; the resilience of TARF is verified through extensive evaluation with both simulation and empirical experiments
on large-scale WSNs under various scenarios including mobile and RF-shielding network conditions. Further, we have implemented a
low-overhead TARF module in TinyOS; as demonstrated, this implementation can be incorporated into existing routing protocols with
the least effort. Based on TARF, we also demonstrated a proof-of-concept mobile target detection application that functions well against
an anti-detection mechanism.

✦

1 INTRODUCTION

Wireless sensor networks (WSNs) [2] are ideal can-
didates for applications to report detected events of
interest, such as military surveillance and forest fire
monitoring. A WSN comprises battery-powered senor
nodes with extremely limited processing capabilities.
With a narrow radio communication range, a sensor
node wirelessly sends messages to a base station via
a multi-hop path. However, the multi-hop routing of
WSNs often becomes the target of malicious attacks.
An attacker may tamper nodes physically, create traffic
collision with seemingly valid transmission, drop or
misdirect messages in routes, or jam the communication
channel by creating radio interference [3]. This paper
focuses on the kind of attacks in which adversaries
misdirect network traffic by identity deception through
replaying routing information. Based on identity decep-
tion, the adversary is capable of launching harmful and
hard-to-detect attacks against routing, such as selective
forwarding, wormhole attacks, sinkhole attacks and Sybil
attacks [4].

As a harmful and easy-to-implement type of attack, a
malicious node simply replays all the outgoing routing
packets from a valid node to forge the latter node’s iden-
tity; the malicious node then uses this forged identity to
participate in the network routing, thus disrupting the

• G. Zhan and W. Shi are with the Department of Computer Science, Wayne
State University, Detroit, MI, 48202.
E-mail: gxzhan@wayne.edu, weisong@wayne.edu.

• J. Deng is with Intelligent Automation Inc., Rockville, MD 20855.
Email: hdeng@i-a-i.com.

This work is in part supported by AFRL contract FA8650-10-C-1740 and
NSF Career Award CCF-0643521. We also would like to thank the program
manager Mr. John Woods for his great support as well as the anonymous
reviewers for their constructive comments and suggestions.

network traffic. Those routing packets, including their
original headers, are replayed without any modification.
Even if this malicious node cannot directly overhear the
valid node’s wireless transmission, it can collude with
other malicious nodes to receive those routing packets
and replay them somewhere far away from the original
valid node, which is known as a wormhole attack [5].
Since a node in a WSN usually relies solely on the
packets received to know about the sender’s identity,
replaying routing packets allows the malicious node to
forge the identity of this valid node. After “stealing” that
valid identity, this malicious node is able to misdirect
the network traffic. For instance, it may drop packets
received, forward packets to another node not supposed
to be in the routing path, or even form a transmission
loop through which packets are passed among a few
malicious nodes infinitely. It is often difficult to know
whether a node forwards received packets correctly even
with overhearing techniques [4]. Sinkhole attacks are an-
other kind of attacks that can be launched after stealing
a valid identity. In a sinkhole attack, a malicious node
may claim itself to be a base station through replaying
all the packets from a real base station [6]. Such a fake
base station could lure more than half the traffic, creating
a “black hole”. This same technique can be employed to
conduct another strong form of attack - Sybil attack [7]:
through replaying the routing information of multiple
legitimate nodes, an attacker may present multiple iden-
tities to the network. A valid node, if compromised, can
also launch all these attacks.

The harm of such malicious attacks based on the
technique of replaying routing information is further
aggravated by the introduction of mobility into WSNs
and the hostile network condition. Though mobility is
introduced into WSNs for efficient data collection and

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

various applications [8], [9], [10], [11], it greatly increases
the chance of interaction between the honest nodes
and the attackers. Additionally, a poor network connec-
tion causes much difficulty in distinguishing between
an attacker and a honest node with transient failure.
Without proper protection, WSNs with existing routing
protocols can be completely devastated under certain cir-
cumstances. In an emergent sensing application through
WSNs, saving the network from being devastated be-
comes crucial to the success of the application.

Unfortunately, most existing routing protocols for
WSNs either assume the honesty of nodes and focus
on energy efficiency [12], or attempt to exclude unau-
thorized participation by encrypting data and authen-
ticating packets. Examples of these encryption and au-
thentication schemes for WSNs include TinySec [13],
Spins [14], TinyPK [15], and TinyECC [16]. Admittedly, it
is important to consider efficient energy use for battery-
powered sensor nodes and the robustness of routing
under topological changes as well as common faults
in a wild environment. However, it is also critical to
incorporate security as one of the most important goals;
meanwhile, even with perfect encryption and authen-
tication, by replaying routing information, a malicious
node can still participate in the network using another
valid node’s identity. The gossiping-based routing proto-
cols offer certain protection against attackers by selecting
random neighbors to forward packets [17], but at a
price of considerable overhead in propagation time and
energy use.

In addition to the cryptographic methods, trust and
reputation management has been employed in generic
ad hoc networks and WSNs to secure routing protocols.
Basically, a system of trust and reputation management
assigns each node a trust value according to its past
performance in routing. Then such trust values are used
to help decide a secure and efficient route. However,
the proposed trust and reputation management systems
for generic ad hoc networks target only relatively pow-
erful hardware platforms such as laptops and smart-
phones [18], [19], [20], [21]. Those systems can not be
applied to WSNs due to the excessive overhead for
resource-constrained sensor nodes powered by batteries.
As far as WSNs are concerned, secure routing solutions
based on trust and reputation management rarely ad-
dress the identity deception through replaying routing
information [22], [23]. The countermeasures proposed so
far strongly depends on either tight time synchronization
or known geographic information while their effective-
ness against attacks exploiting the replay of routing
information has not been examined yet [4].

At this point, to protect WSNs from the harmful
attacks exploiting the replay of routing information, we
have designed and implemented a robust trust-aware
routing framework, TARF, to secure routing solutions in
wireless sensor networks. Based on the unique character-
istics of resource-constrained WSNs, the design of TARF
centers on trustworthiness and energy efficiency. Though

TARF can be developed into a complete and indepen-
dent routing protocol, the purpose is to allow existing
routing protocols to incorporate our implementation of
TARF with the least effort and thus producing a secure
and efficient fully-functional protocol. Unlike other se-
curity measures, TARF requires neither tight time syn-
chronization nor known geographic information. Most
importantly, TARF proves resilient under various attacks
exploiting the replay of routing information, which is
not achieved by previous security protocols. Even under
strong attacks such as sinkhole attacks, wormhole attacks
as well as Sybil attacks, and hostile mobile network
condition, TARF demonstrates steady improvement in
network performance. The effectiveness of TARF is ver-
ified through extensive evaluation with simulation and
empirical experiments on large-scale WSNs. Finally, we
have implemented a ready-to-use TARF module with
low overhead, which as demonstrated can be integrated
into existing routing protocols with ease; the demon-
stration of a proof-of-concept mobile target detection
program indicates the potential of TARF in WSN appli-
cations.

We start by stating the design considerations of TARF
in Section 2. Then we elaborate the design of TARF
in Section 3, including the routing procedure as well
as the EnergyWatcher and TrustManager components. In
Section 4, we present the simulation results of TARF
against various attacks through replaying routing in-
formation in static, mobile and RF-shielding conditions.
Section 5 further presents the implementation of TARF,
empirical evaluation at a large sensor network and a
resilient proof-of-concept mobile target detection appli-
cation based on TARF. Finally, we discuss the related
work in Section 6 and conclude this paper in Section 7.

2 DESIGN CONSIDERATIONS

Before elaborating the detailed design of TARF, we
would like to clarify a few design considerations first,
including certain assumptions in Section 2.1 and the
goals in Section 2.3.

2.1 Assumptions

We target secure routing for data collection tasks, which
are one of the most fundamental functions of WSNs. In
a data collection task, a sensor node sends its sampled
data to a remote base station with the aid of other inter-
mediate nodes, as shown in Figure 1. Though there could
be more than one base station, our routing approach is
not affected by the number of base stations; to simplify
our discussion, we assume that there is only one base
station. An adversary may forge the identity of any legal
node through replaying that node’s outgoing routing
packets and spoofing the acknowledgement packets,
even remotely through a wormhole.

Additionally, to merely simplify the introduction of
TARF, we assume no data aggregation is involved.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

Node

Base station

Fig. 1. Multi-hop routing for data collection of a WSN.

Nonetheless, our approach can still be applied to cluster-
based WSNs with static clusters, where data are aggre-
gated by clusters before being relayed [24]. Cluster-based
WSNs allows for the great savings of energy and band-
width through aggregating data from children nodes and
performing routing and transmission for children nodes.
In a cluster-based WSN, the cluster headers themselves
form a sub-network; after certain data reach a cluster
header, the aggregated data will be routed to a base
station only through such a sub-network consisting of
the cluster headers. Our framework can then be applied
to this sub-network to achieve secure routing for cluster-
based WSNs. TARF may run on cluster headers only
and the cluster headers communicate with their children
nodes directly since a static cluster has known relation-
ship between a cluster header and its children nodes,
though any link-level security features may be further
employed.

Finally, we assume a data packet has at least the
following fields: the sender id, the sender sequence
number, the next-hop node id (the receiver in this one-
hop transmission), the source id (the node that initiates
the data), and the source’s sequence number. We insist
that the source node’s information should be included
for the following reasons because that allows the base
station to track whether a data packet is delivered. It
would cause too much overhead to transmit all the one-
hop information to the base station. Also, we assume the
routing packet is sequenced.

2.2 Authentication Requirements

Though a specific application may determine whether
data encryption is needed, TARF requires that the pack-
ets are properly authenticated, especially the broadcast
packets from the base station. The broadcast from the
base station is asymmetrically authenticated so as to
guarantee that an adversary is not able to manipulate or
forge a broadcast message from the base station at will.
Importantly, with authenticated broadcast, even with
the existence of attackers, TARF may use TrustManager
(Section 3.4) and the received broadcast packets about
delivery information (Section 3.2.1) to choose trustwor-
thy path by circumventing compromised nodes. Without
being able to physically capturing the base station, it is
generally very difficult for the adversary to manipulate

the base station broadcast packets which are asymmet-
rically authenticated. The asymmetric authentication of
those broadcast packets from the base station is crucial to
any successful secure routing protocol. It can be achieved
through existing asymmetrically authenticated broadcast
schemes that may require loose time synchronization. As
an example, µTESLA [14] achieves asymmetric authen-
ticated broadcast through a symmetric cryptographic
algorithm and a loose delay schedule to disclose the
keys from a key chain. Other examples of asymmetric
authenticated broadcast schemes requiring either loose
or no time synchronization are found in [25], [26].

Considering the great computation cost incurred by a
strong asymmetric authentication scheme and the diffi-
culty in key management, a regular packet other than a
base station broadcast packet may only be moderately
authenticated through existing symmetric schemes with
a limited set of keys, such as the message authentication
code provided by TinySec [13]. It is possible that an
adversary physically captures a non-base legal node and
reveals its key for the symmetric authentication [27].
With that key, the adversary can forge the identity of
that non-base legal node and joins the network “legally”.
However, when the adversary uses its fake identity to
falsely attract a great amount of traffic, after receiving
broadcast packets about delivery information, other le-
gal nodes that directly or indirectly forwards packets
through it will start to select a more trustworthy path
through TrustManager (Section 3.4).

2.3 Goals

TARF mainly guards a WSN against the attacks mis-
directing the multi-hop routing, especially those based
on identity theft through replaying the routing informa-
tion. This paper does not address the denial-of-service
(DoS) [3] attacks, where an attacker intends to damage
the network by exhausting its resource. For instance, we
do not address the DoS attack of congesting the network
by replaying numerous packets or physically jamming
the network. TARF aims to achieve the following desir-
able properties:
High Throughput Throughput is defined as the ratio of
the number of all data packets delivered to the base
station to the number of all sampled data packets. In
our evaluation, throughput at a moment is computed
over the period from the beginning time (0) until that
particular moment. Note that single-hop re-transmission
may happen, and that duplicate packets are considered
as one packet as far as throughput is concerned. Through-
put reflects how efficiently the network is collecting and
delivering data. Here we regard high throughput as one
of our most important goals.
Energy Efficiency Data transmission accounts for a ma-
jor portion of the energy consumption. We evaluate en-
ergy efficiency by the average energy cost to successfully
deliver a unit-sized data packet from a source node to the
base station. Note that link-level re-transmission should

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

be given enough attention when considering energy cost
since each re-transmission causes a noticeable increase in
energy consumption. If every node in a WSN consumes
approximately the same energy to transmit a unit-sized
data packet, we can use another metric hop-per-delivery
to evaluate energy efficiency. Under that assumption, the
energy consumption depends on the number of hops,
i.e. the number of one-hop transmissions occurring. To
evaluate how efficiently energy is used, we can measure
the average hops that each delivery of a data packet
takes, abbreviated as hop-per-delivery.
Scalability & Adaptability TARF should work well with
WSNs of large magnitude under highly dynamic con-
texts. We will evaluate the scalability and adaptability of
TARF through experiments with large-scale WSNs and
under mobile and hash network conditions.

Here we do not include other aspects such as latency,
load balance, or fairness. Low latency, balanced network
load, and good fairness requirements can be enforced in
specific routing protocols incorporating TARF.

3 DESIGN OF TARF
TARF secures the multi-hop routing in WSNs against in-
truders misdirecting the multi-hop routing by evaluating
the trustworthiness of neighboring nodes. It identifies
such intruders by their low trustworthiness and routes
data through paths circumventing those intruders to
achieve satisfactory throughput. TARF is also energy-
efficient, highly scalable, and well adaptable. Before in-
troducing the detailed design, we first introduce several
necessary notions here.
Neighbor For a node N , a neighbor (neighboring node)
of N is a node that is reachable from N with one-hop
wireless transmission.
Trust level For a node N , the trust level of a neighbor is a
decimal number in [0, 1], representing N ’s opinion of that
neighbor’s level of trustworthiness. Specifically, the trust
level of the neighbor is N ’s estimation of the probability
that this neighbor correctly delivers data received to the
base station. That trust level is denoted as T in this paper.
Energy cost For a node N , the energy cost of a neighbor
is the average energy cost to successfully deliver a unit-
sized data packet with this neighbor as its next-hop
node, from N to the base station. That energy cost is
denoted as E in this paper.

3.1 Overview

For a TARF-enabled node N to route a data packet to the
base station, N only needs to decide to which neighbor-
ing node it should forward the data packet considering
both the trustworthiness and the energy efficiency. Once
the data packet is forwarded to that next-hop node, the
remaining task to deliver the data to the base station is
fully delegated to it, and N is totally unaware of what
routing decision its next-hop node makes. N maintains
a neighborhood table with trust level values and energy
cost values for certain known neighbors. It is sometimes

necessary to delete some neighbors’ entries to keep the
table size acceptable. The technique of maintaining a
neighborhood table of a moderate size is demonstrated
by Woo, Tong and Culler [28]; TARF may employ the
same technique.

In TARF, in addition to data packet transmission, there
are two types of routing information that need to be ex-
changed: broadcast messages from the base station about
data delivery and energy cost report messages from
each node. Neither message needs acknowledgement. A
broadcast message from the base station is flooded to the
whole network. The freshness of a broadcast message
is checked through its field of source sequence number.
The other type of exchanged routing information is the
energy cost report message from each node, which is
broadcast to only its neighbors once. Any node receiving
such an energy cost report message will not forward it.

For each node N in a WSN, to maintain such a neigh-
borhood table with trust level values and energy cost val-
ues for certain known neighbors, two components, Ener-
gyWatcher and TrustManager, run on the node (Figure 2).
EnergyWatcher is responsible for recording the energy
cost for each known neighbor, based on N ’s observation
of one-hop transmission to reach its neighbors and the
energy cost report from those neighbors. A compromised
node may falsely report an extremely low energy cost to
lure its neighbors into selecting this compromised node
as their next-hop node; however, these TARF-enabled
neighbors eventually abandon that compromised next-
hop node based on its low trustworthiness as tracked
by TrustManager. TrustManager is responsible for tracking
trust level values of neighbors based on network loop
discovery and broadcast messages from the base station
about data delivery. Once N is able to decide its next-
hop neighbor according to its neighborhood table, it
sends out its energy report message: it broadcasts to
all its neighbors its energy cost to deliver a packet
from the node to the base station. The energy cost is
computed as in Section 3.3 by EnergyWatcher. Such an
energy cost report also serves as the input of its receivers’
EnergyWatcher.

Neighborhood

Table

TrustManager

Base Station

Broadcast

Energy Cost

Report

Network Loop

Discovery

EnergyWatcher

One-hop

Delivery

Neighbor

Energy Cost

Neighbor Trust

Level

Next-hop

Selection

Energy Cost

Report

Fig. 2. Each node selects a next-hop node based on its
neighborhood table, and broadcast its energy cost within its
neighborhood. To maintain this neighborhood table, Energy-
Watcher and TrustManager on the node keep track of related
events (on the left) to record the energy cost and the trust level
values of its neighbors.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

3.2 Routing Procedure

TARF, as with many other routing protocols, runs as a
periodic service. The length of that period determines
how frequently routing information is exchanged and
updated. At the beginning of each period, the base
station broadcasts a message about data delivery during
last period to the whole network consisting of a few
contiguous packets (one packet may not hold all the
information). Each such packet has a field to indicate
how many packets are remaining to complete the broad-
cast of the current message. The completion of the base
station broadcast triggers the exchange of energy report
in this new period. Whenever a node receives such a
broadcast message from the base station, it knows that
the most recent period has ended and a new period has
just started. No tight time synchronization is required
for a node to keep track of the beginning or ending of a
period. During each period, the EnergyWatcher on a node
monitors energy consumption of one-hop transmission
to its neighbors and processes energy cost reports from
those neighbors to maintain energy cost entries in its
neighborhood table; its TrustManager also keeps track of
network loops and processes broadcast messages from
the base station about data delivery to maintain trust
level entries in its neighborhood table.

To maintain the stability of its routing path, a node
may retain the same next-hop node until the next fresh
broadcast message from the base station occurs. Mean-
while, to reduce traffic, its energy cost report could
be configured to not occur again until the next fresh
broadcast message from the base station. If a node does
not change its next-hop node selection until the next
broadcast message from the base station, that guaran-
tees all paths to be loop-free, as can be deducted from
the procedure of next-hop node selection. However, as
noted in our experiments, that would lead to slow
improvement in routing paths. Therefore, we allow a
node to change its next-hop selection in a period when
its current next-hop node performs the task of receiving
and delivering data poorly.

Next, we introduce the structure and exchange of
routing information as well as how nodes make routing
decisions in TARF.

3.2.1 Structure and Exchange of Routing Information

A broadcast message from the base station fits into at
most a fixed small number of packets. Such a message
consists of some pairs of <node id of a source node, an
undelivered sequence interval [a, b] with a significant
length>, <node id of a source node, minimal sequence
number received in last period, maximum sequence
number received in last period>, as well as several node
id intervals of those without any delivery record in last
period. To reduce overhead to an acceptable amount,
our implementation selects only a limited number of
such pairs to broadcast (Section 5.1) and proved effec-
tive (Section 5.3, 5.4). Roughly, the effectiveness can be

explained as follows: the fact that an attacker attracts a
great deal of traffic from many nodes often gets revealed
by at least several of those nodes being deceived with
a high likelihood. The undelivered sequence interval [a,
b] is explained as follows: the base station searches the
source sequence numbers received in last period, identi-
fies which source sequence numbers for the source node
with this id are missing, and chooses certain significant
interval [a, b] of missing source sequence numbers as
an undelivered sequence interval. For example, the base
station may have all the source sequence numbers for the
source node 2 as {109, 110, 111, 150, 151} in last period.
Then [112, 149] is an undelivered sequence interval;
[109, 151] is also recorded as the sequence boundary
of delivered packets. Since the base station is usually
connected to a powerful platform such as a desktop, a
program can be developed on that powerful platform to
assist in recording all the source sequence numbers and
finding undelivered sequence intervals.

Accordingly, each node in the network stores a table
of <node id of a source node, a forwarded sequence
interval [a, b] with a significant length> about last
period. The data packets with the source node and the
sequence numbers falling in this forwarded sequence
interval [a, b] have already been forwarded by this node.
When the node receives a broadcast message about data
delivery, its TrustManager will be able to identify which
data packets forwarded by this node are not delivered to
the base station. Considering the overhead to store such
a table, old entries will be deleted once the table is full.

Once a fresh broadcast message from the base station
is received, a node immediately invalidates all the ex-
isting energy cost entries: it is ready to receive a new
energy report from its neighbors and choose its new
next-hop node afterwards. Also, it is going to select a
node either after a timeout is reached or after it has
received an energy cost report from some highly trusted
candidates with acceptable energy cost. A node imme-
diately broadcasts its energy cost to its neighbors only
after it has selected a new next-hop node. That energy
cost is computed by its EnergyWatcher (see Section 3.3).
A natural question is which node starts reporting its
energy cost first. For that, note that when the base station
is sending a broadcast message, a side effect is that its
neighbors receiving that message will also regard this
as an energy report: the base station needs 0 amount
of energy to reach itself. As long as the original base
station is faithful, it will be viewed as a trustworthy
candidate by TrustManager on the neighbors of the base
station. Therefore, those neighbors will be the first nodes
to decide their next-hop node, which is the base station;
they will start reporting their energy cost once that
decision is made.

3.2.2 Route Selection
Now, we introduce how TARF decides routes in a WSN.
Each node N relies on its neighborhood table to select an
optimal route, considering both energy consumption and

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

reliability. TARF makes good efforts in excluding those
nodes that misdirect traffic by exploiting the replay of
routing information.

For a node N to select a route for delivering data
to the base station, N will select an optimal next-hop
node from its neighbors based on trust level and energy
cost and forward the data to the chosen next-hop node
immediately. The neighbors with trust levels below a
certain threshold will be excluded from being considered
as candidates. Among the remaining known neighbors,
N will select its next-hop node through evaluating each
neighbor b based on a trade-off between TNb and ENb

TNb

,
with ENb and TNb being b’s energy cost and trust level
value in the neighborhood table respectively (see Sec-
tion 3.3, 3.4). Basically, ENb reflects the energy cost of
delivering a packet to the base station from N assuming
that all the nodes in the route are honest; 1

TNb

approx-
imately reflects the number of the needed attempts to
send a packet from N to the base station via multiple
hops before such an attempt succeeds, considering the
trust level of b. Thus, ENb

TNb

combines the trustworthiness

and energy cost. However, the metric ENb

TNb

suffers from
the fact that an adversary may falsely reports extremely
low energy cost to attract traffic and thus resulting in a
low value of ENb

TNb

even with a low TNb. Therefore, TARF
prefers nodes with significantly higher trust values; this
preference of trustworthiness effectively protects the net-
work from an adversary who forges the identity of an
attractive node such as a base station. For deciding the
next-hop node, a specific trade-off between TNb and ENb

TNb

is demonstrated in Figure 5 (see Section 5.2).
Observe that in an ideal misbehavior-free environ-

ment, all nodes are absolutely faithful, and each node
will choose a neighbor through which the routing path
is optimized in terms of energy; thus, an energy-driven
route is achieved.

3.3 EnergyWatcher

Here we describe how a node N ’s EnergyWatcher com-
putes the energy cost ENb for its neighbor b in N ’s
neighborhood table and how N decides its own energy
cost EN . Before going further, we will clarify some
notations. ENb mentioned is the average energy cost
of successfully delivering a unit-sized data packet from
N to the base station, with b as N ’s next-hop node
being responsible for the remaining route. Here, one-hop
re-transmission may occur until the acknowledgement
is received or the number of re-transmissions reaches
a certain threshold. The cost caused by one-hop re-
transmissions should be included when computing ENb.
Suppose N decides that A should be its next-hop node
after comparing energy cost and trust level. Then N ’s
energy cost is EN = ENA. Denote EN→b as the average
energy cost of successfully delivering a data packet from
N to its neighbor b with one hop. Note that the re-
transmission cost needs to be considered. With the above
notations, it is straightforward to establish the following

relation:

ENb = EN→b + Eb

Since each known neighbor b of N is supposed to
broadcast its own energy cost Eb to N , to compute ENb,
N still needs to know the value EN→b, i.e., the average
energy cost of successfully delivering a data packet from
N to its neighbor b with one hop. For that, assuming
that the endings (being acknowledged or not) of one-
hop transmissions from N to b are independent with
the same probability psucc of being acknowledged, we
first compute the average number of one-hop sendings
needed before the acknowledgement is received as fol-
lows:

∞
∑

i=1

i · psucc · (1− psucc)
i−1 =

1

psucc

Denote Eunit as the energy cost for node N to send a
unit-sized data packet once regardless of whether it is
received or not. Then we have

ENb =
Eunit

psucc
+ Eb

The remaining job for computing ENb is to get the proba-
bility psucc that a one-hop transmission is acknowledged.
Considering the variable wireless connection among
wireless sensor nodes, we do not use the simplistic
averaging method to compute psucc. Instead, after each
transmission from N to b, N ’s EnergyWatcher will update
psucc based on whether that transmission is acknowl-
edged or not with a weighted averaging technique. We
use a binary variable Ack to record the result of current
transmission: 1 if an acknowledgement is received; oth-
erwise, 0. Given Ack and the last probability value of an
acknowledged transmission pold succ, an intuitive way is
to use a simply weighted average of Ack and pold succ as
the value of pnew succ. That is what is essentially adopted
in the aging mechanism [29]. However, that method used
against sleeper attacks still suffers periodic attacks [30].
To solve this problem, we update the psucc value using
two different weights as in our previous work [30], a
relatively big wdegrade ∈ (0, 1) and a relatively small
wupgrade ∈ (0, 1) as follows:

pnew succ =















(1− wdegrade)× pold succ + wdegrade ×Ack,

if Ack = 0.
(1− wupgrade)× pold succ + wupgrade ×Ack,

if Ack = .1

The two parameters wdegrade and wupgrade allow flexible
application requirements. wdegrade and wupgrade repre-
sent the extent to which upgraded and degraded per-
formance are rewarded and penalized, respectively. If
any fault and compromise is very likely to be associated
with a high risk, wdegrade should be assigned a relatively
high value to penalize fault and compromise relatively
heavily; if a few positive transactions can’t constitute ev-
idence of good connectivity which requires many more
positive transactions, then wupgrade should be assigned
a relatively low value.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

3.4 TrustManager

A node N ’s TrustManager decides the trust level of
each neighbor based on the following events: discovery
of network loops, and broadcast from the base station
about data delivery. For each neighbor b of N , TNb

denotes the trust level of b in N ’s neighborhood table.
At the beginning, each neighbor is given a neutral trust
level 0.5. After any of those events occurs, the relevant
neighbors’ trust levels are updated.

Note that many existing routing protocols have their
own mechanisms to detect routing loops and to react
accordingly [31], [32], [28]. In that case, when integrating
TARF into those protocols with anti-loop mechanisms,
TrustManager may solely depend on the broadcast from
the base station to decide the trust level; we adopted
such a policy when implementing TARF later (see Sec-
tion 5). If anti-loop mechanisms are both enforced in
the TARF component and the routing protocol that in-
tegrates TARF, then the resulting hybrid protocol may
overly react towards the discovery of loops. Though so-
phisticated loop-discovery methods exist in the currently
developed protocols, they often rely on the comparison
of specific routing cost to reject routes likely leading to
loops [32]. To minimize the effort to integrate TARF and
the existing protocol and to reduce the overhead, when
an existing routing protocol does not provide any anti-
loop mechanism, we adopt the following mechanism to
detect routing loops. To detect loops, the TrustManager
on N reuses the table of <node id of a source node,
a forwarded sequence interval [a, b] with a significant
length> (see Section 3.2) in last period. If N finds that a
received data packet is already in that record table, not
only will the packet be discarded, but the TrustManager
on N also degrades its next-hop node’s trust level. If
that next-hop node is b, then Told Nb is the latest trust
level value of b. We use a binary variable Loop to record
the result of loop discovery: 0 if a loop is received; 1
otherwise. As in the update of energy cost, the new trust
level of b is

Tnew Nb =















(1− wdegrade)× Told Nb + wdegrade × Loop,

if Loop = 0.
(1− wupgrade)× Told Nb + wupgrade × Loop,

if Loop = 1.

Once a loop has been detected by N for a few times
so that the trust level of the next-hop node is too low,
N will change its next-hop selection; thus, that loop is
broken. Though N can not tell which node should be
held responsible for the occurrence of a loop, degrading
its next-hop node’s trust level gradually leads to the
breaking of the loop. On the other hand, to detect the
traffic misdirection by nodes exploiting the replay of
routing information, TrustManager on N compares N’s
stored table of <node id of a source node, forwarded se-
quence interval [a, b] with a significant length> recorded
in last period with the broadcast messages from the
base station about data delivery. It computes the ratio
of the number of successfully delivered packets which

are forwarded by this node to the number of those
forwarded data packets, denoted as DeliveryRatio. Then
N ’s TrustManager updates its next-hop node b’s trust
level as follows:

Tnew Nb =







































(1− wdegrade)× Told Nb

+wdegrade ×DeliveryRatio,

if DeliveryRatio < Told Nb.

(1− wupgrade)× Told Nb

+wupgrade ×DeliveryRatio,

if DeliveryRatio >= Told Nb.

3.5 Analysis on EnergyWatcher and TrustManager

Now that a node N relies on its EnergyWatcher and
TrustManager to select an optimal neighbor as its next-
hop node, we would like to clarify a few important
points on the design of EnergyWatcher and TrustManager.

First, as described in Section 3.1, the energy cost report
is the only information that a node is to passively receive
and take as “fact”. It appears that such acceptance of en-
ergy cost report could be a pitfall when an attacker or a
compromised node forges false report of its energy cost.
Note that the main interest of an attacker is to prevent
data delivery rather than to trick a data packet into a less
efficient route, considering the effort it takes to launch
an attack. As far as an attack aiming at preventing data
delivery is concerned, TARF well mitigates the effect of
this pitfall through the operation of TrustManager. Note
that the TrustManager on one node does not take any rec-
ommendation from the TrustManager on another node.
If an attacker forges false energy report to form a false
route, such intention will be defeated by TrustManager:
when the TrustManager on one node finds out the many
delivery failures from the broadcast messages of the base
station, it degrades the trust level of its current next-hop
node; when that trust level goes below certain threshold,
it causes the node to switch to a more promising next-
hop node.

Second, TrustManager identities the low trustworthi-
ness of various attackers misdirecting the multi-hop
routing, especially those exploiting the replay of routing
information. It is noteworthy that TrustManager does not
distinguish whether an error or an attack occurs to the
next-hop node or other succeeding nodes in the route.
It seems unfair that TrustManager downgrades the trust
level of an honest next-hop node while the attack occurs
somewhere after that next-hop node in the route. Con-
trary to that belief, TrustManager significantly improves
data delivery ratio in the existence of attack attempts of
preventing data delivery. First of all, it is often difficult to
identify an attacker who participates in the network us-
ing an id “stolen” from another legal node. For example,
it is extremely difficult to detect a few attackers colluding
to launch a combined wormhole and sinkhole attack [4].
Additionally, despite the certain inevitable unfairness
involved, TrustManager encourages a node to choose
another route when its current route frequently fails to

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

deliver data to the base station. Though only those legal
neighboring nodes of an attacker might have correctly
identified the adversary, our evaluation results indicate
that the strategy of switching to a new route without
identifying the attacker actually significantly improves
the network performance, even with the existence of
wormhole and sinkhole attacks. Fig 3 gives an example to
illustrate this point. In this example, node A, B, C and D
are all honest nodes and not compromised. Node A has
node B as its current next-hop node while node B has an
attacker node as its next-hop node. The attacker drops
every packet received and thus any data packet passing
node A will not arrive at the base station. After a while,
node A discovers that the data packets it forwarded did
not get delivered. The TrustManager on node A starts to
degrade the trust level of its current next-hop node B
although node B is absolutely honest. Once that trust
level becomes too low, node A decides to select node C
as its new next-hop node. In this way node A identifies a
better and successful route (A - C - D - base). In spite of
the sacrifice of node B’s trust level, the network performs
better. Further, concerning the stability of routing path,

A

B

Base Station

DC

Attacker

Fig. 3. An example to illustrate how TrustManager works.

once a valid node identifies a trustworthy honest neigh-
bor as its next-hop node, it tends to keep that next-hop
selection without considering other seemingly attractive
nodes such as a fake base station. That tendency is
caused by both the preference to maintain stable routes
and the preference to highly trustable nodes.

Finally, we would like to stress that TARF is designed
to guard a WSN against the attacks misdirecting the
multi-hop routing, especially those based on identity
theft through replaying the routing information. Other
types of attacks such as the denial-of-service (DoS) [3]
attacks are out of the discussion of this paper. For
instance, we do not address the attacks of injecting
into the network a number of data packets containing
false sensing data but authenticated (possibly through
hacking). That type of attacks aim to exhaust the network
resource instead of misdirecting the routing. However, if
the attacker intends to periodically inject a few routing
packets to cause wrong route, such attacks can still be
defended by TARF through TrustManager.

4 SIMULATION

We have developed a reconfigurable emulator of wire-
less sensor networks on a two-dimensional plane with

Matlab to test TARF. We have conducted extensive sim-
ulation experiments; however, due to the page limit,
interested readers may refer to our technical report [33]
and the conference version of paper [1] for detailed
simulation settings and experimental results. In our ex-
periments, initially, 35 nodes are randomly distributed
within a 300*300 rectangular area, with unreliable wire-
less transmission. All the nodes have the same power
level and the same maximal transmission range of 100m.
Each node samples 6 times in every period; the timing
gap between every two consecutive samplings of the
same node is equivalent. We simulate the sensor network
in 1440 consecutive periods.

Regarding the network topology, we set up three types
of network topologies. The first type is the static-location
case under which all nodes stand still. The second type
is a customized group-motion-with-noise case based on
Reference Point Group Mobility (RPGM) model that
mimics the behavior of a set of nodes moving in one
or more groups [34], [35]. The last type of dynamic
network incorporated in the experiments is the addition
of scattered RF-shielded areas to the aforementioned
group-motion-with-noise case.

The performance of TARF is compared to that of a
link connectivity-based routing protocol adapted from
what is proposed by Alec Woo, Terence Tong and
David Culler [28]. We denote the link connectivity-
based routing protocol as Link-connectivity. With the
Link-connectivity protocol, each node selects its next-hop
node among its neighborhood table according to an
link estimator based on exponentially weighted moving
average (EWMA). The simulation results show, in the
presence of misbehaviors, the throughput in TARF is often
much higher than that in Link-connectivity; the hop-per-
delivery in the Link-connectivity protocol is generally at
least comparable to that in TARF.

Under a misbehavior-free environment, the simula-
tion results show that TARF and Link-connectivity have
comparable performance when there is no adversary.
Both protocols are also evaluated under three common
types of attacks: (1) a certain node forges the identity of
the based station by replaying broadcast messages, also
known as the sinkhole attack; (2) a set of nodes colludes to
form a forwarding loop; and (3) a set of nodes drops re-
ceived data packets. These experiments were conducted
in the static case, the group-motion-with-noise case, and
the addition of RF-shielded areas to the group-motion-
with-noise case separately. Generally, under these com-
mon attacks, TARF produces a substantial improvement
over Link-connectivity in terms of data collection and en-
ergy efficiency. Further, we have evaluated TARF under
more severe attacks: multiple moving fake bases and
multiple Sybil attackers. As before, the experiments are
conducted under all the three types of network topology.
Under these two types of most severe attacks which
almost devastates the Link-connectivity protocol, TARF
succeeds in achieving a steady improvement over the
Link-connectivity protocol. Finally, we have conducted

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

certain experiments to explore the choice of the period
length and the trust updating scheme. Our experiments
reveal that a shorter period or a faster trust updating
scheme may not necessarily benefit TARF.

5 IMPLEMENTATION AND EMPIRICAL EVALUA-
TION

In order to evaluate TARF in a real-world setting, we
implemented the TrustManager component on TinyOS
2.x, which can be integrated into the existing routing pro-
tocols for WSNs with the least effort. Originally, we had
implemented TARF as a self-contained routing proto-
col [1] on TinyOS 1.x before this second implementation.
However, we decided to re-design the implementation
considering the following factors. First, the first imple-
mentation only supports TinyOS 1.x, which was replaced
by TinyOS 2.x; the porting procedure from TinyOS 1.x
to TinyOS 2.x tends to frustrate the developers. Second,
rather than developing a self-contained routing protocol,
the second implementation only provides a TrustMan-
ager component that can be easily incorporated into the
existing protocols for routing decisions. The detection
of routing loops and the corresponding reaction are
excluded from the implementation of TrustManager since
many existing protocols, such as Collection Tree Proto-
col [32] and the link connectivity-based protocol [28],
already provide that feature. As we worked on the first
implementation, we noted that the existing protocols
provide many nice features, such as the analysis of
link quality, the loop detection and the routing decision
mainly considering the communication cost. Instead of
providing those features, our implementation focuses
on the trust evaluation based on the base broadcast
of the data delivery, and such trust information can
be easily reused by other protocols. Finally, instead of
using TinySec [13] exclusively for encryption and au-
thentication as in the first implementation on TinyOS 1.x,
this re-implementation let the developers decide which
encryption or authentication techniques to employ; the
encryption and authentication techniques of TARF may
be different than that of the existing protocol.

5.1 TrustManager Implementation Details

The TrustManager component in TARF is wrapped
into an independent TinyOS configuration named
TrustManagerC. TrustManagerC uses a dedicated
logic channel for communication and runs as a periodic
service with a configurable period, thus not interfering
with the application code. Though it is possible to im-
plement TARF with a period always synchronized with
the routing protocol’s period, that would cause much in-
trusion into the source code of the routing protocol. The
current TrustManagerC uses a period of 30 seconds;
for specific applications, by modifying a certain header
file, the period length may be re-configured to reflect the

sensing frequency, the energy efficiency and trustworthi-
ness requirement. TrustManagerC provides two inter-
faces (see Figure 4), TrustControl and Record, which
are implemented in other modules. The TrustControl
interface provides the commands to enable and disable
the trust evaluation, while the Record interface provides
the commands for a root, i.e., a base station, to add
delivered message record, for a non-root node to add
forwarded message record, and for a node to retrieve the
trust level of any neighboring node. The implementation
on a root node differs from that on a non-root node: a
root node stores the information of messages received
(delivered) during the current period into a record table
and broadcast delivery failure record; a non-root node
stores the information of forwarded messages during the
current period also in a record table and compute the
trust of its neighbors based on that and the broadcast in-
formation. Noting that much implementation overhead
for a root can always be transferred to a more powerful
device connected to the root, it is reasonable to assume
that the root would have great capability of processing
and storage.

configuration TrustManagerC {

 provides {

 interface TrustControl;

 interface Record;

 }

 implementation {

 ...

 }

}

interface Record

{

 //for a root to add delivered record <source node id, source sequence number>

 command void addDelivered(am_addr_t src, uint8_t seq);

 //for a non-root node to add forwarded record <source id, source sequence, next-hop id>

 command void addForwarded(am_addr_t src, uint8_t seq, am_addr_t next);

 //return the trust level of a node

 command uint16_t getTrust(am_addr_t id);

}

interface TrustControl

{

 //enable trust evaluation

 command error_t start();

 //disable trust evaluation

 command error_t stop();

}

Fig. 4. TrustManager component.

A root broadcasts two types of delivery failure record:
at most three packets of significant undelivered intervals
for individual origins and at most two packets of the id’s
of the origins without any record in the current period.
For each origin, at most three significant undelivered
intervals are broadcast. For a non-root node, considering
the processing and memory usage overhead, the record
table keeps the forwarded message intervals for up to 20
source nodes, with up to 5 non-overlapped intervals for
each individual origin. Our later experiments verify that
such size limit of the table on a non-root node produces a
resilient TARF with moderate overhead. The record table
on a node keeps adding entries for new origins until it
is full.

With our current implementation, a valid trust value is
an integer between 0 and 100, and any node is assigned
an initial trust value of 50. The weigh parameters are:
wupgrade = 0.1, wdegrade = 0.3. The trust table of a

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

non-root node node keeps the trust level for up to 10
neighbors. Considering that an attacker may present
multiple fake id’s, the implementation evicts entries with
a trust level close to the initial trust of any node. Such
eviction policy is to ensure that the trust table remembers
those neighbors with high trust and low trust; any other
neighbor not in this table is deemed to have the initial
trust value of 50.

5.2 Incorporation of TARF into Existing Protocols

To demonstrate how this TARF implementation can be
integrated into the exiting protocols with the least effort,
we incorporated TARF into a collection tree routing
protocol (CTP) [32]. The CTP protocol is efficient, robust,
and reliable in a network with highly dynamic link
topology. It quantifies link quality estimation in order
to choose a next-hop node. The software platform is
TinyOS 2.x. To perform the integration, after proper
interface wiring, invoke the TrustControl.start
command to enable the trust evaluation; call the
Record.addForwarded command for a non-root node
to add forwarded record once a data packet has been
forwarded; call the Record.addDelivered command
for a root to add delivered record once a data packet has
been received by the root. Finally, inside the CTP’s task
to update the routing path, call the Record.getTrust
command to retrieve the trust level of each next-hop
candidate; an algorithm taking trust into routing consid-
eration is executed to decide the new next-hop neighbor
(see Figure 5).

Similar to the original CTP’s implementation, the im-
plementation of this new protocol decides the next-hop
neighbor for a node with two steps (see Figure 5): Step
1 traverses the neighborhood table for an optimal candi-
date for the next hop; Step 2 decides whether to switch
from the current next-hop node to the optimal candidate
found. For Step 1, as in the CTP implementation, a
node would not consider those links congested, likely
to cause a loop, or having a poor quality lower than
a certain threshold. This new implementation prefers
those candidates with higher trust levels; in certain
circumstances, regardless of the link quality, the rules
deems a neighbor with a much higher trust level to
be a better candidate (see Figure 5). The preference of
highly trustable candidates is based on the following
consideration: on the one hand, it creates the least chance
for an adversary to misguide other nodes into a wrong
routing path by forging the identity of an attractive
node such as a root; on the other hand, forwarding data
packets to a candidate with a low trust level would result
in many unsuccessful link-level transmission attempts,
thus leading to much re-transmission and a potential
waste of energy. When the network throughput becomes
low and a node has a list of low-trust neighbors, the
node will exclusively use the trust as the criterion to
evaluate those neighbors for routing decisions. As show
in Figure 5, it uses trust/cost as a criteria only when the

candidate has a trust level above certain threshold. The
reason is, the sole trust/cost criteria could be exploited
by an adversary replaying the routing information from
a base station and thus pretending to be an extremely
attractive node. As for Step 2, compared to the CTP
implementation, we add two more circumstances when
a node decides to switch to the optimal candidate found
at Step 1: that candidate has a higher trust level, or the
current next-hop neighbor has a too low trust level.

//Step 1. traverse the neighborhood table for an optimal candidate for the next hop

optimal_candidate = NULL

//the cost of routing via the optimal candidate provided by the existing protocol, initially infinity

optimal_cost = MAX_COST

//the trust level of the optimal candidate, initially 0

optimal_trust = MIN_TRUST

for each candidate in the neighborhood table

if link is congested, or may cause a loop, or does not pass quality threshold

 continue

 better = false

if candidate.trust >= optimal_trust && candidate.cost < optimal_cost

 better = true

 //prefer trustworthy candidates

if candidate.trust >= TRUST_THRESHOLD && optimal_trust < TRUST_THRESHOLD

 better = true

if candidate.trust >= ESSENTIAL_DIFFERENCE_THRESHOLD + optimal_trust

 better = true

 //effective when all nodes have low trust due to network change or poor connectivity

if candidate.trust >= 3 * optimal_trust / 2

 better = true

 //add restriction of trust level requirement

if candidate.trust >= TRUST_THRESHOLD && candidate.trust / candidate.cost >

optimal_trust / optimal_cost

 better = true

if better == true

 optimal_candidate = candidate

 optimal_cost = candidate.cost

 optimal_trust = candidate.trust

//Step 2. decide whether to switch from the current next-hop node to the optimal candidate found:

if optimal_trust >= currentNextHop.trust \

 || currentNextHop.trust <= TRUST_THRESHOLD \

 || current link is congested and switching is not likely to cause loops \

 || optimal_cost + NEXTHOP_SWITCH_THRESHOLD < currentNextHop.cost \

 currentNextHop = optimal_candidate

Fig. 5. Routing decision incorporating trust management.

This new implementation integrating TARF requires
moderate program storage and memory usage. We im-
plemented a typical TinyOS data collection application,
MultihopOscilloscope, based on this new protocol. The
MultihopOscilloscope application, with certain modified
sensing parameters for our later evaluation purpose,
periodically makes sensing samples and sends out the
sensed data to a root via multiple routing hops. Orig-
inally, MultihopOscilloscope uses CTP as its routing
protocol. Now, we list the ROM size and RAM size
requirement of both implementation of MultihopOscillo-
scope on non-root Telosb motes in Table 1. The enabling
of TARF in MultihopOscilloscope increases the size of
ROM by around 1.3KB and the size of memory by
around 1.2KB.

TABLE 1
Size comparison of MultihopOscilloscope implementation

Protocol ROM (bytes) RAM (bytes)
CTP 31164 3579

TARF-enabled CTP 34290 4767

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

5.3 Empirical Evaluation on Motelab

We evaluated the performance of TARF against a com-
bined sinkhole and wormhole attack on Motelab [36] at
Harvard University. 184 TMote Sky sensor motes were
deployed across many rooms at three floors in the de-
partment building (see Figure 6), with two to four motes
in most rooms. Around 97 nodes functioned properly
while the rest were either removed or disabled. Each
mote has a 2.4GHz Chipcon CC2420 radio with an
indoor range of approximately 100 meters. In Figure 6,
the thin green lines indicate the direct (one-hop) wireless
connection between motes. Certain wireless connection
also exists between nodes from different floors.

Fig. 6. Connectivity map of Motelab (not including the inter-
floor connectivity), adapted from Motelab[Motelab].

We developed a simple data collection application in
TinyOS 2.x that sends a data packet every five seconds to
a base station node (root) via multi-hop. This application
was executed on 91 functioning non-root nodes on Mote-
lab. For comparison, we used CTP and the TARF-enabled
CTP implementation as the routing protocols for the data
collection program separately. The TARF-enabled CTP
has a TARF period of 30 seconds. We conducted an attack
with five fake base stations that formed a wormhole. As
in Figure 6, whenever the base station sent out any
packet, three fake base stations which overheard that
packet replayed the complete packet without changing
any content including the node id. Other fake base
stations overhearing that replayed packet would also
replay the same packet. Each fake base station essentially
launched a sinkhole attack. Note that there is a distinction
between such malicious replay and the forwarding when
a well-behaved node receives a broadcast from the base
station. When a well-behaved node forwards a broadcast
packet from the base station, it will include its own
id in the packet so that its receivers will not recognize
the forwarder as a base station. We conducted the first
experiment by uploading the program with the CTP
protocol onto 91 motes (not including those 5 selected
motes as fake bases in later experiments), and no attack
was involved here. Then, in another experiment, in

addition to programming those 91 motes with CTP, we
also programmed the five fake base stations so that they
stole the id the base station through replaying. In the
last experiment, we programmed those 91 motes with
the TARF-enabled CTP, and programmed the five fake
base stations as in the second experiment. Each of our
programs run for 30 minutes.

As illustrated in Figure 7(a), the existence of the five
wormhole attackers greatly degraded the performance
of CTP: the number of the delivered data packets in
the case of CTP with the five-node wormhole is no more
than 14% that in the case of CTP without adversaries.
The TARF-enabled CTP succeeded in bringing an
immense improvement over CTP in the presence of
the five-node wormhole, almost doubling the throughput.
That improvement did not show any sign of slowing
down as time elapsed. The number of nodes from each
floor that delivered at least one data packet in each
six-minute sub-period is plotted in Figure 7(a), 7(b) and
7(c) separately. On each floor, without any adversary,
at least 24 CTP nodes were able to find a successful
route in each six minute. However, with the five fake
base stations in the wormhole, the number of CTP nodes
that could find a successful route goes down to 9 for
the first floor; it decreases to no more than 4 for the
second floor; as the worst impact, none of the nodes on
the third floor ever found a successful route. A further
look at the data showed that all the nine nodes from
the first floor with successful delivery record were all
close to the real base station. The CTP nodes relatively
far away from the base station, such as those on the
second and the third floor, had little luck in making
good routing decisions. When TARF was enabled on
each node, most nodes made correct routing decisions
circumventing the attackers. That improvement can
be verified by the fact that the number of the TARF-
enabled nodes with successful delivery record under
the threat of the wormhole is close to that of CTP nodes
with no attackers, as shown in Figure 7(a), 7(b) and 7(c).

5.4 Application: Mobile Target Detection in the Pres-
ence of an Anti-Detection Mechanism

To demonstrate how TARF can be applied in networked
sensing systems, we developed a proof-of-concept re-
silient application of target detection. This application
relies on a deployed wireless sensor network to detect
a target that could move, and to deliver the detection
events to a base station via multiple hops with the TARF-
enabled CTP protocol. For simplification, the target is a
LEGO MINDSTORM NXT 2.0 vehicle robot equipped
with a TelosB mote that sends out an AM (Active
Message) packet every three seconds. A sensor node
receiving such a packet from the target issues a detection
report, which will be sent to the base station with the
aforementioned TARF-enabled CTP protocol.

The experiment is set up within a clear floor space of
90 by 40 inches with 15 TelosB motes (see Figure 8(a)). To

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

4

Time in minutes

N
u
m

b
e
r

o
f

d
e
liv

e
re

d
 p

a
c
k
e
ts

CTP without adversaries

CTP with 5-node wormhole

TARF-enabled CTP with 5-node wormhole

(a) All three floors.

25 25
26

25 25

9 9 9 9 9

26
24

21
20

24

[0min, 6min] [6min,

12min]

[12min,

18min]

[18min,

24min]

[24min,

30min]

Time

N
u

m
b

e
r

o
f

n
o

d
e

s
 w

it
h

d
e

li
v

e
ry

 r
e

c
o

rd

CTP without adversaries

CTP with 5-node wormhole

TARF-enabled CTP with 5-node wormhole

(b) First floor.

36 36 36 37 36

2 2
4 3 2

36
34

30
33 32

[0min, 6min] [6min,

12min]

[12min,

18min]

[18min,

24min]

[24min,

30min]

Time

N
u

m
b

e
r

o
f

n
o

d
e

s
 w

it
h

d
e

li
v

e
ry

 r
e

c
o

rd

CTP without adversaries

CTP with 5-node wormhole

TARF-enabled CTP with 5-node wormhole

(c) Second floor.

25 25 25 25
24

25
24

23
22

23

0000 0

[0min, 6min] [6min,

12min]

[12min,

18min]

[18min,

24min]

[24min,

30min]

Time

N
u

m
b

e
r

o
f

n
o

d
e

s
 w

it
h

d
e

li
v

e
ry

 r
e

c
o

rd

CTP without adversaries

CTP with 5-node wormhole

TARF-enabled CTP with 5-node wormhole

(d) Third floor.

Fig. 7. Empirical comparison of CTP and TARF-enabled CTP
on Motelab: (a) number of all delivered data packets since the
beginning; number of nodes on (b) the first floor, (c) the second
floor and (d) the third floor that delivered at least one data packet
in sub-periods.

make the multi-hop delivery necessary, the transmission

power of all the Telosb motes except two fake base
stations in the network is reduced through both software
reduction and attenuator devices to within 30 inches. The
target uses an anti-detection mechanism utilizing a fake
base station close to the real base station, and another
remote base station close to the target and mounted on
another LEGO vehicle robot. The two fake base stations,
with a transmission range of at least 100 feet, collude
to form a wormhole: the fake base station close to the
base station replays all the packets from the base station
immediately; the remote fake base station, after receiving
those packets, immediately replays it again. This anti-
detection mechanism tricks some network nodes into
sending their event reports into these fake base stations
instead of the real base station. Though the fake base
station close to the real base station is capable of cheating
the whole network alone by itself with its powerful radio
for a certain amount of time, it can be easily recognized
by remote nodes as a poor next-hop candidate soon by
most routing protocols based on link quality: that fake
base station does not acknowledge the packets “sent”
to it from remote nodes with a weak radio via a single
hop since it can not really receive them. Thus, the anti-
detection mechanism needs to create such a wormhole to
replay the packets from the base station remotely.

(a) A snapshot of the network.

(b) A closer look.

Fig. 8. Deployment of a TARF-enabled wireless sensor network
to detect a moving target under the umbrella of two fake base
stations in a wormhole.

The target node 14 and the fake base station 13 close to
it move across the network along two parallel tracks of
22 inches back and forth (see Figure 8(b)); they travel

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

on each forward or backward path of 22 inches in
around 10 minutes. The experiment lasts 30 minutes. For
comparison, three nodes 9, 10 and 11 programmed with
the CTP protocol are paired with another three nodes 6, 7
and 8 programmed with the TARF-enabled CTP (see Fig-
ure 8(b)); each pair of nodes are physically placed close
enough. All the other nodes, except for the fake base
stations and the target node, are programmed with the
TARF-enabled CTP. To fairly compare the performance
between CTP and the TARF-enabled CTP, we now focus
on the delivered detection reports originating from these
three pairs of nodes: pair (9, 6), (10, 7) and (11, 8). For the
timestamp of each detection report from these six nodes,
we plot a corresponding symbol: a purple circle for the
nodes with the TARF-enabled CTP; a black cross for the
CTP nodes. The resulting detection report is visualized
in Figure 9(a). Roughly, the TARF nodes report the
existence of the target seven times as often as the CTP
nodes do. More specifically, as shown in Figure 9(b), in
the pair (9, 6), no report from CTP node 9 is delivered
while 46 reports from TARF node 6 is delivered; in the
pair (10, 7), no report from CTP node 10 is delivered
while 80 reports from TARF node 7 is delivered; in the
pair (11, 8), 40 reports from CTP node 11 is delivered
while 167 reports from TARF node 8 is delivered. Taking
into account the spatial proximity between each pair
of nodes, the TARF-enabled CTP achieves an enormous
improvement in target detection over the original CTP.

0 5 10 15 20 25 30

Time in minutes

D
e
liv

e
re

d
 r

e
p
o
rt

 o
f
d
e
te

c
ti
o
n Detection reported by TARF nodes

Detection reported by CTP nodes

(a) Detection report.

40
46

80

167

0 0

From node pair(9, 6) From node pair(10, 7) From node pair(11, 8)

N
u

m
b

e
r

o
f

re
p

o
rt

e
d

 d
e
te

c
ti

o
n

s

From CTP node

From TARF-enabled node

(b) Number of reported detections.

Fig. 9. Comparison of CTP and the TARF-enabled CTP in
detecting the moving target.

The demonstration of our TARF-based target detection
application implies the significance of adopting a secure
routing protocol in certain critical applications. The ex-
perimental results indicate that TARF greatly enhances
the security of applications involving multi-hop data
delivery.

6 RELATED WORK

We discuss more related work here in addition to the
introduction in Section 1. It is generally hard to protect
WSNs from wormhole attacks, sinkhole attacks and Sybil
attacks based on identity deception. The countermea-
sures often requires either tight time synchronization
or known geographic information [4]. FBSR[37], as a
feedback-based secure routing protocol for WSNs , uses
a statistics-based detection on a base station to dis-
cover potentially compromised nodes. But the claim that
FBSR is resilient against wormhole and Sybil attacks is
never evaluated or examined; the Keyed-OWHC-based
authentication used by FBSR also causes considerable
overhead. There also exists other work on trust-aware
secure routing that is evaluated only through computer
simulation, such as [38].

There are certain existing secure routing solutions
for WSNs based on trust and reputation management;
however, they rarely address the “identity theft” ex-
ploiting the replay of routing information. Two such
representative solutions are ATSR [22] and TARP [23].
Neither ATSR nor TARP offers protection against the
identity deception through replaying routing informa-
tion. ATSR [22] is a location-based trust-aware routing
solution for large WSNs. ATSR incorporates a distributed
trust model utilizing both direct and indirect trust,
geographical information as well as authentication to
protect the WSNs from packet misforwarding, packet
manipulation and acknowledgements spoofing. Another
trust-aware routing protocol for WSNs is TARP [23],
which exploits nodes’ past routing behavior and link
quality to determine efficient paths.

7 CONCLUSIONS

We have designed and implemented TARF, a robust
trust-aware routing framework for WSNs, to secure
multi-hop routing in dynamic WSNs against harmful
attackers exploiting the replay of routing information.
TARF focuses on trustworthiness and energy efficiency,
which are vital to the survival of a WSN in a hostile
environment. With the idea of trust management, TARF
enables a node to keep track of the trustworthiness of its
neighbors and thus to select a reliable route. Our main
contributions are listed as follows. (1) Unlike previous
efforts at secure routing for WSNs, TARF effectively
protects WSNs from severe attacks through replaying
routing information; it requires neither tight time syn-
chronization nor known geographic information. (2) The
resilience and scalability of TARF is proved through
both extensive simulation and empirical evaluation with

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

large-scale WSNs; the evaluation involves both static and
mobile settings, hostile network conditions, as well as
strong attacks such as wormhole attacks and Sybil attacks.
(3) We have implemented a ready-to-use TinyOS module
of TARF with low overhead; as demonstrated in the
paper, this TARF module can be integrated into existing
routing protocols with the least effort, thus producing
secure and efficient fully-functional protocols. (4) Finally,
we demonstrate a proof-of-concept mobile target detec-
tion application that is built on top of TARF and is
resilient in the presence of an anti-detection mechanism;
that indicates the potential of TARF in WSN applications.

REFERENCES

[1] G. Zhan, W. Shi, and J. Deng, “Tarf: A trust-aware routing
framework for wireless sensor networks,” in Proceeding of the 7th
European Conference on Wireless Sensor Networks (EWSN’10), 2010.

[2] F. Zhao and L. Guibas, Wireless Sensor Networks: An Information
Processing Approach. Morgan Kaufmann Publishers, 2004.

[3] A. Wood and J. Stankovic, “Denial of service in sensor networks,”
Computer, vol. 35, no. 10, pp. 54–62, Oct 2002.

[4] C. Karlof and D. Wagner, “Secure routing in wireless sensor
networks: attacks and countermeasures,” in Proceedings of the
1st IEEE International Workshop on Sensor Network Protocols and
Applications, 2003.

[5] M. Jain and H. Kandwal, “A survey on complex wormhole attack
in wireless ad hoc networks,” in Proceedings of International Con-
ference on Advances in Computing, Control, and Telecommunication
Technologies (ACT ’09), 28-29 2009, pp. 555 –558.

[6] I. Krontiris, T. Giannetsos, and T. Dimitriou, “Launching a sink-
hole attack in wireless sensor networks; the intruder side,” in
Proceedings of IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications(WIMOB ’08), 12-14
2008, pp. 526 –531.

[7] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack
in sensor networks: Analysis and defenses,” in Proc. of the 3rd
International Conference on Information Processing in Sensor Networks
(IPSN’04), Apr. 2004.

[8] L. Bai, F. Ferrese, K. Ploskina, and S. Biswas, “Performance analy-
sis of mobile agent-based wireless sensor network,” in Proceedings
of the 8th International Conference on Reliability, Maintainability and
Safety (ICRMS 2009), 20-24 2009, pp. 16 –19.

[9] L. Zhang, Q. Wang, and X. Shu, “A mobile-agent-based middle-
ware for wireless sensor networks data fusion,” in Proceedings
of Instrumentation and Measurement Technology Conference (I2MTC
’09), 5-7 2009, pp. 378 –383.

[10] W. Xue, J. Aiguo, and W. Sheng, “Mobile agent based moving
target methods in wireless sensor networks,” in IEEE International
Symposium on Communications and Information Technology (ISCIT
2005), vol. 1, 12-14 2005, pp. 22 – 26.

[11] J. Hee-Jin, N. Choon-Sung, J. Yi-Seok, and S. Dong-Ryeol, “A
mobile agent based leach in wireless sensor networks,” in Proceed-
ings of the 10th International Conference on Advanced Communication
Technology (ICACT 2008), vol. 1, 17-20 2008, pp. 75 –78.

[12] J. Al-Karaki and A. Kamal, “Routing techniques in wireless sensor
networks: a survey,” Wireless Communications, vol. 11, no. 6, pp.
6–28, Dec. 2004.

[13] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: A link layer security
architecture for wireless sensor networks,” in Proc. of ACM SenSys
2004, Nov. 2004.

[14] A. Perrig, R. Szewczyk, W. Wen, D. Culler, and J. Tygar, “SPINS:
Security protocols for sensor networks,” Wireless Networks Journal
(WINET), vol. 8, no. 5, pp. 521–534, Sep. 2002.

[15] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“Tinypk: securing sensor networks with public key technology,”
in Proceedings of the 2nd ACM workshop on Security of ad hoc and
sensor networks (SASN ’04). New York, NY, USA: ACM, 2004, pp.
59–64.

[16] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic
curve cryptography in wireless sensor networks,” in Proceedings
of the 7th international conference on Information processing in sensor
networks (IPSN ’08). IEEE Computer Society, 2008, pp. 245–256.

[17] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Communications Magazine,
vol. 40, no. 8, pp. 102–114, Aug. 2002.

[18] H. Safa, H. Artail, and D. Tabet, “A cluster-based trust-aware
routing protocol for mobile ad hoc networks,” Wirel. Netw., vol. 16,
no. 4, pp. 969–984, 2010.

[19] W. Gong, Z. You, D. Chen, X. Zhao, M. Gu, and K. Lam, “Trust
based routing for misbehavior detection in ad hoc networks,”
Journal of Networks, vol. 5, no. 5, May 2010.

[20] Z. Yan, P. Zhang, and T. Virtanen, “Trust evaluation based security
solution in ad hoc networks,” in Proceeding of the 7th Nordic
Workshop on Secure IT Systems, 2003.

[21] J. L. X. Li, M. R. Lyu, “Taodv: A trusted aodv routing protocol
for mobile ad hoc networks,” in Proceedings of Aerospace Conference,
2004.

[22] T. Zahariadis, H. Leligou, P. Karkazis, P. Trakadas, I. Papaefs-
tathiou, C. Vangelatos, and L. Besson, “Design and implementa-
tion of a trust-aware routing protocol for large wsns,” International
Journal of Network Security & Its Applications (IJNSA), vol. 2, no. 3,
Jul. 2010.

[23] A. Rezgui and M. Eltoweissy, “Tarp: A trust-aware routing proto-
col for sensor-actuator networks,” in IEEE Internatonal Conference
on Mobile Adhoc and Sensor Systems (MASS 2007), 8-11 2007.

[24] A. Abbasi and M. Younis, “A survey on clustering algorithms for
wireless sensor networks,” Comput. Commun., vol. 30, pp. 2826–
2841, October 2007.

[25] S. Chang, S. Shieh, W. Lin, and C. Hsieh, “An efficient broadcast
authentication scheme in wireless sensor networks,” in Proceedings
of the 2006 ACM Symposium on Information, computer and communi-
cations security (ASIACCS ’06). New York, NY, USA: ACM, 2006,
pp. 311–320.

[26] K. Ren, W. Lou, K. Zeng, and P. Moran, “On broadcast authenti-
cation in wireless sensor networks,” IEEE Transactions on Wireless
Communications, vol. 6, no. 11, pp. 4136 –4144, november 2007.

[27] P. De, Y. Liu, and S. K. Das, “Modeling node compromise spread
in wireless sensor networks using epidemic theory,” in World of
Wireless, Mobile and Multimedia Networks, 2006. WoWMoM 2006.
International Symposium on a, 2006, pp. 7 pp. –243.

[28] A. Woo, T. Tong, and D. Culler, “Taming the underlying chal-
lenges of reliable multihop routing in sensor networks,” in Pro-
ceedings of the First ACM SenSys’03, Nov. 2003.

[29] S. Ganeriwal, L. Balzano, and M. Srivastava, “Reputation-based
framework for high integrity sensor networks,” ACM Trans. Sen.
Netw., 2008.

[30] G. Zhan, W. Shi, and J. Deng, “Poster abstract: Sensortrust - a re-
silient trust model for wsns,” in Proceedings of the 7th International
Conference on Embedded Networked Sensor Systems (SenSys’09), 2009.

[31] C. Perkins and P. Bhagwat, “Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile computers,”
SIGCOMM Comput. Commun. Rev., vol. 24, no. 4, pp. 234–244,
1994.

[32] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis,
“Collection tree protocol,” in Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys ’09). New York,
NY, USA: ACM, 2009, pp. 1–14.

[33] G. Zhan, W. Shi, and J. Deng, “Design, implementation
and evaluation of tarf: A trust-aware routing framework for
dynamic wsns,” http://mine.cs.wayne.edu/∼guoxing/tarf.pdf,
Wayne State University, Tech. Rep. MIST-TR-2010-003, Oct. 2010.

[34] Q. Zheng, X. Hong, and S. Ray, “Recent advances in mobility
modeling for mobile ad hoc network research,” in Proceedings of
the 42nd Annual Southeast Regional Conference (ACM-SE 42). New
York, NY, USA: ACM, 2004, pp. 70–75.

[35] X. Hong, M. Gerla, G. Pei, and C. Chiang, “A group mobility
model for ad hoc wireless networks,” in Proceedings of the 2nd
ACM International Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM ’99). New York, NY, USA:
ACM, 1999, pp. 53–60.

[36] “Motelab,” http://motelab.eecs.harvard.edu, 2005.
[37] Z. Cao, J. Hu, Z. Chen, M. Xu, and X. Zhou, “Fbsr: feedback-

based secure routing protocol for wireless sensor networks,”
International Journal of Pervasive Computing and Communications,
2008.

[38] T. Ghosh, N. Pissinou, and K. Makki, “Collaborative trust-based
secure routing against colluding malicious nodes in multi-hop ad
hoc networks,” in Local Computer Networks, 2004. 29th Annual IEEE
International Conference on, Nov. 2004, pp. 224 – 231.

http://mine.cs.wayne.edu/~guoxing/tarf.pdf
http://motelab.eecs.harvard.edu

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

Guoxing Zhan Guoxing Zhan is currently a
Ph.D. candidate in the Department of Computer
Science at Wayne State University. He received
a M.S. in Mathematics from Chinese Academy of
Sciences in 2007 and another M.S in Computer
Science from Wayne State University in 2009.
Mr. Zhan is interested in research on participa-
tory sensing, wireless sensor network, mobile
computing, networking and systems Security,
trust Management, and information processing.
Several of his research papers have been pre-

sented at international conferences or published in journals. Additionally,
Mr. Zhan has instructed a few computer science labs consisting of
interactive short lectures and hands-on experience.

Weisong Shi Dr. Weisong Shi is an Associate
Professor of Computer Science at Wayne State
University. He received his B.S. from Xidian
University in 1995, and Ph.D. degree from the
Chinese Academy of Sciences in 2000, both
in Computer Engineering. His current research
focuses on computer systems, mobile and cloud
computing. Dr. Shi has published more than 100
peer reviewed journal and conference papers.
He is the author of the book “Performance Opti-
mization of Software Distributed Shared Memory

Systems” (High Education Press, 2004). He has served the program
chairs and technical program committee members of several inter-
national conferences. He is a recipient of the NSF CAREER award,
one of 100 outstanding Ph.D. dissertations (China) in 2002, Career
Development Chair Award of Wayne State University in 2009, and the
“Best Paper Award” of ICWE’04 and IPDPS’05.

Julia Deng Dr. Julia (Hongmei) Deng currently
is a Principal Scientist at Intelligent Automa-
tion Inc. Her primary research interests include
protocol design, analysis and implementation in
wireless ad hoc/sensor networks, network secu-
rity, information assurance, and network man-
agement. Dr Deng received her Ph.D. in the
Department of Electrical Engineering from the
University of Cincinnati in 2004, majoring in com-
munications and computer networks. At IAI, she
serves as the PI and leads many network and

security related projects, such as secure routing for airborne Networks,
network service for airborne Networks, DoS mitigation for tactical net-
works, trust-aware querying for sensor networks, trusted routing for
sensor networks, agent-based intrusion detection system, just to name
a few.

	Introduction
	Design Considerations
	Assumptions
	Authentication Requirements
	Goals

	Design of TARF
	Overview
	Routing Procedure
	Structure and Exchange of Routing Information
	Route Selection

	EnergyWatcher
	TrustManager
	Analysis on EnergyWatcher and TrustManager

	Simulation
	Implementation and Empirical Evaluation
	TrustManager Implementation Details
	Incorporation of TARF into Existing Protocols
	Empirical Evaluation on Motelab
	Application: Mobile Target Detection in the Presence of an Anti-Detection Mechanism

	Related Work
	Conclusions
	References
	Biographies
	Guoxing Zhan
	Weisong Shi
	Julia Deng

